1
|
Messmer ML, Salapa HE, Popescu BF, Levin MC. RNA Binding Protein Dysfunction Links Smoldering/Slowly Expanding Lesions to Neurodegeneration in Multiple Sclerosis. Ann Neurol 2025; 97:313-328. [PMID: 39422285 DOI: 10.1002/ana.27114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Despite the advances in treatments for multiple sclerosis (MS), unremitting neurodegeneration continues to drive disability and disease progression. Smoldering/slowly expanding lesions (SELs) and dysfunction of the RNA binding protein (RBP) heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) are pathologic hallmarks of MS cortex and intricately tied to disability and neurodegeneration, respectively. We hypothesized that neuronal hnRNP A1 dysfunction contributes to neurodegeneration and is exacerbated by smoldering/SELs in progressive MS. METHODS Neuronal hnRNP A1 pathology (nucleocytoplasmic mislocalization of hnRNP A1) was examined in healthy control and MS brains using immunohistochemistry. MS cases were stratified by severity of hnRNP A1 pathology to examine the link between RBP dysfunction, demyelination, and neurodegeneration. RESULTS We found that smoldering/SELs were only present within a subset of MS tissues characterized by elevated neuronal hnRNP A1 pathology (MS-A1high) in adjacent cortical gray matter. In contrast to healthy controls and MS with low hnRNP A1 pathology (MS-A1low), MS-A1high showed elevated markers of neurodegeneration, including neuronal loss and injury, brain atrophy, axonal loss, and axon degeneration. Additionally, we discovered a subpopulation of morphologically intact neurons lacking expression of NeuN, a neuron-specific RBP, in cortical projection neurons in MS-A1high cases. INTERPRETATION hnRNP A1 dysfunction contributes to neurodegeneration and may be exacerbated by smoldering/SELs in progressive MS. The discovery of NeuN-negative neurons suggests that some cortical neurons may only be injured and not lost. By characterizing RBP pathology in MS cortex, this study has important implications for understanding the pathogenic mechanisms driving neurodegeneration, the substrate of disability and disease progression. ANN NEUROL 2025;97:313-328.
Collapse
Affiliation(s)
- Miranda L Messmer
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Hannah E Salapa
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Bogdan F Popescu
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael C Levin
- Office of the Saskatchewan Multiple Sclerosis Clinical Research Chair, University of Saskatchewan, Saskatoon, SK, Canada
- Cameco MS Neuroscience Research Centre, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Anatomy, Physiology and Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
- Neurology Division, Department of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Chen JQA, Wever DD, McNamara NB, Bourik M, Smolders J, Hamann J, Huitinga I. Inflammatory microglia correlate with impaired oligodendrocyte maturation in multiple sclerosis. Front Immunol 2025; 15:1522381. [PMID: 39877374 PMCID: PMC11772157 DOI: 10.3389/fimmu.2024.1522381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025] Open
Abstract
Introduction Remyelination of demyelinated axons can occur as an endogenous repair mechanism in multiple sclerosis (MS), but its efficacy varies between both MS individuals and lesions. The molecular and cellular mechanisms that drive remyelination remain poorly understood. Here, we studied the relation between microglia activation and remyelination activity in MS. Methods We correlated regenerative (CD163+) and inflammatory (iNOS+) microglia with BCAS1+ oligodendrocytes, subdivided into early-stage (<3 processes) and late-stage (≥3 processes) cells in brain donors with high or low remyelinating potential in remyelinated lesions and active lesions with ramified/amoeboid (non-foamy) or foamy microglia. A cohort of MS donors categorized as efficiently remyelinating donors (ERDs; n=25) or poorly remyelinating donors (PRDs; n=17) was included, based on their proportion of remyelinated lesions at autopsy. Results and discussion We hypothesized more CD163+ microglia and BCAS1+ oligodendrocytes in remyelinated and active non-foamy lesions from ERDs and more iNOS+ microglia with fewer BCAS1+ oligodendrocytes in active foamy lesions from PRDs. For CD163+ microglia, however, no differences were observed between MS lesions and MS donor groups. In line with our hypothesis, we found that INOS+ microglia were significantly increased in PRDs compared to ERDs within remyelinated lesions. MS lesions, more late-stage BCAS1+ oligodendrocytes were detected in active lesions with non-foamy or foamy microglia in comparison with remyelinated lesions. Although no differences were found for early-stage BCAS1+ oligodendrocytes between MS lesions, we did find significantly more early-stage BCAS1+ oligodendrocytes in PRDs vs ERDs in remyelinated lesions. Interestingly, a positive correlation was identified between iNOS+ microglia and the presence of early-stage BCAS1+ oligodendrocytes. These findings suggest that impaired maturation of early-stage BCAS1+ oligodendrocytes, encountering inflammatory microglia, may underlie remyelination deficits and unsuccessful lesion repair in MS.
Collapse
Affiliation(s)
- J. Q. Alida Chen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Dennis D. Wever
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Niamh B. McNamara
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Morjana Bourik
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Joost Smolders
- Departments of Neurology and Immunology, MS Center ErasMS, Erasmus MC, University Medical Center, Rotterdam, Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
3
|
Traetta ME, Vecchiarelli HA, Tremblay MÈ. Fundamental Neurochemistry Review: Lipids across microglial states. J Neurochem 2025; 169:e16259. [PMID: 39696753 DOI: 10.1111/jnc.16259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/20/2024]
Abstract
The capacity of immune cells to alter their function based on their metabolism is the basis of the emerging field of immunometabolism. Microglia are the resident innate immune cells of the central nervous system, and it is a current focus of the field to investigate how alterations in their metabolism impact these cells. Microglia have the ability to utilize lipids, such as fatty acids, as energy sources, but also alterations in lipids can impact microglial form and function. Recent studies highlighting different microglial states and transcriptional signatures have highlighted modifications in lipid processing as defining these states. This review highlights these recent studies and uses these altered pathways to discuss the current understanding of lipid biology in microglia. The studies highlighted here review how lipids may alter microglial phagocytic functioning or alter their pro- and anti-inflammatory balance. These studies provide a foundation by which lipid supplementation or diet alterations could influence microglial states and function. Furthermore, targets modulating microglial lipid metabolism may provide new treatment avenues.
Collapse
Affiliation(s)
- Marianela E Traetta
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Haley A Vecchiarelli
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
| | - Marie-Ève Tremblay
- Division of Medical Sciences, University of Victoria, Victoria, British Columbia, Canada
- Centre for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, British Columbia, Canada
- Institute for Aging and Lifelong Health (IALH), University of Victoria, Victoria, British Columbia, Canada
- Département de médecine moléculaire, Université Laval, Québec City, Quebec, Canada
- Axe neurosciences, Centre de recherche du CHU de Québec, Université Laval, Québec City, Quebec, Canada
- Neurology and Neurosurgery Department, McGill University, Montréal, Quebec, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
4
|
De Angelis F, Nistri R, Wright S. Measuring Disease Progression in Multiple Sclerosis Clinical Drug Trials and Impact on Future Patient Care. CNS Drugs 2025; 39:55-80. [PMID: 39581949 DOI: 10.1007/s40263-024-01132-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/26/2024]
Abstract
Multiple sclerosis (MS) is a chronic immune-mediated disease of the central nervous system characterised by inflammation, demyelination and neurodegeneration. Although several drugs are approved for MS, their efficacy in progressive disease is modest. Addressing disease progression as a treatment goal in MS is challenging due to several factors. These include a lack of complete understanding of the pathophysiological mechanisms driving MS and the absence of sensitive markers of disease progression in the short-term of clinical trials. MS usually begins at a young age and lasts for decades, whereas clinical research often spans only 1-3 years. Additionally, there is no unifying definition of disease progression. Several drugs are currently being investigated for progressive MS. In addition to new medications, the rise of new technologies and of adaptive trial designs is enabling larger and more integrated data collection. Remote assessments and decentralised clinical trials are becoming feasible. These will allow more efficient and large studies at a lower cost and with less burden on study participants. As new drugs are developed and research evolves, we anticipate a concurrent change in patient care at various levels in the foreseeable future. We conducted a narrative review to discuss the challenges of accurately measuring disease progression in contemporary MS drug trials, some new research trends and their implications for patient care.
Collapse
Affiliation(s)
- Floriana De Angelis
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK.
- National Institute for Health and Care Research, Biomedical Research Centre, University College London Hospitals, London, UK.
