1
|
Barrett-Young A, Cawston EE, Ryan B, Abraham WC, Ambler A, Anderson T, Cheyne K, Goodin E, Hogan S, Houts RM, Ireland D, Knodt AR, Kokaua J, Melzer TR, Ramrakha S, Sugden K, Williams B, Wilson P, Caspi A, Hariri AR, Moffitt TE, Poulton R, Theodore R. Examining the relationship between plasma pTau181 and cognitive decline, structural brain integrity, and biological ageing in midlife. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.09.25325556. [PMID: 40297422 PMCID: PMC12036385 DOI: 10.1101/2025.04.09.25325556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
INTRODUCTION Although plasma pTau181 has been shown to accurately discriminate patients with Alzheimer's disease from healthy older adults, its utility as a preclinical biomarker in middle-aged community-based cohorts is unclear. METHODS Participants were members of the Dunedin Multidisciplinary Health and Development Study, a longitudinal study of 1037 people born in New Zealand in 1972-1973. Plasma pTau181, MRI-based brain structure, and DunedinPACE (an epigenetic biomarker of biological ageing) were measured at age 45; cognition was measured in childhood and age 45. RESULTS We observed a wide range of pTau181 concentrations in our same-aged sample (n=856; M=13.6pg/mL, SD=9.1pg/mL). Males had significantly higher pTau181 concentrations than females. No statistically significant associations were observed with cognitive decline, lower structural brain integrity, or accelerated biological ageing. DISCUSSION In this midlife cohort, wide variation in pTau181 concentrations was present by age 45, but was not associated with patterns of AD-risk in cognition, brain structure, or biological ageing.
Collapse
Affiliation(s)
- Ashleigh Barrett-Young
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Erin E. Cawston
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand
| | - Brigid Ryan
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Wickliffe C. Abraham
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
- Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Antony Ambler
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Tim Anderson
- Department of Medicine, University of Otago, Christchurch, New Zealand
- New Zealand Brain Research Institute, Christchurch, New Zealand
| | - Kirsten Cheyne
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth Goodin
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Sean Hogan
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Renate M. Houts
- Department of Psychology and Neuroscience, Duke University, North Carolina, USA
| | - David Ireland
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Annchen R. Knodt
- Department of Psychology and Neuroscience, Duke University, North Carolina, USA
| | - Jesse Kokaua
- Va’a o Tautai Centre for Pacific Health, University of Otago, Dunedin, New Zealand
| | - Tracy R. Melzer
- New Zealand Brain Research Institute, Christchurch, New Zealand
- Te Kura Mahi ā-Hirikapo | School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
- Pacific Radiology Canterbury, Christchurch, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, North Carolina, USA
| | - Benjamin Williams
- Department of Psychology and Neuroscience, Duke University, North Carolina, USA
| | - Phillipa Wilson
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, North Carolina, USA
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Ahmad R. Hariri
- Department of Psychology and Neuroscience, Duke University, North Carolina, USA
| | - Terrie E. Moffitt
- Department of Psychology and Neuroscience, Duke University, North Carolina, USA
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Richie Poulton
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Reremoana Theodore
- Dunedin Multidisciplinary Health & Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
2
|
Bonkhoff AK, Coughlan G, Perosa V, Alhadid K, Schirmer MD, Regenhardt RW, van Veluw S, Buckley R, Fox MD, Rost NS. Sex differences in age-associated neurological diseases-A roadmap for reliable and high-yield research. SCIENCE ADVANCES 2025; 11:eadt9243. [PMID: 40043111 PMCID: PMC11881909 DOI: 10.1126/sciadv.adt9243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/06/2025] [Indexed: 03/09/2025]
Abstract
Once taken into consideration, sex differences in neurological diseases emerge in abundance: (i) Stroke severity is significantly higher in females than in males, (ii) Alzheimer's disease (AD) pathology is more pronounced in females, and (iii) conspicuous links with hormonal cycles led to female-specific diagnoses, such as catamenial migraines and epilepsy. While these differences receive increasing attention in isolation, they likely link to similar processes in the brain. Hence, this review aims to present an overview of the influences of sex chromosomes, hormones, and aging on male and female brains across health and disease, with a particular focus on AD and stroke. The focus here on advancements across several fields holds promise to fuel future research and to lead to an enriched understanding of the brain and more effective personalized neurologic care for all.
