1
|
Dinov D, Nguyen L, Blackburn K, Vernino S. Current and emerging therapies for autoimmune encephalitis. Expert Rev Neurother 2025; 25:555-565. [PMID: 40125911 DOI: 10.1080/14737175.2025.2483925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/24/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
INTRODUCTION Autoimmune encephalitis (AIE) is an inflammatory neurological disorder often associated with autoantibodies targeting neural or glial antigens. Patients with AIE are often treated with immunotherapy, but multiple questions remain about the optimal treatment strategy for common AIE subtypes. AREAS COVERED The authors conducted a literature search of PubMed articles and Google Scholar articles using keywords 'autoimmune encephalitis,' 'anti-NMDA receptor encephalitis, 'LG1 encephalitis' from 2005 to 2024. This review briefly outlines the proposed pathophysiology of AIE with autoantibodies toward cell surface vs intracellular antigens. Next, the authors discuss treatments commonly used for AIE, and provide guidance on side effects and monitoring, and the evidence for treatment approaches for anti-NMDAr and LGI1 encephalitis is reviewed. In the final section, an overview of ongoing clinical trials and future therapies for AIE is provided. EXPERT OPINION Patients with AIE benefit from treatment with immunotherapy, but the evidence supporting specific treatment strategies is limited to observational studies. Successful clinical trials for AIE will provide new therapy options for patients, and the next generation of therapies may provide more targeted approaches to treating the condition.
Collapse
Affiliation(s)
- Darina Dinov
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Linda Nguyen
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kyle Blackburn
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Steven Vernino
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
2
|
Dalmau J, Dalakas MC, Kolson DL, Pröbstel AK, Paul F, Zamvil SS. Ten Years of Neurology® Neuroimmunology & Neuroinflammation: Decade in Review. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2025; 12:e200363. [PMID: 39724529 DOI: 10.1212/nxi.0000000000200363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Affiliation(s)
- Josep Dalmau
- IDIBAPS-CaixaResearch Institute, University Hospital Clínic of Barcelona, Barcelona, Spain
- University of Pennsylvania, Philadelphia
| | - Marinos C Dalakas
- University of Athens Medical School, Greece
- Jefferson University, Philadelphia, PA
| | | | - Anne-Katrin Pröbstel
- Departments of Neurology, University Hospital of Basel, Switzerland
- Departments of Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Switzerland
| | | | - Scott S Zamvil
- Department of Neurology, University of California, San Francisco
| |
Collapse
|
3
|
Luo H, Yang X, Yang J, Han Z, Huang D, Gui J, Ding R, Chen H, Cheng L, Ma J, Jiang L. D-Serine May Ameliorate Hippocampal Synaptic Plasticity Impairment Induced by Patients' Anti-N-methyl-D-aspartate Receptor Antibodies in Mice. Biomedicines 2024; 12:2882. [PMID: 39767788 PMCID: PMC11673065 DOI: 10.3390/biomedicines12122882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/12/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Objective: To establish a mouse model of anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis and assess the potential therapeutic benefits of D-serine supplementation in mitigating synaptic plasticity impairments induced by anti-NMDAR antibodies. Methods: Anti-NMDAR antibodies were purified from cerebrospinal fluid (CSF) samples of patients diagnosed with anti-NMDAR encephalitis and verified using a cell-based assay. CSF from patients with non-inflammatory neurological diseases served as the control. These antibodies were then injected intraventricularly into C57BL/6 mice. Forty-eight hours following the injection, mice were administered either D-serine (500 mg/kg) or sterile saline intraperitoneally for three consecutive days. Subsequent analyses included Western blotting, immunofluorescence, electrophysiological studies, and a series of behavioral tests to assess pathological changes caused by anti-NMDAR antibodies. Results: Mice injected with anti-NMDAR antibodies exhibited a significant reduction in hippocampal long-term potentiation compared to controls, which was notably ameliorated by D-serine treatment. Additionally, these mice displayed decreased levels of hippocampal membrane NMDAR1 protein and postsynaptic NMDAR1 density. However, D-serine administration did not significantly alter these conditions. Notably, no significant behavioral differences were observed between mice injected with anti-NMDAR antibodies and controls in open fields, elevated plus maze, novel object recognition, or Morris water maze tests. Conclusions: Our findings indicate that exogenous D-serine can improve hippocampal plasticity impairments caused by anti-NMDAR antibodies but does not reverse the decreased expression of NMDAR. Furthermore, a single intraventricular injection of patients' antibodies was insufficient to induce anti-NMDAR encephalitis-related behaviors in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiannan Ma
