1
|
Guan X, Lancione M, Ayton S, Dusek P, Langkammer C, Zhang M. Neuroimaging of Parkinson's disease by quantitative susceptibility mapping. Neuroimage 2024; 289:120547. [PMID: 38373677 DOI: 10.1016/j.neuroimage.2024.120547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 02/02/2024] [Accepted: 02/17/2024] [Indexed: 02/21/2024] Open
Abstract
Parkinson's disease (PD) is a common neurodegenerative disease, and apart from a few rare genetic causes, its pathogenesis remains largely unclear. Recent scientific interest has been captured by the involvement of iron biochemistry and the disruption of iron homeostasis, particularly within the brain regions specifically affected in PD. The advent of Quantitative Susceptibility Mapping (QSM) has enabled non-invasive quantification of brain iron in vivo by MRI, which has contributed to the understanding of iron-associated pathogenesis and has the potential for the development of iron-based biomarkers in PD. This review elucidates the biochemical underpinnings of brain iron accumulation, details advancements in iron-sensitive MRI technologies, and discusses the role of QSM as a biomarker of iron deposition in PD. Despite considerable progress, several challenges impede its clinical application after a decade of QSM studies. The initiation of multi-site research is warranted for developing robust, interpretable, and disease-specific biomarkers for monitoring PD disease progression.
Collapse
Affiliation(s)
- Xiaojun Guan
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China
| | - Marta Lancione
- Laboratory of Medical Physics and Magnetic Resonance, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Scott Ayton
- Florey Institute, The University of Melbourne, Australia
| | - Petr Dusek
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia; Department of Radiology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Auenbruggerplatz 22, Prague 8036, Czechia
| | | | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Joint Laboratory of Clinical Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Shangcheng District, Hangzhou 31009, China.
| |
Collapse
|
2
|
Soto M, Fernández M, Bravo P, Lahoz S, Garrido A, Sánchez-Rodríguez A, Rivera-Sánchez M, Sierra M, Melón P, Roig-García A, Naito A, Casey B, Camps J, Tolosa E, Martí MJ, Infante J, Ezquerra M, Fernández-Santiago R. Differential serum microRNAs in premotor LRRK2 G2019S carriers from Parkinson's disease. NPJ Parkinsons Dis 2023; 9:15. [PMID: 36732514 PMCID: PMC9894906 DOI: 10.1038/s41531-023-00451-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/09/2023] [Indexed: 02/04/2023] Open
Abstract
The LRRK2 G2019S pathogenic mutation causes LRRK2-associated Parkinson's disease (L2PD) with incomplete penetrance. LRRK2 non-manifesting carriers (L2NMC) are at PD high risk but predicting pheno-conversion is challenging given the lack of progression biomarkers. To investigate novel biomarkers for PD premotor stages, we performed a longitudinal microRNA (miRNA) assessment of serum samples from G2019S L2NMC followed-up over 8 years. Our cohort consisted of G2019S L2NMC stratified by dopamine transporter single-photon emission computed tomography (DaT-SPECT) into DaT-negative (n = 20) and DaT-positive L2NMC (n = 20), pheno-converted G2019S L2PD patients (n = 20), idiopathic PD (iPD) (n = 19), and controls (n = 40). We also screened a second cohort of L2PD patients (n = 19) and controls (n = 20) (Total n = 158). Compared to healthy controls, we identified eight deregulated miRNAs in DaT-negative L2NMC, six in DaT-positive L2NMC, and one in L2PD. Between groups, the highest miRNA differences, 24 candidate miRNAs, occurred between DaT-positive L2NMC and L2PD. Longitudinally, we found 11 common miRNAs with sustained variation in DaT-negative and DaT-positive L2NMCs compared to their baselines. Our study identifies novel miRNA alterations in premotor stages of PD co-occurring with progressive DaT-SPECT decline before motor manifestation, whose deregulation seems to attenuate after the diagnosis of L2PD. Moreover, we identified four miRNAs with relatively high discriminative ability (AUC = 0.82) between non-pheno-converted DaT-positive G2019S carriers and pheno-converted L2PD patients (miR-4505, miR-8069, miR-6125, and miR-451a), which hold potential as early progression biomarkers for PD.
Collapse
Affiliation(s)
- Marta Soto
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Manel Fernández
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
- Parkinson's Disease and Movement Disorders Group of the Institut de Neurociències (Universitat de Barcelona), ES-08036, Barcelona, Catalonia, Spain
| | - Paloma Bravo
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Sara Lahoz
- Gastrointestinal and Pancreatic Oncology Team, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Alicia Garrido
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Antonio Sánchez-Rodríguez
- Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, ES-39008, Santander, Cantabria, Spain
| | - María Rivera-Sánchez
- Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, ES-39008, Santander, Cantabria, Spain
| | - María Sierra
- Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, ES-39008, Santander, Cantabria, Spain
| | - Paula Melón
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Ana Roig-García
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Anna Naito
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY, 10120, USA
| | - Bradford Casey
- The Michael J. Fox Foundation for Parkinson's Research, Grand Central Station, P.O. Box 4777, New York, NY, 10120, USA
| | - Jordi Camps
- Gastrointestinal and Pancreatic Oncology Team, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)-Hospital Clínic de Barcelona, 08036, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Madrid, Spain
| | - Eduardo Tolosa
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - María-José Martí
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
| | - Jon Infante
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain
- Movement Disorders Unit, Department of Neurology, Hospital Universitario Marqués de Valdecilla, Universidad de Cantabria, ES-39008, Santander, Cantabria, Spain
| | - Mario Ezquerra
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain.
| | - Rubén Fernández-Santiago
- Lab of Parkinson Disease and Other Neurodegenerative Movement Disorders, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Institut de Neurociències, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
- Parkinson Disease and Movement Disorders Unit, Neurology Service, Institut Clínic de Neurociències, Hospital Clínic de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), ES-08036, Barcelona, Catalonia, Spain.
- Histology Unit, Department of Biomedicine, Faculty of Medicine, Universitat de Barcelona, ES-08036, Barcelona, Catalonia, Spain.
| |
Collapse
|
3
|
Zhang D, Zhou L, Shi Y, Liu J, Wei H, Tong Q, He H, Wu T. Increased Free Water in the Substantia Nigra in Asymptomatic LRRK2 G2019S Mutation Carriers. Mov Disord 2023; 38:138-142. [PMID: 36253640 DOI: 10.1002/mds.29253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/05/2022] [Accepted: 09/26/2022] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND The alteration of substantia nigra (SN) degeneration in populations at risk of Parkinson's disease (PD) is unclear. OBJECTIVE We investigated free water (FW) values in the posterior SN (pSN) in asymptomatic LRRK2 G2019S mutation carriers. METHODS We analyzed diffusion imaging data from 28 asymptomatic LRRK2 G2019S mutation carriers and 30 healthy controls (HCs), whereas 11 asymptomatic LRRK2 G2019S carriers and 11 HCs were followed up. FW values in the pSN were measured and compared between the groups. The relationship between longitudinal changes in FW in the pSN and dopamine transporter striatal binding ratio (SBR) was analyzed. RESULTS FW values in the pSN were significantly elevated and kept increasing during follow-up in asymptomatic LRRK2 G2019S carriers. There was a negative correlation between FW changes in the left pSN and SBR changes in the left putamen. CONCLUSION FW in the pSN has the potential to be a progression imaging marker of early dopaminergic degeneration in the population at risk of PD. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Dongling Zhang
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Liche Zhou
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuting Shi
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Liu
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongjiang Wei
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Qiqi Tong
- Research Center for Healthcare Data Science, Zhejiang Lab, Hangzhou, Zhejiang, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Tao Wu
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,China National Clinical Research Center for Neurological Diseases, Beijing, China.,Parkinson's Disease Center, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| |
Collapse
|
4
|
Longitudinal clinical and biomarker characteristics of non-manifesting LRRK2 G2019S carriers in the PPMI cohort. NPJ Parkinsons Dis 2022; 8:140. [PMID: 36273008 PMCID: PMC9588016 DOI: 10.1038/s41531-022-00404-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/29/2022] [Indexed: 11/28/2022] Open
Abstract
We examined 2-year longitudinal change in clinical features and biomarkers in LRRK2 non-manifesting carriers (NMCs) versus healthy controls (HCs) enrolled in the Parkinson's Progression Markers Initiative (PPMI). We analyzed 2-year longitudinal data from 176 LRRK2 G2019S NMCs and 185 HCs. All participants were assessed annually with comprehensive motor and non-motor scales, dopamine transporter (DAT) imaging, and biofluid biomarkers. The latter included cerebrospinal fluid (CSF) Abeta, total tau and phospho-tau; serum urate and neurofilament light chain (NfL); and urine bis(monoacylglycerol) phosphate (BMP). At baseline, LRRK2 G2019S NMCs had a mean (SD) age of 62 (7.7) years and were 56% female. 13% had DAT deficit (defined as <65% of age/sex-expected lowest putamen SBR) and 11% had hyposmia (defined as ≤15th percentile for age and sex). Only 5 of 176 LRRK2 NMCs developed PD during follow-up. Although NMCs scored significantly worse on numerous clinical scales at baseline than HCs, there was no longitudinal change in any clinical measures over 2 years or in DAT binding. There were no longitudinal differences in CSF and serum biomarkers between NMCs and HCs. Urinary BMP was significantly elevated in NMCs at all time points but did not change longitudinally. Neither baseline biofluid biomarkers nor the presence of DAT deficit correlated with 2-year change in clinical outcomes. We observed no significant 2-year longitudinal change in clinical or biomarker measures in LRRK2 G2019S NMCs in this large, well-characterized cohort even in the participants with baseline DAT deficit. These findings highlight the essential need for further enrichment biomarker discovery in addition to DAT deficit and longer follow-up to enable the selection of NMCs at the highest risk for conversion to enable future prevention clinical trials.
Collapse
|
5
|
Prange S, Theis H, Banwinkler M, van Eimeren T. Molecular Imaging in Parkinsonian Disorders—What’s New and Hot? Brain Sci 2022; 12:brainsci12091146. [PMID: 36138882 PMCID: PMC9496752 DOI: 10.3390/brainsci12091146] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 12/02/2022] Open
Abstract
Highlights Abstract Neurodegenerative parkinsonian disorders are characterized by a great diversity of clinical symptoms and underlying neuropathology, yet differential diagnosis during lifetime remains probabilistic. Molecular imaging is a powerful method to detect pathological changes in vivo on a cellular and molecular level with high specificity. Thereby, molecular imaging enables to investigate functional changes and pathological hallmarks in neurodegenerative disorders, thus allowing to better differentiate between different forms of degenerative parkinsonism, improve the accuracy of the clinical diagnosis and disentangle the pathophysiology of disease-related symptoms. The past decade led to significant progress in the field of molecular imaging, including the development of multiple new and promising radioactive tracers for single photon emission computed tomography (SPECT) and positron emission tomography (PET) as well as novel analytical methods. Here, we review the most recent advances in molecular imaging for the diagnosis, prognosis, and mechanistic understanding of parkinsonian disorders. First, advances in imaging of neurotransmission abnormalities, metabolism, synaptic density, inflammation, and pathological protein aggregation are reviewed, highlighting our renewed understanding regarding the multiplicity of neurodegenerative processes involved in parkinsonian disorders. Consequently, we review the role of molecular imaging in the context of disease-modifying interventions to follow neurodegeneration, ensure stratification, and target engagement in clinical trials.