Collapse
Affiliation(s)
- Anna K. Bonkhoff
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Gillian Coughlan
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Kenda Alhadid
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Markus D. Schirmer
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Robert W. Regenhardt
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Susanne van Veluw
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Rachel Buckley
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | - Michael D. Fox
- Department of Neurology, Brigham and Women’s Hospital/Harvard Medical School, Boston, MA, USA
| | - Natalia S. Rost
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| |
Collapse
|
3
|
Wang Y, Wang J, Chen X, Lin Z, You Z, He K, Guo T, Zhao J, Huang Q, Ni R, Guan Y, Li B, Xie F. Tau pathology is associated with postsynaptic metabotropic glutamate receptor 5 (mGluR5) in early Alzheimer's disease in a sex-specific manner. Alzheimers Dement 2025; 21:e70004. [PMID: 39998900 PMCID: PMC11853735 DOI: 10.1002/alz.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/27/2025]
Abstract
INTRODUCTION To investigate the associations of metabotropic glutamate receptor 5 (mGluR5) with tau deposition and cognitive ability in patients with early Alzheimer's disease (AD). METHODS Twenty-six cognitively impaired (CI) and 14 cognitively unimpaired (CU) individuals underwent mGluR5 positron emission tomography (PET) ([18F]PSS232), amyloid PET ([18F]florbetapir), and tau PET ([18F]MK6240), and neuropsychological assessment. The relationships among mGluR5 availability, tau deposition, and neuropsychological assessment were analyzed using Spearman's correlation and mediation analyses. RESULTS CI patients had lower mGluR5 in the hippocampus than CU (standardized uptake value ratio [SUVr]: 2.03 ± 0.25 vs 1.79 ± 0.17, p = 0.003). Hippocampal mGluR5 was negatively associated with hippocampal tau deposition (r = -.46, p = 0.003) and positively associated with cognitive performance, but only in women. Hippocampal tau deposition mediated the effect of mGluR5 on cognitive performance. DISCUSSION Reduced hippocampal mGluR5 is negatively related with tau deposition in most cortical regions and positively associated with cognitive performance, making it a promising biomarker for AD diagnosis and therapy. HIGHLIGHTS Cognitively impaired (CI) patients exhibited lower metabotropic glutamate receptor 5 (mGluR5) availability in the hippocampus than cognitively unimpaired (CU) subjects. Hippocampal mGluR5 availability was negatively associated with tau deposition in widespread cortex. Hippocampal mGluR5 availability was positively associated with cognitive performance. The close association of mGluR5 with tau and cognition performance exists only in females. Tau pathology mediated the relationship between mGluR5 availability and cognition.
Collapse
Affiliation(s)
- Yan Wang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Jie Wang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Xing Chen
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Zengping Lin
- Central Research InstituteUnited Imaging Health Care Group Co., Ltd.ShanghaiChina
| | - Zhiwen You
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Kun He
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Tengfei Guo
- Institute of Biomedical EngineeringShenzhen Bay LaboratoryShenzhenChina
| | - Jun Zhao
- Department of Nuclear Medicine, Shanghai East HospitalTongji University School of MedicineShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Ruiqing Ni
- Institute for Biomedical Engineering, Institute for Regenerative MedicineUniversity of Zurich & ETH ZurichZurichSwitzerland
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology and Institute of Neurology, Ruijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
| |
Collapse
|
4
|
Biel D, Suárez-Calvet M, Dewenter A, Steward A, Roemer SN, Dehsarvi A, Zhu Z, Pescoller J, Frontzkowski L, Kreuzer A, Haass C, Schöll M, Brendel M, Franzmeier N. Female sex is linked to a stronger association between sTREM2 and CSF p-tau in Alzheimer's disease. EMBO Mol Med 2025; 17:235-248. [PMID: 39794447 PMCID: PMC11822105 DOI: 10.1038/s44321-024-00190-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/18/2024] [Accepted: 12/18/2024] [Indexed: 01/13/2025] Open
Abstract
In Alzheimer's disease (AD), Aβ triggers p-tau secretion, which drives tau aggregation. Therefore, it is critical to characterize modulators of Aβ-related p-tau increases which may alter AD trajectories. Here, we assessed whether factors known to alter tau levels in AD modulate the association between fibrillar Aβ and secreted p-tau181 determined in the cerebrospinal fluid (CSF). To assess potentially modulating effects of female sex, younger age, and ApoE4, we included 322 ADNI participants with cross-sectional/longitudinal p-tau181. To determine effects of microglial activation on p-tau181, we included 454 subjects with cross-sectional CSF sTREM2. Running ANCOVAs for nominal and linear regressions for metric variables, we found that women had higher Aβ-related p-tau181 levels. Higher sTREM2 was associated with elevated p-tau181, with stronger associations in women. Similarly, ApoE4 was related to higher p-tau181 levels and faster p-tau181 increases, with stronger effects in female ApoE4 carriers. Our results show that sex alone modulates the Aβ to p-tau axis, where women show higher Aβ-dependent p-tau secretion, potentially driven by elevated sTREM2-related microglial activation and stronger effects of ApoE4 carriership in women.
