1
|
Opsasnick LA, Zhao W, Schmitz LL, Ratliff SM, Faul JD, Zhou X, Needham BL, Smith JA. Depressive symptoms partially mediate the relationship between psychosocial factors and epigenetic age acceleration in a multi-racial/ethnic sample of older adults. Brain Behav Immun Health 2025; 45:100994. [PMID: 40291341 PMCID: PMC12022486 DOI: 10.1016/j.bbih.2025.100994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
Psychosocial factors, including cumulative psychosocial stress and loneliness, have been linked to epigenetic aging in older adults. Further, depressive symptoms have established relationships with both psychosocial factors and epigenetic aging. However, it is not known whether depressive symptoms mediate the association between psychosocial factors and epigenetic aging.We conducted linear regression models to examine associations between psychosocial stress, loneliness, and depressive symptoms and five epigenetic age acceleration (AA) measures estimated by DNA methylation in a multi-racial/ethnic sample of 2681 older adults from the Health and Retirement Study (mean age: 70.4 years). For all identified associations, we tested for effect modification by sex and educational attainment and performed mediation analysis to characterize the role of depressive symptoms on these associations.Psychosocial stress, loneliness, and depressive symptoms were each associated with at least one measure of epigenetic AA (FDR q < 0.05). Further, we observed interactions between loneliness, psychosocial stress, and sex on DunedinPACE, as well as loneliness and educational attainment on GrimAA, PhenoAA, and DunedinPACE, with females and individuals without a college degree appearing more sensitive to the psychosocial effects on epigenetic aging. Depressive symptoms mediated between 24 % and 35 % of the relationships between psychosocial stress and HannumAA, GrimAA, and DunedinPACE, as well as 40 % and 37 % of the relationships between loneliness and both GrimAA and DunedinPACE, respectively. Results from this study may help elucidate the relationship between psychosocial factors and epigenetic aging, which is critical in understanding the biological mechanisms through which psychosocial factors may contribute to age-related disease.
Collapse
Affiliation(s)
- Lauren A. Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
- Division of General Internal Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, United States of America
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Lauren L. Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States of America
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Belinda L. Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
2
|
Liebscher M, White S, Hass S, Chocat A, Mezenge F, Landeau B, Delarue M, Hébert O, Turpin AL, Marchant NL, Chételat G, Klimecki O, Poisnel G, Wirth M. Circulating Stress Hormones, Brain Health, and Cognition in Healthy Older Adults: Cross-Sectional Findings and Sex Differences in Age-Well. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2025; 5:100431. [PMID: 39990626 PMCID: PMC11847304 DOI: 10.1016/j.bpsgos.2024.100431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/24/2024] [Accepted: 11/27/2024] [Indexed: 02/25/2025] Open
Abstract
Background Increased stress is a proposed risk factor for Alzheimer's disease (AD). We examined cross-sectional associations between circulating stress biomarkers and multimodal measures of brain health and cognition susceptible to AD in older adults and sex-specific subgroups. Methods Baseline data from 132 cognitively unimpaired participants without depression (age, mean ± SD = 74.0 ± 4.0 years, women: n = 80) in the Age-Well trial (NCT02977819) were included. Stress hormone levels were measured in overnight fasting blood serum (cortisol, dehydroepiandrosterone sulfate) and blood plasma (epinephrine, norepinephrine) samples. AD-sensitive measures of brain health, including glucose metabolism (n = 89), cerebral perfusion, gray matter volume, amyloid deposition in a priori regions of interest, and cognitive markers were evaluated. Models were adjusted for age, sex, education, trait anxiety, and depressive symptoms. Results Higher epinephrine levels were associated (false discovery rate-corrected p < .05) with lower glucose metabolism in the anterior cingulate cortex (β = -0.26, p = .008), posterior cingulate cortex (β = -0.32, p = .006), and precuneus (β = -0.27, p = .021) and lower perfusion in the posterior cingulate cortex (β = -0.23, p = .013). Interactions between stress hormones and sex showed (false discovery rate-corrected p < .05) that in women only, higher epinephrine was associated with larger anterior cingulate cortex volume (interaction: β = 0.32, p = .016), whereas in men only, higher cortisol was associated with lower episodic memory performance (interaction: β = 0.98, p = .012). Conclusions The current study demonstrates the involvement of circulating stress hormones, particularly epinephrine and cortisol, in greater resilience or vulnerability of brain health and cognitive indicators of susceptibility to AD in older adults. The identification of sex-specific patterns in these associations may inform the development of more effective and tailored interventions.
Collapse
Affiliation(s)
- Maxie Liebscher
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Silke White
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Simon Hass
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Anne Chocat
- Normandie University, UNICAEN, French Institute of Health and Medical Research, INSERM, U1237, Physiopathology and Imaging of Neurological Disorders, NeuroPresage Team, GIP Cyceron, Caen, France
| | - Florence Mezenge
- Normandie University, UNICAEN, French Institute of Health and Medical Research, INSERM, U1237, Physiopathology and Imaging of Neurological Disorders, NeuroPresage Team, GIP Cyceron, Caen, France
| | - Brigitte Landeau
- Normandie University, UNICAEN, French Institute of Health and Medical Research, INSERM, U1237, Physiopathology and Imaging of Neurological Disorders, NeuroPresage Team, GIP Cyceron, Caen, France
| | - Marion Delarue
- Normandie University, UNICAEN, French Institute of Health and Medical Research, INSERM, U1237, Physiopathology and Imaging of Neurological Disorders, NeuroPresage Team, GIP Cyceron, Caen, France
| | - Oriane Hébert
- Normandie University, UNICAEN, French Institute of Health and Medical Research, INSERM, U1237, Physiopathology and Imaging of Neurological Disorders, NeuroPresage Team, GIP Cyceron, Caen, France
| | - Anne-Laure Turpin
- Normandie University, UNICAEN, French Institute of Health and Medical Research, INSERM, U1237, Physiopathology and Imaging of Neurological Disorders, NeuroPresage Team, GIP Cyceron, Caen, France
| | | | - Gaël Chételat
- Normandie University, UNICAEN, French Institute of Health and Medical Research, INSERM, U1237, Physiopathology and Imaging of Neurological Disorders, NeuroPresage Team, GIP Cyceron, Caen, France
| | | | - Géraldine Poisnel
- Normandie University, UNICAEN, French Institute of Health and Medical Research, INSERM, U1237, Physiopathology and Imaging of Neurological Disorders, NeuroPresage Team, GIP Cyceron, Caen, France
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases, Dresden, Germany
| |
Collapse
|
3
|
Tillmon H, Soteros BM, Shen L, Cong Q, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Complement and microglia activation mediate stress-induced synapse loss in layer 2/3 of the medial prefrontal cortex in male mice. Nat Commun 2024; 15:9803. [PMID: 39532876 PMCID: PMC11557709 DOI: 10.1038/s41467-024-54007-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the medial prefrontal cortex (mPFC) in male mice. Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (Apoehigh) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the Apoehigh microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
Affiliation(s)
- Haven Tillmon
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Breeanne M Soteros
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Liang Shen
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
| | - Qifei Cong
- Institute of Neuroscience, Soochow University, Suzhou, 215123, China
- Clinical Research Center of Neurological Disease, Department of Nephrology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mackenna Wollet
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Julianne General
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Hanna Chin
- University of Rochester, Rochester, NY, 14627, USA
| | - John Beichen Lee
- Long School of Medicine, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - Flavia R Carreno
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
| | - David A Morilak
- Department of Pharmacology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- South Texas Veteran's Health Care System, San Antonio, TX, 78229, USA
| | - Jun Hee Kim
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA
- Kresge Hearing Research Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Gek Ming Sia
- Department of Cellular and Integrative Physiology, University of Texas Health at San Antonio, San Antonio, TX, 78229, USA.
| |
Collapse
|
4
|
Ravichandran S, Sood R, Das I, Dong T, Figueroa JD, Yang J, Finger N, Vaughan A, Vora P, Selvaraj K, Labus JS, Gupta A. Early life adversity impacts alterations in brain structure and food addiction in individuals with high BMI. Sci Rep 2024; 14:13141. [PMID: 38849441 PMCID: PMC11161480 DOI: 10.1038/s41598-024-63414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
Obesity and food addiction are associated with distinct brain signatures related to reward processing, and early life adversity (ELA) also increases alterations in these same reward regions. However, the neural mechanisms underlying the effect of early life adversity on food addiction are unknown. Therefore, the aim of this study was to examine the interactions between ELA, food addiction, and brain morphometry in individuals with obesity. 114 participants with high body mass index (BMI) underwent structural MRIs, and completed several questionnaires (e.g., Yale Food Addiction Scale (YFAS), Brief Resilience Scale (BRS), Early Traumatic Inventory (ETI)). Freesurfer 6 was applied to generate the morphometry of brain regions. A multivariate pattern analysis was used to derive brain morphometry patterns associated with food addiction. General linear modeling and mediation analyses were conducted to examine the effects of ELA and resilience on food addiction in individuals with obesity. Statistical significance was determined at a level of p < 0.05. High levels of ELA showed a strong association between reward control brain signatures and food addiction (p = 0.03). Resilience positively mediated the effect of ELA on food addiction (B = 0.02, p = 0.038). Our findings suggest that food addiction is associated with brain signatures in motivation and reward processing regions indicative of dopaminergic dysregulation and inhibition of cognitive control regions. These mechanistic variabilities along with early life adversity suggest increased vulnerability to develop food addiction and obesity in adulthood, which can buffer by the neuroprotective effects of resilience, highlighting the value of incorporating cognitive appraisal into obesity therapeutic regimens.
Collapse
Affiliation(s)
- Soumya Ravichandran
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
- UC San Diego School of Medicine, University of California, San Diego, USA
| | - Riya Sood
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Isha Das
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Tien Dong
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- Goodman Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Johnny D Figueroa
- Center for Health Disparities and Molecular Medicine, Department of Basic Sciences, Loma Linda University School of Medicine, Loma Linda, USA
| | - Jennifer Yang
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- Goodman Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Nicholas Finger
- David Geffen School of Medicine, University of California, Los Angeles, USA
| | - Allison Vaughan
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Priten Vora
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Katie Selvaraj
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Jennifer S Labus
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA
- Goodman Luskin Microbiome Center, University of California, Los Angeles, USA
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA
| | - Arpana Gupta
- Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, USA.
- Goodman Luskin Microbiome Center, University of California, Los Angeles, USA.
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, The Obesity and Ingestive Behavior Program, Vatche and Tamar Manoukian Division of Digestive Diseases, David Geffen School of Medicine, University of California, 10833 Le Conte Avenue, Center for Health Sciences 42-210, Los Angeles, CA, 90095, USA.
- David Geffen School of Medicine, University of California, Los Angeles, USA.
| |
Collapse
|
5
|
Holleman J, Daniilidou M, Kåreholt I, Aspö M, Hagman G, Udeh-Momoh CT, Spulber G, Kivipelto M, Solomon A, Matton A, Sindi S. Diurnal cortisol, neuroinflammation, and neuroimaging visual rating scales in memory clinic patients. Brain Behav Immun 2024; 118:499-509. [PMID: 38503394 DOI: 10.1016/j.bbi.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/18/2024] [Accepted: 03/16/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Neuroinflammation is a hallmark of the Alzheimer's disease (AD) pathogenic process. Cortisol dysregulation may increase AD risk and is related to brain atrophy. This cross-sectional study aims to examine interactions of cortisol patterns and neuroinflammation markers in their association with neuroimaging correlates. METHOD 134 participants were recruited from the Karolinska University Hospital memory clinic (Stockholm, Sweden). Four visual rating scales were applied to magnetic resonance imaging or computed tomography scans: medial temporal lobe atrophy (MTA), global cortical atrophy (GCA), white matter lesions (WML), and posterior atrophy. Participants provided saliva samples for assessment of diurnal cortisol patterns, and underwent lumbar punctures for cerebrospinal fluid (CSF) sampling. Three cortisol measures were used: the cortisol awakening response, total daily output, and the ratio of awakening to bedtime levels. Nineteen CSF neuroinflammation markers were categorized into five composite scores: proinflammatory cytokines, other cytokines, angiogenesis markers, vascular injury markers, and glial activation markers. Ordinal logistic regressions were conducted to assess associations between cortisol patterns, neuroinflammation scores, and visual rating scales, and interactions between cortisol patterns and neuroinflammation scores in relation to visual rating scales. RESULT Higher levels of angiogenesis markers were associated with more severe WML. Some evidence was found for interactions between dysregulated diurnal cortisol patterns and greater neuroinflammation-related biomarkers in relation to more severe GCA and WML. No associations were found between cortisol patterns and visual rating scales. CONCLUSION This study suggests an interplay between diurnal cortisol patterns and neuroinflammation in relation to brain structure. While this cross-sectional study does not provide information on causality or temporality, these findings suggest that neuroinflammation may be involved in the relationship between HPA-axis functioning and AD.