- Department of Neurology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| | - Li Jiang
- Department of Neurology, Children’s Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Neurodevelopment and Cognitive Disorders, Chongqing 400014, China
| |
Collapse
|
4
|
Day C, Silva JP, Munro R, Mullier B, André VM, Wolff C, Stephens GJ, Bithell A. Peptide-Purified Anti-N-methyl-D-aspartate Receptor (NMDAR) Autoantibodies Have Inhibitory Effect on Long-Term Synaptic Plasticity. Pharmaceuticals (Basel) 2024; 17:1643. [PMID: 39770485 PMCID: PMC11677035 DOI: 10.3390/ph17121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Background/Objectives: Recent studies, typically using patient cerebrospinal fluid (CSF), have suggested that different autoantibodies (Aabs) acting on their respective receptors, may underlie neuropsychiatric disorders. The GluN1 (NR1) subunit of the N-methyl-D-aspartate receptor (NMDAR) has been identified as a target of anti-NMDAR Aabs in a number of central nervous system (CNS) diseases, including encephalitis and autoimmune epilepsy. However, the role or the nature of Aabs responsible for effects on neuronal excitability and synaptic plasticity is yet to be established fully. Methods: Peptide immunisation was used to generate Aabs against selected specific GluN1 extracellular sequences based on patient-derived anti-NMDAR Aabs that have been shown to bind to specific regions within the GluN1 subunit. 'Protein A' purification was used to obtain the total IgG, and further peptide purification was used to obtain a greater percentage of NMDAR-target specific IgG Aabs. The binding and specificity of these anti-NMDAR Aabs were determined using a range of methodologies including enzyme-linked immunosorbent assays, immunocytochemistry and immunoblotting. Functional effects were determined using different in vitro electrophysiology techniques: two-electrode voltage-clamps in Xenopus oocytes and measures of long-term potentiation (LTP) in ex vivo hippocampal brain slices using multi-electrode arrays (MEAs). Results: We show that anti-NMDAR Aabs generated from peptide immunisation had specificity for GluN1 immunisation peptides as well as target-specific binding to the native protein. Anti-NMDAR Aabs had no clear effect on isolated NMDARs in an oocyte expression system. However, peptide-purified anti-NMDAR Aabs prevented the induction of LTP at Schaffer collateral-CA1 synapses in ex vivo brain slices, consistent with causing synaptic NMDAR hypofunction at a network level. Conclusions: This work provides a solid basis to address outstanding questions regarding anti-NMDAR Aab mechanisms of action and, potentially, the development of therapies against CNS diseases.
Collapse
Affiliation(s)
- Charlotte Day
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK;
| | - John-Paul Silva
- UCB Pharma, 208 Bath Road, Slough SL1 3WE, UK; (J.-P.S.); (R.M.)
| | - Rebecca Munro
- UCB Pharma, 208 Bath Road, Slough SL1 3WE, UK; (J.-P.S.); (R.M.)
| | - Brice Mullier
- UCB Pharma, Chemin du Foriest, 1420 Braine l’Alleud, Belgium; (B.M.); (V.M.A.); (C.W.)
| | - Véronique Marie André
- UCB Pharma, Chemin du Foriest, 1420 Braine l’Alleud, Belgium; (B.M.); (V.M.A.); (C.W.)
| | - Christian Wolff
- UCB Pharma, Chemin du Foriest, 1420 Braine l’Alleud, Belgium; (B.M.); (V.M.A.); (C.W.)
| | - Gary J. Stephens
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK;
| | - Angela Bithell
- School of Pharmacy, University of Reading, Whiteknights, Reading RG6 6AJ, UK;
| |
Collapse
|
5
|
Michalski K, Abdulla T, Kleeman S, Schmidl L, Gómez R, Simorowski N, Vallese F, Prüss H, Heckmann M, Geis C, Furukawa H. Structural and functional mechanisms of anti-NMDAR autoimmune encephalitis. Nat Struct Mol Biol 2024; 31:1975-1986. [PMID: 39227719 PMCID: PMC11921143 DOI: 10.1038/s41594-024-01386-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 08/07/2024] [Indexed: 09/05/2024]
Abstract
Autoantibodies against neuronal membrane proteins can manifest in autoimmune encephalitis, inducing seizures, cognitive dysfunction and psychosis. Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is the most dominant autoimmune encephalitis; however, insights into how autoantibodies recognize and alter receptor functions remain limited. Here we determined structures of human and rat NMDARs bound to three distinct patient-derived antibodies using single-particle electron cryo-microscopy. These antibodies bind different regions within the amino-terminal domain of the GluN1 subunit. Through electrophysiology, we show that all three autoantibodies acutely and directly reduced NMDAR channel functions in primary neurons. Antibodies show different stoichiometry of binding and antibody-receptor complex formation, which in one antibody, 003-102, also results in reduced synaptic localization of NMDARs. These studies demonstrate mechanisms of diverse epitope recognition and direct channel regulation of anti-NMDAR autoantibodies underlying autoimmune encephalitis.