Collapse
Affiliation(s)
- Davina Biel
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany.
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Servei de Neurologia, Hospital del Mar, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Anna Dewenter
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Anna Steward
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Sebastian N Roemer
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Neurology, University Hospital, LMU Munich, Munich, Germany
| | - Amir Dehsarvi
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Zeyu Zhu
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Julia Pescoller
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Lukas Frontzkowski
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Annika Kreuzer
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Christian Haass
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Chair of Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
| | - Michael Schöll
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| | - Matthias Brendel
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Nicolai Franzmeier
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- University of Gothenburg, The Sahlgrenska Academy, Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, Mölndal and Gothenburg, Sweden
| |
Collapse
|
5
|
Gol Mohammad Pour Afrakoti L, Daneshpour Moghadam S, Hadinezhad P. Alzheimer's disease and the immune system: A comprehensive overview with a focus on B cells, humoral immunity, and immunotherapy. J Alzheimers Dis Rep 2025; 9:25424823251329188. [PMID: 40297057 PMCID: PMC12035277 DOI: 10.1177/25424823251329188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 02/11/2025] [Indexed: 04/30/2025] Open
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative disorder and the major cause of dementia. Amyloid-β (Aβ) and tau aggregation, mitochondrial dysfunction, and microglial dysregulation are key contributors to AD pathogenesis. Impairments in the blood-brain barrier have unveiled the contribution of the immune system, particularly B cells, in AD pathology. B cells, a crucial component of adaptive immunity, exhibit diverse functions, including antigen presentation and antibody production. While their role in neuroinflammatory disorders has been well-documented, their specific function in AD lacks adequate data. This review examines the dual role of the B cells and humoral immunity in modulating brain inflammation in AD and explores recent advancements in passive and active immunotherapeutic strategies targeting AD pathobiology. We summarize preclinical and clinical studies investigating B cell frequency, altered antibody levels, and their implications in neuroinflammation and immunotherapy. Notably, B cells demonstrate protective and pathological roles in AD, influencing neurodegeneration through antibody-mediated clearance of toxic aggregates and inflammatory activation inflammation. Passive immunotherapies targeting Aβ have shown potential in reducing amyloid plaques, while active immunotherapies are emerging as promising strategies, requiring further validation. Understanding the interplay between B cells, humoral immunity, microglia, and mitochondrial dysfunction is critical to unraveling AD pathogenesis. Their dual nature in disease progression underscores the need for precise therapeutic interventions to optimize immunotherapy outcomes and mitigate neuroinflammation effectively.
