1
|
Jannesar K, Soraya H. MPO and its role in cancer, cardiovascular and neurological disorders: An update. Biochem Biophys Res Commun 2025; 755:151578. [PMID: 40043618 DOI: 10.1016/j.bbrc.2025.151578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/31/2025] [Accepted: 03/01/2025] [Indexed: 03/17/2025]
Abstract
Myeloperoxidase (MPO) is an enzyme that contains a heme group, found mostly in neutrophils and in small amounts in monocytes and plays a major role in their anti-microbial activity. However, excessive levels of MPO have been linked to various disorders and identified as a major cause of tissue destruction. Inhibiting its activity can reduce the severity and extent of tissue damage. Over activity of MPO during chronic inflammation has been shown to be involved in tumorigenesis by inducing a hyper-mutagenic environment through oxidant interaction with DNA, causing DNA modification. Vascular endothelium is one of the most important targets of MPO and high levels have been associated with increased rates of cardiomyopathy, ischemic stroke, heart failure, myocardial infarction, and atrial fibrillation. Therefore, it may be considered a therapeutic target in the treatment of cardiovascular disorders. MPO also participates in the pathogenesis of neurodegenerative diseases. For example, an increase in MPO levels has been observed in the brain tissue of patients with Alzheimer's, Multiple sclerosis (MS), and Parkinson's diseases. In Alzheimer's disease, active MPO is mostly found in the location of beta amyloids and microglia. Therefore, targeting MPO may be a potential treatment and prevention strategy for neurological disorders. This review will discuss MPO's physiological and pathological role in cancer, cardiovascular, and neurological disorders.
Collapse
Affiliation(s)
- Kosar Jannesar
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Hamid Soraya
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
2
|
Sun M, Wang Y, Xu H, Shen Y, Liu B, Ma Y, Jiang C, Wang S, Li Q, Lu Y, Han F, Li T, Qin Y. Novel Hypochlorous Acid-Activated Near-Infrared Probe Monitors the Dynamic Changes of Myeloperoxidase Activity in Ischemic Brain. J Med Chem 2025; 68:5382-5399. [PMID: 40014579 DOI: 10.1021/acs.jmedchem.4c02431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Myeloperoxidase (MPO) contributes to the progression of ischemic damage. To fully understand MPO biology, highly sensitive and specific probes that can trace the activity of endogenous MPO fluxes are indispensable. Here, we developed two hypochlorous acid (HClO)-activated near-infrared probes to image MPO activity in a noninvasive manner. The probe MPO-NIR-II could track MPO-induced HClO in real time and in situ upon various stimuli with high sensitivity and specificity. Furthermore, MPO-NIR-II could monitor the MPO activity by in vivo fluorescence imaging and confocal laser scanning microscopy in mice with ischemic stroke. Moreover, a high-content screening system for MPO inhibitors was established by combining MPO-NIR-II with MPO-overexpressed cells and mouse brain slices with ischemic stroke, and the candidate compound AZD5904 was found to effectively attenuate ischemic brain injury. Overall, this work provides a versatile fluorescence tool that holds great promise for visualizing endogenous MPO fluxes of brain ischemia.
Collapse
Affiliation(s)
- Meiling Sun
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Yuting Wang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Huijun Xu
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yuting Shen
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Bin Liu
- Department of Geriatrics, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Yuchen Ma
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Chenchen Jiang
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Supeng Wang
- The First Clinical Medical College of Nanjing Medical University, Nanjing 211166, China
| | - Qi Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yingmei Lu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Feng Han
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Tingyou Li
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Yajuan Qin
- School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
3
|
Liu Y, Wang J, Wei Z, Wang Y, Wu M, Wang J, Chen X, Chen R. Association of phenotypic age and accelerated aging with severity and disability in patients with acute ischemic stroke. J Nutr Health Aging 2024; 28:100405. [PMID: 39489143 DOI: 10.1016/j.jnha.2024.100405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/17/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024]
Abstract
OBJECTIVE Biological age may be more accurate than chronological age in determining chronic health outcomes. However, few studies have shown the association between biological age and acute ischemic stroke (AIS). In this study we showed the association between phenotypic age (PhenoAge) or accelerated aging and severity and disability in patients with AIS. DESIGN Retrospective study. SETTING AND SUBJECTS 936 patients with AIS during January 2019 to July 2021 and 512 patients during June 2022 to July 2023 for a validation. METHODS Stroke severity was evaluated based on the National Institute of Health stroke scale (NIHSS) questionnaire scale. Disability was evaluated by modified Rankin Scale. PhenoAge was calculated based on chronological age and 9 clinical chemistry biomarkers. Logistic regression analyses were applied to estimate the relationship between PhenoAge and the severity and disability. RESULTS PhenoAge (odds ratio [OR] = 1.03, 95% confidence interval [CI]: 1.0-1.04, for NIHSS ≥ 5; OR = 1.05, 95%CI: 1.03-1.07, for NIHSS ≥ 10) was independently associated with stroke severity. The probability of NIHSS ≥ 5 or NIHSS ≥ 10 was significantly increased in individuals with accelerated ageing versus individuals with no accelerated aging (age gap: OR = 1.79, 95%CI: 1.18-2.72; OR = 3.53, 95%CI: 1.60-7.77; phenotypically older vs. phenotypically younger: OR = 2.01, 95%CI: 1.21-3.35; OR = 3.69, 95%CI: 1.36-10.0). Similar trends was observed when accelerated aging was defined by residual discrepancies between PhenoAge and chronological age (OR = 1.02, 95%CI: 1.01-1.04, for NIHSS ≥ 5; OR = 1.05, 95%CI: 1.02-1.08, for NIHSS ≥ 10). The area under the curve of PhenoAge was higher than that of chronological age in identifying patients with NIHSS ≥ 5 (0.66, 95%CI:0.62-0.70 vs. 0.61, 95%CI: 0.58-0.65, p < 0.01) and NIHSS ≥ 10 (0.69, 95%CI:0.60-0.77 vs. 0.63, 95%CI: 0.55-0.72, p = 0.05). The probability of severe disability was significantly increased in individuals with accelerated aging versus individuals with no accelerated aging (age gap: OR = 2.87, 95%CI: 1.09-7.53; phenotypically older vs. phenotypically younger: 4.88 (1.20-19.88). Similar results were observed in the validation population. CONCLUSION PhenoAge or accelerated aging is associated with stroke severity and disability even after adjusting for chronological age.
Collapse
Affiliation(s)
- Yongkang Liu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jiangchuan Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Zicheng Wei
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Yu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Minghua Wu
- Encephalopathy Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Jianhua Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Xiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China.
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, 100 N Greene, Baltimore, MD 21201, United States
| |
Collapse
|
4
|
Li P, Niu C, Du X, Zhao M, Wang H, Yang D, Li Y, Jing W. Myeloperoxidase to high-density lipoprotein ratio: Potential predictor of severity and outcome in patients with acute ischemic stroke. Brain Res 2024; 1833:148883. [PMID: 38521161 DOI: 10.1016/j.brainres.2024.148883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
OBJECTIVE As a new marker of inflammation and lipid metabolism, the ratio of myeloperoxidase to high density lipoprotein (MPO/HDL) has been reported in the field of cardiovascular disease. However, the effect of MPO/HDL on acute ischemic stroke (AIS) is not clear. The purpose of this study was to explore the prognostic value of MPO/HDL level in patients with AIS. METHODS This study conducted a retrospective analysis of 363 patients diagnosed with AIS. Stroke severity was assessed by National Institutes of Health Stroke Scale (NIHSS). The short-term functional outcome was evaluated with modified Rankin Scale (mRS) 90 days after admission. Spearman correlation analysis was used to evaluate the correlation between MPO/HDL and NIHSS scores. The predictive value of MPO, HDL and MPO/HDL to AIS was evaluated by receiver operating characteristic curve (ROC). RESULTS The level of MPO/HDL in patients with NIHSS score ≥ 4 was significantly higher than that in patients with NIHSS score < 4 (P < 0.001). MPO and MPO/HDL were positively correlated with NIHSS score (P < 0.001), while HDL was negatively correlated with NIHSS score (P < 0.001). During 90-day follow-up, multivariate Logistic regression analysis showed that increased MPO/HDL levels were associated with 90-day functional outcomes. ROC showed that compared with MPO and HDL, MPO/HDL had the highest predictive value for 90-day functional prognosis in patients with AIS (AUC = 0.9825). CONCLUSION The level of serum MPO/HDL may be potential prognostic biomarker in AIS 90 days.
Collapse
Affiliation(s)
- Penghong Li
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032,China
| | - Cailang Niu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032,China
| | - Xueqing Du
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032,China
| | - Mina Zhao
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032,China
| | - Haobo Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032,China
| | - Debo Yang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032,China
| | - Yuan Li
- Shanxi Cardiovascular Hospital, Taiyuan 030032, China
| | - Wei Jing
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan 030032,China.
| |
Collapse
|
5
|
Kollikowski AM, Pham M, März AG, Feick J, Vogt ML, Xiong Y, Strinitz M, Vollmuth C, Essig F, Neugebauer H, Haeusler KG, Hametner C, Zimmermann L, Stoll G, Schuhmann MK. MMP-9 release into collateral blood vessels before endovascular thrombectomy to assess the risk of major intracerebral haemorrhages and poor outcome for acute ischaemic stroke: a proof-of-concept study. EBioMedicine 2024; 103:105095. [PMID: 38579365 PMCID: PMC11002809 DOI: 10.1016/j.ebiom.2024.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 03/17/2024] [Accepted: 03/17/2024] [Indexed: 04/07/2024] Open
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are implied in blood-brain barrier degradation and haemorrhagic transformation following ischaemic stroke, but their local relevance in the hyperacute disease phase is unknown. We aimed to examine ultra-early MMP-9 and MMP-2 release into collateral blood vessels, and to assess its prognostic value before therapeutic recanalisation by endovascular thrombectomy (EVT). METHODS We report a cross-sectional proof-of-concept study including patients undergoing EVT for large-vessel ischaemic stroke at the University Hospital Würzburg, Germany. We obtained liquid biopsies from the collateral circulation before recanalisation, and systemic control samples. Laboratory workup included quantification of MMP-9 and MMP-2 plasma concentrations by cytometric bead array, immunohistochemical analyses of cellular MMP-9 and MMP-2 expression, and detection of proteolytic activity by gelatine zymography. The clinical impact of MMP concentrations was assessed by stratification according to intracranial haemorrhagic lesions on postinterventional computed tomography (Heidelberg Bleeding Classification, HBC) and early functional outcome (modified Rankin Scale, mRS). We used multivariable logistic regression, receiver-operating-characteristic (ROC) curves, and fixed-level estimates of test accuracy measures to study the prognostic value of MMP-9 concentrations. FINDINGS Between August 3, 2018, and September 16, 2021, 264 matched samples from 132 patients (86 [65.2%] women, 46 [34.8%] men, aged 40-94 years) were obtained. Median (interquartile range, IQR) MMP-9 (279.7 [IQR 126.4-569.6] vs 441 [IQR 223.4-731.5] ng/ml, p < 0.0001) but not MMP-2 concentrations were increased within collateral blood vessels. The median MMP-9 expression level of invading neutrophils was elevated (fluorescence intensity, arbitrary unit: 2276 [IQR 1007-5086] vs 3078 [IQR 1108-7963], p = 0.0018). Gelatine zymography experiments indicated the locally confined proteolytic activity of MMP-9 but not of MMP-2. Pretherapeutic MMP-9 release into stroke-affected brain regions predicted the degree of intracerebral haemorrhages and clinical stroke severity after recanalisation, and independently increased the odds of space-occupying parenchymal haematomas (HBC1c-3a) by 1.54 times, and the odds of severe disability or death (mRS ≥5 at hospital discharge) by 2.33 times per 1000 ng/ml increase. Excessive concentrations of MMP-9 indicated impending parenchymal haematomas and severe disability or death with high specificity. INTERPRETATION Measurement of MMP-9 within collateral blood vessels is feasible and identifies patients with stroke at risk of major intracerebral haemorrhages and poor outcome before therapeutic recanalisation by EVT, thereby providing evidence of the concept validity of ultra-early local stroke biomarkers. FUNDING This work was funded by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) and the Interdisciplinary Centre for Clinical Research (IZKF) at the University of Würzburg.
Collapse
Affiliation(s)
| | - Mirko Pham
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany.
| | - Alexander G März
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany.
| | - Jörn Feick
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany; Department of Radiology, University Hospital Würzburg, Würzburg, Germany.
| | - Marius L Vogt
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany.
| | - Yanyan Xiong
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany.
| | - Marc Strinitz
- Department of Neuroradiology, University Hospital Würzburg, Würzburg, Germany; Department of Neuroradiology, Rechts der Isar Hospital, Technical University Munich, Munich, Germany.
| | - Christoph Vollmuth
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
| | - Fabian Essig
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
| | - Hermann Neugebauer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
| | | | - Christian Hametner
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
| | - Lena Zimmermann
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany.
| | - Guido Stoll
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany; Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany.
| | | |
Collapse
|
6
|
Luo Y, Zhao J. The dynamic changes of peripheral blood cell counts predict the clinical outcomes of aneurysmal subarachnoid hemorrhage. Heliyon 2024; 10:e29763. [PMID: 38681624 PMCID: PMC11053216 DOI: 10.1016/j.heliyon.2024.e29763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (aSAH) is a serious type of hemorrhagic stroke. It is very important to predict the prognosis at early phase. In this work, we intend to characterize early changes in peripheral blood cells after aSAH and explore the association between peripheral blood cells and clinical outcomes after aSAH. Methods aSAH patients admitted between December 2019 and September 2022 were enrolled. A retrospective observational study was performed. Total leukocytes, monocytes, neutrophils, erythrocytes, lymphocytes and platelets counts were recorded on the day of admission (day 1), day 3, day 5 and day 7. Statistical tests included Chi-square test, analysis of variance and multivariate logistic regression (MLR) models. 197 patients were analyzed. Results Leukocytes and neutrophils were higher in poor outcome groups from day 1 to day 7 and in delayed cerebral ischemia (DCI) groups from day 3 to day 7. Lymphocytes were higher at day 5 and day 7 in good outcome groups and no DCI groups. Neutrophil-to-lymphocyte ratio (NLR) was lower from day 3 to day 7 in good outcome groups and no DCI groups. Erythrocytes were higher from day 3 to day 7 in good outcome groups and no DCI groups. Lymphocytes were negatively related to poor outcomes on day 1 (OR = 0.457), indicating higher lymphocytes predicted good outcomes, Neutrophils were positively related to poor outcomes on day 3 (OR = 3.003) indicating higher neutrophils predicted poor outcomes. Lymphocytes were negatively related to DCI on day 5 (OR = 0.388) indicating higher lymphocytes predicted no DCI, Erythrocytes were negatively related to DCI on day 5 (OR = 0.335) and day 7 (OR = 0.204) indicating higher erythrocytes predicted no DCI. The improved ability of neutrophils, lymphocytes and erythrocytes to predict DCI or poor functional outcomes were revealed by ROC curve analysis. Conclusions The dynamic changes of peripheral blood cell counts were related to poor functional outcomes and DCI after aSAH. Elevated neutrophils, leukocytes, NLR, and decreased lymphocytes, erythrocytes were accompanied by DCI and poor outcome. Neutrophils, lymphocytes and erythrocytes counts could be beneficial to predict DCI and outcomes after aSAH.