Collapse
Affiliation(s)
- Kevin Michalski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Taha Abdulla
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sam Kleeman
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Lars Schmidl
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Ricardo Gómez
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Noriko Simorowski
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Francesca Vallese
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Harald Prüss
- Department of Neurology and Experimental Neurology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Manfred Heckmann
- Department of Neurophysiology, Institute of Physiology, University of Würzburg, Würzburg, Germany
| | - Christian Geis
- Section Translational Neuroimmunology, Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiro Furukawa
- W.M. Keck Structural Biology Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
- School of Biological Sciences, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
| |
Collapse
|
6
|
Guasp M, Dalmau J. Predicting the future of autoimmune encephalitides. Rev Neurol (Paris) 2024; 180:862-875. [PMID: 39277478 DOI: 10.1016/j.neurol.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/25/2024] [Accepted: 08/02/2024] [Indexed: 09/17/2024]
Abstract
The concept that many neurologic and psychiatric disorders of unknown cause are immune-mediated has evolved fast during the past 20 years. The main contribution to the expansion of this field has been the discovery of antibodies that attack neuronal or glial cell-surface proteins or receptors, directly modifying their structure and function. These antibodies facilitate the diagnosis and prompt treatment of patients who often improve with immunotherapy. The identification of this group of diseases, collectively named "autoimmune encephalitides", was preceded by many years of investigations on other autoimmune CNS disorders in which the antibodies are against intracellular proteins, occur more frequently with cancer, and associate with cytotoxic T-cell responses that are less responsive to immunotherapy. Here, we first trace the recent history of the autoimmune encephalitides and address how to assess the clinical value and implement in our practice the rapid pace of autoantibody discovery. In addition, we review recent developments in the post-acute stage of the two main autoimmune encephalitides (NMDAR and LGI1) focusing on symptoms that are frequently overlooked or missed, and therefore undertreated. Because a better understanding of the pathophysiology of these diseases relies on animal models, we examine currently available studies, recognizing the existing needs for better and all-inclusive neuro-immunobiological models. Finally, we assess the status of biomarkers of disease outcome, clinical scales, current treatment strategies, and emerging therapies including CAR T-cell technology. Altogether, this overview is intended to identify gaps of knowledge and provide suggestions for improvement and insights for future research.
Collapse
Affiliation(s)
- M Guasp
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-CaixaResearch Institute, Barcelona, Spain; Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain
| | - J Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-CaixaResearch Institute, Barcelona, Spain; Hospital Clínic de Barcelona, Universitat de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red, Enfermedades Raras (CIBERER), Madrid, Spain; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Maudes E, Jamet Z, Marmolejo L, Dalmau JO, Groc L. Positive Allosteric Modulation of NMDARs Prevents the Altered Surface Dynamics Caused by Patients' Antibodies. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2024; 11:e200261. [PMID: 38771989 PMCID: PMC11111324 DOI: 10.1212/nxi.0000000000200261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/27/2024] [Indexed: 05/23/2024]
Abstract
OBJECTIVES A positive allosteric modulator of the NMDAR, SGE-301, has been shown to reverse the alterations caused by the antibodies of patients with anti-NMDAR encephalitis (NMDARe). However, the mechanisms involved beyond receptor modulation are unclear. In this study, we aimed to investigate how this modulator affects NMDAR membrane dynamics. METHODS Cultured hippocampal neurons were treated with SGE-301 or vehicle, alongside with immunoglobulins G (IgG) from patients with NMDARe or healthy controls. NMDAR surface dynamics were assessed with single-molecule imaging by photoactivated localization microscopy. RESULTS NMDAR trajectories from neurons treated with SGE-301 were less confinement, with increased diffusion coefficients. This effect mainly occurred at synapses because extrasynaptic diffusion and confinement were minimally affected by SGE-301. Treatment with patients' IgG reduced NMDAR surface dynamics and increased their confinement. Remarkably, SGE-301 incubation antagonized patients' IgG effects in both synaptic and extrasynaptic membrane compartments, restoring diffusion and confinement values similar to those from neurons exposed to control IgG. DISCUSSION We demonstrate that SGE-301 upregulates NMDAR surface diffusion and antagonizes the pathogenic effects of patients' IgG on NMDAR membrane organization. These findings suggest a potential therapeutic strategy for NMDARe.
Collapse
Affiliation(s)
- Estibaliz Maudes
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Zoë Jamet
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Laura Marmolejo
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Josep O Dalmau
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Laurent Groc
- From the Neuroimmunology Program (E.M., L.M., J.O.D.), Fundació Clinic per la Recerca Biomèdiques August Pi i Sunyer (FCRB-IDIBAPS), University of Barcelona, Spain; and University of Bordeaux (Z.J., L.G.), CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| |
Collapse
|
8
|
Papi C, Milano C, Spatola M. Mechanisms of autoimmune encephalitis. Curr Opin Neurol 2024; 37:305-315. [PMID: 38667756 DOI: 10.1097/wco.0000000000001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
PURPOSE OF REVIEW To provide an overview of the pathogenic mechanisms involved in autoimmune encephalitides mediated by antibodies against neuronal surface antigens, with a focus on NMDAR and LGI1 encephalitis. RECENT FINDINGS In antibody-mediated encephalitides, binding of IgG antibodies to neuronal surface antigens results in different pathogenic effects depending on the type of antibody, IgG subclass and epitope specificity. NMDAR IgG1 antibodies cause crosslinking and internalization of the target, synaptic and brain circuitry alterations, as well as alterations of NMDAR expressing oligodendrocytes, suggesting a link with white matter lesions observed in MRI studies. LGI1 IgG4 antibodies, instead, induce neuronal dysfunction by disrupting the interaction with cognate proteins and altering AMPAR-mediated signaling. In-vitro findings have been corroborated by memory and behavioral changes in animal models obtained by passive transfer of patients' antibodies or active immunization. These models have been fundamental to identify targets for innovative therapeutic strategies, aimed at counteracting or preventing antibody effects, such as the use of soluble ephrin-B2, NMDAR modulators (e.g., pregnenolone, SGE-301) or chimeric autoantibody receptor T cells (CAART) in models of NMDAR encephalitis. SUMMARY A deep understanding of the pathogenic mechanisms underlying antibody-mediated encephalitides is crucial for the development of new therapeutic approaches targeting brain autoimmunity.