Collapse
Affiliation(s)
| | - Sanam Daneshpour Moghadam
- Department of Diagnostic and Public Health, School of Biotechnology, University of Verona, Verona, Italy
| | - Pezhman Hadinezhad
- Cognitive Neurology, Dementia and Neuropsychiatry Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
6
|
Chen G, Xi E, Gu X, Wang H, Tang Q. The study on cuproptosis in Alzheimer's disease based on the cuproptosis key gene FDX1. Front Aging Neurosci 2024; 16:1480332. [PMID: 39759399 PMCID: PMC11696982 DOI: 10.3389/fnagi.2024.1480332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disorder characterized by memory and cognitive impairments. Previous studies have shown neuronal death in the brains of AD patients, but the role of cuproptosis and its associated genes in AD neurons remains unclear. Methods Intersection analysis was conducted using the AD transcriptome dataset GSE63060, neuron dataset GSE147528, and reported cuproptosis-related genes to identify the cuproptosis key gene FDX1 highly expressed in AD. Subsequently, cell experiments were performed by treating SH-SY5Y cells with Aβ25-35 to establish AD cell model. The real-time reverse transcriptase-polymerase chain reaction (RT-qPCR) and western blotting (WB) assays were employed to detect the expression levels of FDX1, DLAT, and DLST. Cell proliferation was analyzed by counting Kit-8 (CCK8), mitochondrial ROS levels were analyzed using flow cytometry. shRNA was used to downregulate FDX1 expression, followed by repetition of the aforementioned experiments. Clinical experiments utilized qPCR to detect FDX1 mRNA levels in peripheral venous blood of patients, and analyzed FDX1 expression differences in different APOE genotypes of AD patients. Finally, a protein-protein interaction (PPI) network of FDX1 was constructed based on the GeneMANIA database, immune infiltration analysis was conducted using R language, and transcription factors prediction for FDX1 was performed based on the ENCODE database. Results The cuproptosis key gene FDX1 showed significantly higher expression in peripheral blood and neuron models of AD compared to non-AD individuals, with significantly higher expression in APOE ε4/ε4 genotype than other APOE genotype of AD patients. Knockdown of FDX1 expression reduced the lipidation levels of DLAT and DLST in neurons, alleviated ROS accumulation in mitochondria, improved cell viability, and mitigated cuproptosis. Immune infiltration analysis results indicated a high enrichment of peripheral blood γδ-T lymphocytes in AD, and FDX1 was significantly associated with the infiltration of four immune cells and may be regulated by three transcription factors. Conclusion The cuproptosis key gene FDX1 is highly expressed in AD and may promote cuproptosis in AD neurons by regulating the lipidation levels of DLAT and DLST, thereby participating in the onset and development of AD. This provides a potential target for the diagnosis and treatment of AD.
Collapse
Affiliation(s)
- Guilin Chen
- Department of Neurology, Yijishan Hospital, The First Affiliated Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Erwei Xi
- Department of Neurology, Provincial Hospital Affiliated to Anhui Medical University, Hefei, Anhui, China
| | - Xiaozhen Gu
- Institute of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Huili Wang
- Institute of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, China
| | - Qiqiang Tang
- Department of Neurology, The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
7
|