Collapse
Affiliation(s)
- Stéphane Prange
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Université de Lyon, 69675 Bron, France
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Magdalena Banwinkler
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Department of Neurology, Faculty of Medicine, University Hospital of Cologne, University of Cologne, 50937 Cologne, Germany
- Correspondence: (S.P.); (T.v.E.); Tel.: +49-221-47882843 (T.v.E.)
| |
Collapse
|
6
|
Mirelman A, Siderowf A, Chahine L. Outcome Assessment in Parkinson Disease Prevention Trials: Utility of Clinical and Digital Measures. Neurology 2022; 99:52-60. [PMID: 35970590 DOI: 10.1212/wnl.0000000000200236] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/21/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The prodromal phase of Parkinson disease (PD) is accompanied by subtle clinical signs that are not sufficient for diagnosis but could potentially be measured in the context of clinical trials of therapies intended to delay or prevent more definitive clinical features. The objective of this study was to review the available literature on the presence and time course of subtle motor features in prodromal PD in the context of planning for possible clinical trials. METHODS We reviewed the available literature based on expert opinion. We considered a range of outcomes including measurement of clinical features, patient-reported outcomes, digital markers, and clinical diagnosis. RESULTS We considered these features and measures in the context of patient stratification, intermediate outcomes, and clinically relevant end points, including phenoconversion. DISCUSSION Substantial progress has been made in understanding how motor features evolve in the period immediately before a PD diagnosis. Digital measures hold substantial progress for measurement precision and may be additionally relevant because they can be used in naturalistic environments outside the clinic. Future studies should focus on advancing digital sensor technology and analysis and developing methods to implement available methods, particularly determination of a clinical diagnosis of PD, in a clinical trial context.
Collapse
Affiliation(s)
- Anat Mirelman
- From the Sackler School of Medicine and Sagol School of Neuroscience (A.M.), Tel Aviv University, Israel; Department of Neurology (A.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Neurology (L.C.), University of Pittsburgh, PA
| | - Andrew Siderowf
- From the Sackler School of Medicine and Sagol School of Neuroscience (A.M.), Tel Aviv University, Israel; Department of Neurology (A.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Neurology (L.C.), University of Pittsburgh, PA.
| | - Lana Chahine
- From the Sackler School of Medicine and Sagol School of Neuroscience (A.M.), Tel Aviv University, Israel; Department of Neurology (A.S.), Perelman School of Medicine, University of Pennsylvania, Philadelphia; and Department of Neurology (L.C.), University of Pittsburgh, PA
| |
Collapse
|
7
|
Crotty GF, Keavney JL, Alcalay RN, Marek K, Marshall GA, Rosas HD, Schwarzschild MA. Planning for Prevention of Parkinson Disease: Now Is the Time. Neurology 2022; 99:1-9. [PMID: 36219787 PMCID: PMC10519135 DOI: 10.1212/wnl.0000000000200789] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/11/2022] [Indexed: 11/15/2022] Open
Abstract
Parkinson disease (PD) is a chronic progressive neurodegenerative disease with increasing worldwide prevalence. Despite many trials of neuroprotective therapies in manifest PD, no disease-modifying therapy has been established. Over the past several decades, a series of breakthroughs have identified discrete populations at substantially increased risk of developing PD. Based on this knowledge, now is the time to design and implement PD prevention trials. This endeavor builds on experience gained from early prevention trials in Alzheimer disease and Huntington disease. This article first reviews prevention trial precedents in these other neurodegenerative diseases before focusing on the critical design elements for PD prevention trials, including whom to enroll for these trials, what therapeutics to test, and how to measure outcomes in prevention trials. Our perspective reflects progress and remaining challenges that motivated a 2021 conference, "Planning for Prevention of Parkinson: A Trial Design Symposium and Workshop."
Collapse
Affiliation(s)
- Grace F Crotty
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA.
| | - Jessi L Keavney
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Roy N Alcalay
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Kenneth Marek
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Gad A Marshall
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - H Diana Rosas
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Michael A Schwarzschild
- From the Department of Neurology (G.F.C., M.A.S.), Massachusetts General Hospital, Boston, MA; Parkinson's Foundation Research Advocates Program (J.L.K.), Parkinson's Foundation, Miami, FL/New York, NY; Department of Neurology (R.N.A.), Columbia University Irving Medical Center, New York, NY; Institute for Neurodegenerative Disorders (K.M.), New Haven, CT; Center for Alzheimer Research and Treatment (G.A.M.) and Center for Neuroimaging of Aging and Neurodegenerative Diseases (H.D.R.), Department of Neurology, Brigham and Women's Hospital, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
8
|
Seibyl JP, Kuo P. What Is the Role of Dopamine Transporter Imaging in Parkinson Prevention Clinical Trials? Neurology 2022; 99:61-67. [PMID: 35970589 DOI: 10.1212/wnl.0000000000200786] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- John Peter Seibyl
- From the Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT; Department of Radiology (P.K.), University of Arizona, Tucson; and Invicro, LLC (P.K.), New Haven, CT.
| | - Phillip Kuo
- From the Institute for Neurodegenerative Disorders (J.P.S.), New Haven, CT; Department of Radiology (P.K.), University of Arizona, Tucson; and Invicro, LLC (P.K.), New Haven, CT
| |
Collapse
|
9
|
Zhang D, Yao J, Ma J, Gao L, Sun J, Fang J, He H, Wu T. Connectivity of corticostriatal circuits in nonmanifesting LRRK2 G2385R and R1628P carriers. CNS Neurosci Ther 2022; 28:2024-2031. [PMID: 35934920 PMCID: PMC9627388 DOI: 10.1111/cns.13933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neuroimaging studies have shown that the functional connectivity (FC) of corticostriatal circuits in nonmanifesting leucine-rich repeat kinase 2 (LRRK2) G2019S mutation carriers mirrors neural changes in idiopathic Parkinson's disease (PD). In contrast, neural network changes in LRRK2 G2385R and R1628P mutations are unclear. We aimed to investigate the FC of corticostriatal circuits in nonmanifesting LRRK2 G2385R and R1628P mutation carriers (NMCs). METHODS Twenty-three NMCs, 28 PD patients, and 29 nonmanifesting noncarriers (NMNCs) were recruited. LRRK2 mutation analysis was performed on all participants. Clinical evaluation included MDS-UPDRS. RESULTS When compared to NMNCs, NMCs showed significantly reduced FC between the caudate nucleus and superior frontal gyrus and cerebellum, and between the nucleus accumbens and parahippocampal gyrus, amygdala, and insula. We also found increased striatum-cortical FC in NMCs. CONCLUSIONS Although the corticostriatal circuits have characteristic changes similar to PD, the relatively intact function of the sensorimotor striatum-cortical loop may result in less possibility of developing parkinsonian motor symptoms for the NMCs. This study helps explain why LRRK2 G2385R and R1628P mutations are risk factors rather than pathogenic mutations for PD and suggests that various LRRK2 mutations have distinct effects on neural networks.
Collapse
Affiliation(s)
- Dongling Zhang
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Junye Yao
- Center for Brain Imaging Science and TechnologyCollege of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Jinghong Ma
- Department of Neurobiology, Beijing Institute of GeriatricsXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Linlin Gao
- Department of Neurobiology, Beijing Institute of GeriatricsXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Junyan Sun
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jiliang Fang
- Department of Radiology, Guang'anmen HospitalChina Academy of Chinese Medical SciencesBeijingChina
| | - Hongjian He
- Center for Brain Imaging Science and TechnologyCollege of Biomedical Engineering and Instrument ScienceZhejiang UniversityHangzhouChina
| | - Tao Wu
- Department of Neurology, Center for Movement Disorders, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina,China National Clinical Research Center for Neurological DiseasesBeijingChina,Parkinson's Disease Center, Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
10
|
The Human LRRK2 Modulates the Age-Dependent Effects of Developmental Methylmercury Exposure in Caenorhabditis elegans. Neurotox Res 2022; 40:1235-1247. [PMID: 35838907 DOI: 10.1007/s12640-022-00547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 10/17/2022]
Abstract
Methylmercury (MeHg) neurotoxicity exhibits age-dependent effects with a latent and/or persistent neurotoxic effect on aged animals. Individual susceptibility to MeHg neurotoxicity is governed by both exposure duration and genetic factors that can magnify or mitigate the pathologic processes associated with this exposure. We previously showed the G2019S mutation of leucine-rich repeat kinase 2 (LRRK2) modulates the response of worms to high levels of MeHg, mitigating its effect on neuronal morphology in pre-vesicles in cephalic (CEP) dopaminergic neurons. Here we sought to better understand the long-term effects of MeHg exposure at low levels (100-fold lower than that in our previous report) and the modulatory role of the LRRK2 mutation. Worms exposed to MeHg (10 or 50 nM) at the larval stage (L1 stage) were compared at adult stages (young age: day 1 adult; middle age: day 5 adult; old age: day 10 adult) for the swimming speeds in M9 buffer, moving speeds during locomotion on an OP50-seeded plate, and the numbers of CEP dopaminergic pre-vesicles, vesicular structures originating from the dendrites of CEP for exportation of cellular content. In addition, the expression levels of Caenorhabditis elegans homologs of dopamine transporter (dat-1) and tyrosine hydroxylase (cat-2) were also analyzed at these adult stages. Our data showed that swimming speeds were reduced in wild-type worms at the day 10 adult stage at 50 nM MeHg level; yet, reduced swimming speeds were noted in the G2019S LRRK2 transgenic line upon MeHg exposures as low as 10 nM. Compared to locomotor speeds, swimming speeds appear to be more sensitive to the behavioral effects of developmental MeHg exposures, as the locomotor speeds were largely intact and indistinguishable from controls following MeHg exposures. Furthermore, we showed an age-dependent modulation of dat-1 and cat-2 expressions, which could also be modified by the LRRK2 mutation. Although MeHg exposures did not change the number of pre-vesicles, the LRRK2 mutation was associated with increased numbers of pre-vesicles in aged worms. Our data suggest that the latent behavioral effects of MeHg are sensitized by the G2019S LRRK2 mutation, and the underlying mechanism likely involves age-dependent changes in dopaminergic signaling.