Collapse
Affiliation(s)
- Claudia Papi
- Department of Neuroscience, Catholic University of the Sacred Heart, Rome, Italy
- Fundació Recerca Biomedica Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRBC-IDIBAPS), Barcelona, Spain
| | - Chiara Milano
- Fundació Recerca Biomedica Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRBC-IDIBAPS), Barcelona, Spain
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Marianna Spatola
- Fundació Recerca Biomedica Clinic - Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRBC-IDIBAPS), Barcelona, Spain
| |
Collapse
|
9
|
Shu HJ, Ziolkowski LH, Salvatore SV, Benz AM, Wozniak DF, Yuede CM, Paul SM, Zorumski CF, Mennerick S. Effects of Complete and Partial Loss of the 24S-Hydroxycholesterol-Generating Enzyme Cyp46a1 on Behavior and Hippocampal Transcription in Mouse. Biomolecules 2024; 14:254. [PMID: 38540675 PMCID: PMC10968171 DOI: 10.3390/biom14030254] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 12/09/2024] Open
Abstract
Brain cholesterol metabolic products include neurosteroids and oxysterols, which play important roles in cellular physiology. In neurons, the cholesterol oxidation product, 24S-hydroxycholesterol (24S-HC), is a regulator of signaling and transcription. Here, we examined the behavioral effects of 24S-HC loss, using global and cell-selective genetic deletion of the synthetic enzyme CYP46A1. Mice that are globally deficient in CYP46A1 exhibited hypoactivity at young ages and unexpected increases in conditioned fear memory. Despite strong reductions in hippocampal 24S-HC in mice with selective loss of CYP46A1 in VGLUT1-positive cells, behavioral effects were not recapitulated in these conditional knockout mice. Global knockout produced strong, developmentally dependent transcriptional effects on select cholesterol metabolism genes. These included paradoxical changes in Liver X Receptor targets. Again, conditional knockout was insufficient to recapitulate most changes. Overall, our results highlight the complex effects of 24S-HC in an in vivo setting that are not fully predicted by known mechanisms. The results also demonstrate that the complete inhibition of enzymatic activity may be needed for a detectable, therapeutically relevant impact on gene expression and behavior.
Collapse
Affiliation(s)
- Hong-Jin Shu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
| | - Luke H. Ziolkowski
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
| | - Sofia V. Salvatore
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
| | - Ann M. Benz
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
| | - David F. Wozniak
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
- Taylor Family Institute for Innovative Psychiatry Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Carla M. Yuede
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
| | - Steven M. Paul
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
- Taylor Family Institute for Innovative Psychiatry Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Charles F. Zorumski
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
- Taylor Family Institute for Innovative Psychiatry Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA (S.V.S.); (D.F.W.); (C.M.Y.); (S.M.P.)
- Taylor Family Institute for Innovative Psychiatry Research, Washington University in St. Louis School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
10
|
Petrov AM. Oxysterols in Central and Peripheral Synaptic Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1440:91-123. [PMID: 38036877 DOI: 10.1007/978-3-031-43883-7_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Cholesterol is a key molecule for synaptic transmission, and both central and peripheral synapses are cholesterol rich. During intense neuronal activity, a substantial portion of synaptic cholesterol can be oxidized by either enzymatic or non-enzymatic pathways to form oxysterols, which in turn modulate the activities of neurotransmitter receptors (e.g., NMDA and adrenergic receptors), signaling molecules (nitric oxide synthases, protein kinase C, liver X receptors), and synaptic vesicle cycling involved in neurotransmitters release. 24-Hydroxycholesterol, produced by neurons in the brain, could directly affect neighboring synapses and change neurotransmission. 27-Hydroxycholesterol, which can cross the blood-brain barrier, can alter both synaptogenesis and synaptic plasticity. Increased generation of 25-hydroxycholesterol by activated microglia and macrophages could link inflammatory processes to learning and neuronal regulation. Amyloids and oxidative stress can lead to an increase in the levels of ring-oxidized sterols and some of these oxysterols (4-cholesten-3-one, 5α-cholestan-3-one, 7β-hydroxycholesterol, 7-ketocholesterol) have a high potency to disturb or modulate neurotransmission at both the presynaptic and postsynaptic levels. Overall, oxysterols could be used as "molecular prototypes" for therapeutic approaches. Analogs of 24-hydroxycholesterol (SGE-301, SGE-550, SAGE718) can be used for correction of NMDA receptor hypofunction-related states, whereas inhibitors of cholesterol 24-hydroxylase, cholestane-3β,5α,6β-triol, and cholest-4-en-3-one oxime (olesoxime) can be utilized as potential anti-epileptic drugs and (or) protectors from excitotoxicity.
Collapse
Affiliation(s)
- Alexey M Petrov
- Laboratory of Biophysics of Synaptic Processes, Kazan Institute of Biochemistry and Biophysics, Federal Research Center "Kazan Scientific Center of RAS", Kazan, RT, Russia.
- Kazan State Medial University, Kazan, RT, Russia.