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK.
| | - Riccardo Nistri
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK
| | - Sarah Wright
- Department of Neuroinflammation, Faculty of Brain Sciences, Queen Square Multiple Sclerosis Centre, University College London Queen Square Institute of Neurology, University College London, London, WC1B 5EH, UK
- The National Hospital for Neurology and Neurosurgery, University College London Hospitals, London, UK
| |
Collapse
|
5
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
6
|
Ovchinnikova LA, Eliseev IE, Dzhelad SS, Simaniv TO, Klimina KM, Ivanova M, Ilina EN, Zakharova MN, Illarioshkin SN, Rubtsov YP, Gabibov AG, Lomakin YA. High heterogeneity of cross-reactive immunoglobulins in multiple sclerosis presumes combining of B-cell epitopes for diagnostics: a case-control study. Front Immunol 2024; 15:1401156. [PMID: 39669579 PMCID: PMC11634884 DOI: 10.3389/fimmu.2024.1401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/31/2024] [Indexed: 12/14/2024] Open
Abstract
Background Multiple sclerosis (MS) is a neuroinflammatory disease triggered by a combination of genetic traits and external factors. Autoimmune nature of MS is proven by the identification of pathogenic T cells, but the role of autoantibody-producing B cells is less clear. A comprehensive understanding of the development of neuroinflammation and the identification of targeted autoantigens are crucial for timely diagnosis and appropriate treatment. Methods An expression library of 44-mer overlapping peptides from a panel of putative autoantigenic human proteins was employed for modified Phage ImmunoPrecipitation Sequencing (PhIP-Seq) to identify B cell peptide epitopes from MS patients. Individual peptides extracted by PhIP-Seq were tested by ELISA to characterize their affinity towards IgG from both MS patients and healthy donors (HD). Three candidate auto-peptides were used for isolating autoreactive antigen-specific IgGs from the serum of MS patients. Results Autoantibody screening revealed high heterogeneity of IgG response in MS. The autoantigenic genesis of the PhIP-Seq-identified peptides was further strengthened by clinical ELISA testing of 11 HD and 16 MS donors. Validation experiments on independent cohorts of 22 HD and 28 MS patients confirmed statistically significant elevated titers of IgG specific to spectrin alpha chain (SPTAN1) in the serum of MS patients compared to HD. The levels of anti-SPTAN1 IgG correlated in serum and cerebrospinal fluid (CSF). Isolated autoreactive antigen-specific IgG exhibited increased cross-reactivity to a panel of PhIP-Seq-identified antigenic peptides. Serum IgG from MS patients were reactive to latent membrane protein (LMP1) of Epstein-Barr virus, a potential trigger of MS. Discovered antigenic peptides from SPTAN1, protein-tyrosine kinase 6 (PTK6), periaxin (PRX), and LMP1 were tested as potential biomarker panel for MS diagnostics. We concluded that the combination of particular peptides from SPTAN1, PTK6, PRX and LMP1 could be implemented as a four-peptide biomarker panel for MS diagnosis (area under the curve (AUC) of 0.818 for discriminating between HD and MS). Conclusions This study supports the concept that the specificity of autoreactive IgG in MS is highly heterogeneous. Despite that we suggest that the combination of several B-cell epitopes could be employed as reliable and simple test for MS diagnostics.
Collapse
Affiliation(s)
- Leyla A. Ovchinnikova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Igor E. Eliseev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- St. Petersburg School of Physics, Mathematics, and Computer Science, HSE University, Saint Petersburg, Russia
| | - Samir S. Dzhelad
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | | | - Ksenia M. Klimina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | - Elena N. Ilina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | | | | | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Alexander G. Gabibov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Yakov A. Lomakin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Sanabria-Diaz G, Cagol A, Lu PJ, Barakovic M, Ocampo-Pineda M, Chen X, Weigel M, Ruberte E, Siebenborn NDOS, Galbusera R, Schädelin S, Benkert P, Kuhle J, Kappos L, Melie-Garcia L, Granziera C. Advanced MRI Measures of Myelin and Axon Volume Identify Repair in Multiple Sclerosis. Ann Neurol 2024. [PMID: 39390658 DOI: 10.1002/ana.27102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/10/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Pathological studies suggest that multiple sclerosis (MS) lesions endure multiple waves of damage and repair; however, the dynamics and characteristics of these processes are poorly understood in patients living with MS. METHODS We studied 128 MS patients (75 relapsing-remitting, 53 progressive) and 72 healthy controls who underwent advanced magnetic resonance imaging and clinical examination at baseline and 2 years later. Magnetization transfer saturation and multi-shell diffusion imaging were used to quantify longitudinal changes in myelin and axon volumes within MS lesions. Lesions were grouped into 4 classes (repair, damage, mixed repair damage, and stable). The frequency of each class was correlated to clinical measures, demographic characteristics, and levels of serum neurofilament light chain (sNfL). RESULTS Stable lesions were the most frequent (n = 2,276; 44%), followed by lesions with patterns of "repair" (n = 1,352; 26.2%) and damage (n = 1,214; 23.5%). The frequency of "repair" lesion was negatively associated with disability (β = -0.04; p < 0.001) and sNfL (β = -0.16; p < 0.001) at follow-up. The frequency of the "damage" class was higher in progressive than relapsing-remitting patients (p < 0.05) and was related to disability (baseline: β = -0.078; follow-up: β = -0.076; p < 0.001) and age (baseline: β = -0.078; p < 0.001). Stable lesions were more frequent in relapsing-remitting than in progressive patients (p < 0.05), and in younger patients versus older (β = -0.07; p < 0.001) at baseline. Further, "mixed" lesions were most frequent in older patients (β = 0.004; p < 0.001) at baseline. INTERPRETATION These findings show that repair and damage processes within MS lesions occur across the entire disease spectrum and that their frequency correlates with patients disability, age, disease duration, and extent of neuroaxonal damage. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Gretel Sanabria-Diaz
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Alessandro Cagol
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Health Sciences, University of Genova, Genoa, Italy
| | - Po-Jui Lu
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Muhamed Barakovic
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Mario Ocampo-Pineda
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Xinjie Chen
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Matthias Weigel
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Division of Radiological Physics, Department of Radiology, University Hospital Basel, Basel, Switzerland
| | - Esther Ruberte
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Nina de Oliveira S Siebenborn
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Medical Image Analysis Center (MIAC), Basel, Switzerland
| | - Riccardo Galbusera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Sabine Schädelin
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Pascal Benkert
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Multiple Sclerosis Centre, Department of Neurology, Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
| | - Lester Melie-Garcia
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurology Clinic and Policlinic, Department of Medicine, Clinical Research and Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
8
|
Gargareta VI, Berghoff SA, Krauter D, Hümmert S, Marshall-Phelps KLH, Möbius W, Nave KA, Fledrich R, Werner HB, Eichel-Vogel MA. Myelinated peripheral axons are more vulnerable to mechanical trauma in a model of enlarged axonal diameters. Glia 2024; 72:1572-1589. [PMID: 38895764 DOI: 10.1002/glia.24568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/23/2024] [Indexed: 06/21/2024]
Abstract
The velocity of axonal impulse propagation is facilitated by myelination and axonal diameters. Both parameters are frequently impaired in peripheral nerve disorders, but it is not known if the diameters of myelinated axons affect the liability to injury or the efficiency of functional recovery. Mice lacking the adaxonal myelin protein chemokine-like factor-like MARVEL-transmembrane domain-containing family member-6 (CMTM6) specifically from Schwann cells (SCs) display appropriate myelination but increased diameters of peripheral axons. Here we subjected Cmtm6-cKo mice as a model of enlarged axonal diameters to a mild sciatic nerve compression injury that causes temporarily reduced axonal diameters but otherwise comparatively moderate pathology of the axon/myelin-unit. Notably, both of these pathological features were worsened in Cmtm6-cKo compared to genotype-control mice early post-injury. The increase of axonal diameters caused by CMTM6-deficiency thus does not override their injury-dependent decrease. Accordingly, we did not detect signs of improved regeneration or functional recovery after nerve compression in Cmtm6-cKo mice; depleting CMTM6 in SCs is thus not a promising strategy toward enhanced recovery after nerve injury. Conversely, the exacerbated axonal damage in Cmtm6-cKo nerves early post-injury coincided with both enhanced immune response including foamy macrophages and SCs and transiently reduced grip strength. Our observations support the concept that larger peripheral axons are particularly susceptible toward mechanical trauma.