Collapse
Affiliation(s)
- Yi Luo
- Department of Neurology, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
- Department of Stroke Center, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
| | - Jian Zhao
- Department of Neurosurgery, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
- Department of Stroke Center, The First People's Hospital of Jing Zhou, The First Affiliated Hospital of Yangtze University, Jing zhou, 434000, China
| |
Collapse
|
7
|
Misirlioglu NF, Uzun N, Ozen GD, Çalik M, Altinbilek E, Sutasir N, Baykara Sayili S, Uzun H. The Relationship between Neutrophil-Lymphocyte Ratios with Nutritional Status, Risk of Nutritional Indices, Prognostic Nutritional Indices and Morbidity in Patients with Ischemic Stroke. Nutrients 2024; 16:1225. [PMID: 38674915 PMCID: PMC11054104 DOI: 10.3390/nu16081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Background: In recent years, whole blood parameters and derivatives have been used as prognostic criteria in the course of various diseases. The aim of this study was to evaluate the relationship between parameters such as the neutrophil-lymphocyte ratio (NLR), the systemic immune-inflammation index (SII), the prognostic nutritional index (PNI), controlling nutritional status (CONUT) score, nutritional risk index (NRI) and immunonutrition status and disease activity in patients with ischemic stroke of the small-vessel, large-vessel and other etiologies. Methods: We retrospectively evaluated the records of 1454 consecutive ischemic stroke patients hospitalized in the emergency department of Gaziosmanpasa Education and Research Hospital from 2019 to 2023. Results: Of the 1350 patients with ischemic stroke included in the study, 58.8% had small-vessel disease, 29.3% had large-vessel disease and 11.9% had other etiologies. There was a significant difference between the three etiology groups for PNI and CONUT. The mean of PNI was 47.30 ± 8.06 in the other etiology group, 37.25 ± 7.23 in the small-vessel group, and 34.78 ± 8.16 in the large-vessel disease group. The mean of CONUT was 5.49 ± 1.20 in the small-vessel group, 5.12 ± 1.46 in the large-vessel group and 4.22 ± 1.11 in the other etiology group. In addition, CONUT and PNI were also found to be independent risk factors for mortality. A negative significant correlation was observed between PNI and NLR (r: -0.692), SII (r: -0.591), and CONUT (r: -0.511). Significant correlations were observed between CONUT and NLR (r: 0.402), SII (r: 0.312). Conclusions: PNI, CONUT and NRI were found as more accurate prognostic indicators of nutritional status in patients with ischemic stroke. NLR and SII may be important predictive markers in the course and prognosis of stroke.
Collapse
Affiliation(s)
- Naile Fevziye Misirlioglu
- Department of Biochemistry, Gaziosmanpaşa Training and Research Hospital, University of Health Sciences, Istanbul 34098, Turkey;
| | - Nedim Uzun
- Department of Emergency, Gaziosmanpaşa Training and Research Hospital, University of Health Sciences, Istanbul 34098, Turkey; (N.U.); (M.Ç.)
| | - Gulenay Defne Ozen
- Department of Psychology, McGill University, Montreal, QC H3A 1G1, Canada;
| | - Mustafa Çalik
- Department of Emergency, Gaziosmanpaşa Training and Research Hospital, University of Health Sciences, Istanbul 34098, Turkey; (N.U.); (M.Ç.)
| | - Ertugrul Altinbilek
- Department of Emergency, Sisli Hamidiye Etfal Education and Research Hospital, University of Health Sciences, Istanbul 34098, Turkey; (E.A.); (N.S.)
| | - Necmettin Sutasir
- Department of Emergency, Sisli Hamidiye Etfal Education and Research Hospital, University of Health Sciences, Istanbul 34098, Turkey; (E.A.); (N.S.)
| | - Sena Baykara Sayili
- Emergency Department, Istanbul Training and Research Hospital, Istanbul 34075, Turkey;
| | - Hafize Uzun
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Atlas University, Istanbul 34403, Turkey
| |
Collapse
|
8
|
Maïer B, Di Meglio L, Desilles JP, Solo Nomenjanahary M, Delvoye F, Kyheng M, Boursin P, Ollivier V, Dupont S, Rambaud T, Hamdani M, Labreuche J, Blanc R, Piotin M, Halimi JM, Mazighi M, Ho-Tin-Noe B. Neutrophil activation in patients treated with endovascular therapy is associated with unfavorable outcomes and mitigated by intravenous thrombolysis. J Neurointerv Surg 2024; 16:131-137. [PMID: 37068937 DOI: 10.1136/jnis-2022-020020] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/25/2023] [Indexed: 04/19/2023]
Abstract
BACKGROUND Accumulating evidence indicates that neutrophil activation (NA) contributes to microvascular thromboinflammation in acute ischemic stroke (AIS) due to a large vessel occlusion. Preclinical data have suggested that intravenous thrombolysis (IVT) before endovascular therapy (EVT) could dampen microvascular thromboinflammation. In this study we investigated the association between NA dynamics and stroke outcome, and the impact of IVT on NA in patients with AIS treated with EVT. METHODS A single-center prospective study was carried out, including patients treated with EVT for whom three blood samples (before, within 1 hour, 24 hours post-EVT) were drawn to measure plasma myeloperoxidase (MPO) concentration as a marker of NA. Unfavorable outcome was defined as a modified Rankin score of 3-6 at 3 months. RESULTS Between 2016 and 2020, 179 patients were included. The plasma MPO concentration peaked significantly 1 hour post-EVT (median increase 21.0 ng/mL (IQR -2.1-150)) and returned to pre-EVT baseline values 24 hours after EVT (median change from baseline -0.8 ng/mL (IQR -7.6-6.7)). This peak was strongly associated with unfavorable outcomes at 3 months (aOR 0.53 (95% CI 0.34 to 0.84), P=0.007). IVT before EVT abolished this 1 hour post-EVT MPO peak. Changes in plasma MPO concentration (baseline to 1 hour post-EVT) were associated with unfavorable outcomes only in patients not treated with IVT before EVT (aOR 0.54 (95% CI 0.33 to 0.88, P=0.013). However, we found no significant heterogeneity in the associations between changes in plasma MPO concentration and outcomes. CONCLUSIONS A peak in plasma MPO concentration occurs early after EVT and is associated with unfavorable outcomes. IVT abolished the post-EVT MPO peak and may modulate the association between NA and outcomes.
Collapse
Affiliation(s)
- Benjamin Maïer
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
- Neurology Department, Hôpital Saint-Joseph, Paris, France
- FHU NeuroVasc, Paris, France
| | - Lucas Di Meglio
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - Jean-Philippe Desilles
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
- FHU NeuroVasc, Paris, France
| | - Mialitiana Solo Nomenjanahary
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - François Delvoye
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Maeva Kyheng
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Perrine Boursin
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Véronique Ollivier
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - Sébastien Dupont
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - Thomas Rambaud
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| | - Mylène Hamdani
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | | | - Raphaël Blanc
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Michel Piotin
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
| | - Jean-Michel Halimi
- Nephrology Department, Tours Hospital, Tours, France
- EA4245-Transplantation, Immunology and Inflammation, University of Tours, Tours, France
| | - Mikaël Mazighi
- Interventional Neuroradiology Department, Fondation Rothschild Hospital, Paris, France
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
- FHU NeuroVasc, Paris, France
- Department of Neurology, Lariboisiere Hospital, Université Paris Cité, Paris, France
| | - Benoit Ho-Tin-Noe
- UMRS-1144, Optimisation Thérapeutique en Neuropsychopharmacologie, F-75006 Paris, France, Université de Paris Cité, Inserm, Paris, France
| |
Collapse
|
9
|
Wang G, Li Z, Lin P, Zhang H, Wang Y, Zhang T, Wang H, Li H, Lin L, Zhao Y, Jia L, Chen Y, Ji H, Zhao W, Fu Z, Zhong Z. Knockdown of Smox protects the integrity of the blood-brain barrier through antioxidant effect and Nrf2 pathway activation in stroke. Int Immunopharmacol 2024; 126:111183. [PMID: 37984250 DOI: 10.1016/j.intimp.2023.111183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
Once an ischemic stroke occurs, reactive oxygen species (ROS) and oxidative stress degrade the tight connections between cerebral endothelial cells resulting in their damage. The expression of antioxidant genes may be enhanced, and ROS formation may be reduced following Nrf2 activation, which is associated with protection against ischemic stroke. Overexpression of spermine oxidase (Smox) in the neocortex led to increased H2O2 production. However, how Smox impacts the regulation of the blood-brain barrier (BBB) through antioxidants has not been examined yet. We conducted experiments both in the cell level and in the transient middle cerebral artery occlusion (tMCAO) model to evaluate the effect of Smox siRNA lentivirus (si-Smox) knockdown on BBB protection against ischemic stroke. Mice treated with si-Smox showed remarkably decreased BBB breakdown and reduced endothelial inflammation following stroke. The treatment with si-Smox significantly elevated the Bcl-2 to Bax ratio and decreased the production of cleaved caspase-3 in the tMCAO model. Further investigation revealed that the neuroprotective effect was the result of the antioxidant properties of si-Smox, which reduced oxidative stress and enhanced CD31+ cells in the peri-infarct cortical areas. Of significance, si-Smox activated Nrf2 in both bEnd.3 cells and tMCAO animals, and blocking Nrf2 with brusatol diminished the protective effects of si-Smox. The study findings suggest that si-Smox exerts neuroprotective effects and promotes angiogenesis by activating the Nrf2 pathway, thus decreasing oxidative stress and apoptosis caused by tMCAO. As a result, si-Smox may hold potential as a therapeutic candidate for preserving BBB integrity while treating ischemic stroke.
Collapse
Affiliation(s)
- Guangtian Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhihui Li
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, China
| | - Peng Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Huishu Zhang
- Teaching Center of Biotechnology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yanyan Wang
- Teaching Center of Morphology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Tongshuai Zhang
- Department of Neurobiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hui Wang
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Heming Li
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lexun Lin
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yuehui Zhao
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Lina Jia
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yang Chen
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hong Ji
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Wenran Zhao
- Department of Cell Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Zhongqiu Fu
- Department of Neonatology, Zhuhai Women and Children's Hospital, Zhuhai, Guangdong 519000, China.
| | - Zhaohua Zhong
- Teaching Center of Pathogenic Biology, School of Basic Medical Sciences, Harbin Medical University, Harbin, Heilongjiang 150081, China.
| |
Collapse
|
10
|
Fan G, Liu M, Liu J, Huang Y, Mu W. Traditional Chinese medicines treat ischemic stroke and their main bioactive constituents and mechanisms. Phytother Res 2024; 38:411-453. [PMID: 38051175 DOI: 10.1002/ptr.8033] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 09/12/2023] [Accepted: 09/24/2023] [Indexed: 12/07/2023]
Abstract
Ischemic stroke (IS) remains one of the leading causes of death and disability in humans. Unfortunately, none of the treatments effectively provide functional benefits to patients with IS, although many do so by targeting different aspects of the ischemic cascade response. The advantages of traditional Chinese medicine (TCM) in preventing and treating IS are obvious in terms of early treatment and global coordination. The efficacy of TCM and its bioactive constituents has been scientifically proven over the past decades. Based on clinical trials, this article provides a review of commonly used TCM patent medicines and herbal decoctions indicated for IS. In addition, this paper also reviews the mechanisms of bioactive constituents in TCM for the treatment of IS in recent years, both domestically and internationally. A comprehensive review of preclinical and clinical studies will hopefully provide new ideas to address the threat of IS.
Collapse
Affiliation(s)
- Genhao Fan
- Tianjin University of Chinese Medicine, Tianjin, China
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Wei Mu
- Clinical Pharmacology Department, Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
11
|
Chen X, Xu X, Li Y, Liu F, Zhang B, Zuo L. Association between fibrinogen-to-albumin ratio and functional prognosis of 3 months in patients with acute ischemic stroke after intravenous thrombolysis. Brain Behav 2024; 14:e3364. [PMID: 38376013 PMCID: PMC10757894 DOI: 10.1002/brb3.3364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
BACKGROUND The presence of high fibrinogen and low albumin levels in serum is associated with a negative prognosis in acute ischemic stroke (AIS). Fibrinogen-to-albumin ratio (FAR), a new inflammatory biomarker, may provide better prognostic insights in patients with AIS than separate evaluation of fibrinogen or albumin. The objective of this investigation is to examine the correlation between FAR and 3-month functional prognosis after intravenous thrombolysis (IVT) in AIS patients. METHODS The retrospective study recruited AIS patients who received IVT from June 2014 to December 2021. The 3-month functional prognosis was assessed using the Modified Rankin Scale (mRS). A mRS score of ≤2 indicated a good outcome, whereas a mRS score of >2 suggested a poor outcome. RESULTS A total of 591 AIS patients who underwent IVT were included and 147 patients (24.9 %) had a poor outcome. Among the 102 pairs of patients after propensity score matching, there was a significant association between FAR and 3-month prognosis (adjusted OR, 1.19; 95% CI, 1.03-1.38; p = .020). The optimal FAR cutoff value was found to be 7.57, and even after stratifying patients based on this value, we still observed a significant correlation between high FAR level and poor outcome (adjusted OR, 2.08; 95% CI, 1.28-3.40; p = .003). CONCLUSIONS FAR may serve as a prospective biomarker of predicting 3-month prognosis in AIS patients after IVT.