- Kazan Federal University, Kazan, RT, Russia.
| |
Collapse
|
11
|
Masciocchi S, Businaro P, Scaranzin S, Morandi C, Franciotta D, Gastaldi M. General features, pathogenesis, and laboratory diagnostics of autoimmune encephalitis. Crit Rev Clin Lab Sci 2024; 61:45-69. [PMID: 37777038 DOI: 10.1080/10408363.2023.2247482] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 10/02/2023]
Abstract
Autoimmune encephalitis (AE) is a group of inflammatory conditions that can associate with the presence of antibodies directed to neuronal intracellular, or cell surface antigens. These disorders are increasingly recognized as an important differential diagnosis of infectious encephalitis and of other common neuropsychiatric conditions. Autoantibody diagnostics plays a pivotal role for accurate diagnosis of AE, which is of utmost importance for the prompt recognition and early treatment. Several AE subgroups can be identified, either according to the prominent clinical phenotype, presence of a concomitant tumor, or type of neuronal autoantibody, and recent diagnostic criteria have provided important insights into AE classification. Antibodies to neuronal intracellular antigens typically associate with paraneoplastic neurological syndromes and poor prognosis, whereas antibodies to synaptic/neuronal cell surface antigens characterize many AE subtypes that associate with tumors less frequently, and that are often immunotherapy-responsive. In addition to the general features of AE, we review current knowledge on the pathogenic mechanisms underlying these disorders, focusing mainly on the potential role of neuronal antibodies in the most frequent conditions, and highlight current theories and controversies. Then, we dissect the crucial aspects of the laboratory diagnostics of neuronal antibodies, which represents an actual challenge for both pathologists and neurologists. Indeed, this diagnostics entails technical difficulties, along with particularly interesting novel features and pitfalls. The novelties especially apply to the wide range of assays used, including specific tissue-based and cell-based assays. These assays can be developed in-house, usually in specialized laboratories, or are commercially available. They are widely used in clinical immunology and in clinical chemistry laboratories, with relevant differences in analytic performance. Indeed, several data indicate that in-house assays could perform better than commercial kits, notwithstanding that the former are based on non-standardized protocols. Moreover, they need expertise and laboratory facilities usually unavailable in clinical chemistry laboratories. Together with the data of the literature, we critically evaluate the analytical performance of the in-house vs commercial kit-based approach. Finally, we propose an algorithm aimed at integrating the present strategies of the laboratory diagnostics in AE for the best clinical management of patients with these disorders.
Collapse
Affiliation(s)
- Stefano Masciocchi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Pietro Businaro
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, Università degli Studi di Pavia, Pavia, Italy
| | - Silvia Scaranzin
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Chiara Morandi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Diego Franciotta
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroimmunology Research Section, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
12
|
He S, Sun C, Zhu Q, Li L, Huang J, Wu G, Cao Y, Liao J, Lu Y, Su Q, Lin S, Ma X, Zhong C. A juvenile mouse model of anti-N-methyl-D-aspartate receptor encephalitis by active immunization. Front Mol Neurosci 2023; 16:1211119. [PMID: 37790883 PMCID: PMC10544982 DOI: 10.3389/fnmol.2023.1211119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/25/2023] [Indexed: 10/05/2023] Open
Abstract
INTRODUCTION Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a common autoimmune encephalitis, and it is associated with psychosis, dyskinesia, and seizures. Anti-NMDAR encephalitis (NMDARE) in juveniles and adults presents different clinical charactreistics. However, the pathogenesis of juvenile anti-NMDAR encephalitis remains unclear, partly because of a lack of suitable animal models. METHODS We developed a model of juvenile anti-NMDAR encephalitis using active immunization with an amino terminal domain peptide from the GluN1 subunit (GluN1356 - 385) against NMDARs in 3-week-old female C57BL/6J mice. RESULTS Immunofluorescence staining suggested that autoantibody levels in the hippocampus increased, and HEK-293T cells staining identified the target of the autoantibodies as GluN1, suggesting that GluN1-specific immunoglobulin G was successfully induced. Behavior assessment showed that the mice suffered significant cognition impairment and sociability reduction, which is similar to what is observed in patients affected by anti-NMDAR encephalitis. The mice also exhibited impaired long-term potentiation in hippocampal CA1. Pilocarpine-induced epilepsy was more severe and had a longer duration, while no spontaneous seizures were observed. CONCLUSION The juvenile mouse model for anti-NMDAR encephalitis is of great importance to investigate the pathological mechanism and therapeutic strategies for the disease, and could accelerate the study of autoimmune encephalitis.
Collapse
Affiliation(s)
- Shuyu He
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
- Department of Clinical Research, Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, China
- Shenzhen Children's Hospital of China Medical University, Shenzhen, China
| | - Chongyang Sun
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qian Zhu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
- Department of Clinical Research, Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Lin Li
- Department of Clinical Research, Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Jianyu Huang
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
| | - Ge Wu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Cao
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
| | - Jianxiang Liao
- Department of Clinical Research, Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Yi Lu
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
| | - Qiru Su
- Department of Clinical Research, Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Sufang Lin
- Department of Clinical Research, Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Xiaopeng Ma
- Department of Clinical Research, Department of Neurology, Surgery Division, Epilepsy Center, Shenzhen Children's Hospital, Shenzhen, China
| | - Cheng Zhong
- Shenzhen Key Laboratory of Precision Diagnosis and Treatment of Depression, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institution, Shenzhen, China
| |
Collapse
|
13
|
Pham MC, Masi G, Patzina R, Obaid AH, Oxendine SR, Oh S, Payne AS, Nowak RJ, O'Connor KC. Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathol 2023; 146:319-336. [PMID: 37344701 PMCID: PMC11380498 DOI: 10.1007/s00401-023-02603-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2βδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.