Le Borgne J, Gomez L, Heikkinen S, Amin N, Ahmad S, Choi SH, Bis J, Grenier-Boley B, Rodriguez OG, Kleineidam L, Young J, Tripathi KP, Wang L, Varma A, Campos-Martin R, van der Lee S, Damotte V, de Rojas I, Palmal S, Lipton R, Reiman E, McKee A, De Jager P, Bush W, Small S, Levey A, Saykin A, Foroud T, Albert M, Hyman B, Petersen R, Younkin S, Sano M, Wisniewski T, Vassar R, Schneider J, Henderson V, Roberson E, DeCarli C, LaFerla F, Brewer J, Swerdlow R, Van Eldik L, Hamilton-Nelson K, Paulson H, Naj A, Lopez O, Chui H, Crane P, Grabowski T, Kukull W, Asthana S, Craft S, Strittmatter S, Cruchaga C, Leverenz J, Goate A, Kamboh MI, George-Hyslop PS, Valladares O, Kuzma A, Cantwell L, Riemenschneider M, Morris J, Slifer S, Dalmasso C, Castillo A, Küçükali F, Peters O, Schneider A, Dichgans M, Rujescu D, Scherbaum N, Deckert J, Riedel-Heller S, Hausner L, Molina-Porcel L, Düzel E, Grimmer T, Wiltfang J, Heilmann-Heimbach S, Moebus S, Tegos T, Scarmeas N, Dols-Icardo O, Moreno F, Pérez-Tur J, Bullido MJ, Pastor P, Sánchez-Valle R, Álvarez V, Boada M, García-González P, Puerta R, Mir P, Real LM, Piñol-Ripoll G, García-Alberca JM, Royo JL, Rodriguez-Rodriguez E, et alLe Borgne J, Gomez L, Heikkinen S, Amin N, Ahmad S, Choi SH, Bis J, Grenier-Boley B, Rodriguez OG, Kleineidam L, Young J, Tripathi KP, Wang L, Varma A, Campos-Martin R, van der Lee S, Damotte V, de Rojas I, Palmal S, Lipton R, Reiman E, McKee A, De Jager P, Bush W, Small S, Levey A, Saykin A, Foroud T, Albert M, Hyman B, Petersen R, Younkin S, Sano M, Wisniewski T, Vassar R, Schneider J, Henderson V, Roberson E, DeCarli C, LaFerla F, Brewer J, Swerdlow R, Van Eldik L, Hamilton-Nelson K, Paulson H, Naj A, Lopez O, Chui H, Crane P, Grabowski T, Kukull W, Asthana S, Craft S, Strittmatter S, Cruchaga C, Leverenz J, Goate A, Kamboh MI, George-Hyslop PS, Valladares O, Kuzma A, Cantwell L, Riemenschneider M, Morris J, Slifer S, Dalmasso C, Castillo A, Küçükali F, Peters O, Schneider A, Dichgans M, Rujescu D, Scherbaum N, Deckert J, Riedel-Heller S, Hausner L, Molina-Porcel L, Düzel E, Grimmer T, Wiltfang J, Heilmann-Heimbach S, Moebus S, Tegos T, Scarmeas N, Dols-Icardo O, Moreno F, Pérez-Tur J, Bullido MJ, Pastor P, Sánchez-Valle R, Álvarez V, Boada M, García-González P, Puerta R, Mir P, Real LM, Piñol-Ripoll G, García-Alberca JM, Royo JL, Rodriguez-Rodriguez E, Soininen H, de Mendonça A, Mehrabian S, Traykov L, Hort J, Vyhnalek M, Thomassen JQ, Pijnenburg YAL, Holstege H, van Swieten J, Ramakers I, Verhey F, Scheltens P, Graff C, Papenberg G, Giedraitis V, Boland A, Deleuze JF, Nicolas G, Dufouil C, Pasquier F, Hanon O, Debette S, Grünblatt E, Popp J, Ghidoni R, Galimberti D, Arosio B, Mecocci P, Solfrizzi V, Parnetti L, Squassina A, Tremolizzo L, Borroni B, Nacmias B, Spallazzi M, Seripa D, Rainero I, Daniele A, Bossù P, Masullo C, Rossi G, Jessen F, Fernandez V, Kehoe PG, Frikke-Schmidt R, Tsolaki M, Sánchez-Juan P, Sleegers K, Ingelsson M, Haines J, Farrer L, Mayeux R, Wang LS, Sims R, DeStefano A, Schellenberg GD, Seshadri S, Amouyel P, Williams J, van der Flier W, Ramirez A, Pericak-Vance M, Andreassen OA, Van Duijn C, Hiltunen M, Ruiz A, Dupuis J, Martin E, Lambert JC, Kunkle B, Bellenguez C. X-chromosome-wide association study for Alzheimer's disease. Mol Psychiatry 2024:10.1038/s41380-024-02838-5. [PMID: 39633006 DOI: 10.1038/s41380-024-02838-5] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 12/07/2024]
Abstract
Due to methodological reasons, the X-chromosome has not been featured in the major genome-wide association studies on Alzheimer's Disease (AD). To address this and better characterize the genetic landscape of AD, we performed an in-depth X-Chromosome-Wide Association Study (XWAS) in 115,841 AD cases or AD proxy cases, including 52,214 clinically-diagnosed AD cases, and 613,671 controls. We considered three approaches to account for the different X-chromosome inactivation (XCI) states in females, i.e. random XCI, skewed XCI, and escape XCI. We did not detect any genome-wide significant signals (P ≤ 5 × 10-8) but identified seven X-chromosome-wide significant loci (P ≤ 1.6 × 10-6). The index variants were common for the Xp22.32, FRMPD4, DMD and Xq25 loci, and rare for the WNK3, PJA1, and DACH2 loci. Overall, this well-powered XWAS found no genetic risk factors for AD on the non-pseudoautosomal region of the X-chromosome, but it identified suggestive signals warranting further investigations.