Collapse
Affiliation(s)
- Xinxin Chen
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Xiahong Xu
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Ying Li
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Feifeng Liu
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Bei Zhang
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| | - Lian Zuo
- Department of NeurologySchool of MedicineShanghai East HospitalTongji UniversityShanghaiChina
| |
Collapse
|
12
|
Zhang A, Liu Y, Wang X, Xu H, Fang C, Yuan L, Wang K, Zheng J, Qi Y, Chen S, Zhang J, Shao A. Clinical Potential of Immunotherapies in Subarachnoid Hemorrhage Treatment: Mechanistic Dissection of Innate and Adaptive Immune Responses. Aging Dis 2023; 14:1533-1554. [PMID: 37196120 PMCID: PMC10529760 DOI: 10.14336/ad.2023.0126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/26/2023] [Indexed: 05/19/2023] Open
Abstract
Subarachnoid hemorrhage (SAH), classified as a medical emergency, is a devastating and severe subtype of stroke. SAH induces an immune response, which further triggers brain injury; however, the underlying mechanisms need to be further elucidated. The current research is predominantly focused on the production of specific subtypes of immune cells, especially innate immune cells, post-SAH onset. Increasing evidence suggests the critical role of immune responses in SAH pathophysiology; however, studies on the role and clinical significance of adaptive immunity post-SAH are limited. In this present study, we briefly review the mechanistic dissection of innate and adaptive immune responses post-SAH. Additionally, we summarized the experimental studies and clinical trials of immunotherapies for SAH treatment, which may form the basis for the development of improved therapeutic approaches for the clinical management of SAH in the future.
Collapse
Affiliation(s)
- Anke Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yibo Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Xiaoyu Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Houshi Xu
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Chaoyou Fang
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Yuan
- Department of Neurosurgery, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - KaiKai Wang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jingwei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Yangjian Qi
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Jianmin Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
- Clinical Research Center for Neurological Diseases of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
13
|
Senat A, Ilker Yon M, Yuce G, Deniz O, Erel O. High-density lipoprotein dysfunction in carotid artery stenosis. VASA 2023; 52:342-348. [PMID: 37622201 DOI: 10.1024/0301-1526/a001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Background: High density lipoprotein (HDL) is well established to have an athero-protective role under normal conditions; however, pro-inflammatory alteration of HDL proteins may transform the HDL particle into a dysfunctional molecule. Our aim was to investigate HDL dysfunction by measuring enzyme-based markers in carotid artery stenosis (CAS). Patients and methods: All participants underwent duplex ultrasound and 52 subjects diagnosed with CAS and 51 subjects who had no significant stenosis (as controls) were enrolled in this study. Serum lipid profiles and serum parameters associated with dysfunctional HDL including myeloperoxidase (MPO), paraoxonase 1 (PON1), arylesterase (ARE) activity, and lipid hydroperoxide (LOOH) levels were measured. Results: It was found that the patients with CAS had increased levels of MPO and LOOH while PON1 activity was decreased. There was no significant difference between the CAS and non-CAS groups in terms of HDL levels. MPO/PON1, MPO/ARE, and LOOH/PON1 ratios were significantly increased in the CAS group. MPO/PON1 and MPO/ARE ratios both demonstrated significant correlations with degree of stenosis (%). Conclusions: The MPO/PON1 and MPO/ARE ratios may be potential serum markers that can enable the monitoring of HDL functionality and the assessment of atherosclerotic disease risks. Additionally, monitoring the oxidative balance of lipids on HDL molecules by LOOH/PON1 ratio may have value in the early detection of pro-atherosclerotic transformation of the HDL particle.
Collapse
Affiliation(s)
- Almila Senat
- Department of Biochemistry, Ankara Yıldırım Beyazit University Faculty of Medicine Ankara City Hospital, Turkey
| | - Mehmet Ilker Yon
- Department of Neurology, Ankara Yıldırım Beyazit University Faculty of Medicine, Ankara City Hospital, Turkey
| | - Gokhan Yuce
- Department of Radiology, Ankara City Hospital, Turkey
| | - Orhan Deniz
- Department of Neurology, Ankara Yıldırım Beyazit University Faculty of Medicine, Ankara City Hospital, Turkey
| | - Ozcan Erel
- Department of Biochemistry, Ankara Yıldırım Beyazit University Faculty of Medicine Ankara City Hospital, Turkey
| |
Collapse
|
14
|
Wang X, Zhang S, Zhang Z, Zu J, Shi H, Yu L, Lv B, Cui L, Mao W, Wu D, Cui G. Increased plasma levels of circPTP4A2 and circTLK2 are associated with stroke injury. Ann Clin Transl Neurol 2023; 10:1481-1492. [PMID: 37350305 PMCID: PMC10424654 DOI: 10.1002/acn3.51837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/25/2023] [Accepted: 06/10/2023] [Indexed: 06/24/2023] Open
Abstract
OBJECTIVE Accumulating studies have shown that circulating circular RNAs (circRNAs) represent novel biomarkers for many human diseases. We investigated whether plasma circPTP4A2 and circTLK2 levels are associated with stroke severity, infarct volume, stroke etiology, and functional outcome in acute ischemic stroke (AIS) patients. METHODS We applied quantitative real-time PCR (qPCR) to measure plasma circPTP4A2 and circTLK2 levels of 236 AIS patients within 72 h of symptoms onset and 136 healthy controls. We further assessed the National Institutes of Health Stroke Scale (NIHSS), infarct size, the Trial of Org 10172 in Acute Stroke Treatment (TOAST) classification and the 90-day modified Rankin scale (mRS) for each patient. RESULTS At admission, plasma circPTP4A2 and circTLK2 levels in patients with moderate to severe stroke were significantly higher compared to those with mild stroke. Logistic regression and receiver-operating characteristic (ROC) curve analyses indicated that they might function as predictive biomarkers for moderate to severe stroke. We also observed a medium positive correlation between these two circRNAs and NIHSS. Plasma circPTP4A2 and circTLK2 levels were slight positively correlated with cerebral infarct volume only in anterior circulation infarction (ACI) patients. Levels of both circPTP4A2 and circTLK2 were closely related with large artery atherosclerosis (LAA) stroke. Moreover, changes within 7 days after admission in circPTP4A2 and circTLK2 were able to predict unfavorable clinical outcome 90 days after AIS. INTERPRETATION These results demonstrate that plasma circPTP4A2 and circTLK2 strongly correlated with severity, subtypes and prognosis of AIS, and they could serve as promising biomarkers.
Collapse
Affiliation(s)
- Xingzhi Wang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular BiologyXuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Shenyang Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
- School of MedicineSoutheast UniversityNanjingJiangsuChina
| | - Zuohui Zhang
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Jie Zu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Hongjuan Shi
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Lu Yu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Bingchen Lv
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Likun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Wenqi Mao
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Di Wu
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| | - Guiyun Cui
- Department of NeurologyThe Affiliated Hospital of Xuzhou Medical UniversityXuzhouJiangsuChina
- Institute of Stroke ResearchXuzhou Medical UniversityXuzhouJiangsuChina
| |
Collapse
|
15
|
Dhanesha N, Ansari J, Pandey N, Kaur H, Virk C, Stokes KY. Poststroke venous thromboembolism and neutrophil activation: an illustrated review. Res Pract Thromb Haemost 2023; 7:100170. [PMID: 37274177 PMCID: PMC10236222 DOI: 10.1016/j.rpth.2023.100170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 06/06/2023] Open
Abstract
Patients with acute ischemic stroke are at a high risk of venous thromboembolism (VTE), such as deep vein thrombosis (DVT), estimated to affect approximately 80,000 patients with stroke each year in the United States. The prevalence of symptomatic DVT after acute stroke is approximately 10%. VTE is associated with increased rates of in-hospital death and disability, with higher prevalence of in-hospital complications and increased 1-year mortality in patients with stroke. Current guidelines recommend the use of pharmacologic VTE prophylaxis in patients with acute ischemic stroke. However, thromboprophylaxis prevents only half of expected VTE events and is associated with high risk of bleeding, suggesting the need for targeted alternative treatments to reduce VTE risk in these patients. Neutrophils are among the first cells in blood to respond after ischemic stroke. Importantly, coordinated interactions among neutrophils, platelets, and endothelial cells contribute to the development of DVT. In case of stroke and other related immune disorders, such as antiphospholipid syndrome, neutrophils potentiate thrombus propagation through the formation of neutrophil-platelet aggregates, secreting inflammatory mediators, complement activation, releasing tissue factor, and producing neutrophil extracellular traps. In this illustrated review article, we present epidemiology and management of poststroke VTE, preclinical and clinical evidence of neutrophil hyperactivation in stroke, and mechanisms for neutrophil-mediated VTE in the context of stroke. Given the hyperactivation of circulating neutrophils in patients with stroke, we propose that a better understanding of molecular mechanisms leading to neutrophil activation may result in the development of novel therapeutics to reduce the risk of VTE in this patient population.
Collapse
Affiliation(s)
- Nirav Dhanesha
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Junaid Ansari
- Department of Neurology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Nilesh Pandey
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Harpreet Kaur
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Chiranjiv Virk
- Division of Vascular Surgery and Endovascular Surgery, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| | - Karen Y. Stokes
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, USA
| |
Collapse
|
16
|
Tang N, Gong XR, Huang H, Meng Q. Activated neutrophil-derived exosomes contribute to blood-brain barrier damage and hemorrhagic transformation after cerebral ischemia/reperfusion. Brain Res 2023; 1810:148374. [PMID: 37116559 DOI: 10.1016/j.brainres.2023.148374] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
BACKGROUND Hemorrhagic transformation (HT) caused by blood-brain barrier (BBB) damage is closely correlated with the poor prognosis of ischemic stroke. Neutrophils are proven to mediate BBB injury after ischemic stroke, but the mechanism remains to be further investigated. Therefore, the present study aims to investigate the effect of neutrophil-derived exosomes on BBB integrity. METHOD A tMCAO-HT model was constructed to assess neutrophil infiltration and its co-localization with brain microvascular endothelial cells (BMEC). After using quiet (Q-Neu) and activated neutrophil (A-Neu) and their exosomes to treat the BBB model in vitro, TEER and permeability were assayed to assess the BBB integrity. Small RNA sequencing was performed to identify differentially expressed miRNAs (DE-miRNAs) in A-Neu- and Q-Neu-derived exosomes, and the function and pathways of DE-miRNA targets were analyzed by GO and KEGG enrichment. RESULT Different degrees of cerebral hemorrhage were observed in the tMCAO-HT model. The expression of the neutrophil marker Ly6G was significantly increased in tMCAO-HT model compared to the sham group, and co-localized with the BMEC marker CD31. Notably, Ly6G expression was positively correlated with hemoglobin content in brain tissue. A-Neu and its derived exosomes reduced TEER and elevated permeability in the BBB model in vitro. Moreover, BBB-related proteins Claudin 5, Occludin and ZO-1 expression were significantly reduced in BMEC after treatment with A-Neu and its derived exosomes. Nevertheless, Q-Neu and its exosomes had no significant effect on BBB integrity. A total of 84 DE-miRNAs are present in Q-Neu- and A-Neu-derived exosomes, and their target genes are involved in the regulation of "positive regulation of establishment of endothelial barrier", "cell junction", "ECM-receptor interaction" and "VEGF signaling pathway". Moreover, RT-qPCR revealed that the expression trends of miR-409-3p, miR-6909-5p, miR-3473d, miR-370-3p and miR-6904-5p in exosomes were consistent with the sequencing results. CONCLUSION Neutrophils are abnormally recruited in HT after ischemic stroke, and are associated with cerebral hemorrhage. In vitro, A-Neu-derived exosomes facilitate BBB injury, which may be accomplished by exosomal transport of miRNAs.
Collapse
Affiliation(s)
- Ning Tang
- Faculty of Life science and Technology, Kunming University of Science and Technology, Kunming, 650051, Yunnan, P. R. China; Department of Neurology, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, P. R. China
| | - Xia-Rong Gong
- Department of magnetic resonance, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, P. R. China
| | - Hong Huang
- Department of Geriatric Medicine, The First People' s Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, P. R. China
| | - Qiang Meng
- Department of Neurology, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, P. R. China.
| |
Collapse
|
17
|
Li B, Zhang B, Li Z, Li S, Li J, Wang A, Hou J, Xu J, Zhang R. Ginkgolide C attenuates cerebral ischemia/reperfusion-induced inflammatory impairments by suppressing CD40/NF-κB pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 312:116537. [PMID: 37094696 DOI: 10.1016/j.jep.2023.116537] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/06/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ginkgo biloba L. (Ginkgoaceae), a traditional Chinese medicine, has been applied for thousands of years for the treatment of cardio-cerebral vascular diseases in China. It is written in Compendium of Materia Medica that Ginkgo has the property of "dispersing poison", which is now referred to as anti-inflammatory and antioxidant. Ginkgolides are important active ingredients in Ginkgo biloba leaves and ginkgolide injection has been frequently applied in clinical practice for the treatment of ischemic stroke. However, few studies have explored the effect and mechanism of ginkgolide C (GC) with anti-inflammatory activity in cerebral ischemia/reperfusion injury (CI/RI). AIM OF THE STUDY The present study aimed to demonstrate whether GC was capable of attenuating CI/RI. Furthermore, the anti-inflammatory effect of GC in CI/RI was explored around the CD40/NF-κB pathway. MATERIALS AND METHODS In vivo, middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in rats. The neuroprotective effect of GC was assessed by neurological scores, cerebral infarct rate, microvessel ultrastructure, blood-brain barrier (BBB) integrity, brain edema, neutrophil infiltration, and levels of TNF-α, IL-1β, IL-6, ICAM-1, VCAM-1, and iNOS. In vitro, rat brain microvessel endothelial cells (rBMECs) were preincubated in GC before hypoxia/reoxygenation (H/R) culture. The cell viability, levels of CD40, ICAM-1, MMP-9, TNF-α, IL-1β, and IL-6, and activation of NF-κB pathway were examined. In addition, the anti-inflammatory effect of GC was also investigated by silencing CD40 gene in rBMECs. RESULTS GC attenuated CI/RI as demonstrated by decreasing neurological scores, reducing cerebral infarct rate, improving microvessel ultrastructural features, ameliorating BBB disruption, attenuating brain edema, inhibiting MPO activity, and downregulating levels of TNF-α, IL-1β, IL-6, ICAM-1, VCAM-1, and iNOS. Coherently, in rBMECs exposed to H/R GC enhanced cell viability and downregulated levels of ICAM-1, MMP-9, TNF-α, IL-1β, and IL-6. Furthermore, GC suppressed CD40 overexpression and hindered translocation of NF-κB p65 from the cytosol to the nucleus, phosphorylation of IκB-α, and activation of IKK-β in H/R rBMECs. However, GC failed to protect rBMECs from H/R-induced inflammatory impairments and suppress activation of NF-κB pathway when CD40 gene was silenced. CONCLUSIONS GC attenuates cerebral ischemia/reperfusion-induced inflammatory impairments by suppressing CD40/NF-κB pathway, which may provide an available therapeutic drug for CI/RI.