Collapse
Affiliation(s)
- Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
| | - Gianvito Masi
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rosa Patzina
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Abeer H Obaid
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA
| | - Seneca R Oxendine
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
14
|
Iborra-Lázaro G, Djebari S, Sánchez-Rodríguez I, Gratacòs-Batlle E, Sánchez-Fernández N, Radošević M, Casals N, Navarro-López JDD, Soto Del Cerro D, Jiménez-Díaz L. CPT1C is required for synaptic plasticity and oscillatory activity that supports motor, associative and non-associative learning. J Physiol 2023; 601:3533-3556. [PMID: 37309891 DOI: 10.1113/jp284248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/26/2023] [Indexed: 06/14/2023] Open
Abstract
Carnitine palmitoyltransferase 1c (CPT1C) is a neuron-specific protein widely distributed throughout the CNS and highly expressed in discrete brain areas including the hypothalamus, hippocampus, amygdala and different motor regions. Its deficiency has recently been shown to disrupt dendritic spine maturation and AMPA receptor synthesis and trafficking in the hippocampus, but its contribution to synaptic plasticity and cognitive learning and memory processes remains mostly unknown. Here, we aimed to explore the molecular, synaptic, neural network and behavioural role of CPT1C in cognition-related functions by using CPT1C knockout (KO) mice. CPT1C-deficient mice showed extensive learning and memory deficits. The CPT1C KO animals exhibited impaired motor and instrumental learning that seemed to be related, in part, to locomotor deficits and muscle weakness but not to mood alterations. In addition, CPT1C KO mice showed detrimental hippocampus-dependent spatial and habituation memory, most probably attributable to inefficient dendritic spine maturation, impairments in long-term plasticity at the CA3-CA1 synapse and aberrant cortical oscillatory activity. In conclusion, our results reveal that CPT1C is not only crucial for motor function, coordination and energy homeostasis, but also has a crucial role in the maintenance of learning and memory cognitive functions. KEY POINTS: CPT1C, a neuron-specific interactor protein involved in AMPA receptor synthesis and trafficking, was found to be highly expressed in the hippocampus, amygdala and various motor regions. CPT1C-deficient animals exhibited energy deficits and impaired locomotion, but no mood changes were found. CPT1C deficiency disrupts hippocampal dendritic spine maturation and long-term synaptic plasticity and reduces cortical γ oscillations. CPT1C was found to be crucial for motor, associative and non-associative learning and memory.
Collapse
Affiliation(s)
- Guillermo Iborra-Lázaro
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Souhail Djebari
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Irene Sánchez-Rodríguez
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - Esther Gratacòs-Batlle
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Nuria Sánchez-Fernández
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Marija Radošević
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Núria Casals
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya and Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y la Nutrición (CIBEROBN), Instituto de Salud Carlos III, Barcelona, Spain
| | - Juan de Dios Navarro-López
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| | - David Soto Del Cerro
- Laboratory of Neurophysiology, Department of Biomedicine, Faculty of Medicine and Health Sciences, Institute of Neurosciences, University of Barcelona, Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Barcelona, Spain
| | - Lydia Jiménez-Díaz
- Neurophysiology & Behaviour Laboratory, Regional Centre for Biomedical Research (CRIB), Faculty of Medicine of Ciudad Real, University of Castilla-La Mancha, Ciudad Real, Spain
| |
Collapse
|
15
|
Bai Y, Liu Z, Qian T, Peng Y, Ma H, Hu H, Cheng G, Wen H, Xie L, Zheng D, Geng Q, Wang J, Wang H. Single-nucleus RNA sequencing unveils critical regulators in various hippocampal neurons for anti-N-methyl-D-aspartate receptor encephalitis. Brain Pathol 2023; 33:e13156. [PMID: 36942475 PMCID: PMC10307523 DOI: 10.1111/bpa.13156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a neuropsychiatric disease with variable clinical manifestations caused by NMDAR autoantibody. The underlying molecular underpinnings of this disease are rarely characterized on a genomic scale. Anti-NMDAR encephalitis mainly affects the hippocampus, however, its effect on gene expression in hippocampal neurons is unclear at present. Here, we construct the active and passive immunization mouse models of anti-NMDAR encephalitis, and use single-nucleus RNA sequencing to investigate the diverse expression profile of neuronal populations isolated from different hippocampal regions. Dramatic changes in cell proportions and differentially expressed genes were observed in excitatory neurons of the dentate gyrus (DG) subregion. In addition, we found that ATP metabolism and biosynthetic regulators related genes in excitatory neurons of DG subregion were significantly affected. Kcnq1ot1 in inhibitory neurons and Meg3 in interneurons also changed. Notably, the latter two molecules exhibited opposite changes in different models. Therefore, the above genes were used as potential targets for further research on the pathological process of anti-NMDAR encephalitis. These data involve various hippocampal neurons, which delineate a framework for understanding the hippocampal neuronal circuit and the potential molecular mechanisms of anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Yunmeng Bai