Collapse
Affiliation(s)
- Julie Le Borgne
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Lissette Gomez
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Sami Heikkinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Najaf Amin
- Nuffield Department of Population Health Oxford University, Oxford, UK
| | - Shahzad Ahmad
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Seung Hoan Choi
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Joshua Bis
- Department of Medicine, Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Benjamin Grenier-Boley
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Omar Garcia Rodriguez
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Luca Kleineidam
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Juan Young
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Kumar Parijat Tripathi
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Lily Wang
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Achintya Varma
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Rafael Campos-Martin
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
| | - Sven van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije University, Amsterdam, The Netherlands
| | - Vincent Damotte
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Itziar de Rojas
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Sagnik Palmal
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Richard Lipton
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Eric Reiman
- Neurogenomics Division, Translational Genomics Research Institute, Phoenix, AZ, USA
- Arizona Alzheimer's Consortium, Phoenix, AZ, USA
- Banner Alzheimer's Institute, Phoenix, AZ, USA
- Department of Psychiatry, University of Arizona, Phoenix, AZ, USA
| | - Ann McKee
- Department of Neurology, Boston University, Boston, MA, USA
- Department of Pathology, Boston University, Boston, MA, USA
| | - Philip De Jager
- Program in Translational Neuro-Psychiatric Genomics, Institute for the Neurosciences, Department of Neurology & Psychiatry, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - William Bush
- Department of Epidemiology and Biostatistics, Case Western Reserve University, Cleveland, OH, USA
| | - Scott Small
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Allan Levey
- Department of Neurology, Emory University, Atlanta, GA, USA
| | - Andrew Saykin
- Department of Radiology, Indiana University, Indianapolis, IN, USA
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis, IN, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Bradley Hyman
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Boston, MA, USA
| | | | - Steven Younkin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Mary Sano
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY, USA
| | - Thomas Wisniewski
- Center for Cognitive Neurology and Departments of Neurology, New York University, School of Medicine, New York, NY, USA
- Department of Psychiatry, New York University, New York, NY, USA
| | - Robert Vassar
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julie Schneider
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL, USA
- Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA
| | - Victor Henderson
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Erik Roberson
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Charles DeCarli
- Department of Neurology, University of California Davis, Sacramento, CA, USA
| | - Frank LaFerla
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA, USA
| | - James Brewer
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Russell Swerdlow
- University of Kansas Alzheimer's Disease Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Linda Van Eldik
- Sanders-Brown Center on Aging and University of Kentucky Alzheimer's Disease Research Center, Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - Kara Hamilton-Nelson
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Henry Paulson
- Michigan Alzheimer's Disease Center, Department of Neurology, University of Michigan, Ann Arbor, MI, USA
| | - Adam Naj
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Oscar Lopez
- University of Pittsburgh Alzheimer's Disease Research Center, Pittsburgh, PA, USA
| | - Helena Chui
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Paul Crane
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Thomas Grabowski
- Department of Neurology, University of Washington, Seattle, WA, USA
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Walter Kukull
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Sanjay Asthana
- Geriatric Research, Education and Clinical Center (GRECC), University of Wisconsin, Madison, WI, USA
- Department of Medicine, University of Wisconsin, Madison, WI, USA
- Wisconsin Alzheimer's Disease Research Center, Madison, WI, USA
| | - Suzanne Craft
- Gerontology and Geriatric Medicine Center on Diabetes, Obesity, and Metabolism, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Stephen Strittmatter
- Program in Cellular Neuroscience, Neurodegeneration & Repair, Yale University, New Haven, CT, USA
| | - Carlos Cruchaga
- Department of Psychiatry and Hope Center Program on Protein Aggregation and Neurodegeneration, Washington University School of Medicine, St. Louis, MO, USA
| | - James Leverenz
- Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic, Cleveland, OH, USA
| | - Alison Goate
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY, USA
| | - M Ilyas Kamboh
- University of Pittsburgh Alzheimer's Disease Research Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter St George-Hyslop
- Department of Medicine (Neurology), Tanz Centre for Research in Neurodegenerative Disease, Temerty Faculty of Medicine, University of Toronto, and University Health Network, Toronto, ON, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY, 10032, USA
| | - Otto Valladares
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda Kuzma
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Laura Cantwell