Collapse
Affiliation(s)
- Vasiliki-Ilya Gargareta
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Doris Krauter
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Sophie Hümmert
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hauke B Werner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Biology and Psychology, University of Göttingen, Göttingen, Germany
| | - Maria A Eichel-Vogel
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
9
|
Jansen MI, Mahmood Y, Lee J, Broome ST, Waschek JA, Castorina A. Targeting the PAC1 receptor mitigates degradation of myelin and synaptic markers and diminishes locomotor deficits in the cuprizone demyelination model. J Neurochem 2024; 168:3250-3267. [PMID: 39115025 DOI: 10.1111/jnc.16199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 10/04/2024]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system with a strong neuroinflammatory component. Current treatments principally target the immune system but fail to preserve long-term myelin health and do not prevent neurological decline. Studies over the past two decades have shown that the structurally related neuropeptides VIP and PACAP (vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide, respectively) exhibit pronounced anti-inflammatory activities and reduce clinical symptoms in MS disease models, largely via actions on their bivalent VIP receptor type 1 and 2. Here, using the cuprizone demyelination model, we demonstrate that PACAP and VIP, and strikingly the PACAP-selective receptor PAC1 agonist maxadilan, prevented locomotor deficits in the horizontal ladder and open field tests. Moreover, only PACAP and maxadilan were able to prevent myelin deterioration, as assessed by a reduction in the expression of the myelin markers proteolipid protein 1, oligodendrocyte transcription factor 2, quaking-7 (APC) and Luxol Fast Blue staining. Furthermore, PACAP and maxadilan (but not VIP), prevented striatal synaptic loss and diminished astrocyte and microglial activation in the corpus callosum of cuprizone-fed mice. In vitro, PACAP or maxadilan prevented lipopolysaccharide (LPS)-induced polarisation of primary astrocytes at 12-24 h, an effect that was not seen with maxadilan in LPS-stimulated microglia. Taken together, our data demonstrates for the first time that PAC1 agonists provide distinctive protective effects against white matter deterioration, neuroinflammation and consequent locomotor dysfunctions in the cuprizone model. The results indicate that targeting the PAC1 receptor may provide a path to treat myelin-related diseases in humans.
Collapse
Affiliation(s)
- Margo I Jansen
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Yasir Mahmood
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Jordan Lee
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Sarah Thomas Broome
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - James A Waschek
- Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, Intellectual and Developmental Disabilities Research Center, University of California, Los Angeles, Los Angeles, California, USA
| | - Alessandro Castorina
- Laboratory of Cellular and Molecular Neuroscience, School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
10
|
Schaller-Paule MA, Maiworm M, Schäfer JH, Friedauer L, Hattingen E, Wenger KJ, Weber F, Jakob J, Steffen F, Bittner S, Yalachkov Y, Foerch C. Matching proposed clinical and MRI criteria of aggressive multiple sclerosis to serum and cerebrospinal fluid markers of neuroaxonal and glial injury. J Neurol 2024; 271:3512-3526. [PMID: 38536455 PMCID: PMC11136815 DOI: 10.1007/s00415-024-12299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Definitions of aggressive MS employ clinical and MR imaging criteria to identify highly active, rapidly progressing disease courses. However, the degree of overlap between clinical and radiological parameters and biochemical markers of CNS injury is not fully understood. Aim of this cross-sectional study was to match clinical and MR imaging hallmarks of aggressive MS to serum/CSF markers of neuroaxonal and astroglial injury (neurofilament light chain (sNfL, cNfL), and glial fibrillary acidic protein (sGFAP, cGFAP)). METHODS We recruited 77 patients with relapsing-remitting MS (RRMS) and 22 patients with clinically isolated syndrome. NfL and GFAP levels in serum and CSF were assessed using a single-molecule-array HD-1-analyzer. A general linear model with each biomarker as a dependent variable was computed. Clinical and imaging criteria of aggressive MS, as recently proposed by the ECTRIMS Consensus Group, were modeled as independent variables. Other demographic, clinical or laboratory parameters, were modeled as covariates. Analyses were repeated in a homogenous subgroup, consisting only of newly diagnosed, treatment-naïve RRMS patients presenting with an acute relapse. RESULTS After adjusting for covariates and multiplicity of testing, sNfL and cNfL concentrations were strongly associated with the presence of ≥2 gadolinium-enhancing lesions (psNfL = 0.00008; pcNfL = 0.004) as well as the presence of infratentorial lesions on MRI (psNfL = 0.0003; pcNfL < 0.004). No other clinical and imaging criteria of aggressive MS correlated significantly with NfL or GFAP in serum and CSF. In the more homogeneous subgroup, sNfL still was associated with the presence of ≥2 gadolinium-enhancing lesions (psNfL = 0.001), presence of more than 20 T2-lesions (psNfL = 0.049) as well as the presence of infratentorial lesions on MRI (psNfL = 0.034), while cNfL was associated with the presence of ≥2 gadolinium-enhancing lesions (psNfL = 0.011) and presence of more than 20 T2-lesions (psNfL = 0.029). CONCLUSIONS Among proposed risk factors for an aggressive disease course, MRI findings but not clinical characteristics correlated with sNfL and cNfL as a marker of neuroaxonal injury and should be given appropriate weight considering MS prognosis and therapy. No significant correlation was detected for GFAP alone.
Collapse
Affiliation(s)
- Martin A Schaller-Paule
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany.
- Practice for Neurology and Psychiatry Eltville, 65343, Eltville, Germany.
| | - Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Jan Hendrik Schäfer
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Lucie Friedauer
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Elke Hattingen
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | - Katharina Johanna Wenger
- Institute of Neuroradiology, University Hospital Frankfurt, Goethe University Frankfurt, Frankfurt, Germany
| | | | - Jasmin Jakob
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Yavor Yalachkov
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| | - Christian Foerch
- Department of Neurology, University Hospital Frankfurt, Goethe University Frankfurt, Schleusenweg 2-16, 60528, Frankfurt, Germany
| |
Collapse
|
11
|
de Boer A, van den Bosch AMR, Mekkes NJ, Fransen NL, Dagkesamanskaia E, Hoekstra E, Hamann J, Smolders J, Huitinga I, Holtman IR. Disentangling the heterogeneity of multiple sclerosis through identification of independent neuropathological dimensions. Acta Neuropathol 2024; 147:90. [PMID: 38771530 PMCID: PMC11108935 DOI: 10.1007/s00401-024-02742-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Multiple sclerosis (MS) is a heterogeneous neurological disorder with regards to clinical presentation and pathophysiology. Here, we investigated the heterogeneity of MS by performing an exploratory factor analysis on quantitative and qualitative neuropathology data collected for 226 MS donors in the Netherlands Brain Bank autopsy cohort. Three promising dimensions were identified and subsequently validated with clinical, neuropathological, and genetic data. Dimension 1 ranged from a predominance of remyelinated and inactive lesions to extensive pathological changes, higher proportions of active and mixed lesions, and foamy microglia morphology. This pattern was positively correlated with more severe disease, the presence of B and T cells, and neuroaxonal damage. Scoring high on dimension 2 was associated with active lesions, reactive sites, and the presence of nodules. These donors had less severe disease, a specific pattern of cortical lesions, and MS risk variants in the human leukocyte antigen region, the latter indicating a connection between disease onset and this neuropathological dimension. Donors scoring high on dimension 3 showed increased lesional pathology with relatively more mixed and inactive lesions and ramified microglia morphology. This pattern was associated with longer disease duration, subpial cortical lesions, less involvement of the adaptive immune system, and less axonal damage. Taken together, the three dimensions may represent (1) demyelination and immune cell activity associated with pathological and clinical progression, (2) microglia (re)activity and possibly lesion initiation, and (3) loss of lesion activity and scar formation. Our findings highlight that a thorough understanding of the interplay between multiple pathological characteristics is crucial to understand the heterogeneity of MS pathology, as well as its association with genetic predictors and disease outcomes. The scores of donors on the dimensions can serve as an important starting point for further disentanglement of MS heterogeneity and translation into observations and interventions in living cohorts with MS.
Collapse
Affiliation(s)
- Alyse de Boer
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Aletta M R van den Bosch
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Nienke J Mekkes
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nina L Fransen
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ekaterina Dagkesamanskaia
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Eric Hoekstra
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jörg Hamann
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Department of Experimental Immunology, Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Joost Smolders
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- MS Center ErasMS, Departments of Neurology and Immunology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Inge Huitinga
- Neuroimmunology Research Group, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, Amsterdam, The Netherlands
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Inge R Holtman
- Section Molecular Neurobiology, Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Machine Learning Lab, Data Science Center in Health, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- The Netherlands Brain Bank, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Desu HL, Sawicka KM, Wuerch E, Kitchin V, Quandt JA. A rapid review of differences in cerebrospinal neurofilament light levels in clinical subtypes of progressive multiple sclerosis. Front Neurol 2024; 15:1382468. [PMID: 38654736 PMCID: PMC11035744 DOI: 10.3389/fneur.2024.1382468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Multiple sclerosis (MS) is divided into three clinical phenotypes: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS). It is unknown to what extent SPMS and PPMS pathophysiology share inflammatory or neurodegenerative pathological processes. Cerebrospinal (CSF) neurofilament light (NfL) has been broadly studied in different MS phenotypes and is a candidate biomarker for comparing MS subtypes. Research question Are CSF NfL levels different among clinical subtypes of progressive MS? Methods A search strategy identifying original research investigating fluid neurodegenerative biomarkers in progressive forms of MS between 2010 and 2022 was applied to Medline. Identified articles underwent title and abstract screen and full text review against pre-specified criteria. Data abstraction was limited to studies that measured NfL levels in the CSF. Reported statistical comparisons of NfL levels between clinical phenotypes were abstracted qualitatively. Results 18 studies that focused on investigating direct comparisons of CSF NfL from people with MS were included in the final report. We found NfL levels were typically reported to be higher in relapsing and progressive MS compared to healthy controls. Notably, higher NfL levels were not clearly associated with progressive MS subtypes when compared to relapsing MS, and there was no observed difference in NfL levels between PPMS and SPMS in articles that separately assessed these phenotypes. Conclusion CSF NfL levels distinguish individuals with MS from healthy controls but do not differentiate MS subtypes. Broad biological phenotyping is needed to overcome limitations of current clinical phenotyping and improve biomarker translatability to decision-making in the clinic.