Collapse
Affiliation(s)
- Bin Li
- Graduate Department, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China; Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Baoke Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Zhenyu Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shasha Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jun Li
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Aiwu Wang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jinling Hou
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Jiping Xu
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Rui Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
| |
Collapse
|
18
|
Liao JS, Guo C, Zhang B, Yang J, Zi W, Li JL. Low neutrophil-to-lymphocyte and platelet-to-lymphocyte ratios predict favorable outcomes after endovascular treatment in acute basilar artery occlusion: subgroup analysis of the BASILAR registry. BMC Neurol 2023; 23:113. [PMID: 36941577 PMCID: PMC10026508 DOI: 10.1186/s12883-023-03161-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Recently, the BAOCHE trial and ATTENTION trial registry have demonstrated the efficacy of endovascular treatment (EVT) in patients with acute basilar artery occlusion (BAO), however, the proportion of patients with favorable post-EVT outcomes remains low. The present study aimed to investigate the individual and joint prognostic values of the neutrophil-to-lymphocyte ratio (NLR) and platelet-to-lymphocyte ratio (PLR) in patients with acute BAO who have undergone EVT. METHODS We enrolled patients who underwent EVT from the BASILAR registry. Patients were divided into the following groups based on their modified Rankin Scale (mRS) scores at 90 days: favorable-outcome (mRS score: 0-3) and poor-outcome (mRS score: 4-6) groups. Multivariable logistic regression was performed to analyze the association of NLR and PLR with favorable post-EVT outcomes. RESULTS In total, 585 patients with EVT were recruited. Of these, 189 and 396 patients were in the favorable-outcome and poor-outcome groups, respectively. According to the multivariable logistic regression analyses, both NLR (adjusted odds ratio [aOR], 0.950; 95% confidence interval [CI], 0.920-0.981; P = 0.002) and PLR (aOR, 0.997; 95% CI, 0.995-0.999; P = 0.002) were related to favorable post-EVT outcomes in patients with acute BAO. The optimal cutoff values for the NLR and PLR were 7.75 and 191, respectively. Furthermore, stratified analysis using the multivariable logistic regression model revealed that both NLR and PLR (NLR values ≥ 7.75 and PLR values ≥ 191) were associated with a low rate of favorable outcomes (aOR, 0.292; 95% CI, 0.173-0.494; P < 0.001). CONCLUSIONS Low NLR and PLR were both associated with favorable post-EVT outcomes in patients with acute BAO. Furthermore, the combined value of both inflammatory markers is potentially reliable in predicting clinical post-EVT outcomes.
Collapse
Affiliation(s)
- Jia Sheng Liao
- Department of Neurology, The Affiliated Hospital of SouthWest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou City, 646000, China
| | - Changwei Guo
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Bo Zhang
- Department of Cerebrovascular Diseases, Suining First People's Hospital, Suining, 629000, China
| | - Jie Yang
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Wenjie Zi
- Department of Neurology, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University (Third Military Medical University), Chongqing, 400037, China
| | - Jing Lun Li
- Department of Neurology, The Affiliated Hospital of SouthWest Medical University, No. 25, Taiping Street, Jiangyang District, Luzhou City, 646000, China.
| |
Collapse
|
19
|
Li L, Han Z, Wang R, Fan J, Zheng Y, Huang Y, Yang Z, Yan F, Liu P, Zhao H, Ma Q, Luo Y. Association of admission neutrophil serine proteinases levels with the outcomes of acute ischemic stroke: a prospective cohort study. J Neuroinflammation 2023; 20:70. [PMID: 36906528 PMCID: PMC10007819 DOI: 10.1186/s12974-023-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 03/07/2023] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Neutrophil serine proteinases (NSPs), released by activated neutrophils, are key proteins involved in the pathophysiologic processes of stroke. NSPs are also implicated in the process and response of thrombolysis. This study aimed to analyze three NSPs (neutrophil elastase, cathepsin G, and proteinase 3) in relation to acute ischemic stroke (AIS) outcomes and in relation to the outcomes of patients treated with intravenous recombinant tissue plasminogen activator (IV-rtPA). METHODS Among 736 patients prospectively recruited at the stroke center from 2018 to 2019, 342 patients diagnosed with confirmed AIS were included. Plasma neutrophil elastase (NE), cathepsin G (CTSG), and proteinase 3 (PR3) concentrations were measured on admission. The primary endpoint was unfavorable outcome defined as modified Rankin Scale score 3-6 at 3 months, and the secondary endpoints were symptomatic intracerebral hemorrhage (sICH) within 48 h, and mortality within 3 months. In the subgroup of patients who received IV-rtPA, post-thrombolysis early neurological improvement (ENI) (defined as National Institutes of Health Stroke Scale score = 0 or decrease of ≥ 4 within 24 h after thrombolysis) was also included as the secondary endpoint. Univariate and multivariate logistic regression analyses were performed to evaluate the association between NSPs levels and AIS outcomes. RESULTS Higher NE and PR3 plasma levels were associated with the 3-month mortality and 3-month unfavorable outcome. Higher NE plasma levels were also associated with the risk of sICH after AIS. After adjusting for potential confounders, plasma NE level > 229.56 ng/mL (odds ratio [OR] = 4.478 [2.344-8.554]) and PR3 > 388.77 ng/mL (OR = 2.805 [1.504-5.231]) independently predicted the 3-month unfavorable outcome. Regarding rtPA treatment, patients with NE plasma concentration > 177.22 ng/mL (OR = 8.931 [2.330-34.238]) or PR3 > 388.77 ng/mL (OR = 4.275 [1.045-17.491]) were over 4 times more likely to suffer unfavorable outcomes after rtPA treatment. The addition of NE and PR3 to clinical predictors of unfavorable functional outcome after AIS and the outcome after rtPA treatment improved discrimination as well as reclassification (integrated discrimination improvement = 8.2% and 18.1%, continuous net reclassification improvement = 100.0% and 91.8%, respectively). CONCLUSIONS Plasma NE and PR3 are novel and independent predictors of 3-month functional outcomes after AIS. Plasma NE and PR3 also possess predictive value to identify patients with unfavorable outcomes after rtPA treatment. NE is probably an important mediator of the effects of neutrophils on stroke outcomes, which worth further investigation.
Collapse
Affiliation(s)
- Lingzhi Li
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ziping Han
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Rongliang Wang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Junfen Fan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Yangmin Zheng
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yuyou Huang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Ping Liu
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China
| | - Qingfeng Ma
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research and Department of Neurology, Xuanwu Hospital of Capital Medical University, 45 Changchun Street, Beijing, 100053, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Diseases, Beijing, China. .,Beijing Institute for Brain Disorders, Beijing, China.
| |
Collapse
|
20
|
Zhao H, Luan X, Wang Y, Ye Y, Yan F, Li X, Li Y, Li M, Zhang L, Zhao Y, Huang C, Luo Y. Dynamic Detection of Specific Membrane Capacitance and Cytoplasmic Resistance of Neutrophils After Ischemic Stroke. Aging Dis 2023:AD.2023.0127. [PMID: 37163431 PMCID: PMC10389826 DOI: 10.14336/ad.2023.0127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/27/2023] [Indexed: 05/12/2023] Open
Abstract
Peripheral blood is the most readily available resource for stroke patient prognosis, but there is a lack of methods to detect dynamic changes of neutrophils in peripheral blood that can be used in the clinic. Herein, we developed a procedure to characterize dynamic changes of neutrophils based on their electrical properties in rats after transient middle cerebral artery occlusion (MCAO). We characterized the specific membrane capacitance (Csm) and cytoplasmic resistance (σcyto) of approximately 27,600 neutrophils from MCAO rats 24 h after ischemia/reperfusion. We found that the Csm and σcyto of neutrophils in the MCAO group were significantly higher compared to the sham group. Furthermore, we observed a monotonically upward shift in neutrophil Csm in the MCAO group during the four 5-minute test cycles. Our findings suggest that the dynamic changes of cellular electrical properties could reflect neutrophil activity and serve as a prognostic indicator for ischemic stroke in the clinical setting.
Collapse
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xiaofeng Luan
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuqing Wang
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yifei Ye
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Feng Yan
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| | - Yuang Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingxiao Li
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Lingqian Zhang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Yang Zhao
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
| | - Chengjun Huang
- Institute of Microelectronics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Diseases Research, Xuanwu Hospital of Capital Medical University, Beijing, China
- Beijing Geriatric Medical Research Center, Beijing, China
| |
Collapse
|
21
|
Li A, Han T, Li Y, Yang G, Zhang Y, Huang Y, Zhou B, Song G, He Y. Polymorphisms of the Matrix Metalloproteinase Genes are Associated with Acute Ischemic Stroke in Chinese Han Population. Int J Gen Med 2023; 16:619-629. [PMID: 36845343 PMCID: PMC9951599 DOI: 10.2147/ijgm.s395416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/02/2023] [Indexed: 02/22/2023] Open
Abstract
Background and Purpose Studies have shown that matrix metalloproteinase (MMP-2,3,9) plays an important role in the pathologic process of ischemic stroke (IS). The aim of this study was to investigate the relationship between C1306T, 1612-5A/6A, C-1562T polymorphisms of MMP-2,3,9 genes and IS in Chinese Han population. Methods The polymorphisms of MMP-2(C1306T), -3(1612-5A/6A), -9(C-1562T) gene were detected by PCR-RFLP and SNaPshot sequencing. Then, stratified analysis was used to study the relationship between IS subtypes and MMP-2,3,9 polymorphisms. Results For the MMP-2 gene C1306T polymorphism, TT genotype and T allele were significantly associated with a reduced risk of IS (P = 0.015, P = 0.003, respectively). T allele was significantly associated with a reduced risk of small artery occlusion (SAO) subtype compared with the control group (P = 0.012, OR = 0.550, 95% CI = 0.065-1.291). For the MMP-3 gene-1612 (5A/6A) polymorphism, 5A/5A genotype was significantly increased in the IS group (P = 0.011, OR = 0.370, 95% CI = 0.168-0.814), especially in the large-artery atherosclerosis (LAA) subtype (P = 0.001, OR = 2.345) as compared to the control group. Conclusion Our study suggested that the T allele of MMP-2 may be a protective factor of IS, especially in SAO subtype, while the 5A/5A gene of MMP-3 may increase the risk of IS, especially in LAA subtype in Chinese Han population.
Collapse
Affiliation(s)
- Aifan Li
- Department of Neurology, The First People’s Hospital of Zhengzhou, Zhengzhou, 450000, People’s Republic of China
| | - Tianyi Han
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
| | - Yongfang Li
- Department of Neurology, The First People’s Hospital of Zhengzhou, Zhengzhou, 450000, People’s Republic of China
| | - Gaiqing Yang
- Department of Geriatric Medicine, the Center Hospital of Zhengzhou Affiliated Zhengzhou University, Zhengzhou, 450004, People’s Republic of China
| | - Yuchao Zhang
- Department of Genetics, First Affiliated Hospital of Xinxiang Medical College, Xinxiang, 453100, People’s Republic of China
| | - Yanyang Huang
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
| | - Baixue Zhou
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
| | - Guoying Song
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China
| | - Ying He
- Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, People’s Republic of China,Correspondence: Ying He; Guoying Song, Department of Medical Genetics and Cell Biology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, People’s Republic of China, Tel +86-13938517041; +86-13633827880, Email ;
| |
Collapse
|
22
|
Zhang W, Wu Q, Hao S, Chen S. The hallmark and crosstalk of immune cells after intracerebral hemorrhage: Immunotherapy perspectives. Front Neurosci 2023; 16:1117999. [PMID: 36711145 PMCID: PMC9877537 DOI: 10.3389/fnins.2022.1117999] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 12/30/2022] [Indexed: 01/13/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is one of the most dangerous types of strokes with a high morbidity and mortality rate. Currently, the treatment of ICH is not well developed, mainly because its mechanisms are still unclear. Inflammation is one of the main types of secondary injury after ICH and catalyzes the adverse consequences of ICH. A large number of immune cells are involved in neuroinflammation, such as microglia, astrocytes, oligodendrocytes, lymphocytes, macrophages, and neutrophils. Nevertheless, the characteristics and crosstalk of immune cells have not been fully elucidated. In this review, we endeavor to delve into the respective characteristics of immune cells and their interactions in neuroimmune inflammation, and further elucidate favorable immunotherapeutic approaches regarding ICH, and finally present an outlook.