Collapse
|
11
|
Sánchez-Rodríguez A, Tirnauca C, Salas-Gómez D, Fernández-Gorgojo M, Martínez-Rodríguez I, Sierra M, González-Aramburu I, Stan D, Gutierrez-González A, Meissner JM, Andrés-Pacheco J, Rivera-Sánchez M, Sánchez-Peláez MV, Sánchez-Juan P, Infante J. Sensor-based gait analysis in the premotor stage of LRRK2 G2019S-associated Parkinson's disease. Parkinsonism Relat Disord 2022; 98:21-26. [PMID: 35421781 DOI: 10.1016/j.parkreldis.2022.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION There is a need for biomarkers to monitor the earliest phases of Parkinson's disease (PD), especially in premotor stages. Here, we studied whether there are early gait alterations in carriers of the G2019S mutation of LRRK2 that can be detected by means of an inertial sensor system. METHODS Twenty-one idiopathic PD patients, 20 LRRK2-G2019S PD, 27 asymptomatic carriers of LRRK2-G2019S mutation (AsG2019S) and 36 controls walked equipped with 16 lightweight inertial sensors in three different experiments: i/normal gait, ii/fast gait and iii/dual-task gait. In the AsG2019S group, DaT-SPECT (123I-ioflupane) with semi-quantitative analysis was carried out. Motor and cognitive performance were evaluated using MDS-UPDRS-III and MoCA scales. We employed neural network techniques to classify individuals based on their walking patterns. RESULTS PD patients and controls showed differences in speed, stride length and arm swing amplitude, variability and asymmetry in all three tasks (p < 0.01). In the AsG2019S group, the only differences were detected during fast walking, with greater step time on the non-dominant side (p < 0.05), lower step/stride time variability (p < 0.01) and lower step time asymmetry (p < 0.01). DaT uptake showed a significant correlation with step time during fast walking on the non-dominant side (r = -0.52; p < 0.01). The neural network was able to differentiate between AsG2019S and healthy controls with an accuracy rate of 82.5%. CONCLUSION Our sensor-based analysis did not detect substantial and robust changes in the gait of LRRK2-G2019S asymptomatic mutation carriers. Nonetheless, step or stride time during fast walking, supported by the observed correlation with striatal DaT binding deserves consideration as a potential biomarker in future studies.
Collapse
Affiliation(s)
- Antonio Sánchez-Rodríguez
- Neurology Service, Hospital Universitario de Cabueñes, Gijón, Spain; Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Cristina Tirnauca
- Departamento de Matemáticas, Estadística y Computación. Universidad de Cantabria, Santander, Spain
| | - Diana Salas-Gómez
- Gimbernat-Cantabria Research Unit (SUIGC), University Schools Gimbernat-Cantabria, Attached to the University of Cantabria, Torrelavega, Spain
| | - Mario Fernández-Gorgojo
- Gimbernat-Cantabria Research Unit (SUIGC), University Schools Gimbernat-Cantabria, Attached to the University of Cantabria, Torrelavega, Spain
| | - Isabel Martínez-Rodríguez
- Nuclear Medicine Department, Molecular Imaging Group (IDIVAL). University Hospital Marqués de Valdecilla, Santander, Spain
| | - María Sierra
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain; Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Isabel González-Aramburu
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain; Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Diana Stan
- Departamento de Matemáticas, Estadística y Computación. Universidad de Cantabria, Santander, Spain
| | - Angela Gutierrez-González
- Nuclear Medicine Department, Molecular Imaging Group (IDIVAL). University Hospital Marqués de Valdecilla, Santander, Spain
| | - Johannes M Meissner
- Departamento de Matemáticas, Estadística y Computación. Universidad de Cantabria, Santander, Spain
| | - Javier Andrés-Pacheco
- Nuclear Medicine Department, Molecular Imaging Group (IDIVAL). University Hospital Marqués de Valdecilla, Santander, Spain
| | - María Rivera-Sánchez
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | | | - Pascual Sánchez-Juan
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain; Alzheimer's Centre Reina Sofia-CIEN Foundation, 28031, Madrid, Spain
| | - Jon Infante
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Spain; Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain; Departamento de Medicina y Psiquiatría. Universidad de Cantabria, Santander, Spain.
| |
Collapse
|
12
|
Genetic factors affecting dopaminergic deterioration during the premotor stage of Parkinson disease. NPJ Parkinsons Dis 2021; 7:104. [PMID: 34836969 PMCID: PMC8626486 DOI: 10.1038/s41531-021-00250-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 11/04/2021] [Indexed: 12/14/2022] Open
Abstract
To estimate dopaminergic dysfunction in patients with Parkinson disease (PD) during the premotor stage and to investigate the effect of genetic factors on the trajectories. Using longitudinal dopamine transporter single-photon emission computed tomography data from 367 sporadic PD (sPD), 72 LRRK2 (G2019S), and 39 GBA (N370S) PD patients in the Parkinson's Progression Markers Initiative (PPMI) study, we estimated the temporal trajectories of putaminal-specific binding ratios using an integrating function between baseline values and their annual change rates. In order to test reproducibility, we computed another trajectory for sPD using positron emission tomography data of 38 sPD patients at Gangnam Severance Hospital (GSH). Temporal trajectories of sPD were compared between the groups separated by age at onset (AAO) and polygenic load for common PD risk variants, and also compared with genetic PD. sPD patients in both the PPMI and GSH cohorts showed similar onset of dopaminergic degeneration around 10 years before motor onset. Early-onset PD patients exhibited later onset of degeneration and a faster decline in dopaminergic activity during the premotor period than late-onset patients. sPD patients with high polygenic load were associated with earlier onset and slower progression of dopaminergic dysfunction. Compared to the sPD and LRRK2 PD groups, GBA PD patients exhibited faster deterioration of dopaminergic function during the premotor stage. Dopaminergic dysfunction in PD appears to start about 10 years before motor onset. Genetic factors may be contributing to the heterogeneity of dopaminergic deterioration during the premotor stage.
Collapse
|
13
|
Sambin S, Lavisse S, Decaix C, Pyatigorskaya N, Mangone G, Valabrègue R, Arnulf I, Cormier F, Lesage S, Lehericy S, Remy P, Brice A, Corvol JC. Compensatory Mechanisms Nine Years Before Parkinson's Disease Conversion in a LRRK2 R1441H Family. Mov Disord 2021; 37:428-430. [PMID: 34668587 DOI: 10.1002/mds.28833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/11/2022] Open
Affiliation(s)
- Sara Sambin
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Centre d'Investigation Clinique Neurosciences, Department of Neurology, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Sonia Lavisse
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, 92265, France
| | - Caroline Decaix
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Centre d'Investigation Clinique Neurosciences, Department of Neurology, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France.,Department of Neurology, Assistance Publique Hôpitaux de Paris, Hôpital Saint-Antoine, Paris, 75012, France
| | - Nadya Pyatigorskaya
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Department of Neuroradiology, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Graziella Mangone
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Centre d'Investigation Clinique Neurosciences, Department of Neurology, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Romain Valabrègue
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France
| | - Isabelle Arnulf
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Sleep Disorders Unit, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Florence Cormier
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Centre d'Investigation Clinique Neurosciences, Department of Neurology, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Suzanne Lesage
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France
| | - Stephane Lehericy
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Department of Neuroradiology, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Philippe Remy
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, Fontenay-aux-Roses, 92265, France.,Centre Expert Parkinson I Équipe NPI, Department of Neurology, Assistance Publique Hôpitaux de Paris, Hôpital Henri Mondor, INSERM IMRB, Université Paris-Est, Créteil, 94000, France.,Département d'Études Cognitives, École Normale Supérieure, Paris, 75005, France
| | - Alexis Brice
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Department of Genetics, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| | - Jean-Christophe Corvol
- Institut du Cerveau - Paris Brain Institute - ICM, Sorbonne University, INSERM, CNRS, Paris, 75013, France.,Centre d'Investigation Clinique Neurosciences, Department of Neurology, Assistance Publique Hôpitaux de Paris, Hôpital Pitié-Salpêtrière, Paris, 75013, France
| |
Collapse
|
14
|
Palermo G, Giannoni S, Bellini G, Siciliano G, Ceravolo R. Dopamine Transporter Imaging, Current Status of a Potential Biomarker: A Comprehensive Review. Int J Mol Sci 2021; 22:11234. [PMID: 34681899 PMCID: PMC8538800 DOI: 10.3390/ijms222011234] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 11/16/2022] Open
Abstract
A major goal of current clinical research in Parkinson's disease (PD) is the validation and standardization of biomarkers enabling early diagnosis, predicting outcomes, understanding PD pathophysiology, and demonstrating target engagement in clinical trials. Molecular imaging with specific dopamine-related tracers offers a practical indirect imaging biomarker of PD, serving as a powerful tool to assess the status of presynaptic nigrostriatal terminals. In this review we provide an update on the dopamine transporter (DAT) imaging in PD and translate recent findings to potentially valuable clinical practice applications. The role of DAT imaging as diagnostic, preclinical and predictive biomarker is discussed, especially in view of recent evidence questioning the incontrovertible correlation between striatal DAT binding and nigral cell or axon counts.
Collapse
Affiliation(s)
- Giovanni Palermo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Sara Giannoni
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Unit of Neurology, San Giuseppe Hospital, 50053 Empoli, Italy
| | - Gabriele Bellini
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Gabriele Siciliano
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
| | - Roberto Ceravolo
- Unit of Neurology, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.P.); (S.G.); (G.B.); (G.S.)
- Center for Neurodegenerative Diseases, Unit of Neurology, Parkinson’s Disease and Movement Disorders, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
15
|
Meles SK, Oertel WH, Leenders KL. Circuit imaging biomarkers in preclinical and prodromal Parkinson's disease. Mol Med 2021; 27:111. [PMID: 34530732 PMCID: PMC8447708 DOI: 10.1186/s10020-021-00327-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022] Open
Abstract
Parkinson's disease (PD) commences several years before the onset of motor features. Pathophysiological understanding of the pre-clinical or early prodromal stages of PD are essential for the development of new therapeutic strategies. Two categories of patients are ideal to study the early disease stages. Idiopathic rapid eye movement sleep behavior disorder (iRBD) represents a well-known prodromal stage of PD in which pathology is presumed to have reached the lower brainstem. The majority of patients with iRBD will develop manifest PD within years to decades. Another category encompasses non-manifest mutation carriers, i.e. subjects without symptoms, but with a known mutation or genetic variant which gives an increased risk of developing PD. The speed of progression from preclinical or prodromal to full clinical stages varies among patients and cannot be reliably predicted on the individual level. Clinical trials will require inclusion of patients with a predictable conversion within a limited time window. Biomarkers are necessary that can confirm pre-motor PD status and can provide information regarding lead time and speed of progression. Neuroimaging changes occur early in the disease process and may provide such a biomarker. Studies have focused on radiotracer imaging of the dopaminergic nigrostriatal system, which can be assessed with dopamine transporter (DAT) single photon emission computed tomography (SPECT). Loss of DAT binding represents an effect of irreversible structural damage to the nigrostriatal system. This marker can be used to monitor disease progression and identify individuals at specific risk for phenoconversion. However, it is known that changes in neuronal activity precede structural changes. Functional neuro-imaging techniques, such as 18F-2-fluoro-2-deoxy-D-glucose Positron Emission Tomography (18F-FDG PET) and functional magnetic resonance imaging (fMRI), can be used to model the effects of disease on brain networks when combined with advanced analytical methods. Because these changes occur early in the disease process, functional imaging studies are of particular interest in prodromal PD diagnosis. In addition, fMRI and 18F-FDG PET may be able to predict a specific future phenotype in prodromal cohorts, which is not possible with DAT SPECT. The goal of the current review is to discuss the network-level brain changes in pre-motor PD.
Collapse
Affiliation(s)
- Sanne K Meles
- Department of Neurology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, PO Box 30.001, 9700 RB, Groningen, The Netherlands.