Collapse
Affiliation(s)
- Haritha L. Desu
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Katherine M. Sawicka
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Emily Wuerch
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Vanessa Kitchin
- University of British Columbia Library, Vancouver, BC, Canada
| | - Jacqueline A. Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
Bjursten S, Zhao Z, Al Remawi H, Studahl M, Pandita A, Simrén J, Zetterberg H, Lundell AC, Rudin A, Ny L, Levin M. Concentrations of S100B and neurofilament light chain in blood as biomarkers for checkpoint inhibitor-induced CNS inflammation. EBioMedicine 2024; 100:104955. [PMID: 38171113 PMCID: PMC10796943 DOI: 10.1016/j.ebiom.2023.104955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Cancer treatment with immune checkpoint inhibition (ICI) can cause immune-related adverse events in the central nervous system (CNS irAE). There are no blood biomarkers to detect CNS irAE. We investigated if concentrations of S100-calcium-binding protein B (S100B) and neurofilament light chain (NfL) in blood can be used as biomarkers for CNS irAE and assessed the incidence of CNS irAE in a cohort of ICI-treated patients. METHODS In this single-centre, retrospective cohort study, we examined medical records and laboratory data of 197 consecutive patients treated with combined CTLA-4 and PD-1 inhibition (ipilimumab; ipi + nivolumab; nivo) for metastatic melanoma or renal cell carcinoma. CNS irAE was diagnosed using established criteria. Concentrations of S100B and NfL in blood were measured in patients with CNS irAE and in 84 patients without CNS irAE. FINDINGS Nine of 197 patients (4.6%) fulfilled criteria for CNS irAE. S100B and NfL in blood increased during CNS inflammation and normalized during immunosuppression. CNS irAE was detected with a sensitivity of 100% (S100B) and 79% (NfL) and a specificity of 89% (S100B) and 74% (NfL). Patients with CNS irAE had simultaneous increased concentration of C-reactive protein (CRP) (9/9) and alanine aminotransferase (ALT) and/or aspartate aminotransferase (AST) in blood (8/9). INTERPRETATION Analysis of S100B, NfL and CRP in blood facilitates the diagnosis of CNS irAE. CNS irAE may be more common than previously reported. There may be shared immune mechanisms between CNS and hepatitis irAE. FUNDING Supported by funding from the Swedish Cancer Foundation, the ALF-agreement, and Jubileumsklinikens Cancerfond.
Collapse
Affiliation(s)
- Sara Bjursten
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden.
| | - Zhiyuan Zhao
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hifaa Al Remawi
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Marie Studahl
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Ankur Pandita
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Anna-Carin Lundell
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Rudin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lars Ny
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Max Levin
- Department of Oncology, Institute of Clinical Sciences, Sahlgrenska Academy at University of Gothenburg, Sweden; Department of Oncology, Sahlgrenska University Hospital, Gothenburg, Sweden; Department of Molecular and Clinical Medicine/Wallenberg Laboratory, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
14
|
Kent SA, Miron VE. Microglia regulation of central nervous system myelin health and regeneration. Nat Rev Immunol 2024; 24:49-63. [PMID: 37452201 DOI: 10.1038/s41577-023-00907-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 55.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
Microglia are resident macrophages of the central nervous system that have key functions in its development, homeostasis and response to damage and infection. Although microglia have been increasingly implicated in contributing to the pathology that underpins neurological dysfunction and disease, they also have crucial roles in neurological homeostasis and regeneration. This includes regulation of the maintenance and regeneration of myelin, the membrane that surrounds neuronal axons, which is required for axonal health and function. Myelin is damaged with normal ageing and in several neurodegenerative diseases, such as multiple sclerosis and Alzheimer disease. Given the lack of approved therapies targeting myelin maintenance or regeneration, it is imperative to understand the mechanisms by which microglia support and restore myelin health to identify potential therapeutic approaches. However, the mechanisms by which microglia regulate myelin loss or integrity are still being uncovered. In this Review, we discuss recent work that reveals the changes in white matter with ageing and neurodegenerative disease, how this relates to microglia dynamics during myelin damage and regeneration, and factors that influence the regenerative functions of microglia.
Collapse
Affiliation(s)
- Sarah A Kent
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Veronique E Miron
- UK Dementia Research Institute at The University of Edinburgh, Edinburgh, UK.
- Centre for Discovery Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK.
- Barlo Multiple Sclerosis Centre, St Michael's Hospital, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, Ontario, Canada.
- Department of Immunology, The University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
15
|
Brummer T, Schillner M, Steffen F, Kneilmann F, Wasser B, Uphaus T, Zipp F, Bittner S. Spatial transcriptomics and neurofilament light chain reveal changes in lesion patterns in murine autoimmune neuroinflammation. J Neuroinflammation 2023; 20:262. [PMID: 37957728 PMCID: PMC10644497 DOI: 10.1186/s12974-023-02947-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023] Open
Abstract
OBJECTIVE Ongoing neuroaxonal damage is a major contributor to disease progression and long-term disability in multiple sclerosis. However, spatio-temporal distribution and pathophysiological mechanisms of neuroaxonal damage during acute relapses and later chronic disease stages remain poorly understood. METHODS Here, we applied immunohistochemistry, single-molecule array, spatial transcriptomics, and microglia/axon co-cultures to gain insight into spatio-temporal neuroaxonal damage in experimental autoimmune encephalomyelitis (EAE). RESULTS Association of spinal cord white matter lesions and blood-based neurofilament light (sNfL) levels revealed a distinct, stage-dependent anatomical pattern of neuroaxonal damage: in chronic EAE, sNfL levels were predominately associated with anterolateral lumbar lesions, whereas in early EAE sNfL showed no correlation with lesions in any anatomical location. Furthermore, neuroaxonal damage in late EAE was largely confined to white matter lesions but showed a widespread distribution in early EAE. Following this pattern of neuroaxonal damage, spatial transcriptomics revealed a widespread cyto- and chemokine response at early disease stages, whereas late EAE was characterized by a prominent glial cell accumulation in white matter lesions. These findings were corroborated by immunohistochemistry and microglia/axon co-cultures, which further revealed a strong association between CNS myeloid cell activation and neuroaxonal damage both in vivo and in vitro. INTERPRETATION Our findings indicate that CNS myeloid cells may play a crucial role in driving neuroaxonal damage in EAE. Moreover, neuroaxonal damage can progress in a stage-dependent centripetal manner, transitioning from normal-appearing white matter to focal white matter lesions. These insights may contribute to a better understanding of neurodegeneration and elevated sNfL levels observed in multiple sclerosis patients at different disease stages.
Collapse
Affiliation(s)
- Tobias Brummer
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Miriam Schillner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Falk Steffen
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Flores Kneilmann
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Beatrice Wasser
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Timo Uphaus
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN) and Immunotherapy (FZI), Rhine Main Neuroscience Network (Rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| |
Collapse
|
16
|
Saraste M, Matilainen M, Vuorimaa A, Laaksonen S, Sucksdorff M, Leppert D, Kuhle J, Airas L. Association of serum neurofilament light with microglial activation in multiple sclerosis. J Neurol Neurosurg Psychiatry 2023; 94:698-706. [PMID: 37130728 PMCID: PMC10447382 DOI: 10.1136/jnnp-2023-331051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 04/09/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Translocator protein (TSPO)-PET and neurofilament light (NfL) both report on brain pathology, but their potential association has not yet been studied in multiple sclerosis (MS) in vivo. We aimed to evaluate the association between serum NfL (sNfL) and TSPO-PET-measurable microglial activation in the brain of patients with MS. METHODS Microglial activation was detected using PET and the TSPO-binding radioligand [11C]PK11195. Distribution volume ratio (DVR) was used to evaluate specific [11C]PK11195-binding. sNfL levels were measured using single molecule array (Simoa). The associations between [11C]PK11195 DVR and sNfL were evaluated using correlation analyses and false discovery rate (FDR) corrected linear regression modelling. RESULTS 44 patients with MS (40 relapsing-remitting and 4 secondary progressive) and 24 age-matched and sex-matched healthy controls were included. In the patient group with elevated brain [11C]PK11195 DVR (n=19), increased sNfL associated with higher DVR in the lesion rim (estimate (95% CI) 0.49 (0.15 to 0.83), p(FDR)=0.04) and perilesional normal appearing white matter (0.48 (0.14 to 0.83), p(FDR)=0.04), and with a higher number and larger volume of TSPO-PET-detectable rim-active lesions defined by microglial activation at the plaque edge (0.46 (0.10 to 0.81), p(FDR)=0.04 and 0.50 (0.17 to 0.84), p(FDR)=0.04, respectively). Based on the multivariate stepwise linear regression model, the volume of rim-active lesions was the most relevant factor affecting sNfL. CONCLUSIONS Our demonstration of an association between microglial activation as measured by increased TSPO-PET signal, and elevated sNfL emphasises the significance of smouldering inflammation for progression-promoting pathology in MS and highlights the role of rim-active lesions in promoting neuroaxonal damage.