Collapse
Affiliation(s)
- Wenqing Zhang
- School of Medicine, Chongqing University, Chongqing, China,Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Qingyuan Wu
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China,*Correspondence: Shilei Hao,
| | - Shengli Chen
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China,Shengli Chen,
| |
Collapse
|
23
|
Biomarkers predict hemorrhagic transformation and stroke severity after acute ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:106875. [PMID: 36395663 DOI: 10.1016/j.jstrokecerebrovasdis.2022.106875] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/20/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVES Hemorrhagic transformation (HT) is a complication occurring in patients with acute ischemic stroke (AIS) either spontaneously or post-thrombolysis leading to significant morbidity and mortality. We assessed circulating matrix metalloproteinase-9 (MMP-9), Claudin-5, and soluble serum stimulation-2 (sST2) in HT and stroke severity in AIS based on their temporal distribution. MATERIALS AND METHODS We prospectively enrolled 111 AIS patients within 12 h from onset. Patient demographic, clinical, and imaging details were documented. Follow-up imaging was conducted 24-48 h after admission. Blood samples were taken at three time-points from stroke onset. HT was classified according to the European Co-operative Acute Stroke Study-III(ECASS-III). Stroke severity was assessed using the National Institutes of Health Stroke Scale (NIHSS). Multiple logistic regression and receiver operating characteristic curve were conducted to determine the discriminative capacity. RESULTS Mean age was 62.3 ± 11.7 years and median baseline NIHSS was 12[IQR 8.0-18.0]. HT was detected in 30(27%) patients. Biomarker levels at 12 h were elevated with median MMP-9 concentration of 153.9 ng/mL[IQR 110.6-309 ng/mL] indicating a trend toward significant positive correlation with HT(P = 0.05). Claudin-5 levels at 12 h was elevated but was not statistically significant (43.1 pg/mL[IQR:26.7-72.6 pg/mL] vs 59.4 pg/mL[IQR:24.5-100.8 pg/mL];P = 0.4). Multiple logistic regression indicated Claudin-5 levels at 12 h (OR 9.46;95% CI:1.97-64.6;P = 0.010) and baseline low ASPECTS score(OR 20.3;95% CI:3.46-193; P = 0.003) independently predicted HT. MMP-9 at 12 h was significantly elevated in patients with moderate to severe strokes (P = 0.04). CONCLUSIONS Claudin-5 and low ASPECTS independently predicted HT. MMP-9 was positively correlated with baseline stroke severity.
Collapse
|
24
|
Maïer B, Tsai AS, Einhaus JF, Desilles JP, Ho-Tin-Noé B, Gory B, Sirota M, Leigh R, Lemmens R, Albers G, Olivot JM, Mazighi M, Gaudillière B. Neuroimaging is the new "spatial omic": multi-omic approaches to neuro-inflammation and immuno-thrombosis in acute ischemic stroke. Semin Immunopathol 2023; 45:125-143. [PMID: 36786929 PMCID: PMC10026385 DOI: 10.1007/s00281-023-00984-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Ischemic stroke (IS) is the leading cause of acquired disability and the second leading cause of dementia and mortality. Current treatments for IS are primarily focused on revascularization of the occluded artery. However, only 10% of patients are eligible for revascularization and 50% of revascularized patients remain disabled at 3 months. Accumulating evidence highlight the prognostic significance of the neuro- and thrombo-inflammatory response after IS. However, several randomized trials of promising immunosuppressive or immunomodulatory drugs failed to show positive results. Insufficient understanding of inter-patient variability in the cellular, functional, and spatial organization of the inflammatory response to IS likely contributed to the failure to translate preclinical findings into successful clinical trials. The inflammatory response to IS involves complex interactions between neuronal, glial, and immune cell subsets across multiple immunological compartments, including the blood-brain barrier, the meningeal lymphatic vessels, the choroid plexus, and the skull bone marrow. Here, we review the neuro- and thrombo-inflammatory responses to IS. We discuss how clinical imaging and single-cell omic technologies have refined our understanding of the spatial organization of pathobiological processes driving clinical outcomes in patients with an IS. We also introduce recent developments in machine learning statistical methods for the integration of multi-omic data (biological and radiological) to identify patient-specific inflammatory states predictive of IS clinical outcomes.
Collapse
Affiliation(s)
- Benjamin Maïer
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
- Neurology Department, Hôpital Saint-Joseph, Paris, France
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
- FHU NeuroVasc, Paris, France
| | - Amy S Tsai
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA
| | - Jakob F Einhaus
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA
| | - Jean-Philippe Desilles
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
- FHU NeuroVasc, Paris, France
| | - Benoît Ho-Tin-Noé
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France
| | - Benjamin Gory
- CHRU-Nancy, Department of Diagnostic and Therapeutic Neuroradiology, Université de Lorraine, F-54000, Nancy, France
| | - Marina Sirota
- Bakar Computational Health Sciences Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
| | - Richard Leigh
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Robin Lemmens
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
- Department of Neurosciences Division of Experimental Neurology, KU Leuven-University of Leuven, Leuven, Belgium
- VIB, Centre for Brain and Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Gregory Albers
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Jean-Marc Olivot
- Vascular Neurology Department, University Hospital of Toulouse, Toulouse, France
| | - Mikael Mazighi
- Interventional Neuroradiology Department, Hôpital Fondation A. de Rothschild, Paris, France.
- Université Paris-Cité and Université Sorbonne Paris Nord, INSERM, LVTS, F-75018, Paris, France.
- FHU NeuroVasc, Paris, France.
- Neurology Department, Lariboisière Hospital, Université Paris-Cité, Paris, France.
| | - Brice Gaudillière
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford School of Medicine, 300 Pasteur Drive, Room S238, Stanford, CA, 94305-5117, USA.
| |
Collapse
|
25
|
Nrf2 Regulates Oxidative Stress and Its Role in Cerebral Ischemic Stroke. Antioxidants (Basel) 2022; 11:antiox11122377. [PMID: 36552584 PMCID: PMC9774301 DOI: 10.3390/antiox11122377] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/23/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cerebral ischemic stroke is characterized by acute ischemia in a certain part of the brain, which leads to brain cells necrosis, apoptosis, ferroptosis, pyroptosis, etc. At present, there are limited effective clinical treatments for cerebral ischemic stroke, and the recovery of cerebral blood circulation will lead to cerebral ischemia-reperfusion injury (CIRI). Cerebral ischemic stroke involves many pathological processes such as oxidative stress, inflammation, and mitochondrial dysfunction. Nuclear factor erythroid 2-related factor 2 (Nrf2), as one of the most critical antioxidant transcription factors in cells, can coordinate various cytoprotective factors to inhibit oxidative stress. Targeting Nrf2 is considered as a potential strategy to prevent and treat cerebral ischemia injury. During cerebral ischemia, Nrf2 participates in signaling pathways such as Keap1, PI3K/AKT, MAPK, NF-κB, and HO-1, and then alleviates cerebral ischemia injury or CIRI by inhibiting oxidative stress, anti-inflammation, maintaining mitochondrial homeostasis, protecting the blood-brain barrier, and inhibiting ferroptosis. In this review, we have discussed the structure of Nrf2, the mechanisms of Nrf2 in cerebral ischemic stroke, the related research on the treatment of cerebral ischemia through the Nrf2 signaling pathway in recent years, and expounded the important role and future potential of the Nrf2 pathway in cerebral ischemic stroke.
Collapse
|
26
|
Huang HY, Yuan B, Chen SJ, Han YL, Zhang X, Yu Q, Wu Q. A novel nomogram model for clinical outcomes of severe subarachnoid hemorrhage patients. Front Neurosci 2022; 16:1041548. [PMID: 36507324 PMCID: PMC9729550 DOI: 10.3389/fnins.2022.1041548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
Background Systemic responses, especially inflammatory responses, after aneurysmal subarachnoid hemorrhage (SAH) are closely related to clinical outcomes. Our study aimed to explore the correlation between the systemic responses in the acute stage and the mid-term outcomes of severe SAH patients (Hunt-Hess grade III-V). Materials and methods Severe SAH patients admitted to Jinling Hospital from January 2015 to December 2019 were retrospectively analyzed in the study. The univariate and multivariate logistic regression analyses were used to explore the risk factors of 6-month clinical outcomes in severe SAH patients. A predictive model was established based on those risk factors and was visualized by a nomogram. Then, the predictive nomogram model was validated in another severe SAH patient cohort from January 2020 to January 2022. Results A total of 194 patients were enrolled in this study. 123 (63.4%, 123 of 194) patients achieved good clinical outcomes at the 6-month follow-up. Univariate and multivariate logistic regression analysis revealed that age, Hunt-Hess grade, neutrophil-to-lymphocyte ratio (NLR), and complications not related to operations were independent risk factors for unfavorable outcomes at 6-month follow-up. The areas under the curve (AUC) analysis showed that the predictive model based on the above four variables was significantly better than the Hunt-Hess grade (0.812 vs. 0.685, P = 0.013). In the validation cohort with 44 severe SAH patients from three different clinical centers, the AUC of the prognostic nomogram model was 0.893. Conclusion The predictive nomogram model could be a reliable predictive tool for the outcome of severe SAH patients. Systemic inflammatory responses after SAH and complications not related to operations, especially hydrocephalus, delayed cerebral ischemia, and pneumonia, might be the important risk factors that lead to poor outcomes in severe SAH patients.
Collapse
Affiliation(s)
- Han-Yu Huang
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,Department of Neurosurgery, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Bin Yuan
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Shu-Juan Chen
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Yan-ling Han
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, Nanjing Medical University, Nanjing, Jiangsu, China,Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Qing Yu
- Department of Clinical Laboratory, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China,*Correspondence: Qing Yu,
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China,Qi Wu,
| |
Collapse
|
27
|
Li Y, Han X, Luo S, Huang H, Huang X, Li M, Huang Y, Chen Y, Wu Z. Predictive value of longitudinal changes of serum matrix metalloproteinase-9 and brain-derived neurotrophic factor in acute ischemic stroke. Front Aging Neurosci 2022; 14:952038. [PMID: 36092813 PMCID: PMC9452807 DOI: 10.3389/fnagi.2022.952038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundMatrix metalloproteinase-9 (MMP-9) and brain-derived neurotrophic factor (BDNF) have documented roles in the inflammatory injury cascade of neurovascular units following ischemic brain injury. However, their dynamic changes and predictive values after acute ischemic stroke (AIS) have not been well elucidated.ObjectiveTo investigate the temporal profiles of serum MMP-9 and BDNF concentrations and their relationship with the prognosis in patients with AIS.MethodsMMP-9 and BDNF levels were measured in 42 AIS patients in prospectively collected blood samples, which were taken on the first day (Day 1), the second day (Day 2), and the fifth day (Day 5) after admission. Healthy subjects (n = 40) were used as controls. The AIS patients were divided into groups of good functional prognosis (n = 24) and poor prognosis (n = 18) according to their modified Rankin Scale score at 3 months. Longitudinal analysis of MMP-9 and BDNF and their association with neurological prognosis was performed using repeated measurement ANOVA.ResultsAt baseline (Day 1), the levels of serum MMP-9 and BDNF were significantly higher in the AIS group than in the normal control group (P < 0.01). Repeated measurement ANOVA showed a significant main effect and interaction of MMP-9 between good prognosis and the poor group (P < 0.05). Further simple-effect analysis showed that the MMP-9 level was significantly increased in the poor prognosis group compared with the good prognosis group at T5 (P < 0.05). There were no significant time-dependent or the interaction effect (all P > 0.05), but a main effect (P < 0.05) for BDNF. Compared with the poor prognosis group, the simple-effect results indicated that the BDNF level of the good prognosis group was lower at Day 1, while the same was reversed for expression at Day 5 (P < 0.05).ConclusionMMP-9 and BDNF are closely related to the prognosis of patients with AIS in a time-dependent manner. The dynamic changes of the two biomarkers are superior to baseline levels in predicting the prognosis of AIS patients. A sustained decrease in MMP-9 and an increase in BDNF levels in AIS patients after several days of treatment implied a favourable prognosis.
Collapse
|
28
|
Zhang M, Meng X, Pan Y, Wang Y, Zhao X, Liu L, Li J, Yan H, Liu X, Zhang H, Pang L, Wang Y. Predictive values of Baseline MMP9 Levels in Peripheral Blood on 3-Month outcomes of high-risk patients with minor stroke or TIA. Eur J Neurol 2022; 29:2976-2986. [PMID: 35357766 DOI: 10.1111/ene.15342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/24/2022] [Indexed: 12/01/2022]
Abstract
OBJECTIVE To explore the relationship between baseline levels of matrix metalloproteinase 9 (MMP9) in peripheral blood and the outcomes in patients with acute minor stroke and transient ischemic attack (TIA). METHODS We assessed data from patients with acute minor ischemic stroke or TIA who were included in the CHANCE trial. Baseline level of MMP9 in peripheral blood is classified into five quintiles. We assessed the relationship between the baseline MMP9 and outcomes of stroke recurrence, composite vascular events, and poor functional outcomes within 90 days after stroke onset. RESULTS Of the 3014 patients included, 295 (9.79%) had recurrent stroke, 289 (9.59%) had recurrent ischemic stroke, 297 (9.85%) had combined vascular events, and 199 (6.64%) had poor functional outcomes within 90 days. Using MMP9 concentrations near HR = 1 (Q3) in restricted cubic splines as the reference. The result showed that, compared to patients in Q3 group, patients in the highest quintile (Q5 group) had an increased risk of poor functional outcomes at 90 days after adjusted the risk factors and confounders (P = 0.030), may be associated with an increased risk of combined vascular events (P = 0.052). Using Cox regression models or logistic regression models with restricted cubic spline, we also observed that higher MMP9 ratios were associated with an increased risk of stroke recurrence, combined events, and poor functional outcomes at a range of concentrations. CONCLUSIONS For patients with acute minor stroke or TIA, higher baseline MMP9 level was associated with an increased risk of poor functional outcomes, might be related to stroke recurrence and combined vascular events.