Collapse
Affiliation(s)
- Jasper Holleman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden.
| | - Makrina Daniilidou
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden
| | - Ingemar Kåreholt
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Institute of Gerontology, School of Health and Welfare, Jönköping University, Jönköping, Sweden
| | - Malin Aspö
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Göran Hagman
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Chinedu T Udeh-Momoh
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Division of Public Health Sciences, Wake Forest University School of Medicine, North Carolina, USA; Brain and Mind Institute, Aga Khan University, Nairobi, Kenya
| | - Gabriela Spulber
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden
| | - Miia Kivipelto
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Alina Solomon
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Theme Inflammation and Aging. Karolinska University Hospital, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK; Institute of Clinical Medicine, Neurology, University of Eastern Finland, Kuopio, Finland
| | - Anna Matton
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK
| | - Shireen Sindi
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences, and Society, Karolinska Institutet, Karolinska Vägen 37A - QA32, 171 64 Solna, Stockholm, Sweden; Ageing Epidemiology Research Unit (AGE), School of Public Health, Faculty of Medicine, Imperial College London, UK
| |
Collapse
|
6
|
Mosconi L, Williams S, Carlton C, Zarate C, Boneu C, Fauci F, Ajila T, Nerattini M, Jett S, Andy C, Battista M, Pahlajani S, Osborne J, Brinton RD, Dyke JP. Sex-specific associations of serum cortisol with brain biomarkers of Alzheimer's risk. Sci Rep 2024; 14:5519. [PMID: 38448497 PMCID: PMC10918173 DOI: 10.1038/s41598-024-56071-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Emerging evidence implicates chronic psychological stress as a risk factor for Alzheimer's disease (AD). Herein, we examined the relationships between serum cortisol and multimodality brain AD biomarkers in 277 cognitively normal midlife individuals at risk for AD. Overall, higher cortisol was associated with lower total brain volume, lower glucose metabolism (CMRglc) in frontal cortex, and higher β-amyloid (Aβ) load in AD-vulnerable regions; and marginally associated with phosphocreatine to ATP ratios (PCr/ATP) in precuneus and parietal regions. Sex-specific modification effects were noted: in women, cortisol exhibited stronger associations with Aβ load and frontal CMRglc, the latter being more pronounced postmenopause. In men, cortisol exhibited stronger associations with gray matter volume and PCr/ATP measures. Higher cortisol was associated with poorer delayed memory in men but not in women. Results were adjusted for age, Apolipoprotein E (APOE) epsilon 4 status, midlife health factors, and hormone therapy use. These results suggest sex-specific neurophysiological responses to stress, and support a role for stress reduction in AD prevention.
Collapse
Affiliation(s)
- Lisa Mosconi
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA.
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA.
| | - Schantel Williams
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Carlton
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Camila Zarate
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Camila Boneu
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Francesca Fauci
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Trisha Ajila
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Matilde Nerattini
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Clinical Pathophysiology, Nuclear Medicine Unit, University of Florence, Florence, Italy
| | - Steven Jett
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Caroline Andy
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael Battista
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Silky Pahlajani
- Department of Neurology, Weill Cornell Medicine, New York, NY, 10021, USA
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Joseph Osborne
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| | - Roberta Diaz Brinton
- Department of Neurology and Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Taylor WD, Ajilore O, Karim HT, Butters MA, Krafty R, Boyd BD, Banihashemi L, Szymkowicz SM, Ryan C, Hassenstab J, Landman BA, Andreescu C. Assessing depression recurrence, cognitive burden, and neurobiological homeostasis in late life: Design and rationale of the REMBRANDT Study. JOURNAL OF MOOD AND ANXIETY DISORDERS 2024; 5:100038. [PMID: 38523701 PMCID: PMC10959248 DOI: 10.1016/j.xjmad.2023.100038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Background Late-life depression is characterized by disability, cognitive impairment and decline, and a high risk of recurrence following remission. Aside from past psychiatric history, prognostic neurobiological and clinical factors influencing recurrence risk are unclear. Moreover, it is unclear if cognitive impairment predisposes to recurrence, or whether recurrent episodes may accelerate brain aging and cognitive decline. The purpose of the REMBRANDT study (Recurrence markers, cognitive burden, and neurobiological homeostasis in late-life depression) is to better elucidate these relationships and identify phenotypic, cognitive, environmental, and neurobiological factors contributing to and predictive of depression recurrence. Methods Across three sites, REMBRANDT will enroll 300 depressed elders who will receive antidepressant treatment. The goal is to enroll 210 remitted depressed participants and 75 participants with no mental health history into a two-year longitudinal phase focusing on depression recurrence. Participants are evaluated every 2 months with deeper assessments occurring every 8 months, including structural and functional neuroimaging, environmental stress assessments, deep symptom phenotyping, and two weeks of 'burst' ecological momentary assessments to elucidate variability in symptoms and cognitive performance. A broad neuropsychological test battery is completed at the beginning and end of the longitudinal study. Significance REMBRANDT will improve our understanding of how alterations in neural circuits and cognition that persist during remission contribute to depression recurrence vulnerability. It will also elucidate how these processes may contribute to cognitive impairment and decline. This project will obtain deep phenotypic data that will help identify vulnerability and resilience factors that can help stratify individual clinical risk.
Collapse
Affiliation(s)
- Warren D. Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN
| | - Olusola Ajilore
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL
| | - Helmet T. Karim
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Meryl A. Butters
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Robert Krafty
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Brian D. Boyd
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sarah M. Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN
| | - Claire Ryan
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN
| | - Jason Hassenstab
- Departments of Neurology and Psychiatry, Washington University in St. Louis, St. Louis, MO
| | - Bennett A. Landman
- Departments of Computer Science, Electrical Engineering, and Biomedical Engineering, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | - Carmen Andreescu
- Department of Psychiatry, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
8
|
Soteros BM, Tillmon H, Wollet M, General J, Chin H, Lee JB, Carreno FR, Morilak DA, Kim JH, Sia GM. Heterogeneous complement and microglia activation mediates stress-induced synapse loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.28.546889. [PMID: 37425856 PMCID: PMC10327081 DOI: 10.1101/2023.06.28.546889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Spatially heterogeneous synapse loss is a characteristic of many psychiatric and neurological disorders, but the underlying mechanisms are unclear. Here, we show that spatially-restricted complement activation mediates stress-induced heterogeneous microglia activation and synapse loss localized to the upper layers of the mouse medial prefrontal cortex (mPFC). Single cell RNA sequencing also reveals a stress-associated microglia state marked by high expression of the apolipoprotein E gene (ApoE high ) localized to the upper layers of the mPFC. Mice lacking complement component C3 are protected from stress-induced layer-specific synapse loss, and the ApoE high microglia population is markedly reduced in the mPFC of these mice. Furthermore, C3 knockout mice are also resilient to stress-induced anhedonia and working memory behavioral deficits. Our findings suggest that region-specific complement and microglia activation can contribute to the disease-specific spatially restricted patterns of synapse loss and clinical symptoms found in many brain diseases.
Collapse
|
9
|
Dronse J, Ohndorf A, Richter N, Bischof GN, Fassbender R, Behfar Q, Gramespacher H, Dillen K, Jacobs HIL, Kukolja J, Fink GR, Onur OA. Serum cortisol is negatively related to hippocampal volume, brain structure, and memory performance in healthy aging and Alzheimer's disease. Front Aging Neurosci 2023; 15:1154112. [PMID: 37251803 PMCID: PMC10213232 DOI: 10.3389/fnagi.2023.1154112] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Objective Elevated cortisol levels have been frequently reported in Alzheimer's disease (AD) and linked to brain atrophy, especially of the hippocampus. Besides, high cortisol levels have been shown to impair memory performance and increase the risk of developing AD in healthy individuals. We investigated the associations between serum cortisol levels, hippocampal volume, gray matter volume and memory performance in healthy aging and AD. Methods In our cross-sectional study, we analyzed the relationships between morning serum cortisol levels, verbal memory performance, hippocampal volume, and whole-brain voxel-wise gray matter volume in an independent sample of 29 healthy seniors (HS) and 29 patients along the spectrum of biomarker-based AD. Results Cortisol levels were significantly elevated in patients with AD as compared to HS, and higher cortisol levels were correlated with worse memory performance in AD. Furthermore, higher cortisol levels were significantly associated with smaller left hippocampal volumes in HS and indirectly negatively correlated to memory function through hippocampal volume. Higher cortisol levels were further related to lower gray matter volume in the hippocampus and temporal and parietal areas in the left hemisphere in both groups. The strength of this association was similar in HS and AD. Conclusion In AD, cortisol levels are elevated and associated with worse memory performance. Furthermore, in healthy seniors, higher cortisol levels show a detrimental relationship with brain regions typically affected by AD. Thus, increased cortisol levels seem to be indirectly linked to worse memory function even in otherwise healthy individuals. Cortisol may therefore not only serve as a biomarker of increased risk for AD, but maybe even more importantly, as an early target for preventive and therapeutic interventions.
Collapse
Affiliation(s)
- Julian Dronse
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Anna Ohndorf
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Nils Richter
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Gérard N. Bischof
- Department of Nuclear Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ronja Fassbender
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Qumars Behfar
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hannes Gramespacher
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Kim Dillen
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Palliative Medicine, Multimodal Neuroimaging Group, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Heidi I. L. Jacobs
- Department of Radiology, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, Maastricht, Netherlands
| | - Juraj Kukolja
- Department of Neurology and Clinical Neurophysiology, Helios University Hospital Wuppertal, Wuppertal, Germany
- Faculty of Health Witten/Herdecke University, Witten, Germany
| | - Gereon R. Fink
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Oezguer A. Onur
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Jülich Research Centre, Jülich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
10
|
Szymkowicz SM, Gerlach AR, Homiack D, Taylor WD. Biological factors influencing depression in later life: role of aging processes and treatment implications. Transl Psychiatry 2023; 13:160. [PMID: 37160884 PMCID: PMC10169845 DOI: 10.1038/s41398-023-02464-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023] Open
Abstract
Late-life depression occurring in older adults is common, recurrent, and malignant. It is characterized by affective symptoms, but also cognitive decline, medical comorbidity, and physical disability. This behavioral and cognitive presentation results from altered function of discrete functional brain networks and circuits. A wide range of factors across the lifespan contributes to fragility and vulnerability of those networks to dysfunction. In many cases, these factors occur earlier in life and contribute to adolescent or earlier adulthood depressive episodes, where the onset was related to adverse childhood events, maladaptive personality traits, reproductive events, or other factors. Other individuals exhibit a later-life onset characterized by medical comorbidity, pro-inflammatory processes, cerebrovascular disease, or developing neurodegenerative processes. These later-life processes may not only lead to vulnerability to the affective symptoms, but also contribute to the comorbid cognitive and physical symptoms. Importantly, repeated depressive episodes themselves may accelerate the aging process by shifting allostatic processes to dysfunctional states and increasing allostatic load through the hypothalamic-pituitary-adrenal axis and inflammatory processes. Over time, this may accelerate the path of biological aging, leading to greater brain atrophy, cognitive decline, and the development of physical decline and frailty. It is unclear whether successful treatment of depression and avoidance of recurrent episodes would shift biological aging processes back towards a more normative trajectory. However, current antidepressant treatments exhibit good efficacy for older adults, including pharmacotherapy, neuromodulation, and psychotherapy, with recent work in these areas providing new guidance on optimal treatment approaches. Moreover, there is a host of nonpharmacological treatment approaches being examined that take advantage of resiliency factors and decrease vulnerability to depression. Thus, while late-life depression is a recurrent yet highly heterogeneous disorder, better phenotypic characterization provides opportunities to better utilize a range of nonspecific and targeted interventions that can promote recovery, resilience, and maintenance of remission.
Collapse
Affiliation(s)
- Sarah M Szymkowicz
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Andrew R Gerlach
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Damek Homiack
- Department of Psychiatry, University of Illinois-Chicago, Chicago, IL, USA
| | - Warren D Taylor
- Center for Cognitive Medicine, Department of Psychiatry and Behavioral Science, Vanderbilt University Medical Center, Nashville, TN, USA.
- Geriatric Research, Education, and Clinical Center, Veterans Affairs Tennessee Valley Health System, Nashville, TN, USA.
| |
Collapse
|
11
|
van der Velpen IF, de Feijter M, Raina R, Özel F, Perry M, Ikram MA, Vernooij MW, Luik AI. Psychosocial health modifies associations between HPA-axis function and brain structure in older age. Psychoneuroendocrinology 2023; 153:106106. [PMID: 37028139 DOI: 10.1016/j.psyneuen.2023.106106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 04/09/2023]
Abstract
BACKGROUND Dysregulation of the negative feedback loop of the hypothalamic-pituitary-adrenal (HPA) axis may have damaging effects on the brain, potentially under influence of psychosocial health factors. We studied associations between functioning of the negative feedback loop of HPA-axis, measured with a very low-dose dexamethasone suppression test (DST), and brain structure in middle-aged and older adults, and whether these associations were modified by psychosocial health. METHODS From 2006 to 2008, 1259 participants (mean age 57.6 ± 6.4, 59.6 % female) of the population-based Rotterdam Study completed a very low-dose DST (0.25 mg) and underwent magnetic resonance imaging (MRI) of the brain. Self-reported psychosocial health (depressive symptoms, loneliness, marital status, perceived social support) were assessed in the same time period. Multivariable linear and logistic regression were used to study cross-sectional associations between cortisol response and brain volumetrics, cerebral small vessel disease markers and white matter structural integrity. To assess the effect of psychosocial health on these associations, analyses were further stratified for psychosocial health markers. RESULTS Cortisol response was not associated with markers of global brain structure in the overall study sample. However, in participants with clinically relevant depressive symptoms, a diminished cortisol response was associated with smaller white matter volume (mean difference: - 1.00 mL, 95 %CI = - 1.89;- 0.10) and smaller white matter hyperintensity volume (mean difference: - 0.03 mL (log), 95 %CI = - 0.05;0.00). In participants with low/moderate perceived social support compared to those with high social support, a diminished cortisol response was associated with larger gray matter volume (mean difference: 0.70 mL, 95 %CI = 0.01;1.39) and higher fractional anisotropy (standardized mean difference 0.03, 95 %CI = 0.00;0.06). CONCLUSION Diminished function of the HPA-axis is differently associated with brain structure in community-dwelling middle-aged and older adults with clinically relevant depressive symptoms or suboptimal social support, but not in adults without depressive symptoms or with optimal social support.