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-Universität Marburg, Marburg, Germany.,Institute for Neurogenomics, Helmholtz Center for Health and Environment, Munich, Germany
| | - Klaus L Leenders
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
16
|
Sánchez-Rodríguez A, Martínez-Rodríguez I, Sánchez-Juan P, Sierra M, González-Aramburu I, Rivera-Sánchez M, Andrés-Pacheco J, Gutierrez-González Á, García-Hernández A, Madera J, Delgado-Alvarado M, Infante J. Serial DaT-SPECT imaging in asymptomatic carriers of LRRK2 G2019S mutation: 8 years' follow-up. Eur J Neurol 2021; 28:4204-4208. [PMID: 34407293 DOI: 10.1111/ene.15070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022]
Abstract
BACKGROUND Carriers of the G2019S mutation of LRRK2 provide a great opportunity to investigate the premotor stages of Parkinson's disease (PD). We have studied by serial clinical and dopamine transporter single photon emission computed tomography (DaT-SPECT) evaluations a cohort of asymptomatic carriers of the LRRK2-G2019S mutation in order to evaluate the usefulness of these tools as biomarkers. Here we report the results of the extended follow-up of this cohort at 8 years. METHODS Seventeen participants, of the 25 available from the 4-year evaluation, completed the 8-year assessment. UPDRS-III, UPSIT test and DaT-SPECT imaging (123 I-ioflupane) were performed. We used repeated-measures linear mixed effects models to examine the changes in DaT binding over time. RESULTS Three carriers had converted to PD at 4 years. One additional carrier converted at 8 years. PD-converters had lower striatal DaT binding at baseline than non-converters. There was a significant decline of DaT binding over time, with a mean annual rate of 3.5%, with somewhat inter-individual and intra-individual variability and comparable between PD-converters and non-converters. No carrier with DAT binding ratio above an undefined threshold between 0.5 and 0.8 developed PD symptoms. The age-adjusted UPSIT score did not change significantly over time. CONCLUSIONS The rate of conversion to PD at 8 years in this cohort aged ~58 years at baseline was 16%. The observed decline of DaT binding over time and its association with the phenotype render DaT-SPECT a potentially useful tool for monitoring the premotor stage of the disease, although at the individual level its ability to predict phenoconversion is limited.
Collapse
Affiliation(s)
- Antonio Sánchez-Rodríguez
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria (UC), Santander, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Isabel Martínez-Rodríguez
- Nuclear Medicine Department, Molecular Imaging Group (IDIVAL), University Hospital Marqués de Valdecilla, Santander, Spain
| | - Pascual Sánchez-Juan
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria (UC), Santander, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Sierra
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria (UC), Santander, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Isabel González-Aramburu
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria (UC), Santander, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - María Rivera-Sánchez
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria (UC), Santander, Spain
| | - Javier Andrés-Pacheco
- Nuclear Medicine Department, Molecular Imaging Group (IDIVAL), University Hospital Marqués de Valdecilla, Santander, Spain.,Neurology Service, Sierrallana Hospital-IDIVAL, University of Cantabria (UC), Torrelavega, Spain
| | - Ángela Gutierrez-González
- Nuclear Medicine Department, Molecular Imaging Group (IDIVAL), University Hospital Marqués de Valdecilla, Santander, Spain
| | - Adrián García-Hernández
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria (UC), Santander, Spain
| | - Jorge Madera
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria (UC), Santander, Spain
| | - Manuel Delgado-Alvarado
- Nuclear Medicine Department, Molecular Imaging Group (IDIVAL), University Hospital Marqués de Valdecilla, Santander, Spain
| | - Jon Infante
- Neurology Service, University Hospital Marqués de Valdecilla-IDIVAL, University of Cantabria (UC), Santander, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| |
Collapse
|
17
|
Wallon D, Boluda S, Rovelet-Lecrux A, Thierry M, Lagarde J, Miguel L, Lecourtois M, Bonnevalle A, Sarazin M, Bottlaender M, Mula M, Marty S, Nakamura N, Schramm C, Sellal F, Jonveaux T, Heitz C, Le Ber I, Epelbaum S, Magnin E, Zarea A, Rousseau S, Quenez O, Hannequin D, Clavaguera F, Campion D, Duyckaerts C, Nicolas G. Clinical and neuropathological diversity of tauopathy in MAPT duplication carriers. Acta Neuropathol 2021; 142:259-278. [PMID: 34095977 DOI: 10.1007/s00401-021-02320-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/28/2021] [Accepted: 04/28/2021] [Indexed: 11/30/2022]
Abstract
Microduplications of the 17q21.31 chromosomal region encompassing the MAPT gene, which encodes the Tau protein, were identified in patients with a progressive disorder initially characterized by severe memory impairment with or without behavioral changes that can clinically mimic Alzheimer disease. The unique neuropathological report showed a primary tauopathy, which could not be unanimously classified in a given known subtype, showing both 4R- and 3R-tau inclusions, mainly within temporal cortical subregions and basal ganglia, without amyloid deposits. Recently, two subjects harboring the same duplication were reported with an atypical extrapyramidal syndrome and gait disorder. To decipher the phenotypic spectrum associated with MAPT duplications, we studied ten carriers from nine families, including two novel unrelated probands, gathering clinical (n = 10), cerebrospinal fluid (n = 6), MRI (n = 8), dopamine transporter scan (n = 4), functional (n = 5), amyloid (n = 3) and Tau-tracer (n = 2) PET imaging data as well as neuropathological examination (n = 4). Ages at onset ranged from 37 to 57 years, with prominent episodic memory impairment in 8/10 patients, associated with behavioral changes in four, while two patients showed atypical extrapyramidal syndrome with gait disorder at presentation, including one with associated cognitive deficits. Amyloid imaging was negative but Tau imaging showed significant deposits mainly in both mesiotemporal cortex. Dopaminergic denervation was found in 4/4 patients, including three without extrapyramidal symptoms. Neuropathological examination exclusively showed Tau-immunoreactive lesions. Distribution, aspect and 4R/3R tau aggregates composition suggested a spectrum from predominantly 3R, mainly cortical deposits well correlating with cognitive and behavioral changes, to predominantly 4R deposits, mainly in the basal ganglia and midbrain, in patients with prominent extrapyramidal syndrome. Finally, we performed in vitro seeding experiments in HEK-biosensor cells. Morphological features of aggregates induced by homogenates of three MAPT duplication carriers showed dense/granular ratios graduating between those induced by homogenates of a Pick disease and a progressive supranuclear palsy cases. These results suggest that MAPT duplication causes a primary tauopathy associated with diverse clinical and neuropathological features.
Collapse
Affiliation(s)
- David Wallon
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNR-MAJ, F-76000, Rouen, France.
| | - Susana Boluda
- Sorbonne Université, INSERM, CNRS U1127, Institut du Cerveau, ICM, Paris, France
- AP-HP, Hôpital de La Pitié-Salpêtrière, Laboratoire de Neuropathologie R. Escourolle, Paris, France
| | - Anne Rovelet-Lecrux
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France
| | - Manon Thierry
- Sorbonne Université, INSERM, CNRS U1127, Institut du Cerveau, ICM, Paris, France
- AP-HP, Hôpital de La Pitié-Salpêtrière, Laboratoire de Neuropathologie R. Escourolle, Paris, France
| | - Julien Lagarde
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
- Université de Paris, 75006, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, F-91401, Orsay, France
| | - Laetitia Miguel
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France
| | - Magalie Lecourtois
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France
| | - Antoine Bonnevalle
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNR-MAJ, F-76000, Rouen, France
| | - Marie Sarazin
- Department of Neurology of Memory and Language, GHU Paris Psychiatrie & Neurosciences, Hôpital Sainte Anne, F-75014, Paris, France
- Université de Paris, 75006, Paris, France
- Université Paris-Saclay, BioMaps, Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, F-91401, Orsay, France
| | - Michel Bottlaender
- Université Paris-Saclay, BioMaps, Service Hospitalier Frederic Joliot, CEA, CNRS, Inserm, F-91401, Orsay, France
- UNIACT, Neurospin, CEA, 91191, Gif-sur-Yvette, France
| | - Mathieu Mula
- AP-HP, Hôpital de La Pitié-Salpêtrière, Laboratoire de Neuropathologie R. Escourolle, Paris, France
| | - Serge Marty
- Sorbonne Université, INSERM, CNRS U1127, Institut du Cerveau, ICM, Paris, France
| | - Natsuko Nakamura
- Sorbonne Université, INSERM, CNRS U1127, Institut du Cerveau, ICM, Paris, France
| | - Catherine Schramm
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France
| | - François Sellal
- Department of Neurology, Hôpitaux Civils de Colmar and INSERM U-1118, School of Medicine, Strasbourg University, Strasbourg, France
| | - Thérèse Jonveaux
- CMRR Department of Neurology, Nancy University Hospital, Laboratoire Lorraine de Psychologie et de Neurosciences de la Dynamique des Comportements 2LPN EA7489 Lorraine University, Nancy, France
| | - Camille Heitz
- Neurology Department, Hôpital Universitaire de Nîmes, Nîmes, France
| | - Isabelle Le Ber
- Sorbonne Universités, UPMC Univ Paris 06, Inserm U1127, CNRS UMR 7225, Institut du Cerveau et la Moelle Epinière (ICM), AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Reference Centre for Rare or Early Dementias, IM2A, Département de Neurologie, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Stéphane Epelbaum
- Centre Mémoire Ressources et Recherche (CMRR), Centre Expert Parkinson (CEP), Service de Neurologie, CHRU Besançon, 25000, Besançon, France
- Neurosciences Intégratives et Cliniques UR481, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Eloi Magnin
- Centre Mémoire Ressources et Recherche (CMRR), Centre Expert Parkinson (CEP), Service de Neurologie, CHRU Besançon, 25000, Besançon, France
- Neurosciences Intégratives et Cliniques UR481, Univ. Bourgogne Franche-Comté, 25000, Besançon, France
| | - Aline Zarea
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNR-MAJ, F-76000, Rouen, France
| | - Stéphane Rousseau
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France
| | - Olivier Quenez
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France
| | - Didier Hannequin
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Neurology and CNR-MAJ, F-76000, Rouen, France
| | - Florence Clavaguera
- Sorbonne Université, INSERM, CNRS U1127, Institut du Cerveau, ICM, Paris, France
| | - Dominique Campion
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France
| | - Charles Duyckaerts
- Sorbonne Université, INSERM, CNRS U1127, Institut du Cerveau, ICM, Paris, France
- AP-HP, Hôpital de La Pitié-Salpêtrière, Laboratoire de Neuropathologie R. Escourolle, Paris, France
| | - Gaël Nicolas
- Normandie Univ, UNIROUEN, Inserm U1245, CHU Rouen, Department of Genetics and CNR-MAJ, F-76000, Rouen, France.
| |
Collapse
|
18
|
Bougea A, Koros C, Papagiannakis N, Simitsi AM, Prentakis A, Papadimitriou D, Pachi I, Antonelou R, Angelopoulou E, Beratis I, Bozi M, Papageorgiou SG, Trapali XG, Stamelou M, Stefanis L. Serum Uric Acid in LRRK2 Related Parkinson's Disease: Longitudinal Data from the PPMI Study. JOURNAL OF PARKINSONS DISEASE 2021; 11:633-640. [PMID: 33682725 DOI: 10.3233/jpd-202337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previous studies have highlighted serum uric acid as a putative idiopathic Parkinson's disease (iPD) biomarker. Only one study, so far, showed higher levels of serum uric acid in leucine-rich repeat kinase 2 (LRRK + 2) carriers compared to those who developed PD, however a longitudinal comparison between LRRK2 + PD and healthy controls (HC) has not been performed. OBJECTIVE The aim of this study was to determine whether there are longitudinal differences in serum uric acid between iPD, LRRK2 + PD and HC and their association with motor and non-motor features. METHODS Longitudinal data of uric acid of 282 de novo iPD, 144 LRRK2 + PD patients, and 195 age-matched HC were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. We also used longitudinal Montreal Cognitive Assessment (MoCA), Movement Disorder Society-Unified Parkinson's Disease Rating Scale part III (MDS-UPDRS-III), Geriatric Depression Scale (GDS) scores, and DaTSCAN striatal binding ratios (SBRs). RESULTS Longitudinal uric acid measurements were significantly lower in LRRK2 + PD patients compared to HC up to 5 years follow-up. There was no significant impact or correlation of adjusted or unadjusted uric acid levels with MoCA, MDS-UPDRS III, or GDS scores, the presence of RBD or DAT-SCAN SBRs. CONCLUSION LRRK2 + PD group had significantly lower uric acid concentrations compared to HC after adjusting for age, sex and baseline BMI up to 5 years follow-up. There were no significant associations between uric acid levels and indices of disease severity. These findings identify serum uric acid as a marker linked to LRRK2 + PD.