Collapse
Affiliation(s)
- Maija Saraste
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Markus Matilainen
- Turku PET Centre, Turku, Finland
- Faculty of Science and Engineering, Åbo Akademi University, Abo, Finland
| | - Anna Vuorimaa
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Sini Laaksonen
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - Marcus Sucksdorff
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| | - David Leppert
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Departments of Biomedicine and Clinical Research, Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), University Hospital and University of Basel, Basel, Switzerland
| | - Laura Airas
- Turku PET Centre, Turku, Finland
- Neurocenter, Turku University Hospital, Turku, Finland
- Clinical Neurosciences, University of Turku, Turku, Finland
| |
Collapse
|
17
|
Lv J, Han M, Liu G, Zhuang W, Wang C, Xie L, Saimaier K, Han S, Shi C, Hua Q, Zhang R, Du C. Carboplatin ameliorates the pathogenesis of experimental autoimmune encephalomyelitis by inducing T cell apoptosis. Int Immunopharmacol 2023; 121:110458. [PMID: 37302366 DOI: 10.1016/j.intimp.2023.110458] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/27/2023] [Accepted: 06/03/2023] [Indexed: 06/13/2023]
Abstract
Apoptosis is a natural physiological process that can maintain the homeostasis of the body and immune system. This process plays an important role in the system's resistance to autoimmune development. Because of the dysfunction of cell apoptosis mechanism, the number of autoreactive cells in the peripheral tissue increases along with their accumulation. This will lead to the development of autoimmune diseases, such as multiple sclerosis (MS). MS is an immune-mediated disease of the central nervous system characterized by severe white matter demyelination. Because of the complexity of its pathogenesis, there is no drug to cure it completely. Experimental autoimmune encephalomyelitis (EAE) is an ideal animal model for the study of MS. Carboplatin (CA) is a second-generation platinum anti-tumor drug. In this study, we attempted to assess whether CA could be used to ameliorate EAE. CA reduced spinal cord inflammation, demyelination, and disease scores in mice with EAE. Moreover, the number and proportion of pathogenic T cells especially Th1 and Th17 in the spleen and draining lymph nodes were reduced in CA-treated EAE mice. Proteomic differential enrichment analysis showed that the proteins related to apoptosis signal changed significantly after CA treatment. CFSE experiment showed that CA significantly inhibited the T cell proliferation. Finally, CA also induced apoptosis in activated T cells and MOG-specific T cells in vitro. Overall, our findings indicated that CA plays a protective role in the initiation and progression of EAE and has the potential to be a novel drug in the treatment of MS.
Collapse
Affiliation(s)
- Jie Lv
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Mengyao Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Guangyu Liu
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Wei Zhuang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China; National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Chun Wang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ling Xie
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Kaidireya Saimaier
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Sanxing Han
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changjie Shi
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Qiuhong Hua
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Ru Zhang
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Changsheng Du
- Putuo People's Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
18
|
Pivovarova-Ramich O, Zimmermann HG, Paul F. Multiple sclerosis and circadian rhythms: Can diet act as a treatment? Acta Physiol (Oxf) 2023; 237:e13939. [PMID: 36700353 DOI: 10.1111/apha.13939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/15/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023]
Abstract
Multiple sclerosis (MS) is an autoimmune inflammatory and neurodegenerative disease of the central nervous system (CNS) with increasing incidence and prevalence. MS is associated with inflammatory and metabolic disturbances that, as preliminary human and animal data suggest, might be mediated by disruption of circadian rhythmicity. Nutrition habits can influence the risk for MS, and dietary interventions may be effective in modulating MS disease course. Chronotherapeutic approaches such as time-restricted eating (TRE) may benefit people with MS by stabilizing the circadian clock and restoring immunological and metabolic rhythms, thus potentially counteracting disease progression. This review provides a summary of selected studies on dietary intervention in MS, circadian rhythms, and their disruption in MS, including clock gene variations, circadian hormones, and retino-hypothalamic tract changes. Furthermore, we present studies that reported diurnal variations in MS, which might result from circadian disruption. And lastly, we suggest how chrononutritive approaches like TRE might counteract MS disease activity.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Department of Endocrinology, Diabetes and Nutrition, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), Munich-Neuherberg, Germany
| | - Hanna Gwendolyn Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Einstein Center Digital Future, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
19
|
Hradilek P, Revendova KZ, Horakova J, Bunganic R, Pelisek O, Zeman D, Hanzlikova P, Kusnierova P. Cerebrospinal fluid neurofilament light chains and CXCL13 as predictive factors for clinical course of multiple sclerosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2023; 167:30-35. [PMID: 36695545 DOI: 10.5507/bp.2023.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023] Open
Abstract
AIM The aim of this study was to identify whether NfL and CXCL13 cerebrospinal fluid (CSF) concentrations at diagnostic lumbar puncture can predict the course of multiple sclerosis (MS) in terms of relapses, higher expanded disability status scale (EDSS) and magnetic resonance imaging (MRI) activity. METHODS We conducted a single-centre prospective observational cohort study at the MS center, University Hospital Ostrava, Czech Republic. CSF NfL (cNfL) and CXCL13 concentrations were examined (ELISA method) in patients with clinically isolated syndrome (CIS) and relapsing-remitting MS (RRMS) at the time of diagnostic lumbar puncture. RESULTS A total of 44 patients with CIS or early RRMS were enrolled, 31 (70.5%) of whom were women. The median age at the time of CSF sampling was 31.21 years (IQR 25.43-39.32), and the follow-up period was 54.6 months (IQR 44.03-59.48). In the simple and multiple logistic regression models, CXCL13 levels did not predict relapses, MRI activity or EDSS > 2.5. Similarly, cNfL concentrations did not predict relapses or MRI activity in either model. In the multiple regression, higher cNfL levels were associated with reaching EDSS > 2.5 (odds ratio [OR] 1.002, 95% confidence interval [CI] 1.000 to 1.003). CONCLUSIONS Our data did not confirm cNfL and/or CXCL13 CSF levels were predictive factors for disease activity such as relapses and MRI activity at the time of diagnostic lumbar puncture in patients with RRMS. While cNfL CSF levels predicted higher disability only after adjustment for other known risk factors, elevated CSF CXCL13 did not predict higher disability at all.
Collapse
Affiliation(s)
- Pavel Hradilek
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Kamila Zondra Revendova
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jana Horakova
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Radovan Bunganic
- Department of Clinical Neurosciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Ondrej Pelisek
- Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - David Zeman
- Department of Laboratory Medicine, University Hospital Brno, Brno, Czech Republic
| | - Pavla Hanzlikova
- Department of Imaging Methods, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Pavlina Kusnierova
- Department of Clinical Biochemistry, Institute of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic.,Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
20
|
Stork L, Haupts M, Kruse N, Spill-Askeridis P, Kutllovci A, Weber MS, Brück W, Metz I. Serum neurofilament light chains in progressive multiple sclerosis patients treated with repeated cycles of high-dose intravenous steroids. FREE NEUROPATHOLOGY 2023; 4:15. [PMID: 37859628 PMCID: PMC10583007 DOI: 10.17879/freeneuropathology-2023-5049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/24/2023] [Indexed: 10/21/2023]
Abstract
Background and objectives: In progressive multiple sclerosis (MS) patients, CNS inflammation trapped behind a closed blood brain barrier drives continuous neuroaxonal degeneration, thus leading to deterioration of neurological function. Therapeutics in progressive MS are limited. High-dose intravenous glucocorticosteroids (HDCS) can cross the blood-brain barrier and may reduce inflammation within the CNS. However, the treatment efficacy of HDCS in progressive MS remains controversial. Serum neurofilament light chains (sNfL) are an established biomarker of neuroaxonal degeneration and are used to monitor treatment responses. We aimed to investigate whether repeated cycles of intravenous HDCS reduce the level of sNfL in progressive MS patients. Methods: We performed a monocentric observational study of 25 patients recruited during ongoing clinical routine care who were treated with repeated cycles of intravenous HDCS as long-term therapy for their progressive MS. sNfL were measured in 103 repeated blood samples (median time interval from baseline 28 weeks, range 2-55 weeks) with the Single Molecular Array (SiMoA) technology. The Expanded Disability Status Score (EDSS) was documented at baseline and follow-up. Results: The median age of patients was 55 years (range 46-77 years) with a median disease duration of 26 years (range 11-42 years). sNfL baseline levels at study inclusion were significantly higher in progressive MS patients compared to age-matched healthy controls (median 16.7 pg/ml vs 11.5 pg/ml, p=0.002). sNfL levels showed a positive correlation with patient age (r=0.2, p=0.003). The majority of patients (72%, 16/23) showed reduced sNfL levels ≥20 weeks after HDCS compared to baseline (median 13.3 pg/ml, p=0.03). sNfL levels correlated negatively with the time interval from baseline HDCS therapy (r=-0.2, p=0.03). This association was also evident after correction for treatment with disease-modifying drugs (adjusted R2=0.10, p=0.001). The EDSS remained stable (median 6.5) within a median treatment duration of 26 weeks (range 13-51 weeks). Conclusion: Although larger studies are needed to confirm our findings, we were able to demonstrate that HDCS treatment reduces sNfL levels and therefore may slow down neuroaxonal damage in a subgroup of patients with progressive MS. Moreover, a stable EDSS was observed during therapy. Findings suggest that HDCS may be beneficial for the treatment of progressive MS.