Collapse
Affiliation(s)
- Isabelle F van der Velpen
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Maud de Feijter
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Rutika Raina
- Rollins School of Public Health, Emory University, 1518 Clifton Road, Atlanta, GA 30322, USA; OPEN Health, 4350 East-West Highway, Suite 1100, Bethesda, MD 20814, USA
| | - Fatih Özel
- Department of Organismal Biology, Uppsala University, Norbyvägen 18 A, 752 36 Uppsala, Sweden
| | - Marieke Perry
- Department of Geriatric Medicine, Radboudumc Alzheimer Center, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands; Department of Primary and Community Care, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, the Netherlands
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Meike W Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Radiology & Nuclear Medicine, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Annemarie I Luik
- Department of Epidemiology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC University Medical Center, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| |
Collapse
|
12
|
Koutentaki E, Basta M, Antypa D, Zaganas I, Panagiotakis S, Simos P, Vgontzas AN. IL-6 Enhances the Negative Impact of Cortisol on Cognition among Community-Dwelling Older People without Dementia. Healthcare (Basel) 2023; 11:healthcare11070951. [PMID: 37046878 PMCID: PMC10094120 DOI: 10.3390/healthcare11070951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/19/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
There is growing evidence that high basal cortisol levels and systemic inflammation independently contribute to cognitive decline among older people without dementia. The present cross-sectional study examined (a) the potential synergistic effect of cortisol levels and systemic inflammation on executive function and (b) whether this effect is more prominent among older people with mild cognitive impairment (MCI). A sub-sample of 99 patients with MCI and 84 older people without cognitive impairment (CNI) (aged 73.8 ± 7.0 years) were recruited from a large population-based cohort in Crete, Greece, and underwent comprehensive neuropsychiatric and neuropsychological evaluation and a single morning measurement of cortisol and IL-6 plasma levels. Using moderated regression models, we found that the relation between cortisol and executive function in the total sample was moderated by IL-6 levels (b = −0.994, p = 0.044) and diagnostic group separately (b = −0.632, p < 0.001). Moreover, the interaction between cortisol and IL-6 levels was significant only among persons with MCI (b = −0.562, p < 0.001). The synergistic effect of stress hormones and systemic inflammation on cognitive status appears to be stronger among older people who already display signs of cognitive decline. Targeting hypercortisolemia and inflammation may be a promising strategy toward improving the course of cognitive decline.
Collapse
|
13
|
James KA, Stromin JI, Steenkamp N, Combrinck MI. Understanding the relationships between physiological and psychosocial stress, cortisol and cognition. Front Endocrinol (Lausanne) 2023; 14:1085950. [PMID: 36950689 PMCID: PMC10025564 DOI: 10.3389/fendo.2023.1085950] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 02/14/2023] [Indexed: 03/08/2023] Open
Abstract
Stress is viewed as a state of real or perceived threat to homeostasis, the management of which involves the endocrine, nervous, and immune systems. These systems work independently and interactively as part of the stress response. The scientific stress literature, which spans both animal and human studies, contains heterogeneous findings about the effects of stress on the brain and the body. This review seeks to summarise and integrate literature on the relationships between these systems, examining particularly the roles of physiological and psychosocial stress, the stress hormone cortisol, as controlled by the hypothalamic-pituitary-adrenal (HPA) axis, and the effects of stress on cognitive functioning. Health conditions related to impaired HPA axis functioning and their associated neuropsychiatric symptoms will also be considered. Lastly, this review will provide suggestions of clinical applicability for endocrinologists who are uniquely placed to measure outcomes related to endocrine, nervous and immune system functioning and identify areas of intervention.
Collapse
Affiliation(s)
- Katharine Ann James
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Juliet Ilena Stromin
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Nina Steenkamp
- Applied Cognitive Science and Experimental Neuropsychology Team (ACSENT) Laboratory, Department of Psychology, University of Cape Town, Cape Town, South Africa
| | - Marc Irwin Combrinck
- Division of Geriatric Medicine, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
14
|
Twait EL, Basten M, Gerritsen L, Gudnason V, Launer LJ, Geerlings MI. Late-life depression, allostatic load, and risk of dementia: The AGES-Reykjavik study. Psychoneuroendocrinology 2023; 148:105975. [PMID: 36423561 PMCID: PMC11060697 DOI: 10.1016/j.psyneuen.2022.105975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/14/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND The current study aimed to assess if the relation between depression and dementia could be explained by allostatic load (AL) profiles, as well as assessing their risk on incident all-cause dementia, Alzheimer's disease (AD), and non-AD dementias. METHODS The study included individuals without dementia at baseline from the population-based AGES-Reykjavik Study. Depressive symptoms assessed with the Geriatric Depression Scale-15 and AL markers were collected at baseline. Latent profile analysis (LPA) was performed on the AL markers. Incident dementia was measured during 12-years of follow-up. Cox regressions adjusted for AL profiles were performed to evaluate if AL could explain the relation between depressive symptoms and incident dementia. Additional Cox regressions exploring the interaction with depressive symptoms and AL profiles were also performed. RESULTS LPA revealed four profiles based on AL factors: 'Low cardiovascular dysregulation' (43 %), 'Average' (42 % prevalence), 'High cardiovascular dysregulation' (11 %), and 'Multisystem dysregulation' (4 %). Cox regression analyses found an increased risk for dementia in the 'Multisystem dysregulation' group (HR 1.72; 95 % CI 1.26-2.33), as well as for AD (HR 1.75; 95 % CI: 1.12-2.71) and non-AD dementias (HR 1.87; 95 % CI: 1.23-2.84). AL profiles did not mediate the risk of all-cause dementia with depressive symptoms; however, there was evidence of additive interaction with depressive symptoms and the 'Multisystem dysregulation' profile and all-cause dementia (RERI 0.15; 95 % CI 0.03-0.26). CONCLUSION AL profiles and depressive symptoms were independently related to dementia. Individuals with multisystem dysregulation could be more susceptible to the negative effects of depressive symptomology on incident dementia.
Collapse
Affiliation(s)
- Emma L Twait
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Maartje Basten
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Lotte Gerritsen
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
| | - Vilmundur Gudnason
- Department of Psychology, Utrecht University, Utrecht, the Netherlands; Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Lenore J Launer
- National Institute on Aging, Laboratory for Epidemiology and Population Sciences, Baltimore, MD, USA
| | - Mirjam I Geerlings
- Department of Epidemiology, Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands; National Institute on Aging, Laboratory for Epidemiology and Population Sciences, Baltimore, MD, USA; Amsterdam UMC, location University of Amsterdam, Department of General Practice, Meibergdreef 9, Amsterdam, the Netherlands; Amsterdam Public Health, Aging & Later life, and Personalized Medicine, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, and Mood, Anxiety, Psychosis, Stress, and Sleep, Amsterdam, the Netherlands.
| |
Collapse
|
15
|
Chojnowski K, Opiełka M, Gozdalski J, Radziwon J, Dańczyszyn A, Aitken AV, Biancardi VC, Winklewski PJ. The Role of Arginine-Vasopressin in Stroke and the Potential Use of Arginine-Vasopressin Type 1 Receptor Antagonists in Stroke Therapy: A Narrative Review. Int J Mol Sci 2023; 24:ijms24032119. [PMID: 36768443 PMCID: PMC9916514 DOI: 10.3390/ijms24032119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/25/2023] Open
Abstract
Stroke is a life-threatening condition in which accurate diagnoses and timely treatment are critical for successful neurological recovery. The current acute treatment strategies, particularly non-invasive interventions, are limited, thus urging the need for novel therapeutical targets. Arginine vasopressin (AVP) receptor antagonists are emerging as potential targets to treat edema formation and subsequent elevation in intracranial pressure, both significant causes of mortality in acute stroke. Here, we summarize the current knowledge on the mechanisms leading to AVP hyperexcretion in acute stroke and the subsequent secondary neuropathological responses. Furthermore, we discuss the work supporting the predictive value of measuring copeptin, a surrogate marker of AVP in stroke patients, followed by a review of the experimental evidence suggesting AVP receptor antagonists in stroke therapy. As we highlight throughout the narrative, critical gaps in the literature exist and indicate the need for further research to understand better AVP mechanisms in stroke. Likewise, there are advantages and limitations in using copeptin as a prognostic tool, and the translation of findings from experimental animal models to clinical settings has its challenges. Still, monitoring AVP levels and using AVP receptor antagonists as an add-on therapeutic intervention are potential promises in clinical applications to alleviate stroke neurological consequences.
Collapse
Affiliation(s)
- Karol Chojnowski
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Mikołaj Opiełka
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Jacek Gozdalski
- Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| | - Jakub Radziwon
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Aleksandra Dańczyszyn
- Student Scientific Circle of the Department of Adult Neurology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
| | - Andrew Vieira Aitken
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Vinicia Campana Biancardi
- Department of Anatomy, Physiology, and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
- Center for Neurosciences Initiative, Auburn University, Auburn, AL 36849, USA
| | - Paweł Jan Winklewski
- Department of Human Physiology, Medical University of Gdansk, 15 Tuwima Street, 80-210 Gdansk, Poland
- 2nd Department of Radiology, Medical University of Gdansk, 17 Smoluchowskiego Street, 80-214 Gdansk, Poland
- Correspondence: (J.G.); (P.J.W.)
| |
Collapse
|
16
|
Vaseghi S, Mostafavijabbari A, Alizadeh MS, Ghaffarzadegan R, Kholghi G, Zarrindast MR. Intricate role of sleep deprivation in modulating depression: focusing on BDNF, VEGF, serotonin, cortisol, and TNF-α. Metab Brain Dis 2023; 38:195-219. [PMID: 36399239 DOI: 10.1007/s11011-022-01124-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/06/2022] [Indexed: 11/19/2022]
Abstract
In this review article, we aimed to discuss intricate roles of SD in modulating depression in preclinical and clinical studies. Decades of research have shown the inconsistent effects of SD on depression, focusing on SD duration. However, inconsistent role of SD seems to be more complicated, and SD duration cannot be the only one factor. Regarding this issue, we chose some important factors involved in the effects of SD on cognitive functions and mood including brain-derived neurotrophic factor (BDNF), vascular endothelial growth factor (VEGF), serotonin, cortisol, and tumor necrosis factor-alpha (TNF-α). It was concluded that SD has a wide-range of inconsistent effects on BDNF, VEGF, serotonin, and cortisol levels. It was noted that BDNF diurnal rhythm is significantly involved in the modulatory role of SD in depression. Furthermore, the important role of VEGF in blood-brain barrier permeability which is involved in modulating depression was discussed. It was also noted that there is a negative correlation between cortisol and BDNF that modulates depression. Eventually, it was concluded that TNF-α regulates sleep/wake cycle and is involved in the vulnerability to cognitive and behavioral impairments following SD. TNF-α also increases the permeability of the blood-brain barrier which is accompanied by depressive behavior. In sum, it was suggested that future studies should focus on these mechanisms/factors to better investigate the reasons behind intricate roles of SD in modulating depression.
Collapse
Affiliation(s)
- Salar Vaseghi
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran.
| | | | - Mohammad-Sadegh Alizadeh
- Department of Cognitive Neuroscience, Institute for Cognitive Science Studies (ICSS), Tehran, Iran
- Department of Cellular and Molecular Sciences, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Reza Ghaffarzadegan
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
| | - Gita Kholghi
- Department of Psychology, Faculty of Human Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Luthra NS, Clow A, Corcos DM. The Interrelated Multifactorial Actions of Cortisol and Klotho: Potential Implications in the Pathogenesis of Parkinson's Disease. Brain Sci 2022; 12:1695. [PMID: 36552155 PMCID: PMC9775285 DOI: 10.3390/brainsci12121695] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
The pathogenesis of Parkinson's disease (PD) is complex, multilayered, and not fully understood, resulting in a lack of effective disease-modifying treatments for this prevalent neurodegenerative condition. Symptoms of PD are heterogenous, including motor impairment as well as non-motor symptoms such as depression, cognitive impairment, and circadian disruption. Aging and stress are important risk factors for PD, leading us to explore pathways that may either accelerate or protect against cellular aging and the detrimental effects of stress. Cortisol is a much-studied hormone that can disrupt mitochondrial function and increase oxidative stress and neuroinflammation, which are recognized as key underlying disease mechanisms in PD. The more recently discovered klotho protein, considered a general aging-suppressor, has a similarly wide range of actions but in the opposite direction to cortisol: promoting mitochondrial function while reducing oxidative stress and inflammation. Both hormones also converge on pathways of vitamin D metabolism and insulin resistance, also implicated to play a role in PD. Interestingly, aging, stress and PD associate with an increase in cortisol and decrease in klotho, while physical exercise and certain genetic variations lead to a decrease in cortisol response and increased klotho. Here, we review the interrelated opposite actions of cortisol and klotho in the pathogenesis of PD. Together they impact powerful and divergent mechanisms that may go on to influence PD-related symptoms. Better understanding of these hormones in PD would facilitate the design of effective interventions that can simultaneously impact the multiple systems involved in the pathogenesis of PD.