Collapse
Affiliation(s)
- Anastasia Bougea
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christos Koros
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolaos Papagiannakis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athina-Maria Simitsi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Andreas Prentakis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Nuclear Medicine Unit, Attikon Hospital, Athens, Greece
| | | | - Ioanna Pachi
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Roubina Antonelou
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthalia Angelopoulou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Ion Beratis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria Bozi
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Sokratis G Papageorgiou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Maria Stamelou
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece.,Neurology Clinic, Philipps University, Marburg, Germany.,Parkinson's disease and Movement Disorders Department, HYGEIA Hospital, Athens, Greece
| | - Leonidas Stefanis
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
19
|
Chahine LM, Brumm MC, Caspell-Garcia C, Oertel W, Mollenhauer B, Amara A, Fernandez-Arcos A, Tolosa E, Simonet C, Hogl B, Videnovic A, Hutten SJ, Tanner C, Weintraub D, Burghardt E, Coffey C, Cho HR, Kieburtz K, Poston KL, Merchant K, Galasko D, Foroud T, Siderowf A, Marek K, Simuni T, Iranzo A. Dopamine transporter imaging predicts clinically-defined α-synucleinopathy in REM sleep behavior disorder. Ann Clin Transl Neurol 2020; 8:201-212. [PMID: 33321002 PMCID: PMC7818144 DOI: 10.1002/acn3.51269] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 01/03/2023] Open
Abstract
INTRODUCTION Individuals with idiopathic rapid eye movement sleep behavior disorder (iRBD) are at high risk for a clinical diagnosis of an α-synucleinopathy (aSN). They could serve as a key population for disease-modifying trials. Abnormal dopamine transporter (DAT) imaging is a strong candidate biomarker for risk of aSN diagnosis in iRBD. Our primary objective was to identify a quantitative measure of DAT imaging that predicts diagnosis of clinically-defined aSN in iRBD. METHODS The sample included individuals with iRBD, early Parkinson's Disease (PD), and healthy controls (HC) enrolled in the Parkinson Progression Marker Initiative, a longitudinal, observational, international, multicenter study. The iRBD cohort was enriched with individuals with abnormal DAT binding at baseline. Motor and nonmotor measures were compared across groups. DAT specific binding ratios (SBR) were used to calculate the percent of expected DAT binding for age and sex using normative data from HCs. Receiver operative characteristic analyses identified a baseline DAT binding cutoff that distinguishes iRBD participants diagnosed with an aSN in follow-up versus those not diagnosed. RESULTS The sample included 38 with iRBD, 205 with PD, and 92 HC who underwent DAT-SPECT at baseline. Over 4.7 years of mean follow-up, 14 (36.84%) with iRBD were clinically diagnosed with aSN. Risk of aSN diagnosis was significantly elevated among those with baseline putamen SBR ≤ 48% of that expected for age and sex, relative to those above this cutoff (hazard ratio = 17.8 [95%CI: 3.79-83.3], P = 0.0003). CONCLUSION We demonstrate the utility of DAT SBR to identify individuals with iRBD with increased short-term risk of an aSN diagnosis.
Collapse
Affiliation(s)
- Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael C Brumm
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Wolfgang Oertel
- Department of Neurology, Philipps University, Marburg, Germany
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany.,Paracelsus-Elena-Klinik, Kassel, Germany
| | - Amy Amara
- Department of Neurology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Eduardo Tolosa
- Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Cristina Simonet
- Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Birgit Hogl
- Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Aleksandar Videnovic
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Samantha J Hutten
- The Michael J. Fox Foundation for Parkinson's Research, New York, New York, USA
| | - Caroline Tanner
- Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Daniel Weintraub
- Departments of Neurology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Elliot Burghardt
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Christopher Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Hyunkeun R Cho
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, Iowa, USA
| | - Karl Kieburtz
- University of Rochester Medical Center, University of Rochester, Rochester, NY, USA
| | - Kathleen L Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California, USA
| | - Kalpana Merchant
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Douglas Galasko
- Department of Neurology, University of California, San Diego, California, USA
| | - Tatiana Foroud
- Department of Medical & Molecular Genetics, Indiana University, Indianapolis, Indiana, USA
| | - Andrew Siderowf
- Departments of Neurology Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, Connecticut, USA
| | - Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alex Iranzo
- Neurology Service, Hospital Clinic de Barcelona, Barcelona, Spain
| |
Collapse
|
20
|
Chase BA, Markopoulou K. Olfactory Dysfunction in Familial and Sporadic Parkinson's Disease. Front Neurol 2020; 11:447. [PMID: 32547477 PMCID: PMC7273509 DOI: 10.3389/fneur.2020.00447] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 04/27/2020] [Indexed: 12/26/2022] Open
Abstract
This minireview discusses our current understanding of the olfactory dysfunction that is frequently observed in sporadic and familial forms of Parkinson's disease and parkinsonian syndromes. We review the salient characteristics of olfactory dysfunction in these conditions, discussing its prevalence and characteristics, how neuronal processes and circuits are altered in Parkinson's disease, and what is assessed by clinically used measures of olfactory function. We highlight how studies of monogenic Parkinson's disease and investigations in ethnically diverse populations have contributed to understanding the mechanisms underlying olfactory dysfunction. Furthermore, we discuss how imaging and system-level approaches have been used to understand the pathogenesis of olfactory dysfunction. We discuss the challenging, remaining gaps in understanding the basis of olfactory dysfunction in neurodegeneration. We propose that insights could be obtained by following longitudinal cohorts with familial forms of Parkinson's disease using a combination of approaches: a multifaceted longitudinal assessment of olfactory function during disease progression is essential to identify not only how dysfunction arises, but also to address its relationship to motor and non-motor Parkinson's disease symptoms. An assessment of cohorts having monogenic forms of Parkinson's disease, available within the Genetic Epidemiology of Parkinson's Disease (GEoPD), as well as other international consortia, will have heuristic value in addressing the complexity of olfactory dysfunction in the context of the neurodegenerative process. This will inform our understanding of Parkinson's disease as a multisystem disorder and facilitate the more effective use of olfactory dysfunction assessment in identifying prodromal Parkinson's disease and understanding disease progression.
Collapse
Affiliation(s)
- Bruce A. Chase
- Department of Biology, University of Nebraska at Omaha, Omaha, NE, United States
| | - Katerina Markopoulou
- Department of Neurology, NorthShore University HealthSystem, Evanston, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Hustad E, Aasly JO. Clinical and Imaging Markers of Prodromal Parkinson's Disease. Front Neurol 2020; 11:395. [PMID: 32457695 PMCID: PMC7225301 DOI: 10.3389/fneur.2020.00395] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/17/2020] [Indexed: 12/16/2022] Open
Abstract
The diagnosis of Parkinson's disease (PD) relies on the clinical effects of dopamine deficiency, including bradykinesia, rigidity and tremor, usually manifesting asymmetrically. Misdiagnosis is common, due to overlap of symptoms with other neurodegenerative disorders such as multiple system atrophy and progressive supranuclear palsy, and only autopsy can definitively confirm the disease. Motor deficits generally appear when 50–60% of dopaminergic neurons in the substantia nigra are already lost, limiting the effectiveness of potential neuroprotective therapies. Today, we consider PD to be not just a movement disorder, but rather a complex syndrome non-motor symptoms (NMS) including disorders of sleep-wake cycle regulation, cognitive impairment, disorders of mood and affect, autonomic dysfunction, sensory symptoms and pain. Symptomatic LRRK2 mutation carriers share non-motor features with individuals with sporadic PD, including hyposmia, constipation, impaired color discrimination, depression, and sleep disturbance. Following the assumption that the pre-symptomatic gene mutation carriers will eventually exhibit clinical symptoms, their neuroimaging results can be extended to the pre-symptomatic stage of PD. The long latent phase of PD, termed prodromal-PD, represents an opportunity for early recognition of incipient PD. Early recognition could allow initiation of possible neuroprotective therapies at a stage when therapies might be most effective. The number of markers with the sufficient level of evidence to be included in the MDS research criteria for prodromal PD have increased during the last 10 years. Here, we review the approach to prodromal PD, with an emphasis on clinical and imaging markers and report results from our neuroimaging study, a retrospective evaluation of a cohort of 39 participants who underwent DAT-SPECT scan as part of their follow up. The study was carried out to see if it was possible to detect subclinical signs in the preclinical (neurodegenerative processes have commenced, but there are no evident symptoms or signs) and prodromal (symptoms and signs are present, but are yet insufficient to define disease) stages of PD.
Collapse
Affiliation(s)
- Eldbjørg Hustad
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science (INB), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Jan O Aasly
- Department of Neurology, St. Olavs Hospital, Trondheim, Norway.,Department of Neuromedicine and Movement Science (INB), Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
22
|
Gu S, Chen J, Zhou Q, Yan M, He J, Han X, Qiu Y. LRRK2 Is Associated with Recurrence-Free Survival in Intrahepatic Cholangiocarcinoma and Downregulation of LRRK2 Suppresses Tumor Progress In Vitro. Dig Dis Sci 2020; 65:500-508. [PMID: 31489563 DOI: 10.1007/s10620-019-05806-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/12/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND The leucine-rich repeat kinase 2 (LRRK2) gene was confirmed to be associated with a variety of diseases, while the physiological function of LRRK2 remains poorly understood. Intrahepatic cholangiocarcinoma (ICC) has over the last 10 years become the focus of increasing concern largely. Despite recent progress in the standard of care and management options for ICC, the prognosis for this devastating cancer remains dismal. METHODS A total of 57 consecutive ICC patients who underwent curative hepatectomy in our institution were included in our study. We conduct a retrospective study to evaluate the prognostic value of LRRK2 in ICC after resection. The mechanism of LRRK2 in ICC development was also investigated in vitro. RESULTS All patients were divided into two groups according to the content of LRRK2 in the tissue microarray blocks via immunohistochemistry: low-LRRK2 group (n = 33) and high-LRRK2 group (n = 24). The recurrence-free survival rate of high-LRRK2 group was significantly poorer than that of low-LRRK2 group (P = 0.010). Multivariate analysis showed high-LRRK2 was the prognostic factor for recurrence-free survival after hepatectomy. We demonstrated that downregulation of LRRK2 depressed the proliferation and metastasis of ICC cells in vitro. CONCLUSION We provide evidence that LRRK2 was an independent prognostic factor for ICC in humans by participating in the proliferation and metastasis of ICC cells.