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, the First Affiliated Hospital, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Zhuhe Liu
- Department of Neurology, Guangzhou First People's Hospital, School of MedicineSouthern China University of TechnologyGuangzhouChina
| | - Tinglin Qian
- School of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouChina
| | - Yu Peng
- Department of Neurology, Nanfang HospitalSouthern Medical UniversityGuangzhouChina
| | - Huan Ma
- Guangdong Cardiovascular InstituteGuangdong Academy of Medical SciencesGuangzhouChina
| | - Hong Hu
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, the First Affiliated Hospital, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Guangqing Cheng
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, the First Affiliated Hospital, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Haixia Wen
- Department of Neurology, Guangzhou First People's Hospital, School of MedicineSouthern China University of TechnologyGuangzhouChina
| | - Lulin Xie
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, the First Affiliated Hospital, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Dong Zheng
- Department of NeurologyThe Affiliated Brain Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Qingshan Geng
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, the First Affiliated Hospital, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Jigang Wang
- Department of Nephrology, Shenzhen Key Laboratory of Kidney Diseases, Shenzhen People's Hospital, the First Affiliated Hospital, School of MedicineSouthern University of Science and TechnologyShenzhenChina
| | - Honghao Wang
- Department of Neurology, Guangzhou First People's Hospital, School of MedicineSouthern China University of TechnologyGuangzhouChina
| |
Collapse
|
16
|
Bergeret S, Birzu C, Meneret P, Giron A, Demeret S, Marois C, Cousyn L, Rozenblum L, Laurenge A, Alentorn A, Navarro V, Psimaras D, Kas A. Brain Metabolic Alterations in Seropositive Autoimmune Encephalitis: An 18F-FDG PET Study. Biomedicines 2023; 11:biomedicines11020506. [PMID: 36831042 PMCID: PMC9953044 DOI: 10.3390/biomedicines11020506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/30/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
INTRODUCTION Autoimmune encephalitis (AE) diagnosis and follow-up remain challenging. Brain 18F-fluoro-deoxy-glucose positron emission tomography (FDG PET) has shown promising results in AE. Our aim was to investigate FDG PET alterations in AE, according to antibody subtype. METHODS We retrospectively included patients with available FDG PET and seropositive AE diagnosed in our center between 2015 and 2020. Brain PET Z-score maps (relative to age matched controls) were analyzed, considering metabolic changes significant if |Z-score| ≥ 2. RESULTS Forty-six patients were included (49.4 yrs [18; 81]): 13 with GAD autoantibodies, 11 with anti-LGI1, 9 with NMDAR, 5 with CASPR2, and 8 with other antibodies. Brain PET was abnormal in 98% of patients versus 53% for MRI. The most frequent abnormalities were medial temporal lobe (MTL) and/or striatum hypermetabolism (52% and 43% respectively), cortical hypometabolism (78%), and cerebellum abnormalities (70%). LGI1 AE tended to have more frequent MTL hypermetabolism. NMDAR AE was prone to widespread cortical hypometabolism. Fewer abnormalities were observed in GAD AE. Striatum hypermetabolism was more frequent in patients treated for less than 1 month (p = 0.014), suggesting a relation to disease activity. CONCLUSION FDG PET could serve as an imaging biomarker for early diagnosis and follow-up in AE.
Collapse
Affiliation(s)
- Sébastien Bergeret
- Sorbonne University, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Nuclear Medicine Department, 75013 Paris, France
| | - Cristina Birzu
- Paris Brain Institute, ICM, Sorbonne University, AP-HP, UMR S 1127, INSERM, Pitié Salpêtrière-Charles Foix Hospital Group, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Pierre Meneret
- Nuclear Medicine Department, Eugène Marquis Centre, INSERM, LTSI-UMR 1099, 35000 Rennes, France
| | - Alain Giron
- Laboratoire d’Imagerie Biomédicale, LIB, Sorbonne Université, CNRS, INSERM, 75006 Paris, France
| | - Sophie Demeret
- Sorbonne University, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Neurology Department, Neurological Intensive Care Unit, 75013 Paris, France
| | - Clemence Marois
- Sorbonne University, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Neurology Department, Neurological Intensive Care Unit, 75013 Paris, France
| | - Louis Cousyn
- Sorbonne University, AP-HP, Pitié-Salpêtrière-Charles Foix Hospital Group, Epilepsy Unit, Paris Brain Institute, ICM, Reference Center for Rare Epilepsies, 75013 Paris, France
| | - Laura Rozenblum
- Sorbonne University, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Nuclear Medicine Department, 75013 Paris, France
| | - Alice Laurenge
- Paris Brain Institute, ICM, Sorbonne University, AP-HP, UMR S 1127, INSERM, Pitié Salpêtrière-Charles Foix Hospital Group, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Agusti Alentorn
- Paris Brain Institute, ICM, Sorbonne University, AP-HP, UMR S 1127, INSERM, Pitié Salpêtrière-Charles Foix Hospital Group, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Vincent Navarro
- Sorbonne University, AP-HP, Pitié-Salpêtrière-Charles Foix Hospital Group, Epilepsy Unit, Paris Brain Institute, ICM, Reference Center for Rare Epilepsies, 75013 Paris, France
| | - Dimitri Psimaras
- Paris Brain Institute, ICM, Sorbonne University, AP-HP, UMR S 1127, INSERM, Pitié Salpêtrière-Charles Foix Hospital Group, Service de Neurologie 2-Mazarin, 75013 Paris, France
| | - Aurélie Kas