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - John Morris
- Department of Neurology, Washington University, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University, St. Louis, MO, USA
| | - Susan Slifer
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Carolina Dalmasso
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- Estudios en Neurociencias y Sistemas Complejos (ENyS) CONICET-HEC-UNAJ, Buenos Aires, Argentina
| | - Atahualpa Castillo
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales, UK
| | - Fahri Küçükali
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Psychiatry and Psychotherapy, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Martin Dichgans
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Dan Rujescu
- Martin-Luther-University Halle-Wittenberg, University Clinic and Outpatient Clinic for Psychiatry, Psychotherapy and Psychosomatics, Halle (Saale), Germany
| | - Norbert Scherbaum
- Department of Psychiatry and Psychotherapy, LVR-Klinikum Essen, University of Duisburg-Essen, Germany, Medical Faculty, Duisburg, Germany
| | - Jürgen Deckert
- Department of Psychiatry, Psychosomatics and Psychotherapy, Center of Mental Health, University Hospital of Würzburg, Würzburg, Germany
| | - Steffi Riedel-Heller
- Institute of Social Medicine, Occupational Health and Public Health, University of Leipzig, 04103, Leipzig, Germany
| | - Lucrezia Hausner
- Department of Geriatric Psychiatry, Central Institute for Mental Health Mannheim, Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic of Barcelona, Fundació Recerca Clinic Barcelona- Institut d'Investigacions Biomèdiques August Pi i Sunyer (FRCB-IDIBAPS), and University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank-Biobank, Hospital Clinic-FRCB-IDIBAPS, Barcelona, Spain
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Timo Grimmer
- Center for Cognitive Disorders, Department of Psychiatry and Psychotherapy, Technical University of Munich, School of Medicine and Health, Klinikum rechts der Isar, Munich, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Medical Science Department, iBiMED, Aveiro, Portugal
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Susanne Moebus
- Institute for Urban Public Health, University Hospital of University Duisburg-Essen, Essen, Germany
| | - Thomas Tegos
- 1st Department of Neurology, Medical school, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
| | - Nikolaos Scarmeas
- Taub Institute for Research in Alzheimer's Disease and the Aging Brain, The Gertrude H. Sergievsky Center, Depatment of Neurology, Columbia University, New York, NY, USA
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece
| | - Oriol Dols-Icardo
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Sant Pau Memory Unit, Institut de Recerca Sant Pau (IR Sant Pau), Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Fermin Moreno
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Department of Neurology, Hospital Universitario Donostia, San Sebastian, Spain
- Neurosciences Area, Instituto Biodonostia, San Sebastian, Spain
| | - Jordi Pérez-Tur
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unitat de Genètica Molecular, Institut de Biomedicina de València-CSIC, Valencia, Spain
- Unidad Mixta de Neurologia Genètica, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María J Bullido
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Madrid, Spain
- Instituto de Investigacion Sanitaria 'Hospital la Paz' (IdIPaz), Madrid, Spain
- Universidad Autónoma de Madrid, Madrid, Spain
| | - Pau Pastor
- Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology, Hospital Clínic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Victoria Álvarez
- Laboratorio de Genética, Hospital Universitario Central de Asturias, Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Mercè Boada
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Pablo García-González
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pablo Mir
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Luis M Real
- Unidad Clínica de Enfermedades Infecciosas y Microbiología, Hospital Universitario de Valme, Sevilla, Spain
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Gerard Piñol-Ripoll
- Unitat Trastorns Cognitius, Hospital Universitari Santa Maria de Lleida, Lleida, Spain
- Institut de Recerca Biomedica de Lleida (IRBLLeida), Lleida, Spain
| | - Jose María García-Alberca
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer Research Center & Memory Clinic, Andalusian Institute for Neuroscience, Málaga, Spain
| | - Jose Luís Royo
- Depatamento de Especialidades Quirúrgicas, Bioquímica e Inmunología, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Eloy Rodriguez-Rodriguez
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Neurology Service, Marqués de Valdecilla University Hospital (University of Cantabria and IDIVAL), Santander, Spain
| | - Hilkka Soininen
- Institute of Clinical Medicine-Neurology, University of Eastern Finland, Kuopio, Finland
| | | | - Shima Mehrabian
- Clinic of Neurology, UH "Alexandrovska", Medical University-Sofia, Sofia, Bulgaria
| | - Latchezar Traykov
- Clinic of Neurology, UH "Alexandrovska", Medical University-Sofia, Sofia, Bulgaria
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Praha, Czech Republic
| | - Martin Vyhnalek
- Memory Clinic, Department of Neurology, Charles University, Second Faculty of Medicine and Motol University Hospital, Praha, Czech Republic
| | - Jesper Qvist Thomassen
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Department of Clinical Genetics, VU University Medical Centre, Amsterdam, The Netherlands
| | | | - Inez Ramakers
- Maastricht University, Department of Psychiatry & Neuropsychologie, Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Frans Verhey
- Maastricht University, Department of Psychiatry & Neuropsychologie, Alzheimer Center Limburg, Maastricht, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Caroline Graff
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital-Solna, 171 64, Stockholm, Sweden