Collapse
Affiliation(s)
- Nijee S. Luthra
- Department of Neurology, University of California San Francisco, San Francisco, CA 94127, USA
| | - Angela Clow
- Department of Psychology, School of Social Sciences, University of Westminster, London W1B 2HW, UK
| | - Daniel M. Corcos
- Department of Physical Therapy & Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60208, USA
| |
Collapse
|
18
|
Liu ZX, Whitehead B, Botoseneanu A. Association of Psychological distress and Physical Health with Subjective and Objective Memory in Older Adults. J Aging Health 2022:8982643221143828. [PMID: 36459693 DOI: 10.1177/08982643221143828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
ObjectivesTo investigate how indicators of psychological stress and physical health differentially influence subjective and objective memory in older adults. Methods: 404 adults aged ≥55 without cognitive impairment participated in remote assessment of physical health (PHY; multimorbidity, body-mass-index), psychological distress (PDS; perceived stress, anxiety, depression), subjective memory complaints (SM), and task-based objective memory performance (OM). Results: Separately, both PHY and PDS significantly predicted SM (p < 0.01), but only PHY was associated with OM (p = 0.05). Combined models showed that PHY and PDS maintained significant association with SM (p < 0.01, R2 = 0.30), while only PHY was associated with OM (p = .07, R2 = 0.03; for associative OM, p = 0.04). Discussion: SM is associated with participants' psychological profile, highlighting the importance of addressing these factors when assessing SM. The results also reveal that remotely-administered OM tasks are more immune to participants' psychological profile, and support previously-established links between physical health and objective and subjective memory function.
Collapse
Affiliation(s)
- Zhong-Xu Liu
- Department of Behavioral Sciences, 177870University of Michigan-Dearborn, Dearborn, MI, USA
| | - Brenda Whitehead
- Department of Behavioral Sciences, 177870University of Michigan-Dearborn, Dearborn, MI, USA.,School of Behavioral Science, 492177Grace College, Winona Lake, IN, USA
| | - Anda Botoseneanu
- Department of Health and Human Services, 14711University of Michigan-Dearborn, Dearborn, MI, USA.,Institute of Gerontology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Santoso C, Stuckler D, Ihle A. Investigating longitudinal associations of hair cortisol and cortisone with cognitive functioning and dementia. Sci Rep 2022; 12:20642. [PMID: 36450857 PMCID: PMC9712516 DOI: 10.1038/s41598-022-25143-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
We rigorously investigated potential longitudinal associations of hair cortisol and cortisone with verbal memory, time orientation, and dementia, adjusting for sociodemographic and health confounders. Data from the English Longitudinal Study of Ageing wave 6-9 (6-year follow-up, covering 4399 persons aged 50+) were analysed using linear random effects and cox regression models. In unadjusted models, hair cortisol was associated with worsened verbal memory (β 0.19; SE 0.08), but not with time orientation (β 0.02; SE 0.01), or dementia (β 0.07; SE 0.16). Hair cortisone was associated with worsened verbal memory (β 0.74; SE 0.14) and time orientation (β 0.06; SE 0.02), but not with dementia (β 0.47; SE 0.28). However, in the fully adjusted models, neither hair cortisol nor cortisone was associated with verbal memory, time orientation, or dementia. Consistent with prior studies, we found that more advanced age was associated with worsened verbal memory (β 0.15; SE 0.01), time orientation (β 0.01; SE 0.00), and dementia risk (β 0.11; SE 0.02). Our rigorous analyses did not detect robust associations of neither hair cortisol nor cortisone with cognitive functioning or dementia across 6 years. More detailed insights into potential mechanisms are discussed.
Collapse
Affiliation(s)
- Cornelia Santoso
- Faculty of Public Health, University of Debrecen, Debrecen, Hungary.
| | - David Stuckler
- Dondena Centre for Research On Social Dynamics, Bocconi University, Milan, Italy
| | - Andreas Ihle
- Department of Psychology, University of Geneva, 1205, Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, 1205, Geneva, Switzerland
- Swiss National Centre of Competence in Research LIVES-Overcoming Vulnerability: Life Course Perspectives, 1015, Lausanne, Switzerland
| |
Collapse
|
20
|
Ouanes S, Clark C, Richiardi J, Maréchal B, Lewczuk P, Kornhuber J, Kirschbaum C, Popp J. Cerebrospinal Fluid Cortisol and Dehydroepiandrosterone Sulfate, Alzheimer’s Disease Pathology, and Cognitive Decline. Front Aging Neurosci 2022; 14:892754. [PMID: 35875796 PMCID: PMC9301040 DOI: 10.3389/fnagi.2022.892754] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 06/22/2022] [Indexed: 12/31/2022] Open
Abstract
Introduction Elevated cortisol levels have been reported in Alzheimer’s disease (AD) and may accelerate the development of brain pathology and cognitive decline. Dehydroepiandrosterone sulfate (DHEAS) has anti-glucocorticoid effects and it may be involved in the AD pathophysiology. Objectives To investigate associations of cerebrospinal fluid (CSF) cortisol and DHEAS levels with (1) cognitive performance at baseline; (2) CSF biomarkers of amyloid pathology (as assessed by CSF Aβ levels), neuronal injury (as assessed by CSF tau), and tau hyperphosphorylation (as assessed by CSF p-tau); (3) regional brain volumes; and (4) clinical disease progression. Materials and Methods Individuals between 49 and 88 years (n = 145) with mild cognitive impairment or dementia or with normal cognition were included. Clinical scores, AD biomarkers, brain MRI volumetry along with CSF cortisol and DHEAS were obtained at baseline. Cognitive and functional performance was re-assessed at 18 and 36 months from baseline. We also assessed the following covariates: apolipoprotein E (APOE) genotype, BMI, and education. We used linear regression and mixed models to address associations of interest. Results Higher CSF cortisol was associated with poorer global cognitive performance and higher disease severity at baseline. Cortisol and cortisol/DHEAS ratio were positively associated with tau and p-tau CSF levels, and negatively associated with the amygdala and insula volumes at baseline. Higher CSF cortisol predicted more pronounced cognitive decline and clinical disease progression over 36 months. Higher CSF DHEAS predicted more pronounced disease progression over 36 months. Conclusion Increased cortisol in the CNS is associated with tau pathology and neurodegeneration, and with decreased insula and amygdala volume. Both CSF cortisol and DHEAS levels predict faster clinical disease progression. These results have implications for the identification of patients at risk of rapid decline as well as for the development of interventions targeting both neurodegeneration and clinical manifestations of AD.
Collapse
Affiliation(s)
- Sami Ouanes
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar
| | - Christopher Clark
- Centre for Gerontopsychiatric Medicine, Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zurich, Switzerland
| | - Jonas Richiardi
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Bénédicte Maréchal
- Department of Radiology, Lausanne University Hospital, Lausanne, Switzerland
| | - Piotr Lewczuk
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University Hospital, Friedrich-Alexander-University Erlangen-Nuremberg, Erlangen, Germany
| | - Clemens Kirschbaum
- Chair of Biopsychology, Technische Universität Dresden, Andreas-Schubert-Bau, Dresden, Germany
| | - Julius Popp
- Service of Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Centre for Gerontopsychiatric Medicine, Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zurich, Switzerland
- *Correspondence: Julius Popp,
| |
Collapse
|
21
|
Wu-Chung EL, Leal SL, Denny BT, Cheng SL, Fagundes CP. Spousal caregiving, widowhood, and cognition: A systematic review and a biopsychosocial framework for understanding the relationship between interpersonal losses and dementia risk in older adulthood. Neurosci Biobehav Rev 2022; 134:104487. [PMID: 34971701 PMCID: PMC8925984 DOI: 10.1016/j.neubiorev.2021.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/23/2021] [Accepted: 12/06/2021] [Indexed: 01/18/2023]
Abstract
Accumulating research suggests that stressful life events, especially those that threaten close intimate bonds, are associated with an increased risk of dementia. Grieving the loss of a spouse, whether in the form of caregiving or after the death, ranks among 'life's most significant stressors', evoking intense psychological and physiological distress. Despite numerous studies reporting elevated dementia risk or poorer cognition among spousal caregivers and widow(er)s compared to controls, no review has summarized findings across cognitive outcomes (i.e., dementia incidence, cognitive impairment rates, cognitive performance) or proposed a theoretical model for understanding the links between partner loss and abnormal cognitive decline. The current systematic review summarizes findings across 64 empirical studies. Overall, both cross-sectional and longitudinal studies revealed an adverse association between partner loss and cognitive outcomes. In turn, we propose a biopsychosocial model of cognitive decline that explains how caregiving and bereavement may position some to develop cognitive impairment or Alzheimer's disease and related dementias. More longitudinal studies that focus on the biopsychosocial context of caregivers and widow(er)s are needed.
Collapse
Affiliation(s)
- E Lydia Wu-Chung
- Department of Psychological Sciences, Rice University, Houston, TX, United States.
| | - Stephanie L Leal
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Bryan T Denny
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Samantha L Cheng
- Department of Psychological Sciences, Rice University, Houston, TX, United States
| | - Christopher P Fagundes
- Department of Psychological Sciences, Rice University, Houston, TX, United States; Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX, United States; Department of Psychiatry & Behavioral Sciences, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
22
|
Kölbel M, Kirkham F, Iles RK, Stotesbury H, Halstead E, Brenchley C, Sahota S, Dimitriou D. Exploring the relationship of sleep, cognition, and cortisol in sickle cell disease. COMPREHENSIVE PSYCHONEUROENDOCRINOLOGY 2022; 10:100128. [PMID: 35755206 PMCID: PMC9216257 DOI: 10.1016/j.cpnec.2022.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 02/22/2022] [Indexed: 12/03/2022] Open
Abstract
Background Neurocognitive impairment is common in people with Sickle Cell Disease (SCD) and evidence is accumulating that sleep disturbances play a role. The interaction between cortisol and sleep in the general population is associated with cognition as well as general wellbeing but there are few data in SCD. We aimed to understand the relationship between cortisol and sleep in individuals with SCD and explored associations with cognition. Methods Forty-five participants of black heritage (SCD: N = 27, 9–29 years, 16 females; Controls: N = 18, 11–25 years, 13 females) were recruited from the community between 2018 - 2020. Participants completed standardized questionnaires about their sleep behaviour and wore actigraphy MotionWatch8 for 7 nights to assess nocturnal sleep patterns. Salivary cortisol samples were taken on wakening and 3 times after 14:00. Cognition was assessed using the Wechsler Intelligence Scales for children and adults. Results People with SCD took longer to fall asleep and experienced greater wake bouts, mobile minutes and fragmented sleep compared to controls. Although non-significant, people with SCD experienced lower morning cortisol, with a flattened diurnal cortisol ratio compared to controls. Interestingly, SCD participants, but not controls, with low diurnal variation scored lowest on processing speed (PSI) and perceptual reasoning index (PRI). A moderator analysis revealed that the effect of morning cortisol and diurnal cortisol ratio on PRI by group health (i.e., SCD and healthy controls) depended on sleep quality. Discussion Sleep and cortisol may play a crucial role in the expression of cognitive difficulties seen in SCD. This should be considered for the development of interventions to optimise cognitive functioning and sleep. This, in turn, could positively impact on secretion of cortisol and general health in SCD. We examined sleep patterns, cortisol and cognition in 27 participants with Sickle Cell Disease (SCD) and 18 healthy controls. People with SCD had lower cognitive scores compared to healthy controls. People with SCD took longer to fall asleep, had greater wake bouts, mobile minutes, and fragmented sleep. People with SCD experienced a flattened diurnal cortisol profile. Sleep disturbances might interfere with diurnal cortisol rhythm and contribute to lower cognitive scores .
Collapse
|
23
|
Antypa D, Basta M, Vgontzas A, Zaganas I, Panagiotakis S, Vogiatzi E, Kokosali E, Simos P. The association of basal cortisol levels with episodic memory in older adults is mediated by executive function. Neurobiol Learn Mem 2022; 190:107600. [PMID: 35182737 DOI: 10.1016/j.nlm.2022.107600] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 01/24/2022] [Accepted: 02/12/2022] [Indexed: 01/08/2023]
Abstract
Elevated basal cortisol levels in elderly may indicate dysregulation of the internal stress-related system, as well as dysfunction and structural alterations in brain structures necessary for cognition, such as hippocampus and prefrontal cortex. Because of the close relation of executive functions and episodic memory processing, in this study we explored whether the association of elevated cortisol levels on episodic memory could be partly attributed to cortisol effects on executive functions. In this cross-sectional study we analyzed data from a sample of 236 community-dwelling older adults from the Cretan Aging Cohort aged 75.56 ± 7.21 years [53 with dementia due to probable Alzheimer's disease, 99 with Mild Cognitive Impairment (MCI) and 84 cognitively non-impaired participants (NI)]. Morning serum cortisol levels were higher in the probable AD as compared to the NI group (p = .031). Mediated regression models in the total sample supported the hypothesis that the negative association of basal cortisol levels with delayed memory was fully mediated by the relation of basal cortisol levels with executive functions and immediate memory (adjusted for age and self-reported depression symptoms). Moderated mediation regression models revealed that the direct effect of cortisol on executive function and the effect of executive function on delayed memory performance were statistically significant among participants diagnosed with MCI, while the immediate memory effect on delayed memory was more pronounced in AD patients, as compared to the NI group. The current findings corroborate neuroimaging research highlighting cortisol effects on executive functions and immediate memory and further suggest that dysregulation of systems involved in these functions may account for the purported detrimental long-term effects of high cortisol levels on delayed memory.