- Sorbonne University, Laboratoire d’Imagerie Biomédicale, LIB, CNRS, INSERM, AP-HP, Pitié Salpêtrière-Charles Foix Hospital Group, Nuclear Medicine Department, 75013 Paris, France
- Correspondence:
| |
Collapse
|
17
|
Tang W, Beckley JT, Zhang J, Song R, Xu Y, Kim S, Quirk MC, Robichaud AJ, Diaz ES, Myers SJ, Doherty JJ, Ackley MA, Traynelis SF, Yuan H. Novel neuroactive steroids as positive allosteric modulators of NMDA receptors: mechanism, site of action, and rescue pharmacology on GRIN variants associated with neurological conditions. Cell Mol Life Sci 2023; 80:42. [PMID: 36645496 PMCID: PMC10644378 DOI: 10.1007/s00018-022-04667-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/18/2022] [Accepted: 12/11/2022] [Indexed: 01/17/2023]
Abstract
N-methyl-D-aspartate receptors (NMDARs) play vital roles in normal brain functions (i.e., learning, memory, and neuronal development) and various neuropathological conditions, such as epilepsy, autism, Parkinson's disease, Alzheimer's disease, and traumatic brain injury. Endogenous neuroactive steroids such as 24(S)-hydroxycholesterol (24(S)-HC) have been shown to influence NMDAR activity, and positive allosteric modulators (PAMs) derived from 24(S)-hydroxycholesterol scaffold can also enhance NMDAR function. This study describes the structural determinants and mechanism of action for 24(S)-hydroxycholesterol and two novel synthetic analogs (SGE-550 and SGE-301) on NMDAR function. We also show that these agents can mitigate the altered function caused by a set of loss-of-function missense variants in NMDAR GluN subunit-encoding GRIN genes associated with neurological and neuropsychiatric disorders. We anticipate that the evaluation of novel neuroactive steroid NMDAR PAMs may catalyze the development of new treatment strategies for GRIN-related neuropsychiatric conditions.
Collapse
Affiliation(s)
- Weiting Tang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | | | - Jin Zhang
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Rui Song
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, China
| | - Yuchen Xu
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Department of Neurology, The First Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Sukhan Kim
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | - Eva Sarai Diaz
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Scott J Myers
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA
| | | | | | - Stephen F Traynelis
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
| | - Hongjie Yuan
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, GA, 30322, USA.
- Center for Functional Evaluation of Rare Variants (CFERV), Emory University School of Medicine, Atlanta, GA, 30322, USA.
| |
Collapse
|
18
|
Blumer M, Brown T, Freitas MB, Destro AL, Oliveira JA, Morales AE, Schell T, Greve C, Pippel M, Jebb D, Hecker N, Ahmed AW, Kirilenko BM, Foote M, Janke A, Lim BK, Hiller M. Gene losses in the common vampire bat illuminate molecular adaptations to blood feeding. SCIENCE ADVANCES 2022; 8:eabm6494. [PMID: 35333583 PMCID: PMC8956264 DOI: 10.1126/sciadv.abm6494] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/03/2022] [Indexed: 05/06/2023]
Abstract
Vampire bats are the only mammals that feed exclusively on blood. To uncover genomic changes associated with this dietary adaptation, we generated a haplotype-resolved genome of the common vampire bat and screened 27 bat species for genes that were specifically lost in the vampire bat lineage. We found previously unknown gene losses that relate to reduced insulin secretion (FFAR1 and SLC30A8), limited glycogen stores (PPP1R3E), and a unique gastric physiology (CTSE). Other gene losses likely reflect the biased nutrient composition (ERN2 and CTRL) and distinct pathogen diversity of blood (RNASE7) and predict the complete lack of cone-based vision in these strictly nocturnal bats (PDE6H and PDE6C). Notably, REP15 loss likely helped vampire bats adapt to high dietary iron levels by enhancing iron excretion, and the loss of CYP39A1 could have contributed to their exceptional cognitive abilities. These findings enhance our understanding of vampire bat biology and the genomic underpinnings of adaptations to blood feeding.
Collapse
Affiliation(s)
- Moritz Blumer
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Tom Brown
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | - Ana Luiza Destro
- Department of Animal Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Juraci A. Oliveira
- Department of General Biology, Federal University of Viçosa, Viçosa, Brazil
| | - Ariadna E. Morales
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Tilman Schell
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Martin Pippel
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - David Jebb
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Nikolai Hecker
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
| | - Alexis-Walid Ahmed
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Bogdan M. Kirilenko
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| | - Maddy Foote
- Native Bat Conservation Program, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario M1B 5K7, Canada
| | - Axel Janke
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Biodiversity and Climate Research Centre, Senckenberganlage 25, 60325 Frankfurt am Main, Germany
| | - Burton K. Lim
- Department of Natural History, Royal Ontario Museum, 100 Queen’s Park, Toronto, Ontario M5S 2C6, Canada
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems, 01187 Dresden, Germany
- Center for Systems Biology Dresden, 01307 Dresden, Germany
- Goethe University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
| |
Collapse
|