Collapse
Affiliation(s)
- Lidia Stork
- Institute of Neuropathology, University Medical Center Göttingen, Germany
| | - Michael Haupts
- Department of Neurology, University Hospital Düsseldorf, Germany
| | - Niels Kruse
- Institute of Neuropathology, University Medical Center Göttingen, Germany
| | | | - Adriane Kutllovci
- Institute of Neuropathology, University Medical Center Göttingen, Germany
| | - Martin S. Weber
- Institute of Neuropathology, University Medical Center Göttingen, Germany
- Department of Neurology, University Medical Center Göttingen, Germany
- Department of Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology, Göttingen, Germany
| | - Wolfgang Brück
- Institute of Neuropathology, University Medical Center Göttingen, Germany
| | - Imke Metz
- Institute of Neuropathology, University Medical Center Göttingen, Germany
| |
Collapse
|
21
|
Silva AS, Guimarães J, Sousa C, Mendonça L, Soares-Dos-Reis R, Mendonça T, Abreu P, Sequeira L, Sá MJ. Metabolic syndrome parameters and multiple sclerosis disease outcomes: A Portuguese cross-sectional study. Mult Scler Relat Disord 2023; 69:104370. [PMID: 36401965 DOI: 10.1016/j.msard.2022.104370] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/31/2022] [Accepted: 10/21/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Metabolic syndrome and multiple sclerosis [MS] share the presence of chronic inflammation in their pathogenic mechanisms. This study aimed to estimate the prevalence of metabolic syndrome parameters in MS and their association with disease disability, cognitive function, and Neurofilament Light chain [NfL] levels. METHODS Clinical, analytical, and magnetic resonance imaging data were obtained through medical records. Disease disability was measured by the Expanded Disability Status Scale [EDSS], the MS Severity Scale [MSSS] along with cognitive impairment by the Brief International Cognitive Assessment for MS [BICAMS] and Word List Generation test [WLG]. Metabolic syndrome parameters were evaluated by fasting blood glucose, triglycerides, high-density lipoprotein cholesterol [HDL-C], low-density lipoprotein cholesterol, total cholesterol, blood pressure, and waist circumference [WC]. We also analysed serum leptin and ghrelin and cerebrospinal fluid NfL. RESULTS Our sample included 51 people with MS, 34 (66.7%) females, mean age of 38.20±12.12 years and median disease duration of 3 years (P25=2.0, P75=5.0). Multivariate linear regression analysis confirmed that WC correlates with EDSS (β=0.04, p=.001) and MSSS (β=0.07, p=.002) as well as Brief Visuospatial Memory Test-Revised (β=-0.29, p=.008), WLG (β=-0.20, p=.039). NfL is also negatively associated with HDL-C (β=-4.51, p=.038). CONCLUSIONS Waist circumference is associated with disability and deficits in cognitive tests. A decrease in HDL-C is associated with an increase in NfL. This suggests metabolic syndrome might be an important factor in MS disease course.
Collapse
Affiliation(s)
- Ana Sofia Silva
- Faculty of Medicine of the University of Porto, Al. Prof. Hernâni Monteiro, Porto 4200-319, Portugal.
| | - Joana Guimarães
- Neurology Department, Centro Hospitalar Universitário São João, Porto, Portugal; Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of the University of Porto, Portugal; Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Portugal
| | - Cláudia Sousa
- Neuropsychological Unit, Department of Psychology, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Liliana Mendonça
- Neurology Department, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Ricardo Soares-Dos-Reis
- Neurology Department, Centro Hospitalar Universitário São João, Porto, Portugal; Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of the University of Porto, Portugal; i3S, University of Porto, Portugal
| | - Teresa Mendonça
- Neurology Department, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Pedro Abreu
- Neurology Department, Centro Hospitalar Universitário São João, Porto, Portugal; Department of Clinical Neurosciences and Mental Health, Faculty of Medicine of the University of Porto, Portugal
| | - Lucinda Sequeira
- Neurology Department, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Maria José Sá
- Neurology Department, Centro Hospitalar Universitário São João, Porto, Portugal; Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| |
Collapse
|
22
|
Asseyer S, Asgari N, Bennett J, Bialer O, Blanco Y, Bosello F, Camos-Carreras A, Carnero Contentti E, Carta S, Chen J, Chien C, Chomba M, Dale RC, Dalmau J, Feldmann K, Flanagan EP, Froment Tilikete C, Garcia-Alfonso C, Havla J, Hellmann M, Kim HJ, Klyscz P, Konietschke F, La Morgia C, Lana-Peixoto M, Leite MI, Levin N, Levy M, Llufriu S, Lopez P, Lotan I, Lugaresi A, Marignier R, Mariotto S, Mollan SP, Ocampo C, Cosima Oertel F, Olszewska M, Palace J, Pandit L, Peralta Uribe JL, Pittock S, Ramanathan S, Rattanathamsakul N, Saiz A, Samadzadeh S, Sanchez-Dalmau B, Saylor D, Scheel M, Schmitz-Hübsch T, Shifa J, Siritho S, Sperber PS, Subramanian PS, Tiosano A, Vaknin-Dembinsky A, Mejia Vergara AJ, Wilf-Yarkoni A, Zarco LA, Zimmermann HG, Paul F, Stiebel-Kalish H. The Acute Optic Neuritis Network (ACON): Study protocol of a non-interventional prospective multicenter study on diagnosis and treatment of acute optic neuritis. Front Neurol 2023; 14:1102353. [PMID: 36908609 PMCID: PMC9998999 DOI: 10.3389/fneur.2023.1102353] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/26/2023] Open
Abstract
Optic neuritis (ON) often occurs at the presentation of multiple sclerosis (MS), neuromyelitis optica spectrum disorders (NMOSD), and myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD). The recommended treatment of high-dose corticosteroids for ON is based on a North American study population, which did not address treatment timing or antibody serostatus. The Acute Optic Neuritis Network (ACON) presents a global, prospective, observational study protocol primarily designed to investigate the effect of time to high-dose corticosteroid treatment on 6-month visual outcomes in ON. Patients presenting within 30 days of the inaugural ON will be enrolled. For the primary analysis, patients will subsequently be assigned into the MS-ON group, the aquapotin-4-IgG positive ON (AQP4-IgG+ON) group or the MOG-IgG positive ON (MOG-IgG+ON) group and then further sub-stratified according to the number of days from the onset of visual loss to high-dose corticosteroids (days-to-Rx). The primary outcome measure will be high-contrast best-corrected visual acuity (HC-BCVA) at 6 months. In addition, multimodal data will be collected in subjects with any ON (CIS-ON, MS-ON, AQP4-IgG+ON or MOG-IgG+ON, and seronegative non-MS-ON), excluding infectious and granulomatous ON. Secondary outcomes include low-contrast best-corrected visual acuity (LC-BCVA), optical coherence tomography (OCT), magnetic resonance imaging (MRI) measurements, serum and cerebrospinal fluid (CSF) biomarkers (AQP4-IgG and MOG-IgG levels, neurofilament, and glial fibrillary protein), and patient reported outcome measures (headache, visual function in daily routine, depression, and quality of life questionnaires) at presentation at 6-month and 12-month follow-up visits. Data will be collected from 28 academic hospitals from Africa, Asia, the Middle East, Europe, North America, South America, and Australia. Planned recruitment consists of 100 MS-ON, 50 AQP4-IgG+ON, and 50 MOG-IgG+ON. This prospective, multimodal data collection will assess the potential value of early high-dose corticosteroid treatment, investigate the interrelations between functional impairments and structural changes, and evaluate the diagnostic yield of laboratory biomarkers. This analysis has the ability to substantially improve treatment strategies and the accuracy of diagnostic stratification in acute demyelinating ON. Trial registration ClinicalTrials.gov, identifier: NCT05605951.