Collapse
Affiliation(s)
- Despina Antypa
- School of Medicine, University of Crete, Heraklion, Crete, Greece.
| | - Maria Basta
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | | | - Ioannis Zaganas
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Symeon Panagiotakis
- Internal Medicine Department, Heraklion University Hospital, Heraklion, Crete, Greece
| | | | - Evgenia Kokosali
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Panagiotis Simos
- School of Medicine, University of Crete, Heraklion, Crete, Greece; Foundation of Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
24
|
Qiu Q, Zhou X, Wu L, Zhang Y, Yu Z, Wang M, Huang H, Luo X, Pan D. Serum Cortisol Is Associated With Cerebral Small Vessel Disease-Related Brain Changes and Cognitive Impairment. Front Aging Neurosci 2022; 13:809684. [PMID: 35126094 PMCID: PMC8814515 DOI: 10.3389/fnagi.2021.809684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/31/2021] [Indexed: 11/24/2022] Open
Abstract
Objective To evaluate the relationship between serum cortisol, cerebral small vessel disease (CSVD) neuroimaging markers, and cognitive performance. Methods We recruited patients over 50 years old who attended our hospital for physical examination between November 2020 and July 2021. All participants were subject to brain magnetic resonance imaging (MRI), serum cortisol examination, and the Montreal cognitive function assessment (MoCA). On brain MRI, we scored the presence of each marker of CSVD, including white matter hyperintensity (WMH), lacunes, cerebral microbleeds (CMBs), and enlarged perivascular spaces (EPVS). One point was awarded for the presence of each marker, producing a score between 0 and 4. Results In total, 158 participants were included in this study with a mean age of 60.5 (56.0–66.3) years; 55.1% were male. In the multivariable analyses, serum cortisol level was an independent predictor of WMH severity, the presence of lacunes/CMBs, moderate-severe EPVS and total CSVD burden after adjusting for confounding factors. Serum cortisol level had positive associations with periventricular/deep Fazekas score, burdens of lacunes/CMBs, moderate-severe EPVS, and total CSVD burden in dose-dependent manner, and was an independent predictor of cognitive impairment. Furthermore, the results of the receiver operating characteristic (ROC) curve analysis revealed an area under curve (AUC) of 0.745 with 64.1% sensitivity and 82.5% specificity, and an AUC of 0.705 with 52.1% sensitivity and 85.5 specificity of cortisol in detecting patients with high CSVD burden and MCI, respectively. Conclusions Serum cortisol level is independently associated with each CSVD MRI markers, total CSVD burden and cognitive impairment. These findings provide clues for pathological mechanisms and suggest serum cortisol as a promising biomarker associated with CSVD.
Collapse
|
25
|
Singh I, Edwards I, Rose'meyer R. The Role of Cortisol in the Development of Post-Stroke Dementia: A Narrative Review. HEART AND MIND 2022. [DOI: 10.4103/hm.hm_32_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
26
|
Farzane A, Koushkie Jahromi M. The effect of pilates training on hormonal and psychophysical function in older women. J Sports Med Phys Fitness 2022; 62:110-121. [PMID: 33555671 DOI: 10.23736/s0022-4707.21.12089-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND DHEA-S and cortisol and their ratio are important determinants of some physiological and psychological function during aging. The present study aimed to determine the effect of eight weeks of pilates training on diurnal salivary cortisol, dehydroepiandrosterone sulfate (DHEA-S), and cortisol to DHEA-S ratio, cardiorespiratory fitness (CF), and psychological function in older women. METHODS Twenty-seven healthy older women (aged 60-65 years) participated in the study voluntarily and were divided into two groups of pilates training (N.=15) and control (N.=12), randomly. Before and after the experiment, salivary samples (at wake up and 30-min postawakening, midday, 5 p.m., and 9 p.m.) were taken and the participants completed the questionnaires. Cognitive function was assessed by the MMSE questionnaire. Pilates training was performed three times weekly, in non-consecutive days. RESULTS Pilates training increased V̇O2max (48%, P<0.001) and cognitive function (73%, P<0.001) and decreased BMI (16%, P=0.042), anxiety (53%, P<0.001) and depression (67%, P<0.001) compared to the control group. Also, in pilates training group, mean cortisol (16%, P=0.039), CAR (24%, P=0.010), fall after peak of cortisol (15%, P=0.50), morning DHEA-S (43%, P<0.001) and mean DHEA-S (34%, P=0.002) increased compared to the control group. CONCLUSIONS This study suggests that pilates training could improve mental and physical function which was accompanied by changes of diurnal cortisol and DHEA as one of the possible effective factors.
Collapse
Affiliation(s)
- Arezu Farzane
- School of Education and Psychology, Department of Sport Sciences, Shiraz University, Shiraz, Iran
| | - Maryam Koushkie Jahromi
- School of Education and Psychology, Department of Sport Sciences, Shiraz University, Shiraz, Iran -
| |
Collapse
|
27
|
Basta M, Vgontzas AN, Fernandez-Mendoza J, Antypa D, Li Y, Zaganas I, Panagiotakis S, Karagkouni E, Simos P. Basal Cortisol Levels Are Increased in Patients with Mild Cognitive Impairment: Role of Insomnia and Short Sleep Duration. J Alzheimers Dis 2022; 87:933-944. [PMID: 35404277 DOI: 10.3233/jad-215523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is frequent in elderly and a risk factor for dementia. Both insomnia and increased cortisol levels are risk factors for MCI. OBJECTIVE We examined cross-sectionally whether increased cortisol levels are associated with short sleep duration (SSD) and/or the insomnia short sleep duration (ISS) phenotype, in elderly with MCI. METHODS One hundred twenty-four participants with MCI and 84 cognitively non-impaired controls (CNI)≥60 years underwent medical history, physical examination, neuropsychiatric evaluation, neuropsychological testing, 3-day actigraphy, assessment of subjective insomnia symptoms, and a single morning plasma cortisol level. The short sleep phenotypes were defined by sleep efficiency below the median of the entire sample (i.e.,≤81%) with at least one insomnia symptom (ISS) or without (SSD). ANOVA models were used to compare the various sleep phenotypes to those who did not present either short sleep or insomnia symptoms [non-insomnia (NI)]. RESULTS MCI participants had higher cortisol levels compared to the CNI group (p = 0.009). MCI participants with insomnia (n = 44) or SSD (n = 38) had higher cortisol levels compared to the NI group (n = 42; p = 0.014 and p = 0.045, respectively). Furthermore, MCI participants with ISS phenotype but not those with insomnia with normal sleep duration had higher cortisol levels compared to NI (p = 0.011 and p = 0.4, respectively). Both linear trend analyses showed that cortisol reached the highest levels in the ISS phenotype. CONCLUSION The ISS and SSD phenotypes are associated with increased cortisol levels in elderly with MCI. Improving sleep quality and duration and decreasing cortisol levels may delay further cognitive decline.
Collapse
Affiliation(s)
- Maria Basta
- Department of Psychiatry, University Hospital of Heraklion, Heraklion, Crete, Greece
- Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, Hershey, PA, USA
| | - Alexandros N Vgontzas
- Department of Psychiatry, University Hospital of Heraklion, Heraklion, Crete, Greece
- Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, Hershey, PA, USA
| | - Julio Fernandez-Mendoza
- Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, Hershey, PA, USA
| | - Despina Antypa
- Department of Psychiatry, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Yun Li
- Department of Sleep Medicine, Mental Health Center of Shantou University, Shantou, Guangdong, China
- Sleep Medicine Center, Shantou University Medical College, Shantou, Guangdong, China
| | - Ioannis Zaganas
- Department of Neurology, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Symeon Panagiotakis
- Department of Internal Medicine, University Hospital of Heraklion, Heraklion, Crete, Greece
| | - Efthalia Karagkouni
- Sleep Research and Treatment Center, Department of Psychiatry, Penn State University, Hershey, PA, USA
| | - Panagiotis Simos
- Department of Psychiatry, University Hospital of Heraklion, Heraklion, Crete, Greece
- Computational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology-Hellas, Greece
| |
Collapse
|
28
|
Gerritsen L, Twait EL, Jonsson PV, Gudnason V, Launer LJ, Geerlings MI. Depression and Dementia: The Role of Cortisol and Vascular Brain Lesions. AGES-Reykjavik Study. J Alzheimers Dis 2022; 85:1677-1687. [PMID: 34958034 PMCID: PMC11044806 DOI: 10.3233/jad-215241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Late-life depression (LLD) is related to an increased risk of developing dementia; however, the biological mechanisms explaining this relationship remain unclear. OBJECTIVE To determine whether the relationship between LLD and dementia can be best explained by the glucocorticoid cascade or vascular hypothesis. METHODS Data are from 4,354 persons (mean age 76±5 years) without dementia at baseline from the AGES-Reykjavik Study. LLD was assessed with the MINI diagnostic interview (current and remitted major depressive disorder [MDD]) and the Geriatric Depression Scale-15. Morning and evening salivary cortisol were collected (glucocorticoid cascade hypothesis). White matter hyperintensities (WMH; vascular hypothesis) volume was assessed using 1.5T brain MRI. Using Cox proportional hazard models, we estimated the associations of LLD, cortisol levels, and WMH volume with incident all-cause dementia, AD, and non-AD dementia. RESULTS During 8.8±3.2 years of follow-up, 843 persons developed dementia, including 397 with AD. Current MDD was associated with an increased risk of developing all-cause dementia (HR = 2.17; 95% CI 1.66-2.67), with risks similar for AD and non-AD, while remitted MDD was not (HR = 1.02; 95% CI 0.55-1.49). Depressive symptoms were also associated with increased risk of dementia, in particular non-AD dementias. Higher levels of evening cortisol increased risk of dementia, but this was independent of MDD. WMH partially explained the relation between current MDD and dementia risk but remained increased (HR = 1.71; 95% CI 1.34-2.08). CONCLUSION The current study highlights the importance of LLD in developing dementia. However, neither the glucocorticoid cascade nor the vascular hypotheses fully explained the relation between depression and dementia.
Collapse
Affiliation(s)
- Lotte Gerritsen
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
| | - Emma L. Twait
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
| | - Palmi V. Jonsson
- Department of Geriatrics, Landspitali University Hospital, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Vilmundur Gudnason
- Department of Psychology, Utrecht University, Utrecht, the Netherlands
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Lenore J. Launer
- National Institute on Aging, Laboratory for Epidemiology and Population Sciences, Baltimore, MD, USA
| | - Mirjam I. Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, the Netherlands
- National Institute on Aging, Laboratory for Epidemiology and Population Sciences, Baltimore, MD, USA
| |
Collapse
|
29
|
Ruat J, Heinz DE, Binder FP, Stark T, Neuner R, Hartmann A, Kaplick PM, Chen A, Czisch M, Wotjak CT. Structural correlates of trauma-induced hyperarousal in mice. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110404. [PMID: 34303744 DOI: 10.1016/j.pnpbp.2021.110404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 11/18/2022]
Abstract
Post-traumatic stress disorder (PTSD) is a chronic disease caused by traumatic incidents. Numerous studies have revealed grey matter volume differences in affected individuals. The nature of the disease renders it difficult to distinguish between a priori versus a posteriori changes. To overcome this difficulty, we studied the consequences of a traumatic event on brain morphology in mice before and 4 weeks after exposure to brief foot shocks (or sham treatment), and correlated morphology with symptoms of hyperarousal. In the latter context, we assessed hyperarousal upon confrontation with acoustic, visual, or composite (acoustic/visual/tactile) threats and integrated the individual readouts into a single Hyperarousal Score using logistic regression analysis. MRI scans with subsequent whole-brain deformation-based morphometry (DBM) analysis revealed a volume decrease of the dorsal hippocampus and an increase of the reticular nucleus in shocked mice when compared to non-shocked controls. Using the Hyperarousal Score as regressor for the post-exposure MRI measurement, we observed negative correlations with several brain structures including the dorsal hippocampus. If the development of changes with respect to the basal MRI was considered, reduction in globus pallidus volume reflected hyperarousal severity. Our findings demonstrate that a brief traumatic incident can cause volume changes in defined brain structures and suggest the globus pallidus as an important hub for the control of fear responses to threatening stimuli of different sensory modalities.
Collapse
Affiliation(s)
- Julia Ruat
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Daniel E Heinz
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany
| | - Florian P Binder
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany; Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Tibor Stark
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Pharmacology, Faculty of Medicine, Masaryk University, 62500 Brno, Czechia
| | - Robert Neuner
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alice Hartmann
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Paul M Kaplick
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Alon Chen
- Department Stress Neurobiology and Neurogenetics, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Department of Neurobiology, Weizmann Institute of Science, 76100 Rehovot, Israel
| | - Michael Czisch
- Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Carsten T Wotjak
- Research Group Neuronal Plasticity, Max Planck Institute of Psychiatry, 80804 Munich, Germany; Max Planck School of Cognition, 04103 Leipzig, Germany; Central Nervous System Diseases Research (CNSDR), Boehringer Ingelheim Pharma GmbH & Co KG, 88397, Biberach an der Riss, Germany.
| |
Collapse
|
30
|
Exergame training-induced neuroplasticity and cognitive improvement in institutionalized older adults: A preliminary investigation. Physiol Behav 2021; 241:113589. [PMID: 34509470 DOI: 10.1016/j.physbeh.2021.113589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/05/2021] [Accepted: 09/07/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Prior research has reported cognitive improvements in elderly individuals when mental and physical exercise are practiced simultaneously, as in exergaming. However, the molecular mechanisms driving this beneficial response remain unclear. Moreover, there is robust evidence that regular exercise increases neurotrophic factors and promotes neuroplasticity, contributing to cognitive improvement. This research aimed to assess the impact of a 6-week Xbox 360 Kinect exergame protocol on cognitive function and brain-derived neurotrophic factor (BDNF) levels in institutionalized older individuals. METHODS Participants living in a long-term care facility were included. The intervention (Xbox 360 Kinect exergame protocol) was conducted individually and consisted of two sessions per week (40 min each) over 6 weeks. Participants' cognitive function (Montreal Cognitive Assessment, MoCA) was evaluated before and after the intervention. Blood samples (15 ml) were collected at the same time to measure BDNF levels. RESULTS Although there were no changes in total MoCA scores, exergame training improved the "language" domain and demonstrated a tendency toward an improvement in the "abstraction" and "memory/delayed recall" domains. Furthermore, BDNF levels were significantly increased after the intervention. CONCLUSION BDNF enhancement might mediate, at least in part, the cognitive changes induced by a 6-week Xbox 360 Kinect exergame protocol in institutionalized older adults.