Collapse
Affiliation(s)
- Min Zhang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University) /Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China, 832002
| | - Xia Meng
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Yuesong Pan
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Yilong Wang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Xingquan Zhao
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Liping Liu
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Jiejie Li
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Hongyi Yan
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070
| | - Xiangrong Liu
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| | - Hui Zhang
- Shihezi University School of Medicine, Shihezi, Xinjiang, China, 832000
| | - Lijuan Pang
- NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases (First Affiliated Hospital, School of Medicine, Shihezi University) /Department of Pathology and Key Laboratory for Xinjiang Endemic and Ethnic Diseases, Shihezi University School of Medicine, Shihezi, China, 832002.,Department of Pathology, Central People's Hospital of Zhanjiang and Zhanjiang Central Hospital, Guangdong Medical University, Zhanjiang, Guangdong, China, 524033
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Disease, Beijing Tiantan Hospital, Capital Medical University, No.119 South 4th Ring West Road, Fengtai District, Beijing, China, 100070.,Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China, 100070.,Center of Stroke, Beijing Institute for Brain Disorders, Beijing, China, 100070.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, China, 100070
| |
Collapse
|
29
|
Ling C, Cao S, Kong X. Changes of FSTL1 and MMP-9 levels in patients with acute cerebral infarction and its relationship with hemorrhagic transformation. J Clin Neurosci 2022; 99:164-168. [PMID: 35286969 DOI: 10.1016/j.jocn.2021.10.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND hemorrhagic transformation is a serious complication of acute ischemic stroke, which may lead to poor prognosis and delayed use of anticoagulant therapy. METHODS 125 patients with cerebral infarction from December 2019 to December 2020 in the Second Affiliated Hospital of Zhejiang University were selected. All patients did not receive intravascular therapy, intravenous thrombolysis and other reperfusion treatment; and the relevant laboratory data were collected within 24 h after admission. At the same time, 15 healthy subjects were selected as the research objects for prospective analysis. Hemorrhagic transformation (HT) was defined as a condition in which computed tomography (CT) did not indicate bleeding at admission, but follow-up magnetic resonance imaging (MRI) or CT showed hemorrhage. The patients were divided into HT group (n = 50) and non-HT group (n = 75) according to whether there was HT after admission. The concentrations of FSTL1 and MMP-9 in peripheral blood of the two groups were detected. RESULTS The concentrations of FSTL1 and MMP-9 in acute cerebral infarction (ACI) group were significantly higher than those in control group. However the HT group had a higher concentration of FSTL1 and MMP-9 than the non-HT group. The serum FSTL1 and MMP-9 were independent risk factors for hemorrhagic transformation. The area under the ROC curve of FSTL1 and MMP-9 in diagnosis of HT was 0.809 and 0.856 respectively, and their combined value was 0.923. CONCLUSION The high levels of FSTL1 and MMP-9 had strong correlation with HT in ACI patients.
Collapse
Affiliation(s)
- Chenhan Ling
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou Zhejiang Province 310009, China.
| | - Shenglong Cao
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou Zhejiang Province 310009, China
| | - Xiangjie Kong
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University, Hangzhou Zhejiang Province 310009, China
| |
Collapse
|
30
|
Huang LY, Song JX, Cai H, Wang PP, Yin QL, Zhang YD, Chen J, Li M, Song JJ, Wang YL, Luo L, Wang W, Qi SH. Healthy Serum-Derived Exosomes Improve Neurological Outcomes and Protect Blood–Brain Barrier by Inhibiting Endothelial Cell Apoptosis and Reversing Autophagy-Mediated Tight Junction Protein Reduction in Rat Stroke Model. Front Cell Neurosci 2022; 16:841544. [PMID: 35308117 PMCID: PMC8927286 DOI: 10.3389/fncel.2022.841544] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/07/2022] [Indexed: 02/03/2023] Open
Abstract
Blood–brain barrier (BBB) dysfunction causing edema and hemorrhagic transformation is one of the pathophysiological characteristics of stroke. Protection of BBB integrity has shown great potential in improving stroke outcome. Here, we assessed the efficacy of exosomes extracted from healthy rat serum in protection against ischemic stroke in vivo and in vitro. Exosomes were isolated by gradient centrifugation and ultracentrifugation and exosomes were characterized by transmission electron microscopy (TEM) and nanoparticle tracking video microscope. Exosomes were applied to middle cerebral artery occlusion (MCAO) rats or brain microvascular endothelial cell line (bEnd.3) subjected to oxygen-glucose deprivation (OGD) injury. Serum-derived exosomes were injected intravenously into adult male rats 2 h after transient MCAO. Infarct volume and gross cognitive function were assessed 24 h after reperfusion. Poststroke rats treated with serum-derived exosomes exhibited significantly reduced infarct volumes and enhanced neurological function. Apoptosis was assessed via terminal deoxynucleotidyl transferase (TdT)-mediated dUTP nick-end labeling (TUNEL) staining and the expression of B-cell lymphoma-2 (Bcl-2), Bax, and cleaved caspase-3 24 h after injury. Our data showed that serum exosomes treatment strikingly decreased TUNEL+ cells in the striatum, enhanced the ratio of Bcl-2 to Bax, and inhibited cleaved caspase-3 production in MCAO rats and OGD/reoxygenation insulted bEnd.3 cells. Under the consistent treatment, the expression of microtubule-associated protein 1 light chain 3B-II (LC3B-II), LC3B-I, and Sequestosome-1 (SQSTM1)/p62 was detected by Western blotting. Autolysosomes were observed via TEM. We found that serum exosomes reversed the ratio of LC3B-II to LC3B-I, prevented SQSTM1/p62 degradation, autolysosome formation, and autophagic flux. Together, these results indicated that exosomes isolated from healthy serum provided neuroprotection against experimental stroke partially via inhibition of endothelial cell apoptosis and autophagy-mediated BBB breakdown. Intravenous serum-derived exosome treatment may, therefore, provide a novel clinical therapeutic strategy for ischemic stroke.
Collapse
Affiliation(s)
- Lin-Yan Huang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jin-Xiu Song
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Heng Cai
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Pei-Pei Wang
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Qi-Long Yin
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
| | - Yi-De Zhang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jie Chen
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Ming Li
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Jia-Jia Song
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Yan-Ling Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Lan Luo
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Wan Wang
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Su-Hua Qi
- Xuzhou Key Laboratory of Laboratory Diagnostics, School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Pharmacology College, Xuzhou Medical University, Xuzhou, China
- *Correspondence: Su-Hua Qi,
| |
Collapse
|
31
|
Du X, Zhang Q, Jiang Y, Li H, Zhu X, Zhang Y, Liu C, Niu Y, Ji J, Jiang C, Cai J, Chen R, Kan H. Dynamic molecular choreography induced by traffic exposure: A randomized, crossover trial using multi-omics profiling. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127359. [PMID: 34601410 DOI: 10.1016/j.jhazmat.2021.127359] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
The biological mechanism of adverse health outcomes related to exposure to traffic-related air pollution (TRAP) needs elucidation. We conducted a randomized, crossover trial among healthy young students in Shanghai, China. Participants wore earplugs and were randomly assigned to a 4-hour walking treatment either along a traffic-polluted road or through a traffic-free park. We conducted untargeted analyses of plasma exosome transcriptomics, serum mass spectrometry-based proteomics, and serum metabolomics to evaluate changes in genome-wide transcription, protein, and metabolite profiles in 35 randomly selected participants. Mean personal exposure levels of ultrafine particles, black carbon, nitrogen dioxide, and carbon monoxide in the road were 2-3 times higher than that in the park. We observed 3449 exosome mRNAs, 58 serum proteins, and 128 serum metabolites that were significantly associated with TRAP. The multi-omics analysis showed dozens of regulatory pathways altered in response to TRAP, such as inflammation, oxidative stress, coagulation, endothelin-1 signaling, and renin-angiotensin signaling. We found that several novel pathways activated in response to TRAP exposure: growth hormone signaling, adrenomedullin signaling, and arachidonic acid metabolism. Our study served as a demonstration and proof of concept on the evidence that associated TRAP exposure with global molecular changes based on the multi-omics level.
Collapse
Affiliation(s)
- Xihao Du
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Qingli Zhang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yixuan Jiang
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Huichu Li
- Department of Environmental Health, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Xinlei Zhu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yang Zhang
- Department of Systems Biology for Medicine, and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cong Liu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Yue Niu
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - John Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Chao Jiang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Jing Cai
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China
| | - Renjie Chen
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China.
| | - Haidong Kan
- School of Public Health, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai 200032, China; Children's Hospital of Fudan University, National Center for Children's Health, Shanghai, China.
| |
Collapse
|
32
|
Wang YC, Lu YB, Huang XL, Lao YF, Zhang L, Yang J, Shi M, Ma HL, Pan YW, Zhang YN. Myeloperoxidase: a new target for the treatment of stroke? Neural Regen Res 2022; 17:1711-1716. [PMID: 35017418 PMCID: PMC8820716 DOI: 10.4103/1673-5374.332130] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Myeloperoxidase is an important inflammatory factor in the myeloid system, primarily expressed in neutrophils and microglia. Myeloperoxidase and its active products participate in the occurrence and development of hemorrhagic and ischemic stroke, including damage to the blood-brain barrier and brain. As a specific inflammatory marker, myeloperoxidase can be used in the evaluation of vascular disease occurrence and development in stroke, and a large amount of experimental and clinical data has indicated that the inhibition or lack of myeloperoxidase has positive impacts on stroke prognosis. Many studies have also shown that there is a correlation between the overexpression of myeloperoxidase and the risk of stroke. The occurrence of stroke not only refers to the first occurrence but also includes recurrence. Therefore, myeloperoxidase is significant for the clinical evaluation and prognosis of stroke. This paper reviews the potential role played by myeloperoxidase in the development of vascular injury and secondary brain injury after stroke and explores the effects of inhibiting myeloperoxidase on stroke prognosis. This paper also analyzes the significance of myeloperoxidase etiology in the occurrence and development of stroke and discusses whether myeloperoxidase can be used as a target for the treatment and prediction of stroke.
Collapse
Affiliation(s)
- Yun-Chang Wang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Yu-Bao Lu
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province; Department of Spine Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Xiao-Lan Huang
- University of Chinese Academy of Sciences, Beijing, China
| | - Yong-Feng Lao
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Lu Zhang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Jun Yang
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Mei Shi
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Hai-Long Ma
- The Second Clinical Medical School, Lanzhou University, Lanzhou, Gansu Province, China
| | - Ya-Wen Pan
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yi-Nian Zhang
- The Second Clinical Medical School, Lanzhou University; Department of Neurosurgery, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
33
|
Goettsch C, Strzelecka-Kiliszek A, Bessueille L, Quillard T, Mechtouff L, Pikula S, Canet-Soulas E, Luis MJ, Fonta C, Magne D. TNAP as a therapeutic target for cardiovascular calcification: a discussion of its pleiotropic functions in the body. Cardiovasc Res 2022; 118:84-96. [PMID: 33070177 PMCID: PMC8752354 DOI: 10.1093/cvr/cvaa299] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/11/2020] [Accepted: 10/06/2020] [Indexed: 12/15/2022] Open
Abstract
Cardiovascular calcification (CVC) is associated with increased morbidity and mortality. It develops in several diseases and locations, such as in the tunica intima in atherosclerosis plaques, in the tunica media in type 2 diabetes and chronic kidney disease, and in aortic valves. In spite of the wide occurrence of CVC and its detrimental effects on cardiovascular diseases (CVD), no treatment is yet available. Most of CVC involve mechanisms similar to those occurring during endochondral and/or intramembranous ossification. Logically, since tissue-nonspecific alkaline phosphatase (TNAP) is the key-enzyme responsible for skeletal/dental mineralization, it is a promising target to limit CVC. Tools have recently been developed to inhibit its activity and preclinical studies conducted in animal models of vascular calcification already provided promising results. Nevertheless, as its name indicates, TNAP is ubiquitous and recent data indicate that it dephosphorylates different substrates in vivo to participate in other important physiological functions besides mineralization. For instance, TNAP is involved in the metabolism of pyridoxal phosphate and the production of neurotransmitters. TNAP has also been described as an anti-inflammatory enzyme able to dephosphorylate adenosine nucleotides and lipopolysaccharide. A better understanding of the full spectrum of TNAP's functions is needed to better characterize the effects of TNAP inhibition in diseases associated with CVC. In this review, after a brief description of the different types of CVC, we describe the newly uncovered additional functions of TNAP and discuss the expected consequences of its systemic inhibition in vivo.
Collapse
Affiliation(s)
- Claudia Goettsch
- Department of Internal Medicine I, Cardiology, Medical Faculty, RWTH Aachen
University, Aachen, Germany
| | - Agnieszka Strzelecka-Kiliszek
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Laurence Bessueille
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| | - Thibaut Quillard
- PHY-OS Laboratory, UMR 1238 INSERM, Université de Nantes, CHU
de Nantes, France
| | - Laura Mechtouff
- Stroke Department, Hospices Civils de Lyon, France
- CREATIS Laboratory, CNRS UMR 5220, Inserm U1044, Université Claude Bernard
Lyon 1, Lyon, France
| | - Slawomir Pikula
- Laboratory of Biochemistry of Lipids, Nencki Institute of Experimental
Biology, 3 Pasteur Street, 02-093 Warsaw, Poland
| | - Emmanuelle Canet-Soulas
- CarMeN Laboratory, Univ Lyon, INSERM, INRA, INSA Lyon, Université Claude
Bernard Lyon 1, Lyon, France
| | - Millan Jose Luis
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery
Institute, La Jolla, CA 92037, USA
| | - Caroline Fonta
- Brain and Cognition Research Center CerCo, CNRS UMR5549, Université de
Toulouse, France
| | - David Magne
- Institute of Molecular and Supramolecular Chemistry and Biochemistry
(ICBMS), UMR CNRS 5246, Université Claude Bernard Lyon 1, Bâtiment
Raulin, 43 Bd du 11 novembre 1918, Lyon 69622 Villeurbanne Cedex, France
| |
Collapse
|
34
|
Zuo L, Xie J, Liu Y, Leng S, Zhang Z, Yan F. Down-regulation of circular RNA CDC14A peripherally ameliorates brain injury in acute phase of ischemic stroke. J Neuroinflammation 2021; 18:283. [PMID: 34876161 PMCID: PMC8653620 DOI: 10.1186/s12974-021-02333-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022] Open
Abstract
Background Inflammation is integral to the pathophysiology of ischemic stroke and a prime target for the development of new stroke therapies. The aim of the present study is to seek out the regulatory mechanism of circCDC14A in neuroinflammatory injury in tMCAO mice. Methods The expression level of circCDC14A in peri-infarct cortex and plasma of mice were detected by qPCR. The localization of circCDC14A in peripheral blood cells and peri-infarct cortex of tMCAO mice were explored by in situ hybridization and immunofluorescence colocalization staining. Lentivirus were microinjected into lateral ventricular of brain or injected into tail vein to interfere with the expression of circCDC14A, thus their effects on behavior, morphology, and molecular biology of tMCAO mice were analyzed. Results The expression of circCDC14A in plasma and peri-infarct cortex of tMCAO mice significantly increased, and circCDC14A was mainly localized in neutrophils peripherally while in astrocytes in peri-infarct cortex centrally. Tail vein injection of lentivirus to interfere with the expression of circCDC14A significantly reduced the infarct volume (P < 0.01) at 72 h after reperfusion and density of activated astrocytes in peri-infarct cortex at 3 days, 5 days and 7 days after tMCAO modeling (all P < 0.0001). Moreover, mNSS (P < 0.0001) and survival rate (P < 0.001) were significantly improved within 7 days in si-circCDC14A group compared to circCon group. Additionally, morphology analysis showed the volume and surface area of each activated astrocytes significantly decreased (P < 0.0001). Quantification analysis measured the percentage of N2 phenotype among infiltrated neutrophils in brain sections and found N2 ratio was significantly higher in si-circCDC14A group compared to circCon group (P < 0.001). Conclusion Knocking down the expression of circCDC14A in peripheral blood cells relieved astrocytes activation in peri-infarct cortex, thereby relieved brain damage in the acute phase of ischemic stroke. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02333-6.