Collapse
Affiliation(s)
- Susanna Asseyer
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nasrin Asgari
- Department of Neurology, Slagelse Hospital, Slagelse, Denmark.,Institutes of Regional Health Research and Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Jeffrey Bennett
- Programs in Neuroscience and Immunology, Departments of Neurology and Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Omer Bialer
- Department of Neuro-Ophthalmology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yolanda Blanco
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Service, Hospital Clinic de Barcelona, and Institut d'Investigacions August Pi i Sunyer (IDIVAPS), University of Barcelona, Barcelona, Spain
| | - Francesca Bosello
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Anna Camos-Carreras
- Ophthalmology Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | | | - Sara Carta
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - John Chen
- Department of Ophthalmology and Neurology, Mayo Clinic, Rochester, MN, United States
| | - Claudia Chien
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mashina Chomba
- Department of Internal Medicine, University Teaching Hospital, Lusaka, Zambia
| | - Russell C Dale
- Clinical Neuroimmunology Group, Kids Neuroscience Centre, Sydney, NSW, Australia.,Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,TY Nelson Department of Paediatric Neurology, Children's Hospital Westmead, Sydney, NSW, Australia
| | - Josep Dalmau
- ICREA-IDIBAPS, Service of Neurology, Hospital Clínic, University of Barcelona, Barcelona, Spain.,Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Kristina Feldmann
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Eoin P Flanagan
- Laboratory Medicine and Pathology, Departments of Neurology, Center for MS and Autoimmune Neurology, Mayo Clinic, Rochester, MN, United States
| | - Caroline Froment Tilikete
- Neuro-Ophthalmology Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, IMPACT Team, Lyon, France
| | | | - Joachim Havla
- Institute of Clinical Neuroimmunology, LMU Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mark Hellmann
- Department of Neuro-Ophthalmology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ho Jin Kim
- Department of Neurology, National Cancer Center, Goyang, Republic of Korea
| | - Philipp Klyscz
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frank Konietschke
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany
| | - Chiara La Morgia
- Neurology Unit, IRCCS Institute of Neurological Sciences, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Marco Lana-Peixoto
- CIEM MS Center, Federal University of Minas Gerais Medical School, Belo Horizonte, Brazil
| | - Maria Isabel Leite
- Department of Neurology, Oxford University Hospitals, National Health Service Trust, Oxford, United Kingdom
| | - Netta Levin
- Department of Neurology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | - Michael Levy
- Neuromyelitis Optica Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sara Llufriu
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain.,Institut d'Investigacions August Pi i Sunyer (IDIVAPS), University of Barcelona, Barcelona, Spain
| | - Pablo Lopez
- Neuroimmunology Unit, Department of Neuroscience, Hospital Aleman, Buenos Aires, Argentina
| | - Itay Lotan
- Department of Neuro-Ophthalmology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.,Neuromyelitis Optica Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy.,Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| | - Romain Marignier
- Neuro-Ophthalmology Unit, Pierre Wertheimer Neurological Hospital, Hospices Civils de Lyon, Lyon 1 University, Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, IMPACT Team, Lyon, France
| | - Sara Mariotto
- Neurology Unit, Department of Neurosciences, Biomedicine, and Movement Sciences, University of Verona, Verona, Italy
| | - Susan P Mollan
- Birmingham Neuro-Ophthalmology, Queen Elizabeth Hospital, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom.,Translational Brian Science, Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, United Kingdom
| | | | - Frederike Cosima Oertel
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Maja Olszewska
- NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jacqueline Palace
- Department of Neurology, Oxford University Hospitals, National Health Service Trust, Oxford, United Kingdom
| | - Lekha Pandit
- Center for Advanced Neurological Research, KS Hegde Medical Academy, Nitte (Deemed to be University), Mangalore, India
| | | | - Sean Pittock
- Neuromyelitis Optica Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sudarshini Ramanathan
- Faculty of Medicine and Health and Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia.,Translational Neuroimmunology Group, Kids Neuroscience Centre, Children's Hospital Westmead, Sydney, NSW, Australia.,Department of Neurology, Concord Hospital, Sydney, NSW, Australia
| | - Natthapon Rattanathamsakul
- Siriraj Neuroimmunology Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Albert Saiz
- Neuroimmunology and Multiple Sclerosis Unit, Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain.,Institut d'Investigacions August Pi i Sunyer (IDIVAPS), University of Barcelona, Barcelona, Spain
| | - Sara Samadzadeh
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Slagelse Hospital, Slagelse, Denmark.,Institutes of Regional Health Research and Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Bernardo Sanchez-Dalmau
- Ophthalmology Department, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Deanna Saylor
- Department of Internal Medicine, University Teaching Hospital, Lusaka, Zambia.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Scheel
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neuroradiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jemal Shifa
- Department of Surgery, University of Botswana, Gaborone, Botswana
| | - Sasitorn Siritho
- Siriraj Neuroimmunology Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Neuroscience Center, Bumrungrad International Hospital, Bangkok, Thailand
| | - Pia S Sperber
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Berlin, Germany
| | - Prem S Subramanian
- Programs in Neuroscience and Immunology, Departments of Neurology and Ophthalmology, Sue Anschutz-Rodgers Eye Center, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Alon Tiosano
- Department of Neuro-Ophthalmology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology, Hadassah Medical Center, Hebrew University, Jerusalem, Israel
| | | | - Adi Wilf-Yarkoni
- Department of Neurology, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Luis Alfonso Zarco
- Pontificia Universidad Javeriana and Hospital Unviersitario San Ignacio, Bogotá, Colombia
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,Einstein Center Digital Future, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, A Cooperation Between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité Universitätsmedizin Berlin, Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Experimental and Clinical Research Center, Berlin, Germany.,Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hadas Stiebel-Kalish
- Department of Neuro-Ophthalmology, Rabin Medical Center, Petah Tikva, Israel.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
23
|
Mey GM, Mahajan KR, DeSilva TM. Neurodegeneration in multiple sclerosis. WIREs Mech Dis 2023; 15:e1583. [PMID: 35948371 PMCID: PMC9839517 DOI: 10.1002/wsbm.1583] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/28/2022] [Accepted: 07/11/2022] [Indexed: 01/31/2023]
Abstract
Axonal loss in multiple sclerosis (MS) is a key component of disease progression and permanent neurologic disability. MS is a heterogeneous demyelinating and neurodegenerative disease of the central nervous system (CNS) with varying presentation, disease courses, and prognosis. Immunomodulatory therapies reduce the frequency and severity of inflammatory demyelinating events that are a hallmark of MS, but there is minimal therapy to treat progressive disease and there is no cure. Data from patients with MS, post-mortem histological analysis, and animal models of demyelinating disease have elucidated patterns of MS pathogenesis and underlying mechanisms of neurodegeneration. MRI and molecular biomarkers have been proposed to identify predictors of neurodegeneration and risk factors for disease progression. Early signs of axonal dysfunction have come to light including impaired mitochondrial trafficking, structural axonal changes, and synaptic alterations. With sustained inflammation as well as impaired remyelination, axons succumb to degeneration contributing to CNS atrophy and worsening of disease. These studies highlight the role of chronic demyelination in the CNS in perpetuating axonal loss, and the difficulty in promoting remyelination and repair amidst persistent inflammatory insult. Regenerative and neuroprotective strategies are essential to overcome this barrier, with early intervention being critical to rescue axonal integrity and function. The clinical and basic research studies discussed in this review have set the stage for identifying key propagators of neurodegeneration in MS, leading the way for neuroprotective therapeutic development. This article is categorized under: Immune System Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Gabrielle M. Mey
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| | - Kedar R. Mahajan
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
- Mellen Center for MS Treatment and ResearchNeurological Institute, Cleveland Clinic FoundationClevelandOhioUSA
| | - Tara M. DeSilva
- Department of NeurosciencesLerner Research Institute, Cleveland Clinic Foundation, and Case Western Reserve UniversityClevelandOhioUSA
| |
Collapse
|
24
|
Neurofilament light chains in serum as biomarkers of axonal damage in early MS lesions: a histological-serological correlative study. J Neurol 2023; 270:1416-1429. [PMID: 36372867 PMCID: PMC9971126 DOI: 10.1007/s00415-022-11468-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease associated with axonal injury, and neurofilament light chains in serum (sNfL) are considered a biomarker for this damage. We aimed to investigate the relationship between sNfL and the axonal damage in early MS lesions in a special cohort of biopsied patients. sNfL from 106 biopsied patients with 26 follow-up samples were analyzed using single-molecule array (SiMoA) technology. Findings were correlated with clinical parameters and histological findings of acute axonal damage (APP-positive spheroids) and axonal loss in different lesion stages. A median of 59 pg/ml sNfL was found (range 8-3101 pg/ml). sNfL levels correlated with APP-positive spheroids in early active demyelinating lesions that represent the earliest lesion stages (p < 0.01). A significant negative correlation between sNfL levels in follow-up blood samples and axonal density in normal-appearing white matter was also observed (p = 0.02). sNfL levels correlated with the Expanded Disability Status Score at biopsy (p < 0.01, r = 0.49) and at last clinical follow-up (p < 0.01, r = 0.66). In conclusion, sNfL likely represent a compound measure of recent and ongoing neuroaxonal damage. We found that sNfL in biopsied MS patients correlate with acute axonal damage in the earliest MS lesion stages. Determination of sNfL levels thus allows insight into brain pathology and underlines the relevance of relapse-associated lesional pathology. Axonal loss in normal-appearing white matter contributes to sNfL levels independent of relapses. Since sNfL levels correlate with clinical disability, they may predict the future disability of patients and help with individual treatment decisions.