Collapse
|
31
|
Green C, Stolicyn A, Harris MA, Shen X, Romaniuk L, Barbu MC, Hawkins EL, Wardlaw JM, Steele JD, Waiter GD, Sandu AL, Campbell A, Porteous DJ, Seckl JR, Lawrie SM, Reynolds RM, Cavanagh J, McIntosh AM, Whalley HC. Hair glucocorticoids are associated with childhood adversity, depressive symptoms and reduced global and lobar grey matter in Generation Scotland. Transl Psychiatry 2021; 11:523. [PMID: 34642301 PMCID: PMC8511057 DOI: 10.1038/s41398-021-01644-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/21/2021] [Accepted: 09/30/2021] [Indexed: 01/15/2023] Open
Abstract
Hypothalamic-pituitary-adrenal (HPA) axis dysregulation has been commonly reported in major depressive disorder (MDD), but with considerable heterogeneity of results; potentially due to the predominant use of acute measures of an inherently variable/phasic system. Chronic longer-term measures of HPA-axis activity have yet to be systematically examined in MDD, particularly in relation to brain phenotypes, and in the context of early-life/contemporaneous stress. Here, we utilise a temporally stable measure of cumulative HPA-axis function (hair glucocorticoids) to investigate associations between cortisol, cortisone and total glucocorticoids with concurrent measures of (i) lifetime-MDD case/control status and current symptom severity, (ii) early/current-life stress and (iii) structural neuroimaging phenotypes, in N = 993 individuals from Generation Scotland (mean age = 59.1 yrs). Increased levels of hair cortisol were significantly associated with reduced global and lobar brain volumes with reductions in the frontal, temporal and cingulate regions (βrange = -0.057 to -0.104, all PFDR < 0.05). Increased levels of hair cortisone were significantly associated with MDD (lifetime-MDD status, current symptoms, and severity; βrange = 0.071 to 0.115, all PFDR = < 0.05), with early-life adversity (β = 0.083, P = 0.017), and with reduced global and regional brain volumes (global: β = -0.059, P = 0.043; nucleus accumbens: β = -0.075, PFDR = 0.044). Associations with total glucocorticoids followed a similar pattern to the cortisol findings. In this large community-based sample, elevated glucocorticoids were significantly associated with MDD, with early, but not later-life stress, and with reduced global and regional brain phenotypes. These findings provide important foundations for future mechanistic studies to formally explore causal relationships between early adversity, chronic rather than acute measures of glucocorticoids, and neurobiological associations relevant to the aetiology of MDD.
Collapse
Affiliation(s)
- Claire Green
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK.
| | - Aleks Stolicyn
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Mathew A Harris
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Miruna C Barbu
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Emma L Hawkins
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Joanna M Wardlaw
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - J Douglas Steele
- Division of Imaging Science and Technology, School of Medicine, University of Dundee, Dundee, UK
| | - Gordon D Waiter
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Anca-Larisa Sandu
- Aberdeen Biomedical Imaging Centre, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Jonathan R Seckl
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | | | - Rebecca M Reynolds
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Jonathan Cavanagh
- Institute of Infection, Immunity & Inflammation, College of Medical and Veterinary Life Sciences, University of Glasgow, Glasgow, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
32
|
Serum Corticosterone and Insulin Resistance as Early Biomarkers in the hAPP23 Overexpressing Mouse Model of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22136656. [PMID: 34206322 PMCID: PMC8269119 DOI: 10.3390/ijms22136656] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/21/2022] Open
Abstract
Increasing epidemiological evidence highlights the association between systemic insulin resistance and Alzheimer’s disease (AD). As insulin resistance can be caused by high-stress hormone levels and since hypercortisolism appears to be an important risk factor of AD, we aimed to investigate the systemic insulin functionality and circulating stress hormone levels in a mutant humanized amyloid precursor protein (APP) overexpressing (hAPP23+/−) AD mouse model. Memory and spatial learning of male hAPP23+/− and C57BL/6 (wild type, WT) mice were assessed by a Morris Water Maze (MWM) test at the age of 4 and 12 months. The systemic metabolism was examined by intraperitoneal glucose and insulin tolerance tests (GTT, ITT). Insulin and corticosterone levels were determined in serum. In the hippocampus, parietal and occipital cortex of hAPP23+/− brains, amyloid-beta (Aβ) deposits were present at 12 months of age. MWM demonstrated a cognitive decline in hAPP23+/− mice at 12 but not at 4 months, evidenced by increasing total path lengths and deteriorating probe trials compared to WT mice. hAPP23+/− animals presented increased serum corticosterone levels compared to WT mice at both 4 and 12 months. hAPP23+/− mice exhibited peripheral insulin resistance compared to WT mice at 4 months, which stabilized at 12 months of age. Serum insulin levels were similar between genotypes at 4 months of age but were significantly higher in hAPP23+/− mice at 12 months of age. Peripheral glucose homeostasis remained unchanged. These results indicate that peripheral insulin resistance combined with elevated circulating stress hormone levels could be potential biomarkers of the pre-symptomatic phase of AD.
Collapse
|
33
|
Barry TJ, Sewart AR, Adam EK, Zinbarg RE, Mineka S, Craske MG. The longitudinal association between individual differences in recall of positive specific autobiographical memories and daily cortisol. Biol Psychol 2021; 162:108086. [PMID: 33775736 DOI: 10.1016/j.biopsycho.2021.108086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/22/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The present study examines the longitudinal association between cortisol (dys)regulation - mean cortisol awakening response (CAR) and area under the curve with respect to ground (AUCg) for total daily cortisol - and autobiographical memory. 135 participants (mean age at baseline = 16.1; Females = 78.5 %) provided cortisol samples (T1). Seven months later participants retrieved autobiographical memories cued by positive and negative words (T2). Four years subsequently, participants provided cortisol samples again (T3). The retrieval of more specific memories cued by positive words, but not negative words, was associated with higher AUCg four years later, independent of sex, recent life stressors and self-reported negative self-related cognitions. There were no associations between CAR and autobiographical memory. Neither AUC nor CAR at T1 predicted subsequent autobiographical memory abilities. People who retrieve more positive specific memories may be more likely to imagine and seek out positive experiences and this may be associated with higher cortisol levels.
Collapse
Affiliation(s)
- Tom J Barry
- Experimental Psychopathology Lab, Department of Psychology, The University of Hong Kong, Hong Kong; Researching Emotional Disorders and Development Lab, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Amy R Sewart
- UCLA Anxiety and Depression Research Centre, Department of Psychology, University of California Los Angeles, CA, United States
| | - Emma K Adam
- School of Education and Social Policy and Institute for Policy Research, Northwestern University, Evanston, IL, United States
| | - Richard E Zinbarg
- Department of Psychology, Northwestern University, Evanston, IL, United States; The Family Institute at Northwestern University, Evanston, IL, United States
| | - Sue Mineka
- Department of Psychology, Northwestern University, Evanston, IL, United States; The Family Institute at Northwestern University, Evanston, IL, United States
| | - Michelle G Craske
- UCLA Anxiety and Depression Research Centre, Department of Psychology, University of California Los Angeles, CA, United States.
| |
Collapse
|
34
|
Le CM, Le TH. Premature Aging Among Trauma Survivors-The Longitudinal Implications of Sleep Disruptions on Telomere Length and Cognitive Performance. J Gerontol B Psychol Sci Soc Sci 2021; 76:262-272. [PMID: 31155651 PMCID: PMC8046532 DOI: 10.1093/geronb/gbz077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/20/2021] [Accepted: 03/26/2021] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Sleep is necessary for brain function as well as physical and cognitive processes. Sleep disruptions, common with aging, intensify among trauma survivors. Moreover, former prisoners-of-war (ex-POWs) often experience premature aging. This study investigates the longitudinal effects of sleep disruptions for ex-POWs in relation to cognitive performance and telomere length as well as between cognition and telomeres. METHOD This study included Israeli veterans from the 1973 Yom Kippur War who participated in four assessments (1991, 2003, 2008, 2015): (a) ex-POWs (n = 99), and (b) veterans who not were captured (controls) (n = 101). Among both groups, sleep disruptions were assessed using a self-report item in all four assessments. Cognitive performance was assessed using the Montreal Cognitive Assessment (MOCA) and telomere length was assessed via total white blood cells (leukocytes) from whole blood samples using Southern blot, both were measured only among ex-POWs in 2015. We conducted descriptive statistics, repeated measures, correlations, and path analyses. RESULTS Sleep disruptions were related to lower cognitive performance but not to shorter telomeres. Moreover, cognitive performance and telomere length were found to be related when sleep disruptions were taken into consideration. CONCLUSION Interpersonal trauma was shown to be a unique experience resulting in sleep disruptions over time, leading to cognitive impairment. These findings highlight the importance of viewing trauma survivors at high-risk for sleep disruptions. Therefore, it is imperative to inquire about sleep and diagnose cognitive disorders to help identify and treat premature aging.
Collapse
Affiliation(s)
- Cuong Manh Le
- Faculty of Building Material, National University of Civil Engineering, Hanoi 100000, Vietnam
| | - Thu-Huong Le
- Faculty of Chemistry and Environment, Thuyloi University, Hanoi 100000, Vietnam
| |
Collapse
|
35
|
Henry M, Thomas KGF, Ross IL. Sleep, Cognition and Cortisol in Addison's Disease: A Mechanistic Relationship. Front Endocrinol (Lausanne) 2021; 12:694046. [PMID: 34512546 PMCID: PMC8429905 DOI: 10.3389/fendo.2021.694046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/02/2021] [Indexed: 11/19/2022] Open
Abstract
Sleep is a critical biological process, essential for cognitive well-being. Neuroscientific literature suggests there are mechanistic relations between sleep disruption and memory deficits, and that varying concentrations of cortisol may play an important role in mediating those relations. Patients with Addison's disease (AD) experience consistent and predictable periods of sub- and supra-physiological cortisol concentrations due to lifelong glucocorticoid replacement therapy, and they frequently report disrupted sleep and impaired memory. These disruptions and impairments may be related to the failure of replacement regimens to restore a normal circadian rhythm of cortisol secretion. Available data provides support for existing theoretical frameworks which postulate that in AD and other neuroendocrine, neurological, or psychiatric disorders, disrupted sleep is an important biological mechanism that underlies, at least partially, the memory impairments that patients frequently report experiencing. Given the literature linking sleep disruption and cognitive impairment in AD, future initiatives should aim to improve patients' cognitive performance (and, indeed, their overall quality of life) by prioritizing and optimizing sleep. This review summarizes the literature on sleep and cognition in AD, and the role that cortisol concentrations play in the relationship between the two.
Collapse
Affiliation(s)
- Michelle Henry
- Centre for Higher Education Development, University of Cape Town, Cape Town, South Africa
- *Correspondence: Michelle Henry,
| | | | - Ian Louis Ross
- Division of Endocrinology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
36
|
Krivanek TJ, Gale SA, McFeeley BM, Nicastri CM, Daffner KR. Promoting Successful Cognitive Aging: A Ten-Year Update. J Alzheimers Dis 2021; 81:871-920. [PMID: 33935078 PMCID: PMC8293659 DOI: 10.3233/jad-201462] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2021] [Indexed: 02/07/2023]
Abstract
A decade has passed since we published a comprehensive review in this journal addressing the topic of promoting successful cognitive aging, making this a good time to take stock of the field. Because there have been limited large-scale, randomized controlled trials, especially following individuals from middle age to late life, some experts have questioned whether recommendations can be legitimately offered about reducing the risk of cognitive decline and dementia. Despite uncertainties, clinicians often need to at least make provisional recommendations to patients based on the highest quality data available. Converging lines of evidence from epidemiological/cohort studies, animal/basic science studies, human proof-of-concept studies, and human intervention studies can provide guidance, highlighting strategies for enhancing cognitive reserve and preventing loss of cognitive capacity. Many of the suggestions made in 2010 have been supported by additional research. Importantly, there is a growing consensus among major health organizations about recommendations to mitigate cognitive decline and promote healthy cognitive aging. Regular physical activity and treatment of cardiovascular risk factors have been supported by all of these organizations. Most organizations have also embraced cognitively stimulating activities, a heart-healthy diet, smoking cessation, and countering metabolic syndrome. Other behaviors like regular social engagement, limiting alcohol use, stress management, getting adequate sleep, avoiding anticholinergic medications, addressing sensory deficits, and protecting the brain against physical and toxic damage also have been endorsed, although less consistently. In this update, we review the evidence for each of these recommendations and offer practical advice about behavior-change techniques to help patients adopt brain-healthy behaviors.