Collapse
Affiliation(s)
- Shen Gu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Qun Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Minghao Yan
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing, 210093, Jiangsu, China
- Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing, 210093, Jiangsu, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, Jiangsu Province, China.
| |
Collapse
|
23
|
Tolosa E, Vila M, Klein C, Rascol O. LRRK2 in Parkinson disease: challenges of clinical trials. Nat Rev Neurol 2020; 16:97-107. [PMID: 31980808 DOI: 10.1038/s41582-019-0301-2] [Citation(s) in RCA: 295] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2019] [Indexed: 12/27/2022]
Abstract
One of the most common monogenic forms of Parkinson disease (PD) is caused by mutations in the LRRK2 gene that encodes leucine-rich repeat kinase 2 (LRRK2). LRRK2 mutations, and particularly the most common mutation Gly2019Ser, are observed in patients with autosomal dominant PD and in those with apparent sporadic PD, who are clinically indistinguishable from those with idiopathic PD. The discoveries that pathogenic mutations in the LRRK2 gene increase LRRK2 kinase activity and that small-molecule LRRK2 kinase inhibitors can be neuroprotective in preclinical models of PD have placed LRRK2 at the centre of disease modification efforts in PD. Recent investigations also suggest that LRRK2 has a role in the pathogenesis of idiopathic PD and that LRRK2 therapies might, therefore, be beneficial in this common subtype of PD. In this Review, we describe the characteristics of LRRK2-associated PD that are most relevant to the development of LRRK2-targeted therapies and the design and implementation of clinical trials. We highlight strategies for correcting the effects of mutations in the LRRK2 gene, focusing on how to identify which patients are the optimal candidates and how to decide on the timing of such trials. In addition, we discuss challenges in implementing trials of disease-modifying treatment in people who carry LRRK2 mutations.
Collapse
Affiliation(s)
- Eduardo Tolosa
- Parkinson and Movement Disorders Unit, Neurology Service, Hospital Clinic of Barcelona, August Pi i Sunyer Biomedical Research Institute (IDIBAPS), University of Barcelona, Barcelona, Spain. .,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.
| | - Miquel Vila
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Barcelona, Spain.,Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Autonomous University of Barcelona, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Olivier Rascol
- Clinical Investigation Center CIC1436, Departments of Clinical Pharmacology and Neurosciences, NS-Park/FCRIN network and NeuroToul Center of Excellence for Neurodegeneration, INSERM, University Hospital of Toulouse and University of Toulouse, Toulouse, France
| |
Collapse
|
24
|
Lewis MM, Harkins E, Lee EY, Stetter C, Snyder B, Corson T, Du G, Kong L, Huang X. Clinical Progression of Parkinson's Disease: Insights from the NINDS Common Data Elements. JOURNAL OF PARKINSON'S DISEASE 2020; 10:1075-1085. [PMID: 32538866 PMCID: PMC8177750 DOI: 10.3233/jpd-201932] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND/OBJECTIVE To synchronize data collection, the National Institute of Neurological Disorders and Stroke (NINDS) recommended Common Data Elements (CDEs) for use in Parkinson's disease (PD) research. This study delineated the progression patterns of these CDEs in a cohort of PD patients. METHODS One hundred-twenty-five PD patients participated in the PD Biomarker Program (PDBP) at Penn State. CDEs, including MDS-Unified PD Rating Scale (UPDRS)-total, questionnaire-based non-motor (-I) and motor (-II), and rater-based motor (-III) subscales; Montreal Cognitive Assessment (MoCA); Hamilton Depression Rating Scale (HDRS); University of Pennsylvania Smell Identification Test (UPSIT); and PD Questionnaire (PDQ-39) were obtained at baseline and three annual follow-ups. Annual change was delineated for PD or subgroups [early = PDE, disease duration (DD) <1 y; middle = PDM, DD = 1-5 y; and late = PDL, DD > 5 y] using mixed effects model analyses. RESULTS UPDRS-total, -II, and PDQ-39 scores increased significantly, and UPSIT decreased, whereas UPDRS-I, -III, MoCA, and HDRS did not change, over 36 months in the overall PD cohort. In the PDE subgroup, UPDRS-II increased and UPSIT decreased significantly, whereas MoCA and UPSIT decreased significantly in the PDM subgroup. In the PDL subgroup, UPDRS-II and PDQ-39 increased significantly. Other metrics within each individual subgroup did not change. Sensitivity analyses using subjects with complete data confirmed these findings. CONCLUSION Among CDEs, UPDRS-total, -II, PDQ-39, and UPSIT all are sensitive metrics to track PD progression. Subgroup analyses revealed that these CDEs have distinct stage-dependent sensitivities, with UPSIT for DD < 5 y, PDQ-39 for DD > 5 y, UPDRS-II for early (DD < 1) or later stages (DD > 5).
Collapse
Affiliation(s)
- Mechelle M. Lewis
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Pharmacology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Elias Harkins
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Eun-Young Lee
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Christy Stetter
- Department of Public Health Sciences, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Bethany Snyder
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Tyler Corson
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Guangwei Du
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Lan Kong
- Department of Public Health Sciences, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| | - Xuemei Huang
- Department of Neurology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Pharmacology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Radiology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Neurosurgery, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
- Department of Kinesiology, Pennsylvania State University Milton S. Hershey Medical Center, Hershey, PA, US
| |
Collapse
|
25
|
Simonet C, Schrag A, Lees AJ, Noyce AJ. The motor prodromes of parkinson's disease: from bedside observation to large-scale application. J Neurol 2019; 268:2099-2108. [PMID: 31802219 PMCID: PMC8179909 DOI: 10.1007/s00415-019-09642-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022]
Abstract
There is sufficient evidence that the pathological process that causes Parkinson's disease begins years before the clinical diagnosis is made. Over the last 15 years, there has been much interest in the existence of a prodrome in some patients, with a particular focus on non-motor symptoms such as reduced sense of smell, REM-sleep disorder, depression, and constipation. Given that the diagnostic criteria for Parkinson's disease depends on the presence of bradykinesia, it is somewhat surprising that there has been much less research into the possibility of subtle motor dysfunction as a pre-diagnostic pointer. This review will focus on early motor features and provide some advice on how to detect and measure them.
Collapse
Affiliation(s)
- C Simonet
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - A Schrag
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - A J Lees
- Reta Lila Weston Institute of Neurological Studies, University College London, London, UK
| | - A J Noyce
- Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK. .,Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK.
| |
Collapse
|
26
|
Simuni T, Uribe L, Cho HR, Caspell-Garcia C, Coffey CS, Siderowf A, Trojanowski JQ, Shaw LM, Seibyl J, Singleton A, Toga AW, Galasko D, Foroud T, Tosun D, Poston K, Weintraub D, Mollenhauer B, Tanner CM, Kieburtz K, Chahine LM, Reimer A, Hutten SJ, Bressman S, Marek K. Clinical and dopamine transporter imaging characteristics of non-manifest LRRK2 and GBA mutation carriers in the Parkinson's Progression Markers Initiative (PPMI): a cross-sectional study. Lancet Neurol 2019; 19:71-80. [PMID: 31678032 DOI: 10.1016/s1474-4422(19)30319-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/15/2019] [Accepted: 07/23/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND The Parkinson's Progression Markers Initiative (PPMI) is an ongoing observational, longitudinal cohort study of participants with Parkinson's disease, healthy controls, and carriers of the most common Parkinson's disease-related genetic mutations, which aims to define biomarkers of Parkinson's disease diagnosis and progression. All participants are assessed annually with a battery of motor and non-motor scales, 123-I Ioflupane dopamine transporter (DAT) imaging, and biological variables. We aimed to examine whether non-manifesting carriers of LRRK2 and GBA mutations have prodromal features of Parkinson's disease that correlate with reduced DAT binding. METHODS This cross-sectional analysis is based on assessments done at enrolment in the subset of non-manifesting carriers of LRRK2 and GBA mutations enrolled into the PPMI study from 33 participating sites worldwide. The primary objective was to examine baseline clinical and DAT imaging characteristics in non-manifesting carriers with GBA and LRRK2 mutations compared with healthy controls. DAT deficit was defined as less than 65% of putamen striatal binding ratio expected for the individual's age. We used t tests, χ2 tests, and Fisher's exact tests to compare baseline demographics across groups. An inverse probability weighting method was applied to control for potential confounders such as age and sex. To account for multiple comparisons, we applied a family-wise error rate to each set of analyses. This study is registered with ClinicalTrials.gov, number NCT01141023. FINDINGS Between Jan 1, 2014, and Jan 1, 2019, the study enrolled 208 LRRK2 (93% G2019S) and 184 GBA (96% N370S) non-manifesting carriers. Both groups were similar with respect to mean age, and about 60% were female. Of the 286 (73%) non-manifesting carriers that had DAT imaging results, 18 (11%) LRRK2 and four (3%) GBA non-manifesting carriers had a DAT deficit. Compared with healthy controls, both LRRK2 and GBA non-manifesting carriers had significantly increased mean scores on the Movement Disorders Society Unified Parkinson's Disease Rating Scale (total score 4·6 [SD 4·4] healthy controls vs 8·4 [7·3] LRRK2 vs 9·5 [9·2] GBA, p<0·0001 for both comparisons) and the Scale for Outcomes for PD - autonomic function (5·8 [3·7] vs 8·1 [5·9] and 8·4 [6·0], p<0·0001 for both comparisons). There was no difference in daytime sleepiness, anxiety, depression, impulsive-compulsive disorders, blood pressure, urate, and rapid eye movement (REM) behaviour disorder scores. Hyposmia was significantly more common only in LRRK2 non-manifesting carriers (69 [36%] of 194 healthy controls vs 114 [55%] of 208 LRRK2 non-manifesting carriers; p=0·0003). Finally, GBA but not LRRK2 non-manifesting carriers showed increased DAT striatal binding ratios compared with healthy controls in the caudate (healthy controls 2·98 [SD 0·63] vs GBA 3·26 [0·63]; p<0·0001), putamen (2·15 [0·56] vs 2·48 [0·52]; p<0·0001), and striatum (2·56 [0·57] vs 2·87 [0·55]; p<0·0001). INTERPRETATION Our data show evidence of subtle motor and non-motor signs of Parkinson's disease in non-manifesting carriers compared with healthy controls that can precede DAT deficit. Longitudinal data will be essential to confirm these findings and define the trajectory and predictors for development of Parkinson's disease. FUNDING Michael J Fox Foundation for Parkinson's Research.