Collapse
|
25
|
Alberti P, Salvalaggio A, Argyriou AA, Bruna J, Visentin A, Cavaletti G, Briani C. Neurological Complications of Conventional and Novel Anticancer Treatments. Cancers (Basel) 2022; 14:cancers14246088. [PMID: 36551575 PMCID: PMC9776739 DOI: 10.3390/cancers14246088] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Various neurological complications, affecting both the central and peripheral nervous system, can frequently be experienced by cancer survivors after exposure to conventional chemotherapy, but also to modern immunotherapy. In this review, we provide an overview of the most well-known adverse events related to chemotherapy, with a focus on chemotherapy induced peripheral neurotoxicity, but we also address some emerging novel clinical entities related to cancer treatment, including chemotherapy-related cognitive impairment and immune-mediated adverse events. Unfortunately, efficacious curative or preventive treatment for all these neurological complications is still lacking. We provide a description of the possible mechanisms involved to drive future drug discovery in this field, both for symptomatic treatment and neuroprotection.
Collapse
Affiliation(s)
- Paola Alberti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- NeuroMI (Milan Center for Neuroscience), 20126 Milan, Italy
| | | | - Andreas A. Argyriou
- Neurology Department, Agios Andreas State General Hospital of Patras, 26335 Patras, Greece
| | - Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO Hospitalet, Bellvitge Institute for Biomedical Research (IDIBELL), 08908 Barcelona, Spain
| | - Andrea Visentin
- Hematology and Clinical Immunology Unit, Department of Medicine, University of Padova, 35131 Padova, Italy
| | - Guido Cavaletti
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Chiara Briani
- Neurology Unit, Department of Neurosciences, University of Padova, 35131 Padova, Italy
- Correspondence:
| |
Collapse
|
26
|
Ostkamp P, Deffner M, Schulte-Mecklenbeck A, Wünsch C, Lu IN, Wu GF, Goelz S, De Jager PL, Kuhlmann T, Gross CC, Klotz L, Meyer Zu Hörste G, Wiendl H, Schneider-Hohendorf T, Schwab N. A single-cell analysis framework allows for characterization of CSF leukocytes and their tissue of origin in multiple sclerosis. Sci Transl Med 2022; 14:eadc9778. [PMID: 36449599 DOI: 10.1126/scitranslmed.adc9778] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Peripheral central nervous system (CNS)-infiltrating lymphocytes are a hallmark of relapsing-remitting multiple sclerosis. Tissue-resident memory T cells (TRM) not only populate the healthy CNS parenchyma but also are suspected to contribute to multiple sclerosis pathology. Because cerebrospinal fluid (CSF), unlike CNS parenchyma, is accessible for diagnostics, we evaluated whether human CSF, apart from infiltrating cells, also contains TRM cells and CNS-resident myeloid cells draining from the parenchyma or border tissues. Using deep generative models, we integrated 41 CSF and 14 CNS parenchyma single-cell RNA sequencing (scRNAseq) samples from eight independent studies, encompassing 120,629 cells. By comparing CSF immune cells collected during multiple sclerosis relapse with cells collected during therapeutic very late antigen-4 blockade, we could identify immune subsets with tissue provenance across multiple lineages, including CNS border-associated macrophages, CD8 and CD4 TRM cells, and tissue-resident natural killer cells. All lymphocytic CNS-resident cells shared expression of CXCR6 but showed differential ITGAE expression (encoding CD103). A common signature defined CD4 and CD8 TRM cells by expression of ZFP36L2, DUSP1, and ID2. We further developed a user interface-driven application based on this analysis framework for atlas-level cell identity transfer onto new CSF scRNAseq data. Together, these results define CNS-resident immune cells involved in multiple sclerosis pathology that can be detected and monitored in CSF. Targeting these cell populations might be promising to modulate immunopathology in progressive multiple sclerosis and other neuroinflammatory diseases.
Collapse
Affiliation(s)
- Patrick Ostkamp
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Marie Deffner
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Andreas Schulte-Mecklenbeck
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Christian Wünsch
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - I-Na Lu
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Gregory F Wu
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Susan Goelz
- Oregon Health and Science University, Portland, OR 97239, USA
| | - Philip L De Jager
- Center for Translational and Computational Neuroimmunology and Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster 48149, Germany
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Luisa Klotz
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Gerd Meyer Zu Hörste
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Tilman Schneider-Hohendorf
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| | - Nicholas Schwab
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster 48149, Germany
| |
Collapse
|
27
|
Gaetani L, Schoonheim MM. Serum neurofilament light chain predicts cognitive worsening in secondary progressive multiple sclerosis better than brain MRI measures. Mult Scler 2022; 28:1831-1833. [PMID: 36124836 PMCID: PMC9493404 DOI: 10.1177/13524585221122916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
28
|
Arslan B, Ayhan Arslan G, Tuncer A, Karabudak R, Sepici Dinçel A. Evaluation of cerebrospinal fluid neurofilament light chain levels in multiple sclerosis and non-demyelinating diseases of the central nervous system: clinical and biochemical perspective. Bosn J Basic Med Sci 2022; 22:699-706. [PMID: 35490364 PMCID: PMC9519158 DOI: 10.17305/bjbms.2021.7326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/25/2022] [Indexed: 11/16/2022] Open
Abstract
The neurofilament light chain (NfL) is a promising biomarker in the diagnosis, prognosis, and treatment response evaluation of neurological diseases. The aims of this study were to compare the cerebrospinal fluid (CSF) NfL levels in multiple sclerosis (MS) and certain non-demyelinating diseases of the central nervous system (NDCNS); to determine the relationship between clinical and radiological features and CSF NfL levels in patients with MS; and to compare the enzyme-linked immunosorbent assay (ELISA) and single molecule array (SIMOA) methods for NfL measurement using paired CSF and serum samples. We retrospectively analyzed the clinical data and performed NfL measurements in CSF and serum samples of newly diagnosed and treatment-naive patients with CNS diseases evaluated between 1 January 2019 and 1 January 2020. Eligible patients were divided into three groups: MS (n=23), differential diagnosis of MS (n=19), and NDCNS (n=42). First, we compared the CSF NfL levels among the three groups using the previously validated CSF ELISA assay. Next, we evaluated the relationship between CSF NfL levels and the clinical and radiological findings in MS group. Finally, we compared CSF and serum samples from patients of the MS groups (paired serum and CSF samples, n=19) using two different methods (ELISA and SIMOA). The CSF NfL level was the highest in the NDCNS group (1169.64 [535.92-5120.11] pg/mL, p=0.025). There was a strong positive correlation between the number of T2 lesions and CSF NfL level (r=0.786, p<0.001) in the MS group. There was excellent consistency between ELISA and SIMOA for CSF samples, but not for serum samples. Our results indicated that CSF NfL levels may also be used in the management of NDCNS and that SIMOA is the most reliable method for serum NfL determination.
Collapse
Affiliation(s)
- Burak Arslan
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey; Department of Medical Biochemistry, Erciş State Hospital, Van, Turkey
| | | | - Aslı Tuncer
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rana Karabudak
- Department of Neurology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Aylin Sepici Dinçel
- Department of Medical Biochemistry, Gazi University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
29
|
Neurons: The Interplay between Cytoskeleton, Ion Channels/Transporters and Mitochondria. Cells 2022; 11:cells11162499. [PMID: 36010576 PMCID: PMC9406945 DOI: 10.3390/cells11162499] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 08/06/2022] [Accepted: 08/09/2022] [Indexed: 11/17/2022] Open
Abstract
Neurons are permanent cells whose key feature is information transmission via chemical and electrical signals. Therefore, a finely tuned homeostasis is necessary to maintain function and preserve neuronal lifelong survival. The cytoskeleton, and in particular microtubules, are far from being inert actors in the maintenance of this complex cellular equilibrium, and they participate in the mobilization of molecular cargos and organelles, thus influencing neuronal migration, neuritis growth and synaptic transmission. Notably, alterations of cytoskeletal dynamics have been linked to alterations of neuronal excitability. In this review, we discuss the characteristics of the neuronal cytoskeleton and provide insights into alterations of this component leading to human diseases, addressing how these might affect excitability/synaptic activity, as well as neuronal functioning. We also provide an overview of the microscopic approaches to visualize and assess the cytoskeleton, with a specific focus on mitochondrial trafficking.
Collapse
|