Collapse
Affiliation(s)
- Taylor J. Krivanek
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Seth A. Gale
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Brittany M. McFeeley
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Casey M. Nicastri
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| | - Kirk R. Daffner
- Center for Brain/Mind Medicine, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Hale Building for Transformative Medicine, Boston, MA, USA
| |
Collapse
|
37
|
Cortisol hypersecretion and the risk of Alzheimer's disease: A systematic review and meta-analysis. Ageing Res Rev 2020; 64:101171. [PMID: 32971258 DOI: 10.1016/j.arr.2020.101171] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 08/21/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Morning cortisol levels have been reported to be elevated among patients with Alzheimer's disease (AD); yet no meta-analysis has been conducted to confirm the existence and magnitude of this association. It also remains unclear whether hypercortisolism is a risk factor for AD. METHODS PubMed, EMBASE, and PsycINFO were systematically searched for eligible studies. Cross-sectional data were pooled using random-effects meta-analyses; the differences in morning cortisol levels between patients and cognitively normal controls were quantified. Longitudinal studies were qualitatively synthesised due to methodological heterogeneity. RESULTS 17,245 participants from 57 cross-sectional studies and 19 prospective cohort studies were included. Compared with cognitively normal controls, AD patients had moderately increased morning cortisol in blood (g = 0.422, P < 0.001; I2 = 48.5 %), saliva (g = 0.540, P < 0.001; I2 = 13.6 %), and cerebrospinal fluids (g = 0.565, P = 0.003; I2 = 75.3 %). A moderate elevation of morning cortisol was also detected in cerebrospinal fluids from patients with mild cognitive impairment (MCI) versus controls (g = 0.309, P = 0.001; I2 = 0.0 %). Cohort studies suggested that higher morning cortisol may accelerate cognitive decline in MCI or mild AD patients, but the results in cognitively healthy adults were inconsistent. CONCLUSIONS Morning cortisol was confirmed to be moderately elevated in AD patients and may have diagnostic and prognostic values for AD.
Collapse
|
38
|
Stuart KE, Padgett C. A Systematic Review of the Association Between Psychological Stress and Dementia Risk in Humans. J Alzheimers Dis 2020; 78:335-352. [DOI: 10.3233/jad-191096] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background: It has been estimated that one third of dementia cases may be preventable through modifiable lifestyle interventions. Epidemiological evidence suggests a link between stressful life events and aging-related cognitive decline and dementia; however, inherent methodological limitations in examining subjective and biological measures of stress separately leads to interpretive constraints. Objective: The aim of the current study was to conduct a systematic review of the research literature investigating the effect of perceived and biological measures of stress on dementia risk. Methods: A systematic review was conducted of cohort, case-control, longitudinal prospective or retrospective studies examining the association between stress and risk of developing dementia. Studies were identified from a systematic search across major electronic databases from inception to February 2020. Results: Overall, 22 studies were identified including a total of 496,556 participants, approximately 50% were females, with sample sizes ranging from 62–270,977. There was considerable heterogeneity in the definition and measurement of stress. Most of the identified studies reported a significant positive association between stress and dementia risk. Conclusion: Evidenced from the current review is that personality traits linked to increased perceived stress and elevated reported perceived stress, are associated with greater statistical risk for dementia. However, this review highlights that caution must be exhibited in interpreting these findings, as methodological issues with confounding adjustment may mediate these results. Future research should focus on the investigation of stress on dementia risk with a full range of confounding adjustment, and on biological measures of stress.
Collapse
Affiliation(s)
- Kimberley E. Stuart
- Division of Psychology, School of Medicine, University of Tasmania, Australia
- Wicking Dementia Research and Education Centre, Tasmania, Australia
| | - Christine Padgett
- Division of Psychology, School of Medicine, University of Tasmania, Australia
| |
Collapse
|
39
|
Salivary Cortisol Levels Are Associated with Craving and Cognitive Performance in Cocaine-Abstinent Subjects: A Pilot Study. Brain Sci 2020; 10:brainsci10100682. [PMID: 32992573 PMCID: PMC7600918 DOI: 10.3390/brainsci10100682] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023] Open
Abstract
Cortisol is a glucocorticoid hormone secreted by the adrenal cortex upon the activation of the hypothalamic-pituitary-adrenal (HPA) axis. Assessment of cortisol in saliva has emerged as a reliable way of evaluating HPA function. We examined the relationships between salivary cortisol levels with both craving and cognitive performance, as a possible biomarker of cocaine addiction. Cognitive performance (attention, declarative and working memory, executive functions and recognition of emotions) was assessed in 14 abstinent cocaine-dependent subjects in outpatient treatment and 13 control participants. Three salivary samples were collected at home by all the participants in the morning, afternoon and at bedtime. Patients showed higher levels of cortisol in the morning, as well as higher area under the curve with respect to the ground (AUCg). Regarding cognitive performance, cocaine-abstinent subjects showed worse performance in attention (d2 test), verbal memory (Spanish Complementary Verbal Learning Test, TAVEC) and executive tests (Tower of Hanoi and phonological fluency test) with respect to the control group. Morning cortisol levels and the AUCg index were negatively associated with the age of onset of drug consumption and the AUCg index was also positively associated with craving in our patients' group. Moreover, morning cortisol levels, as well as the AUCg index, were negatively associated with verbal memory performance. Therefore, our pilot study suggests that salivary cortisol measurements could be a good avenue to predict craving level, as well as cognitive status, especially the declarative memory domain.
Collapse
|
40
|
Ouanes S, Castelao E, von Gunten A, Kuehner C, Preisig M, Popp J. Salivary cortisol and five-year change in cognitive performance in non-demented elderly subjects: a population-based study. Neurobiol Aging 2020; 94:34-37. [PMID: 32540556 DOI: 10.1016/j.neurobiolaging.2020.05.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
Elevated cortisol levels have been associated with poorer cognitive performance in cross-sectional studies; this may be both a factor contributing to neurodegeneration and cognitive decline and a result of developing brain pathologies. However, it is still unclear (1) whether cortisol measures predict later cognitive decline and (2) whether cortisol changes over the years might be associated with cognitive changes. We analyzed data from CoLaus/PsyCoLaus, a prospective population-based study. Salivary cortisol (4 different measures on 1 day) and neuropsychological assessments were performed at a first visit and a follow-up visit 5 years later in 625 dementia-free participants aged ≥65 years. Salivary cortisol levels at waking and 30 minutes after waking, as well as longitudinal changes in cortisol 30 minutes after waking, cortisol awakening response, and cortisol AM-PM difference were associated with decline in global cognition. After controlling for potential confounders, only longitudinal changes in cortisol 30 minutes after waking remained associated with cognitive decline. These mostly negative findings indicate absent or subtle association between salivary cortisol and cognitive decline.
Collapse
Affiliation(s)
- Sami Ouanes
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland; Department of Psychiatry, Hamad Medical Corporation, Doha, Qatar.
| | - Enrique Castelao
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Armin von Gunten
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Christine Kuehner
- Research Group Longitudinal and Intervention Research, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Martin Preisig
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julius Popp
- Service of Old Age Psychiatry, Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland; Department of Geriatric Psychiatry, Psychiatry University Hospital Zürich, Zürich, Switzerland
| |
Collapse
|
41
|
Jung JH, Lee GW, Lee JH, Byun MS, Yi D, Jeon SY, Jung GJ, Joung H, Shin SA, Kim YK, Kang KM, Sohn CH, Lee DY. Multiparity, Brain Atrophy, and Cognitive Decline. Front Aging Neurosci 2020; 12:159. [PMID: 32581769 PMCID: PMC7291884 DOI: 10.3389/fnagi.2020.00159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 05/08/2020] [Indexed: 12/21/2022] Open
Abstract
Background Multiparity – grand multiparity (i.e., five or more childbirths) in particular – has been reported to have an association with increased risk of Alzheimer’s disease (AD) dementia or related cognitive decline in women. However, the pathological links underlying this relationship are still unknown. This study was conducted to examine the relationships of multiparity with cerebral amyloid-beta (Aβ) deposition, brain atrophy, and white matter hyperintensities (WMHs). Methods In this study, total of 237 older women with 148 cognitively normal and 89 mild cognitive impairment from the Korean Brain Aging Study for Early Diagnosis and Prediction of Alzheimer’s Disease (KBASE) were included. Participants underwent clinical and neuropsychological assessments in addition to 11C-labeled Pittsburgh Compound B positron emission tomography, and magnetic resonance imaging. The associations of parity with Aβ deposition, hippocampal volume, cortical volume, WMH volume and mini-mental status examination (MMSE) score were examined. Results Participants with grand multiparity showed significantly reduced adjusted hippocampal volume, spatial pattern of atrophy for recognition of AD volume and spatial pattern of atrophy for recognition of brain aging volume even after controlling for potential confounders. Furthermore, MMSE score was also significantly lower in this group. In contrast, grand multiparity did not show any association with global Aβ retention, Aβ positivity rate, or WMH volume, regardless of covariates. Conclusion Our findings suggest that grand multiparity contributes to cognitive decline or increased dementia risk in older women by aggravating amyloid-independent hippocampal or cortical atrophy.
Collapse
Affiliation(s)
- Joon Hyung Jung
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea
| | - Ga Won Lee
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Jun Ho Lee
- Department of Neuropsychiatry, National Center for Mental Health, Seoul, South Korea
| | - Min Soo Byun
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Seongnam, South Korea
| | - Dahyun Yi
- Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, South Korea
| | - So Yeon Jeon
- Department of Neuropsychiatry, Chungnam National University Hospital, Daejeon, South Korea
| | - Gi Jung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Haejung Joung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Seong A Shin
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Yu Kyeong Kim
- Department of Nuclear Medicine, SMG-SNU Boramae Medical Center, Seoul, South Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Chul-Ho Sohn
- Department of Radiology, Seoul National University Hospital, Seoul, South Korea
| | - Dong Young Lee
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, South Korea.,Department of Neuropsychiatry, Seoul National University Hospital, Seoul, South Korea.,Institute of Human Behavioral Medicine, Medical Research Center Seoul National University, Seoul, South Korea
| |
Collapse
|
42
|
Jennings JR, Muldoon MF, Sved AF. Is the Brain an Early or Late Component of Essential Hypertension? Am J Hypertens 2020; 33:482-490. [PMID: 32170317 DOI: 10.1093/ajh/hpaa038] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 11/13/2022] Open
Abstract
The brain's relationship to essential hypertension is primarily understood to be that of an end-organ, damaged late in life by stroke or dementia. Emerging evidence, however, shows that heightened blood pressure (BP) early in life and prior to traditionally defined hypertension, relates to altered brain structure, cerebrovascular function, and cognitive processing. Deficits in cognitive function, cerebral blood flow responsivity, volumes of brain areas, and white matter integrity all relate to increased but prehypertensive levels of BP. Such relationships may be observed as early as childhood. In this review, we consider the basis of these relationships by examining the emergence of putative causative factors for hypertension that would impact or involve brain function/structure, e.g., sympathetic nervous system activation and related endocrine and inflammatory activation. Currently, however, available evidence is not sufficient to fully explain the specific pattern of brain deficits related to heightened BP. Despite this uncertainty, the evidence reviewed suggests the value that early intervention may have, not only for reducing BP, but also for maintaining brain function.
Collapse
Affiliation(s)
- John Richard Jennings
- Department of Psychiatry and Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Matthew F Muldoon
- Division of Cardiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Heart and Vascular Institute, Hypertension Center, UPMC Medical Center, Pittsburgh, Pennsylvania, USA
| | - Alan F Sved
- Center for Neuroscience, University of Pittsburgh, Pennsylvania, USA
- Department of Neuroscience, University of Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Ebaid D, Crewther SG. Time for a Systems Biological Approach to Cognitive Aging?-A Critical Review. Front Aging Neurosci 2020; 12:114. [PMID: 32477097 PMCID: PMC7236912 DOI: 10.3389/fnagi.2020.00114] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/06/2020] [Indexed: 12/19/2022] Open
Abstract
The underlying premise of current theories of cognitive decline with age tend to be primarily cognitive or biological explanations, with relatively few theories adequately integrating both aspects. Though literature has also emphasized the importance of several factors that contribute to cognitive aging including: (a) decline in sensory abilities; (b) the effect of motor speed on paper-pencil measures of cognitive speed; (c) the impact of level of education and physical activity; and (d) molecular biological changes that occur with age, these factors have seldom been implicated into any single theoretical model of cognitive aging. Indeed, such an integrated bio-cognitive model of aging has the potential to provide a more comprehensive understanding of attention, perception, learning, and memory across the lifespan. Thus, the aim of this review was to critically evaluate common theories of age-related cognitive decline and highlight the need for a more comprehensive systems neuroscience approach to cognitive aging.