Collapse
Affiliation(s)
- Tanya Simuni
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| | - Liz Uribe
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Hyunkeun Ryan Cho
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Chelsea Caspell-Garcia
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Christopher S Coffey
- Department of Biostatistics, College of Public Health, University of Iowa, Iowa City, IA, USA
| | - Andrew Siderowf
- Departments of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Q Trojanowski
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leslie M Shaw
- Departments of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Seibyl
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, NIH, Bethesda, MD, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging (LONI), University of Southern California, Los Angeles, CA, USA
| | - Doug Galasko
- Department of Neurology, University of California, San Diego, CA, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Duygu Tosun
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kathleen Poston
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Daniel Weintraub
- Departments of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Departments of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brit Mollenhauer
- Department of Neurology, University Medical Center Goettingen, Goettingen, Germany; Paracelsus-Elena-Klinik, Kassel, Germany
| | - Caroline M Tanner
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Karl Kieburtz
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Lana M Chahine
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Reimer
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Samantha J Hutten
- The Michael J Fox Foundation for Parkinson's Research, New York, NY, USA
| | - Susan Bressman
- Icahn School of Medicine, Mount Sinai, New York, NY, USA
| | - Kenneth Marek
- Institute for Neurodegenerative Disorders, New Haven, CT, USA
| | | |
Collapse
|
27
|
Ren C, Ding Y, Wei S, Guan L, Zhang C, Ji Y, Wang F, Yin S, Yin P. G2019S Variation in LRRK2: An Ideal Model for the Study of Parkinson's Disease? Front Hum Neurosci 2019; 13:306. [PMID: 31551736 PMCID: PMC6738350 DOI: 10.3389/fnhum.2019.00306] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and has plagued humans for more than 200 years. The etiology and detailed pathogenesis of PD is unclear, but is currently believed to be the result of the interaction between genetic and environmental factors. Studies have found that PD patients with the LRRK2:G2019S variation have the typical clinical manifestations of PD, which may be familial or sporadic, and have age-dependent pathogenic characteristics. Therefore, the LRRK2:G2019S variation may be an ideal model to study the interaction of multiple factors such as genetic, environmental and natural aging factors in PD in the future. This article reviewed the progress of LRRK2:G2019S studies in PD research in order to provide new research ideas and directions for the pathogenesis and treatment of PD.
Collapse
Affiliation(s)
- Chao Ren
- Department of Neurology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yu Ding
- Institute of Neuroscience, Soochow University, Suzhou, China
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shizhuang Wei
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Lina Guan
- Department of Neurosurgical Intensive Care Unit, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Caiyi Zhang
- Department of Emergency and Rescue Medicine, Xuzhou Medical University, Xuzhou, China
| | - Yongqiang Ji
- Department of Nephrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Fen Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Shaohua Yin
- Department of Nursing, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Peiyuan Yin
- Department of Blood Supply, Yantai Center Blood Station, Yantai, China
| |
Collapse
|
28
|
Mantri S, Morley JF, Siderowf AD. The importance of preclinical diagnostics in Parkinson disease. Parkinsonism Relat Disord 2019; 64:20-28. [DOI: 10.1016/j.parkreldis.2018.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/02/2018] [Accepted: 09/08/2018] [Indexed: 01/21/2023]
|
29
|
Riederer P, Berg D, Casadei N, Cheng F, Classen J, Dresel C, Jost W, Krüger R, Müller T, Reichmann H, Rieß O, Storch A, Strobel S, van Eimeren T, Völker HU, Winkler J, Winklhofer KF, Wüllner U, Zunke F, Monoranu CM. α-Synuclein in Parkinson's disease: causal or bystander? J Neural Transm (Vienna) 2019; 126:815-840. [PMID: 31240402 DOI: 10.1007/s00702-019-02025-9] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Parkinson's disease (PD) comprises a spectrum of disorders with differing subtypes, the vast majority of which share Lewy bodies (LB) as a characteristic pathological hallmark. The process(es) underlying LB generation and its causal trigger molecules are not yet fully understood. α-Synuclein (α-syn) is a major component of LB and SNCA gene missense mutations or duplications/triplications are causal for rare hereditary forms of PD. As typical sporadic PD is associated with LB pathology, a factor of major importance is the study of the α-syn protein and its pathology. α-Syn pathology is, however, also evident in multiple system atrophy (MSA) and Lewy body disease (LBD), making it non-specific for PD. In addition, there is an overlap of these α-synucleinopathies with other protein-misfolding diseases. It has been proven that α-syn, phosphorylated tau protein (pτ), amyloid beta (Aβ) and other proteins show synergistic effects in the underlying pathogenic mechanisms. Multiple cell death mechanisms can induce pathological protein-cascades, but this can also be a reverse process. This holds true for the early phases of the disease process and especially for the progression of PD. In conclusion, while rare SNCA gene mutations are causal for a minority of familial PD patients, in sporadic PD (where common SNCA polymorphisms are the most consistent genetic risk factor across populations worldwide, accounting for 95% of PD patients) α-syn pathology is an important feature. Conversely, with regard to the etiopathogenesis of α-synucleinopathies PD, MSA and LBD, α-syn is rather a bystander contributing to multiple neurodegenerative processes, which overlap in their composition and individual strength. Therapeutic developments aiming to impact on α-syn pathology should take this fact into consideration.
Collapse
Affiliation(s)
- Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, University of Würzburg, Margarete-Höppel-Platz 1, 97080, Würzburg, Germany. .,Department of Psychiatry, University of South Denmark, Odense, Denmark.
| | - Daniela Berg
- Department of Neurology, UKHS, Christian-Albrechts-Universität, Campus Kiel, Kiel, Germany
| | - Nicolas Casadei
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Fubo Cheng
- NGS Competence Center Tübingen, Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Joseph Classen
- Department of Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Christian Dresel
- Department of Neurology, Center for Movement Disorders, Neuroimaging Center Mainz, Clinical Neurophysiology, Forschungszentrum Translationale Neurowissenschaften (FTN), Rhein-Main-Neuronetz, Mainz, Germany
| | | | - Rejko Krüger
- Clinical and Experimental Neuroscience, LCSB (Luxembourg Centre for Systems, Biomedicine), University of Luxembourg, Esch-sur-Alzette and Centre Hospitalier de Luxembourg (CHL), Luxembourg, Luxembourg.,National Center for Excellence in Research, Parkinson's disease (NCER-PD), Parkinson Research Clinic, Centre Hospitalier de Luxembourg, Luxembourg, Luxembourg
| | - Thomas Müller
- Department of Neurology, Alexianer St. Joseph Berlin-Weißensee, Berlin, Germany
| | - Heinz Reichmann
- Department of Neurology, University of Dresden, Dresden, Germany
| | - Olaf Rieß
- Institute of Medical Genetics and Applied Genomics, Tübingen, Germany
| | - Alexander Storch
- Department of Neurology, University of Rostock, Rostock, Germany.,German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Sabrina Strobel
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| | - Thilo van Eimeren
- Department of Neurology, University Hospital of Cologne, Cologne, Germany
| | | | - Jürgen Winkler
- Department Kopfkliniken, Molekulare Neurologie, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Konstanze F Winklhofer
- Institute of Biochemistry and Pathobiochemistry, Ruhr-Universität Bochum, Bochum, Germany
| | - Ullrich Wüllner
- Department of Neurology, University of Bonn, German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn, Germany
| | - Friederike Zunke
- Department of Biochemistry, Medical Faculty, University of Kiel, Kiel, Germany
| | - Camelia-Maria Monoranu
- Department of Neuropathology, Institute of Pathology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
30
|
Garrido A, Fairfoul G, Tolosa ES, Martí MJ, Green A. α-synuclein RT-QuIC in cerebrospinal fluid of LRRK2-linked Parkinson's disease. Ann Clin Transl Neurol 2019; 6:1024-1032. [PMID: 31211166 PMCID: PMC6562027 DOI: 10.1002/acn3.772] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 03/04/2019] [Indexed: 11/17/2022] Open
Abstract
Background Leucine‐rich kinase 2 (LRRK2)‐linked Parkinson's disease (PD) is clinically indistinguishable from idiopathic PD (IPD). A pleiotropic neuropathology has been recognized but the majority of studies in LRRK2 p.G2019S patients reveal Lewy‐type synucleinopathy as its principal histological substrate. To date no in vivo biomarkers of synucleinopathy have been found in LRRK2 mutation carriers. Objectives We used real‐time quaking‐induced conversion (RT‐QuIC) technique to assess the presence of alpha‐synuclein (a‐syn) aggregates in cerebrospinal fluid (CSF) of LRRK2 p.G2019S carriers. Methods CSF samples of 51 subjects were analyzed: 15 LRRK2 p.G2019S PD, 10 IPD, 16 LRRK2 p.G2019S nonmanifesting carriers (NMC) and 10 healthy controls. The presence of parkinsonism and prodromal symptoms was assessed in all study subjects. Results Forty percent (n = 6) LRRK2‐PD, and 18.8% (n = 3) LRRK2‐NMC had a positive a‐syn RT‐QuIC response. RT‐QuIC detected IPD with 90% sensitivity and 80% specificity. No clinical differences were detected between LRRK2‐PD patients with positive and negative RT‐QuIC. A positive RT‐QuIC result in LRRK2‐NMC occurred in a higher proportion of subjects meeting the Movement Disorder Society research criteria for prodromal PD. Interpretation RT‐QuIC detects a‐syn aggregation in CSF in a significant number of patients with LRRK2‐PD, but less frequently than in IPD. A small percentage of LRRK2‐NMC tested also positive. If appropriately validated in long‐term studies with large number of mutation carriers, and hopefully, postmortem or in vivo confirmation of histopathology, RT‐QuIC could contribute to the selection of candidates to receive disease modifying drugs, in particular treatments targeting a‐syn deposition.
Collapse
Affiliation(s)
- Alicia Garrido
- Parkinson's Disease and Movement Disorders Unit Institut Clínic de Neurociències Hospital Clinic de Barcelona Barcelona Spain.,Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) Madrid Spain
| | - Graham Fairfoul
- The National CJD Research & Surveillance Unit Centre for Clinical Brain Sciences University of Edinburgh Edinburgh EH4 2XU United Kingdom
| | - Eduardo S Tolosa
- Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) Madrid Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB) Barcelona Spain
| | - Maria José Martí
- Parkinson's Disease and Movement Disorders Unit Institut Clínic de Neurociències Hospital Clinic de Barcelona Barcelona Spain.,Centre for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED) Madrid Spain.,Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS) University of Barcelona (UB) Barcelona Spain
| | - Alison Green
- The National CJD Research & Surveillance Unit Centre for Clinical Brain Sciences University of Edinburgh Edinburgh EH4 2XU United Kingdom
| | | |
Collapse
|
31
|
Postuma RB, Berg D. Prodromal Parkinson's Disease: The Decade Past, the Decade to Come. Mov Disord 2019; 34:665-675. [DOI: 10.1002/mds.27670] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/22/2019] [Accepted: 02/28/2019] [Indexed: 01/02/2023] Open
Affiliation(s)
- Ronald B. Postuma
- Department of NeurologyMontreal General Hospital Montreal, Quebec Canada
| | - Daniela Berg
- Department of NeurologyChristian‐Albrechts‐University of Kiel Kiel Germany
| |
Collapse
|
32
|
Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun 2019; 10:973. [PMID: 30846695 PMCID: PMC6405777 DOI: 10.1038/s41467-019-08858-y] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/28/2019] [Indexed: 12/29/2022] Open
Abstract
In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
Collapse
|
33
|
Carballo-Carbajal I, Laguna A, Romero-Giménez J, Cuadros T, Bové J, Martinez-Vicente M, Parent A, Gonzalez-Sepulveda M, Peñuelas N, Torra A, Rodríguez-Galván B, Ballabio A, Hasegawa T, Bortolozzi A, Gelpi E, Vila M. Brain tyrosinase overexpression implicates age-dependent neuromelanin production in Parkinson's disease pathogenesis. Nat Commun 2019. [PMID: 30846695 DOI: 10.1038/s41467-019-08858-y.pmid:30846695;pmcid:pmc6405777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In Parkinson's disease (PD) there is a selective degeneration of neuromelanin-containing neurons, especially substantia nigra dopaminergic neurons. In humans, neuromelanin accumulates with age, the latter being the main risk factor for PD. The contribution of neuromelanin to PD pathogenesis remains unknown because, unlike humans, common laboratory animals lack neuromelanin. Synthesis of peripheral melanins is mediated by tyrosinase, an enzyme also present at low levels in the brain. Here we report that overexpression of human tyrosinase in rat substantia nigra results in age-dependent production of human-like neuromelanin within nigral dopaminergic neurons, up to levels reached in elderly humans. In these animals, intracellular neuromelanin accumulation above a specific threshold is associated to an age-dependent PD phenotype, including hypokinesia, Lewy body-like formation and nigrostriatal neurodegeneration. Enhancing lysosomal proteostasis reduces intracellular neuromelanin and prevents neurodegeneration in tyrosinase-overexpressing animals. Our results suggest that intracellular neuromelanin levels may set the threshold for the initiation of PD.