Collapse
Affiliation(s)
- Lei Zuo
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, China
| | - Jian Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, China
| | - Yun Liu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, China
| | - Shuo Leng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Affiliated Zhongda Hospital, Medical School, Southeast University, Nanjing, 210009, China
| | - Zhijun Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, China.
| | - Fuling Yan
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Research Institution of Neuropsychiatry, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
35
|
Wang WT, Wu TC, Tseng WK, Wu YW, Lin TH, Yeh HI, Chang KC, Wang JH, Leu HB, Yin WH, Wu CC, Chen JW. Prognostic indicators for the onset of ischaemic versus haemorrhagic stroke in stable coronary artery disease. Medicine (Baltimore) 2021; 100:e27973. [PMID: 35049202 PMCID: PMC9191570 DOI: 10.1097/md.0000000000027973] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/09/2021] [Indexed: 11/28/2022] Open
Abstract
The incidence of stroke may be increased in patients with coronary artery disease (CAD). We aimed to investigate the specific risk factors for the development of ischaemic and haemorrhagic stroke in stable CAD patients.Patients with stable CAD were prospectively enrolled for future cardiovascular events in Taiwan. All the patients had received coronary interventions and were stable for least 1 month before enrolment. The incidence of ischaemic stroke was identified and confirmed by telephone and hospital records. Baseline characteristics, including demographic data, lipid profiles, medications, and biomarkers for potential inflammatory and atherosclerosis, were analysed.In total, 1428 patients (age, 63.07 ± 11.4 years; 1207 males) were under standard medical treatment and regularly followed-up for at least 4 years. Multivariate logistic regression analysis showed that baseline serum myeloperoxidase (MPO) level (hazard ratio [HR]: 1.89, 95% CI: 1.16-3.10, P = .01) and statin use (HR: 0.37; 95% CI: 0.17-0.79, P = .01) were independently associated with the onset of ischaemic stroke. Age (HR: 1.07, 95% CI: 1.00-1.14, P = .04) and angiotensin receptor blocker (ARB) use (HR: 0.37, 95% CI: 0.17-0.79, P = .01) were independently associated with future onset of intracranial haemorrhage (ICH), implying the different mechanisms of ischaemic stroke and ICH.Age and ARB use were related to ICH onset. Baseline MPO level and statin use were independently associated with longer and shorter future ischaemic stroke onset in stable CAD patients, respectively. Further studies are indicated to confirm the potential mechanisms and advance individual risk stratification for the onset of different types of stroke in clinical CAD.
Collapse
Affiliation(s)
- Wei-Ting Wang
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- From the Divison of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan, R.O.C
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Tao-Cheng Wu
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- From the Divison of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan, R.O.C
| | - Wei-Kung Tseng
- Department of Medical Imaging and Radiological Sciences, I-Shou University, Kaohsiung, Taiwan, R.O.C
- Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan, R.O.C
| | - Yen-Wen Wu
- Cardiology Division of Cardiovascular Medical Center and Department of Nuclear Medicine, Far Eastern Memorial Hospital, New Taipei City, Taiwan, R.O.C
| | - Tsung-Hsien Lin
- Division of Cardiology, Department of Internal Medicine, Kaohsiung Medical University Hospital and Kaohsiung Medical University, Taiwan, R.O.C
| | - Hung-I Yeh
- Mackay Memorial Hospital, Mackay Medical College, New Taipei City, Taiwan, R.O.C
| | - Kuan-Cheng Chang
- Division of Cardiology, Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan, R.O.C
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, R.O.C
| | - Ji-Hung Wang
- Department of Cardiology, Buddhist Tzu-Chi General Hospital, Tzu-Chi University, Hualien, Taiwan, R.O.C
| | - Hsin-Bang Leu
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- From the Divison of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan, R.O.C
- Heath Care and Management Center (H.-B.L., J.-W.C.), Taipei Veterans General Hospital, Taiwan
| | - Wei-Hsian Yin
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- Division of Cardiology, Heart Center, Cheng-Hsin General Hospital, Taipei, Taiwan, R.O.C
| | - Chau-Chung Wu
- Division of Cardiology, Department of Internal Medicine, National Taiwan University College of Medicine and Hospital, Taipei, Taiwan, R.O.C
- Department of Primary Care Medicine, College of Medicine, National Taiwan University, Taipei
| | - Jaw-Wen Chen
- Cardiovascular Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
- From the Divison of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taiwan, R.O.C
- Heath Care and Management Center (H.-B.L., J.-W.C.), Taipei Veterans General Hospital, Taiwan
- Institute of Pharmacology, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| |
Collapse
|
36
|
Ying Y, Yu F, Luo Y, Feng X, Liao D, Wei M, Li X, Huang Q, Liu Z, Zhang L, Zhao T, Tu R, Xia J. Neutrophil-to-Lymphocyte Ratio as a Predictive Biomarker for Stroke Severity and Short-Term Prognosis in Acute Ischemic Stroke With Intracranial Atherosclerotic Stenosis. Front Neurol 2021; 12:705949. [PMID: 34393983 PMCID: PMC8360230 DOI: 10.3389/fneur.2021.705949] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 07/05/2021] [Indexed: 01/30/2023] Open
Abstract
Background: Neutrophil-to-lymphocyte ratio (NLR) is an indicator of poor prognosis in acute ischemic stroke (AIS), but associations between NLR with stroke severity and prognosis of intracranial atherosclerotic stenosis (ICAS)-related ischemic events have not been well-elucidated; therefore, we aimed to evaluate whether admission NLR levels correlate with the early stroke severity and short-term functional prognosis in patients with symptomatic intracranial atherosclerotic stenosis (sICAS). Methods: This retrospective study enrolled 899 consecutive patients with AIS attributed to ICAS at Xiangya Hospital stroke center between May 2016 and September 2020. The initial stroke severity was rated by the admission National Institutes of Health Stroke Scale (NIHSS) scores, and the short-term prognosis was evaluated using the 14-day modified Rankin Scale (mRS) scores after stroke onset. A severe stroke was defined as NIHSS >8; an unfavorable functional outcome was defined as mRS scores of 3-6. Admission NLR was determined based on circulating neutrophil and lymphocyte counts. Results: The median admission NLR of all patients was 2.80 [interquartile range (IQR), 2.00-4.00]. In univariate analysis, admission NLR was significantly elevated in patients with severe stroke and poor short-term prognosis. After multivariate adjustment, admission NLR levels were significantly correlated with severe stroke [odds ratio (OR), 1.132; 95% confidence interval (95% CI), 1.038-1.234; P = 0.005] and unfavorable short-term prognosis (OR, 1.102; 95% CI, 1.017-1.195; P = 0.018) in Model 1. In Model 2, the highest NLR tertile (≥3.533) remained an independent predictor of severe stroke (OR, 2.736; 95% CI, 1.590-4.708; P < 0.001) and unfavorable functional outcome (OR, 2.165; 95% CI, 1.416-3.311; P < 0.001) compared with the lowest NLR tertile (<2.231). The receiver operating characteristic (ROC) curves showed the predictability of NLR regarding the stroke severity [area under the curve (AUC), 0.659; 95% CI, 0.615-0.703; P < 0.001] and short-term prognosis (AUC, 0.613; 95% CI, 0.575-0.650; P < 0.001). The nomograms were constructed to create the predictive models of the severity and short-term outcome of sICAS. Conclusions: Elevated admission NLR levels were independently associated with the initial stroke severity and could be an early predictor of severity and poor short-term prognosis in AIS patients with ICAS, which might help us identify a target group timely for preventive therapies.
Collapse
Affiliation(s)
- Yuanlin Ying
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Fang Yu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Yunfang Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xianjing Feng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Di Liao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Minping Wei
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xi Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qin Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Tingting Zhao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Ruxin Tu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jian Xia
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,Clinical Research Center for Cerebrovascular Disease of Hunan Province, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
37
|
Cai H, Huang H, Yang C, Ren J, Wang J, Gao B, Pan W, Sun F, Zhou X, Zeng T, Hu J, Chen Y, Zhang S, Chen G. Eosinophil-to-Neutrophil Ratio Predicts Poor Prognosis of Acute Ischemic Stroke Patients Treated With Intravenous Thrombolysis. Front Neurol 2021; 12:665827. [PMID: 34322078 PMCID: PMC8310951 DOI: 10.3389/fneur.2021.665827] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 06/11/2021] [Indexed: 11/17/2022] Open
Abstract
Background and Purpose: The eosinophil-to-neutrophil ratio (ENR) was recently reported as a novel inflammatory marker in acute ischemic stroke (AIS). However, few studies reported the predictive value of ENR in AIS patients, especially for those with intravenous thrombolysis. Methods: Two hundred sixty-six AIS patients receiving intravenous thrombolysis were retrospectively recruited in this study and followed up for 3 months and 1 year. The Modified Rankin Scale (mRS) and the time of death were recorded. Poor outcome was defined as mRS 3–6. After excluding patients who were lost to follow-up, the remaining 250 patients were included in the 3-month prognosis analysis and the remaining 223 patients were included in the 1-year prognosis analysis. Results: ENR levels in the patients were lower than those in the healthy controls. The optimal cutoff values for the ability of ENR × 102 to predict 3-month poor outcome were 0.74 with 67.8% sensitivity and 77.3% specificity. Patients with ENR × 102 ≥ 0.74 have a lower baseline National Institutes of Health Stroke Scale (NIHSS) score (median: 7 vs. 11, p < 0.001). After multivariate adjustment, patients with ENR × 102 ≥ 0.74 were more likely to come to a better 3-month outcome (OR = 0.163; 95% CI, 0.076–0.348, p < 0.001). At the 1-year follow-up, the patients with ENR × 102 ≥ 0.74 showed a lower risk of mortality (HR = 0.314; 95% CI, 0.135–0.731; p = 0.007). Conclusions: A lower ENR is independently associated with a 3-month poor outcome and a 3-month and 1-year mortality in AIS patients treated with intravenous thrombolysis.
Collapse
Affiliation(s)
- Haoye Cai
- Department of Rehabilitation Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Chenguang Yang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Junli Ren
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianing Wang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Beibei Gao
- Department of Internal Medicine, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenjing Pan
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Fangyue Sun
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xinbo Zhou
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Tian Zeng
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Hu
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yilin Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shunkai Zhang
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
38
|
Qiu YM, Zhang CL, Chen AQ, Wang HL, Zhou YF, Li YN, Hu B. Immune Cells in the BBB Disruption After Acute Ischemic Stroke: Targets for Immune Therapy? Front Immunol 2021; 12:678744. [PMID: 34248961 PMCID: PMC8260997 DOI: 10.3389/fimmu.2021.678744] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022] Open
Abstract
Blood-Brain Barrier (BBB) disruption is an important pathophysiological process of acute ischemic stroke (AIS), resulting in devastating malignant brain edema and hemorrhagic transformation. The rapid activation of immune cells plays a critical role in BBB disruption after ischemic stroke. Infiltrating blood-borne immune cells (neutrophils, monocytes, and T lymphocytes) increase BBB permeability, as they cause microvascular disorder and secrete inflammation-associated molecules. In contrast, they promote BBB repair and angiogenesis in the latter phase of ischemic stroke. The profound immunological effects of cerebral immune cells (microglia, astrocytes, and pericytes) on BBB disruption have been underestimated in ischemic stroke. Post-stroke microglia and astrocytes can adopt both an M1/A1 or M2/A2 phenotype, which influence BBB integrity differently. However, whether pericytes acquire microglia phenotype and exert immunological effects on the BBB remains controversial. Thus, better understanding the inflammatory mechanism underlying BBB disruption can lead to the identification of more promising biological targets to develop treatments that minimize the onset of life-threatening complications and to improve existing treatments in patients. However, early attempts to inhibit the infiltration of circulating immune cells into the brain by blocking adhesion molecules, that were successful in experimental stroke failed in clinical trials. Therefore, new immunoregulatory therapeutic strategies for acute ischemic stroke are desperately warranted. Herein, we highlight the role of circulating and cerebral immune cells in BBB disruption and the crosstalk between them following acute ischemic stroke. Using a robust theoretical background, we discuss potential and effective immunotherapeutic targets to regulate BBB permeability after acute ischemic stroke.
Collapse
Affiliation(s)
| | | | | | | | | | - Ya-nan Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Liu Z, Yang C, Wang X, Xiang Y. Blood-Based Biomarkers: A Forgotten Friend of Hyperacute Ischemic Stroke. Front Neurol 2021; 12:634717. [PMID: 34168606 PMCID: PMC8217611 DOI: 10.3389/fneur.2021.634717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 04/21/2021] [Indexed: 11/21/2022] Open
Abstract
Ischemic stroke (IS) is the second leading cause of death worldwide. Multimodal neuroimaging techniques that have significantly facilitated the diagnosis of hyperacute IS are not widely used in underdeveloped areas and community hospitals owing to drawbacks such as high cost and lack of trained operators. Moreover, these methods do not have sufficient resolution to detect changes in the brain at the cellular and molecular levels after IS onset. In contrast, blood-based biomarkers can reflect molecular and biochemical alterations in both normal and pathophysiologic processes including angiogenesis, metabolism, inflammation, oxidative stress, coagulation, thrombosis, glial activation, and neuronal and vascular injury, and can thus provide information complementary to findings from routine examinations and neuroimaging that is useful for diagnosis. In this review, we summarize the current state of knowledge on blood-based biomarkers of hyperacute IS including those associated with neuronal injury, glial activation, inflammation and oxidative stress, vascular injury and angiogenesis, coagulation and thrombosis, and metabolism as well as genetic and genomic biomarkers. Meanwhile, the blood sampling time of the biomarkers which are cited and summarized in the review is within 6 h after the onset of IS. Additionally, we also discuss the diagnostic and prognostic value of blood-based biomarkers in stroke patients, and future directions for their clinical application and development.