Collapse
Affiliation(s)
- Deena Ebaid
- Department of Psychology and Counselling, School of Psychology and Public Health, College of Science, Health and Engineering, La Trobe University, Melbourne, VIC, Australia
| | | |
Collapse
|
44
|
Law R, Clow A. Stress, the cortisol awakening response and cognitive function. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 150:187-217. [PMID: 32204832 DOI: 10.1016/bs.irn.2020.01.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There is evidence that stress-induced disruption of the circadian rhythm of cortisol secretion, has negative consequences for brain health. The cortisol awakening response (CAR) is the most prominent and dynamic aspect of this rhythm. It has complex regulatory mechanisms making it distinct from the rest of the cortisol circadian rhythm, and is frequently investigated as a biomarker of stress and potential intermediary between stress and impaired brain function. Despite this, the precise function of the CAR within the healthy cortisol circadian rhythm remains poorly understood. Cortisol is a powerful hormone known to influence cognition in multiple and complex ways. Studies of the CAR and cognitive function have used varied methodological approaches which have produced similarly varied findings. The present review considers the accumulating evidence linking stress, attenuation of the CAR and reduced cognitive function, and seeks to contextualize the many findings to study populations, cognitive measures, and CAR methodologies employed. Associations between the CAR and both memory and executive functions are discussed in relation to its potential role as a neuroendocrine time of day signal that synchronizes peripheral clocks throughout the brain to enable optimum function, and recommendations for future research are provided.
Collapse
Affiliation(s)
- Robin Law
- Psychology, School of Social Sciences, University of Westminster, London, England.
| | - Angela Clow
- Psychology, School of Social Sciences, University of Westminster, London, England
| |
Collapse
|
45
|
Psychological stress, cognitive decline and the development of dementia in amnestic mild cognitive impairment. Sci Rep 2020; 10:3618. [PMID: 32108148 PMCID: PMC7046646 DOI: 10.1038/s41598-020-60607-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 02/10/2020] [Indexed: 12/30/2022] Open
Abstract
To determine the relationship between psychological stress with cognitive outcomes in a multi-centre longitudinal study of people with amnestic mild cognitive impairment (aMCI) we assessed three parameters of psychological stress (Recent Life Changes Questionnaire (RLCQ); the Perceived Stress Scale (PSS) and salivary cortisol) and their relationship with rates of cognitive decline over an 18 month follow up period and conversion to dementia over a 5.5 year period. In 133 aMCI and 68 cognitively intact participants the PSS score was higher in the aMCI compared with control group but neither the RLCQ scores nor salivary cortisol measures were different between groups. In the aMCI group the RLCQ and the PSS showed no significant association with cognitive function at baseline, cognitive decline or with conversion rates to dementia but high salivary cortisol levels were associated with RLCQ scores and poorer cognitive function at baseline and lower rates of cognitive decline. No relationship was found between salivary cortisol levels and conversion rate to dementia. We conclude that psychological stress as measured by the RLCQ or PSS was not associated with adverse cognitive outcomes in an aMCI population and hypothesise that this may reflect diminished cortisol production to psychological stress as the disease progresses.
Collapse
|
46
|
Sanchis-Soler G, Tortosa-Martínez J, Manchado-Lopez C, Cortell-Tormo JM. The effects of stress on cardiovascular disease and Alzheimer's disease: Physical exercise as a counteract measure. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 152:157-193. [PMID: 32450995 DOI: 10.1016/bs.irn.2020.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AD is a complicated multi-systemic neurological disorder that involves different biological pathways. Several risk factors have been identified, including chronic stress. Chronic stress produces an alteration in the activity of the hypothalamic pituitary adrenal (HPA) system, and the autonomic nervous system (ANS), which over time increase the risk of AD and also the incidence of cardiovascular disease (CVD) and risk factors, such as hypertension, obesity and type 2 diabetes, associated with cognitive impairment and AD. Considering the multi-factorial etiology of AD, understanding the complex interrelationships between different risk factors is of potential interest for designing adequate strategies for preventing, delaying the onset or slowing down the progression of this devastating disease. Thus, in this review we will explore the general mechanisms and evidence linking stress, cardiovascular disease and AD, and discuss the potential benefits of physical activity for AD by counteracting the negative effects of chronic stress, CVD and risk factors.
Collapse
|
47
|
Tsui A, Richards M, Singh-Manoux A, Udeh-Momoh C, Davis D. Longitudinal associations between diurnal cortisol variation and later-life cognitive impairment. Neurology 2020; 94:e133-e141. [PMID: 31831603 PMCID: PMC6988984 DOI: 10.1212/wnl.0000000000008729] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 07/09/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE To determine whether hypothalamus-pituitary-adrenal axis (HPAA) dysfunction is prospectively associated with global cognitive impairment in later life. METHODS This cross-cohort study integrates 2 large longitudinal datasets, Whitehall II and the National Survey for Health and Development (NSHD), on data collected in the Whitehall II study between 2002-2004, 2007-2009, and 2012-2013; and for NSHD between 2006-2010 and in 2015. Serial salivary cortisol samples were collected multiple times within a 24-hour period at mean ages 61.2 and 65.9 years in Whitehall II and at age 60-64 years from NSHD participants. Cortisol profile is defined using cortisol awakening response and am:pm ratio. Cognitive function was measured using the Mini-Mental State Examination in Whitehall II and Addenbrooke's Cognitive Examination, third version, in NSHD, harmonized into a 30-point score. Models were adjusted for age, sex, diagnoses of hypertension and diabetes, body mass index (BMI), educational attainment, and interval between HPAA and cognitive assessments. RESULTS In fully adjusted models, increased am:pm cortisol ratio was prospectively associated with better later-life cognitive function years later (0.02 fewer errors per SD increase in am:pm cortisol ratio, p < 0.01) and verbal fluency (0.03 SD increase in verbal fluency per SD increase in am:pm ratio, p < 0.01). Increasing age, lower educational attainment, diagnosis of hypertension, diagnosis of diabetes, and increased BMI were associated with worse cognitive function and poorer verbal fluency. There were no associations between depression and later-life cognition or reverse associations between cognition and later-life cortisol profiles. CONCLUSIONS Loss of diurnal HPAA variation is evident in individuals subsequently experiencing more cognitive impairment. It may serve as an early preclinical marker of cognitive decline.
Collapse
Affiliation(s)
- Alex Tsui
- From the MRC Unit for Lifelong Health and Ageing at UCL (A.T., M.R., D.D.) and Department of Epidemiology and Public Health (A.S.-M.), University College London, UK; Epidemiology of Ageing & Neurodegenerative Diseases (A.S.-M.), INSERM, U1153, Hotel Dieu, Paris, France; Neuroepidemiology and Ageing Research Unit (C.U.-M.), School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London; and Translational Health Sciences (C.U.-M.), Bristol Medical School, University of Bristol, UK.
| | - Marcus Richards
- From the MRC Unit for Lifelong Health and Ageing at UCL (A.T., M.R., D.D.) and Department of Epidemiology and Public Health (A.S.-M.), University College London, UK; Epidemiology of Ageing & Neurodegenerative Diseases (A.S.-M.), INSERM, U1153, Hotel Dieu, Paris, France; Neuroepidemiology and Ageing Research Unit (C.U.-M.), School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London; and Translational Health Sciences (C.U.-M.), Bristol Medical School, University of Bristol, UK
| | - Archana Singh-Manoux
- From the MRC Unit for Lifelong Health and Ageing at UCL (A.T., M.R., D.D.) and Department of Epidemiology and Public Health (A.S.-M.), University College London, UK; Epidemiology of Ageing & Neurodegenerative Diseases (A.S.-M.), INSERM, U1153, Hotel Dieu, Paris, France; Neuroepidemiology and Ageing Research Unit (C.U.-M.), School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London; and Translational Health Sciences (C.U.-M.), Bristol Medical School, University of Bristol, UK
| | - Chinedu Udeh-Momoh
- From the MRC Unit for Lifelong Health and Ageing at UCL (A.T., M.R., D.D.) and Department of Epidemiology and Public Health (A.S.-M.), University College London, UK; Epidemiology of Ageing & Neurodegenerative Diseases (A.S.-M.), INSERM, U1153, Hotel Dieu, Paris, France; Neuroepidemiology and Ageing Research Unit (C.U.-M.), School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London; and Translational Health Sciences (C.U.-M.), Bristol Medical School, University of Bristol, UK
| | - Daniel Davis
- From the MRC Unit for Lifelong Health and Ageing at UCL (A.T., M.R., D.D.) and Department of Epidemiology and Public Health (A.S.-M.), University College London, UK; Epidemiology of Ageing & Neurodegenerative Diseases (A.S.-M.), INSERM, U1153, Hotel Dieu, Paris, France; Neuroepidemiology and Ageing Research Unit (C.U.-M.), School of Public Health, Faculty of Medicine, The Imperial College of Science, Technology and Medicine, London; and Translational Health Sciences (C.U.-M.), Bristol Medical School, University of Bristol, UK
| |
Collapse
|
48
|
Andreescu C, Ajilore O, Aizenstein HJ, Albert K, Butters MA, Landman BA, Karim HT, Krafty R, Taylor WD. Disruption of Neural Homeostasis as a Model of Relapse and Recurrence in Late-Life Depression. Am J Geriatr Psychiatry 2019; 27:1316-1330. [PMID: 31477459 PMCID: PMC6842700 DOI: 10.1016/j.jagp.2019.07.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 12/29/2022]
Abstract
The significant public health burden associated with late-life depression (LLD) is magnified by the high rates of recurrence. In this manuscript, we review what is known about recurrence risk factors, conceptualize recurrence within a model of homeostatic disequilibrium, and discuss the potential significance and challenges of new research into LLD recurrence. The proposed model is anchored in the allostatic load theory of stress. We review the allostatic response characterized by neural changes in network function and connectivity and physiologic changes in the hypothalamic-pituitary-adrenal axis, autonomic nervous system, immune system, and circadian rhythm. We discuss the role of neural networks' instability following treatment response as a source of downstream disequilibrium, triggering and/or amplifying abnormal stress response, cognitive dysfunction and behavioral changes, ultimately precipitating a full-blown recurrent episode of depression. We propose strategies to identify and capture early change points that signal recurrence risk through mobile technology to collect ecologically measured symptoms, accompanied by automated algorithms that monitor for state shifts (persistent worsening) and variance shifts (increased variability) relative to a patient's baseline. Identifying such change points in relevant sensor data could potentially provide an automated tool that could alert clinicians to at-risk individuals or relevant symptom changes even in a large practice.
Collapse
Affiliation(s)
| | | | - Howard J. Aizenstein
- Department of Psychiatry, University of Pittsburgh,Department of Bioengineering, University of Pittsburgh
| | - Kimberly Albert
- The Center for Cognitive Medicine, the Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center
| | | | - Bennett A. Landman
- Departments of Computer Science, Electrical Engineering, and Biomedical Engineering, Vanderbilt University; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | | | - Robert Krafty
- Department of Biostatistics, University of Pittsburgh
| | - Warren D. Taylor
- The Center for Cognitive Medicine, the Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center,Geriatric Research, Education and Clinical Center, Department of Veterans Affairs Medical Center, Tennessee Valley Healthcare System
| |
Collapse
|
49
|
Wirth M, Lange C, Huijbers W. Plasma cortisol is associated with cerebral hypometabolism across the Alzheimer's disease spectrum. Neurobiol Aging 2019; 84:80-89. [DOI: 10.1016/j.neurobiolaging.2019.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 08/02/2019] [Accepted: 08/03/2019] [Indexed: 01/19/2023]
|
50
|
de Lima DB, Trapp A, Corrêa MS, Giacobbo BL, de Lima Argimon II, Bromberg E. Episodic memory boosting in older adults: exploring the association of encoding strategies and physical activity. Aging Ment Health 2019; 23:1218-1226. [PMID: 30588835 DOI: 10.1080/13607863.2018.1481924] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Background: Contextual memory is susceptible to the effects of aging and its impairment compromises episodic memories and quality of life in older adults. Objective: Compare the effects of cognitive support on incidental contextual memory free recall and recognition with a naturalistic experimental paradigm and explore the association of encoding strategies and physical activity on memory improvement. Methods: Subjects (≥60 years, n = 52) were assigned to one of two encoding conditions for the contextual memory task: with or without an incidental associative instruction to encourage association of an item to its spatial context. Immediate free recall and recognition tests were run to assess the encoding instruction efficiency. The association of memory performance and physical activity was analyzed using the scores on the International Physical Activity Questionnaire (IPAQ) to subdivide each experimental group into Low IPAQ (below median) and High IPAQ (above median) subgroups. Results: The associative encoding instruction increased contextual memory free recall and recognition, with greater effects on free recall. The most robust associations between physical activity and contextual memory were also seen on free recall, in which higher levels of physical activity corresponded to increased baseline performance (non-associative encoding condition) and greater improvement of memory by the encoding support (associative encoding condition). Conclusion: Cognitive support at encoding can improve contextual memory free recall and recognition, suggesting they are prone to rehabilitation. Moreover, higher physical activity levels were positively associated with encoding strategies on contextual memory improvement, increasing the availability of latent process-based components of the cognitive reserve.
Collapse
Affiliation(s)
- Daiane Borba de Lima
- a Neurobiology and Developmental Biology Laboratory , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Artur Trapp
- a Neurobiology and Developmental Biology Laboratory , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Márcio Silveira Corrêa
- a Neurobiology and Developmental Biology Laboratory , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Bruno Lima Giacobbo
- a Neurobiology and Developmental Biology Laboratory , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Irani Iracema de Lima Argimon
- c Institute of Geriatrics and Gerontology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil
| | - Elke Bromberg
- a Neurobiology and Developmental Biology Laboratory , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil.,b Graduate Program in Cellular and Molecular Biology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil.,c Institute of Geriatrics and Gerontology , Pontifical Catholic University of Rio Grande do Sul , Porto Alegre , RS , Brazil.,d National Institute of Science and Technology for Translational Medicine (INCT-TM) , Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (CNPq) , Brasília , Brazil
| |
Collapse
|