Collapse
Affiliation(s)
- Iria Carballo-Carbajal
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Ariadna Laguna
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jordi Romero-Giménez
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Thais Cuadros
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Jordi Bové
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Marta Martinez-Vicente
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Annabelle Parent
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Marta Gonzalez-Sepulveda
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Núria Peñuelas
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Albert Torra
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Beatriz Rodríguez-Galván
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), 80078, Naples, Italy
| | - Takafumi Hasegawa
- Department of Neurology, Tohoku University School of Medicine, Miyagi, 980-8574, Japan
| | - Analía Bortolozzi
- Department of Neurochemistry and Neuropharmacology, IIBB-CSIC, August Pi i Sunyer Biomedical Research Institute (IDIBAPS)-Center for Networked Biomedical Research on Mental Health (CIBERSAM), 08036, Barcelona, Spain
| | - Ellen Gelpi
- Neurological Tissue Bank, Biobanc Hospital Clínic-IDIBAPS, 08036, Barcelona, Spain
- Institute of Neurology, Medical University of Vienna, 1090, Vienna, Austria
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR)-Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), 08035, Barcelona, Spain.
- Department of Biochemistry and Molecular Biology, Autonomous University of Barcelona, 08193, Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), 08010, Barcelona, Spain.
| |
Collapse
|
34
|
Caught in the act: LRRK2 in exosomes. Biochem Soc Trans 2019; 47:663-670. [PMID: 30837321 DOI: 10.1042/bst20180467] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/15/2019] [Accepted: 01/31/2019] [Indexed: 12/20/2022]
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are a frequent genetic cause of late-onset Parkinson's disease (PD) and a target for therapeutic approaches. LRRK2 protein can influence vesicle trafficking events in the cytosol, with action both in endosomal and lysosomal pathways in different types of cells. A subset of late endosomes harbor intraluminal vesicles that can be secreted into the extracellular milieu. These extracellular vesicles, called exosomes, package LRRK2 protein for transport outside the cell into easily accessed biofluids. Both the cytoplasmic complement of LRRK2 as well as the exosome-associated fraction of protein appears regulated in part by interactions with 14-3-3 proteins. LRRK2 inside exosomes have disease-linked post-translational modifications and are relatively stable compared with unprotected proteins in the extracellular space or disrupted cytosolic compartments. Herein, we review the biology of exosome-associated LRRK2 and the potential for utility in diagnosis, prognosis, and theragnosis in PD and other LRRK2-linked diseases.
Collapse
|
35
|
Rees RN, Noyce AJ, Schrag A. The prodromes of Parkinson's disease. Eur J Neurosci 2018; 49:320-327. [PMID: 30447019 PMCID: PMC6492156 DOI: 10.1111/ejn.14269] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/26/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022]
Abstract
Whilst the diagnosis of Parkinson's disease (PD) relies on the motor triad of bradykinesia, rigidity and tremor, the underlying pathological process starts many years before these signs are overt. In this prodromal phase of PD, a diverse range of non‐motor and motor features can occur. Individually they do not allow a diagnosis of PD, but when considered together, they reflect the gradual development of the clinical syndrome. Different subgroups within the prodromal phase may exist and reflect different underlying pathology. Here, we summarise the evidence on the prodromal phase of PD in patient groups at increased risk of PD with well described prodromal features: patients with idiopathic rapid eye movement sleep behaviour disorder, patients with idiopathic anosmia and families with monogenic mutations that are closely linked to PD pathology. In addition, we discuss the information on prodromal features from ongoing studies aimed at detecting prodromal PD in the general population. It is likely that better delineation of the clinical prodromes of PD and their progression in these high‐risk groups will improve understanding of the underlying pathophysiology.
Collapse
Affiliation(s)
- Richard Nathaniel Rees
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| | - Alastair John Noyce
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK.,Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, UK
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, Institute of Neurology, University College London, London, UK
| |
Collapse
|
36
|
Khan AR, Hiebert NM, Vo A, Wang BT, Owen AM, Seergobin KN, MacDonald PA. Biomarkers of Parkinson's disease: Striatal sub-regional structural morphometry and diffusion MRI. NEUROIMAGE-CLINICAL 2018; 21:101597. [PMID: 30472168 PMCID: PMC6412554 DOI: 10.1016/j.nicl.2018.11.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/14/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a progressive neurological disorder that has no reliable biomarkers. The aim of this study was to explore the potential of semi-automated sub-regional analysis of the striatum with magnetic resonance imaging (MRI) to distinguish PD patients from controls (i.e., as a diagnostic biomarker) and to compare PD patients at different stages of disease. With 3 Tesla MRI, diffusion- and T1-weighted scans were obtained on two occasions in 24 PD patients and 18 age-matched, healthy controls. PD patients completed one session on and the other session off dopaminergic medication. The striatum was parcellated into seven functionally disparate sub-regions. The segmentation was guided by reciprocal connections to distinct cortical regions. Volume, surface-based morphometry, and integrity of white matter connections were calculated for each striatal sub-region. Test-retest reliability of our volume, morphometry, and white matter integrity measures across scans was high, with correlations ranging from r = 0.452, p < 0.05 and r = 0.985, p < 0.001. Global measures of striatum such as total striatum, nucleus accumbens, caudate nuclei, and putamen were not significantly different between PD patients and controls, indicating poor sensitivity of these measures, which average across sub-regions that are functionally heterogeneous and differentially affected by PD, to act as diagnostic biomarkers. Further, these measures did not correlate significantly with disease severity, challenging their potential to serve as progression biomarkers. In contrast, a) decreased volume and b) inward surface displacement of caudal-motor striatum—the region first and most dopamine depleted in PD—distinguished PD patients from controls. Integrity of white matter cortico-striatal connections in caudal-motor and adjacent striatal sub-regions (i.e., executive and temporal striatum) was reduced for PD patients relative to controls. Finally, volume of limbic striatum, the only striatal sub-region innervated by the later-degenerating ventral tegmental area in PD, was reduced in later-stage compared to early stage PD patients a potential progression biomarker. Segmenting striatum based on distinct cortical connectivity provided highly sensitive MRI measures for diagnosing and staging PD. Using 3T structural and diffusion tensor MRI, we explored potential biomarkers in PD. Striatum was parcellated into 7 functional sub-regions based on cortical connectivity. Volume of caudal-motor region was significantly smaller in PDs compared to controls. Volume of limbic region was sensitive to PD disease progression. Striatal sub-regions provided sensitive measures of the presence and progression of PD.
Collapse
Affiliation(s)
- Ali R Khan
- Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A5C1, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Nole M Hiebert
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada; Brain and Mind Institute, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Andrew Vo
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario N6A5C2, Canada
| | - Brian T Wang
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A5C1, Canada; Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Adrian M Owen
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario N6A5C2, Canada
| | - Ken N Seergobin
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A5B7, Canada
| | - Penny A MacDonald
- Brain and Mind Institute, University of Western Ontario, London, Ontario N6A5B7, Canada; Department of Psychology, University of Western Ontario, London, Ontario N6A5C2, Canada; Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario N6A5A5, Canada.
| |
Collapse
|
37
|
Varrone A, Pellecchia MT. SPECT Molecular Imaging in Familial Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:225-260. [PMID: 30409254 DOI: 10.1016/bs.irn.2018.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dopamine transporter (DAT) imaging with single-photon emission computed tomography (SPECT) is a diagnostic tool to study the integrity of the dopaminergic system in patients with parkinsonism and uncertain diagnosis. DAT SPECT enables to detect the presence of nigrostriatal deficit even in the early or pre-symptomatic stages of the disease and to quantify the DAT loss with the progression of nigrostriatal degeneration. For these reasons, DAT SPECT has been also used as a tool to study genetic conditions that are associated with parkinsonism in order to examine the degree and patterns of dopaminergic deficits that are present in at risk subjects and in affected patients carrying the mutations. Studies included subjects with sporadic mutations of common genes associated with Parkinson's disease (PD) and families with both affected patients and asymptomatic carriers. For obvious reasons, the majority of the studies have included a limited number of subjects. Therefore, because of the heterogeneity and the size of the cohorts examined, in many cases the findings can be merely descriptive and general conclusions on the patterns of dopaminergic deficit in different genetic conditions need to take into account some exceptions.
Collapse
Affiliation(s)
- Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.
| | - Maria Teresa Pellecchia
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", Neuroscience Section, University of Salerno, Salerno, Italy
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW The sense of smell is today one of the focuses of interest in aging and neurodegenerative disease research. In several neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease, the olfactory dysfunction is one of the initial symptoms appearing years before motor symptoms and cognitive decline, being considered a clinical marker of these diseases' early stages and a marker of disease progression and cognitive decline. Overall and under the umbrella of precision medicine, attention to olfactory function may help to improve chances of success for neuroprotective and disease-modifying therapeutic strategies. RECENT FINDINGS The use of olfaction, as clinical marker for neurodegenerative diseases is helpful in the characterization of prodromal stages of these diseases, early diagnostic strategies, differential diagnosis, and potentially prediction of treatment success. Understanding the mechanisms underlying olfactory dysfunction is central to determine its association with neurodegenerative disorders. Several anatomical systems and environmental factors may underlie or contribute to olfactory loss associated with neurological diseases, although the direct biological link to each disorder remains unclear and, thus, requires further investigation. In this review, we describe the neurobiology of olfaction, and the most common olfactory function measurements in neurodegenerative diseases. We also highlight the evidence for the presence of olfactory dysfunction in several neurodegenerative diseases, its value as a clinical marker for early stages of the diseases when combined with other clinical, biological, and neuroimage markers, and its role as a useful symptom for the differential diagnosis and follow-up of disease. The neuropathological correlations and the changes in neurotransmitter systems related with olfactory dysfunction in the neurodegenerative diseases are also described.
Collapse
|