Collapse
Affiliation(s)
- Zhilan Liu
- Sichuan Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, China.,Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China.,Department of Neurology, General Hospital of Western Theater Command, Chengdu, China.,North Sichuan Medical College, Nanchong, China
| | - Cui Yang
- Institute of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China
| | - Xiaoming Wang
- Department of Neurology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yang Xiang
- Department of Neurology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
40
|
Cai L, Zeng H, Tan X, Wu X, Qian C, Chen G. The Role of the Blood Neutrophil-to-Lymphocyte Ratio in Aneurysmal Subarachnoid Hemorrhage. Front Neurol 2021; 12:671098. [PMID: 34149601 PMCID: PMC8209292 DOI: 10.3389/fneur.2021.671098] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 04/13/2021] [Indexed: 12/18/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is an important type of stroke with the highest rates of mortality and disability. Recent evidence indicates that neuroinflammation plays a critical role in both early brain injury and delayed neural deterioration after aSAH, contributing to unfavorable outcomes. The neutrophil-to-lymphocyte ratio (NLR) is a peripheral biomarker that conveys information about the inflammatory burden in terms of both innate and adaptive immunity. This review summarizes relevant studies that associate the NLR with aSAH to evaluate whether the NLR can predict outcomes and serve as an effective biomarker for clinical management. We found that increased NLR is valuable in predicting the clinical outcome of aSAH patients and is related to the risk of complications such as delayed cerebral ischemia (DCI) or rebleeding. Combined with other indicators, the NLR provides improved accuracy for predicting prognosis to stratify patients into different risk categories. The underlying pathophysiology is highlighted to identify new potential targets for neuroprotection and to develop novel therapeutic strategies.
Collapse
Affiliation(s)
- Lingxin Cai
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Hanhai Zeng
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxiao Tan
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xinyan Wu
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Cong Qian
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Gao Chen
- Department of Neurological Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
41
|
The population characteristics of the main leukocyte subsets and their association with chronic diseases in a community-dwelling population: a cross-sectional study. Prim Health Care Res Dev 2021; 22:e18. [PMID: 33958026 PMCID: PMC8165331 DOI: 10.1017/s1463423621000153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: To analyse the characteristics of the main leukocyte subsets and elucidate their distributions amongst the natural population. We wanted to determine whether leukocyte subsets are potential biomarkers to evaluate the risk of common chronic diseases. Background: The peripheral blood leukocyte count is a routine exam performed to detect pathogen infections. Recently, subsets of white blood cells and their homeostasis have shown strong associations with some chronic diseases. Therefore, studies aiming to discover whether the distribution of leukocyte counts and its subsets are useful for predicting health conditions are worthwhile. Methods: This cross-sectional study analysed 10 564 residents from the basic public health service project of the Health Checkup Program performed by the BaiYun Community Health Service Center. Data on demographic information, physical measurements, medical history, and routine blood examination parameters were collected using questionnaires and health check-ups. Restricted cubic spline incorporated into logistic regression analysis was performed to evaluate the association between subsets of leukocytes and common chronic diseases. Findings: The counts of leukocytes and their subsets in males were higher than those in females amongst all age groups, yet the percentages of lymphocytes and neutrophils did not present sex-specific differences. A low lymphocyte count and percentage were associated with old age. The neutrophil-to-lymphocyte ratio (NLR) in patients with hypertension was higher than that in the non-hypertensive population. The risk of NLR in the top quartiles was 1.17-fold higher than that in people in the lowest quartiles. Conclusions: The distributions of the white blood cell count and percentage were associated with age, sex, and body mass index (BMI). In addition to the immune barrier for pathogens, the NLR or monocyte-to-lymphocyte ratio (MLR) may be potentially used to indicate the risk of some chronic non-communicable diseases. Homeostasis of subsets of leukocytes may be an important biomarker for body health conditions.
Collapse
|
42
|
Bushueva O, Barysheva E, Markov A, Belykh A, Koroleva I, Churkin E, Polonikov A, Ivanov V, Nazarenko M. DNA Hypomethylation of the MPO Gene in Peripheral Blood Leukocytes Is Associated with Cerebral Stroke in the Acute Phase. J Mol Neurosci 2021; 71:1914-1932. [PMID: 33864596 DOI: 10.1007/s12031-021-01840-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/03/2021] [Indexed: 01/15/2023]
Abstract
Dysregulation of the oxidant-antioxidant system contributes to the pathogenesis of cerebral stroke (CS). Epigenetic changes of redox homeostasis genes, such as glutamate-cysteine ligase (GCLM), glutathione-S-transferase-P1 (GSTP1), thioredoxin reductase 1 (TXNRD1), and myeloperoxidase (MPO), may be biomarkers of CS. In this study, we assessed the association of DNA methylation levels of these genes with CS and clinical features of CS. We quantitatively analyzed DNA methylation patterns in the promoter or regulatory regions of 4 genes (GCLM, GSTP1, TXNRD1, and MPO) in peripheral blood leukocytes of 59 patients with CS in the acute phase and in 83 relatively healthy individuals (controls) without cardiovascular and cerebrovascular diseases. We found that in both groups, the methylation level of CpG sites in genes TXNRD1 and GSTP1 was ≤ 5%. Lower methylation levels were registered at a CpG site (chr1:94,374,293, GRCh37 [hg19]) in GCLM in patients with ischemic stroke compared with the control group (9% [7%; 11.6%] (median and interquartile range) versus 14.7% [10.4%; 23%], respectively, p < 0.05). In the leukocytes of patients with CS, the methylation level of CpG sites in the analyzed region of MPO (chr17:56,356,470, GRCh3 [hg19]) on average was significantly lower (23.5% [19.3%; 26.7%]) than that in the control group (35.6% [30.4%; 42.6%], p < 0.05). We also found increased methylation of MPO in smokers with CS (27.2% [23.5%; 31.1%]) compared with nonsmokers with CS (21.7% [18.1%; 24.8%]). Thus, hypomethylation of CpG sites in GCLM and MPO in blood leukocytes is associated with CS in the acute phase.
Collapse
Affiliation(s)
- Olga Bushueva
- Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia. .,Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia.
| | - Ekaterina Barysheva
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Anton Markov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Andrey Belykh
- Department of Pathophysiology, Kursk State Medical University, Kursk, Russia
| | - Iuliia Koroleva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Egor Churkin
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexey Polonikov
- Research Institute for Genetic and Molecular Epidemiology, Kursk State Medical University, Kursk, Russia.,Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Vladimir Ivanov
- Department of Biology, Medical Genetics and Ecology, Kursk State Medical University, Kursk, Russia
| | - Maria Nazarenko
- Research Institute of Medical Genetics, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
43
|
Wang L, Deng L, Yuan R, Liu J, Li Y, Liu M. Association of Matrix Metalloproteinase 9 and Cellular Fibronectin and Outcome in Acute Ischemic Stroke: A Systematic Review and Meta-Analysis. Front Neurol 2020; 11:523506. [PMID: 33329294 PMCID: PMC7732454 DOI: 10.3389/fneur.2020.523506] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 10/26/2020] [Indexed: 02/05/2023] Open
Abstract
Introduction: The role of matrix metalloproteinase 9 (MMP-9) and cellular fibronectin (c-Fn) in acute ischemic stroke is controversial. We systematically reviewed the literature to investigate the association of circulating MMP-9 and c-Fn levels and MMP-9 rs3918242 polymorphism with the risk of three outcome measures after stroke. Methods: We searched English and Chinese databases to identify eligible studies. Outcomes included severe brain edema, hemorrhagic transformation, and poor outcome (modified Rankin scale score ≥3). We estimated standardized mean differences (SMDs) and pooled odds ratios (ORs) with 95% confidence intervals (CIs). Results: Totally, 28 studies involving 7,239 patients were included in the analysis of circulating MMP-9 and c-Fn levels. Meta-analysis indicated higher levels of MMP-9 in patients with severe brain edema (SMD, 0.76; 95% CI, 0.18–1.35; four studies, 419 patients) and hemorrhagic transformation (SMD, 1.00; 95% CI, 0.41–1.59; 11 studies, 1,709 patients) but not poor outcome (SMD, 0.30; 95% CI, −0.12 to 0.72; four studies, 759 patients). Circulating c-Fn levels were also significantly higher in patients with severe brain edema (SMD, 1.55; 95% CI, 1.18–1.93; four studies, 419 patients), hemorrhagic transformation (SMD, 1.75; 95% CI, 0.72–2.78; four studies, 458 patients), and poor outcome (SMD, 0.46; 95% CI, 0.16–0.76; two studies, 210 patients). Meta-analysis of three studies indicated that the MMP-9 rs3918242 polymorphism may be associated with hemorrhagic transformation susceptibility under the dominant model (TT + CT vs. CC: OR, 0.621; 95% CI, 0.424–0.908; P = 0.014). No studies reported the association between MMP-9 rs3918242 polymorphism and brain edema or functional outcome after acute stroke. Conclusion: Our meta-analysis showed that higher MMP-9 levels were seen in stroke patients with severe brain edema and hemorrhagic transformation but not poor outcome. Circulating c-Fn levels appear to be associated with all three outcomes including severe brain edema, hemorrhagic transformation, and poor functional outcome. The C-to-T transition at the MMP-9 rs3918242 gene appears to reduce the risk of hemorrhagic transformation.
Collapse
Affiliation(s)
- Lu Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China.,Center of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Linghui Deng
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ruozhen Yuan
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Junfeng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuxiao Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Bernardo-Castro S, Sousa JA, Brás A, Cecília C, Rodrigues B, Almendra L, Machado C, Santo G, Silva F, Ferreira L, Santana I, Sargento-Freitas J. Pathophysiology of Blood-Brain Barrier Permeability Throughout the Different Stages of Ischemic Stroke and Its Implication on Hemorrhagic Transformation and Recovery. Front Neurol 2020; 11:594672. [PMID: 33362697 PMCID: PMC7756029 DOI: 10.3389/fneur.2020.594672] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/09/2020] [Indexed: 12/25/2022] Open
Abstract
The blood-brain barrier (BBB) is a dynamic interface responsible for maintaining the central nervous system homeostasis. Its unique characteristics allow protecting the brain from unwanted compounds, but its impairment is involved in a vast number of pathological conditions. Disruption of the BBB and increase in its permeability are key in the development of several neurological diseases and have been extensively studied in stroke. Ischemic stroke is the most prevalent type of stroke and is characterized by a myriad of pathological events triggered by an arterial occlusion that can eventually lead to fatal outcomes such as hemorrhagic transformation (HT). BBB permeability seems to follow a multiphasic pattern throughout the different stroke stages that have been associated with distinct biological substrates. In the hyperacute stage, sudden hypoxia damages the BBB, leading to cytotoxic edema and increased permeability; in the acute stage, the neuroinflammatory response aggravates the BBB injury, leading to higher permeability and a consequent risk of HT that can be motivated by reperfusion therapy; in the subacute stage (1-3 weeks), repair mechanisms take place, especially neoangiogenesis. Immature vessels show leaky BBB, but this permeability has been associated with improved clinical recovery. In the chronic stage (>6 weeks), an increase of BBB restoration factors leads the barrier to start decreasing its permeability. Nonetheless, permeability will persist to some degree several weeks after injury. Understanding the mechanisms behind BBB dysregulation and HT pathophysiology could potentially help guide acute stroke care decisions and the development of new therapeutic targets; however, effective translation into clinical practice is still lacking. In this review, we will address the different pathological and physiological repair mechanisms involved in BBB permeability through the different stages of ischemic stroke and their role in the development of HT and stroke recovery.
Collapse
Affiliation(s)
| | - João André Sousa
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Ana Brás
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Carla Cecília
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Bruno Rodrigues
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Luciano Almendra
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Cristina Machado
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Gustavo Santo
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Fernando Silva
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - Lino Ferreira
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - Isabel Santana
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| | - João Sargento-Freitas
- Stroke Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculdade de Medicina da Universidade de Coimbra, Coimbra, Portugal
| |
Collapse
|
45
|
Inflammasome Caspase-1 Activity is Elevated in Cerebrospinal Fluid After Aneurysmal Subarachnoid Hemorrhage and Predicts Functional Outcome. Neurocrit Care 2020; 34:889-898. [PMID: 32996055 PMCID: PMC8007683 DOI: 10.1007/s12028-020-01113-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVE Subarachnoid hemorrhage (SAH) is a devastating neurological injury, further complicated by few available methods to objectively predict outcomes. With the recent shift in focus to neuroinflammation as a potential cause of adverse outcomes following SAH, we investigated the inflammasome-derived enzyme, caspase-1, as a potential biomarker for poor functional outcome. METHODS SAH patients were recruited from a regional stroke referral center. Cerebrospinal fluid (CSF) samples from 18 SAH subjects were collected via an external ventricular drain and obtained as close as possible to admission (within 72 h). For control subjects, we collected CSF from 9 patients undergoing lumbar puncture with normal CSF. Caspase-1 activity was measured using commercially available luminescence assays. SAH subjects were categorized at hospital discharge into those with good outcomes (Glasgow Outcome Scale, GOS, of 4-5) and poor outcomes (GOS of 1-3). RESULTS CSF analysis demonstrated a nearly seven-fold increase in caspase-1 activity in SAH patients compared to controls (p < 0.0001). Within the SAH group, 10 patients (55.6%) had good outcomes and 8 patients (44.4%) had poor outcomes. Mean caspase-1 activity in the poor outcome group was approximately three-times higher than the good outcome group (p = 0.001). Caspase-1 activity was significantly correlated with GOS score (r = - 0.705, p = 0.001). Receiver operating characteristic curve analysis showed that caspase-1 activity can accurately differentiate between patients with good versus poor functional outcome (area under the curve 0.944, p = 0.002). CONCLUSIONS Inflammasome-derived caspase-1 activity is elevated in the CSF of SAH patients compared to controls and higher levels correlate with worse functional outcome.
Collapse
|