| | - Goran Papenberg
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Vilmantas Giedraitis
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
| | - Anne Boland
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Jean-François Deleuze
- Université Paris-Saclay, CEA, Centre National de Recherche en Génomique Humaine, 91057, Evry, France
| | - Gael Nicolas
- Univ Rouen Normandie, Normandie Univ, Inserm U1245 and CHU Rouen, Department of Genetics and CNRMAJ, F-76000, Rouen, France
| | - Carole Dufouil
- Inserm, Bordeaux Population Health Research Center, UMR 1219, Univ. Bordeaux, ISPED, CIC 1401-EC, Univ. Bordeaux, Bordeaux, France
- CHU de Bordeaux, Pole Santé Publique, Bordeaux, France
| | - Florence Pasquier
- Univ. Lille, Inserm 1171, CHU Clinical and Research Memory Research Centre (CMRR) of Distalz, Lille, France
| | - Olivier Hanon
- Université de Paris, EA 4468, APHP, Hôpital Broca, Paris, France
| | - Stéphanie Debette
- University Bordeaux, Inserm, Bordeaux Population Health Research Center, Bordeaux, France
- Department of Neurology, Bordeaux University Hospital, Bordeaux, France
| | - Edna Grünblatt
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
- Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
| | - Julius Popp
- Old Age Psychiatry, Department of Psychiatry, Lausanne University Hospital, Lausanne, Switzerland
- Department of Geriatric Psychiatry, University Hospital of Psychiatry Zürich, Zürich, Switzerland
- Institute for Regenerative Medicine, University of Zürich, Zurich, Switzerland
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, 25125, Italy
| | - Daniela Galimberti
- Neurodegenerative Diseases Unit, Fondazione IRCCS Ca' Granda, Ospedale Policlinico, Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122, Milan, Italy
- Geriatric Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122, Milan, Italy
| | - Patrizia Mecocci
- Institute of Gerontology and Geriatrics, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Vincenzo Solfrizzi
- Interdisciplinary Department of Medicine, Geriatric Medicine and Memory Unit, University of Bari "A. Moro", Bari, Italy
| | - Lucilla Parnetti
- Centre for Memory Disturbances, Lab of Clinical Neurochemistry, Section of Neurology, University of Perugia, Perugia, Italy
| | - Alessio Squassina
- Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Lucio Tremolizzo
- Neurology Unit, "San Gerardo" Hospital, Monza and University of Milano-Bicocca, Milan, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Cognitive and Behavioural Neurology, Department of Continuity of Care and Frailty, ASST Spedali Civili Brescia, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health University of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Marco Spallazzi
- Department of Medicine and Surgery, Unit of Neurology, University-Hospital of Parma, Parma, Italy
| | - Davide Seripa
- Department of Hematology and Stem Cell Transplant, Vito Fazzi Hospital, Lecce, Italy
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini", University of Torino, Torino, Italy
| | - Antonio Daniele
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Paola Bossù
- Laboratory of Experimental Neuropsychobiology, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Carlo Masullo
- Institute of Neurology, Catholic University of the Sacred Heart, Rome, Italy
| | - Giacomina Rossi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Frank Jessen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Responses in Aging-associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Victoria Fernandez
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Patrick Gavin Kehoe
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Magda Tsolaki
- 1st Department of Neurology, Medical school, Aristotle University of Thessaloniki, Thessaloniki, Makedonia, Greece
- Laboratory of Genetics, Immunology and Human Pathology, Faculty of Science of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Pascual Sánchez-Juan
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
- Alzheimer's Centre Reina Sofia-CIEN Foundation-ISCIII, Madrid, Spain
| | - Kristel Sleegers
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences/Geriatrics, Uppsala University, Uppsala, Sweden
- Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, Departments of Medicine and Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jonathan Haines
- Department of Population and Quantitative Health Sciences and Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH, USA
| | - Lindsay Farrer
- Department of Neurology, Boston University, Boston, MA, USA
- Department of Biostatistics, Boston University, Boston, MA, USA
- Department of Epidemiology, Boston University, Boston, MA, USA
- Department of Medicine (Biomedical Genetics), Boston University, Boston, MA, USA
- Department of Ophthalmology, Boston University, Boston, MA, USA
| | - Richard Mayeux
- Taub Institute on Alzheimer's Disease and the Aging Brain, Department of Neurology, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales, UK
| | - Anita DeStefano
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Gerard D Schellenberg
- Penn Neurodegeneration Genomics Center, Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Boston University and the NHLBI's Framingham Heart Study, Boston, MA, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Philippe Amouyel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neuroscience, School of Medicine, Cardiff University, Wales, UK
- UK Dementia Research Institute, Cardiff University, Cardiff, UK
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alfredo Ramirez
- Department of Old Age Psychiatry and Cognitive Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Medical Faculty, Cologne, Germany
- Department of Psychiatry & Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX, USA
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Disease (CECAD), University of Cologne, Cologne, Germany
| | - Margaret Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cornelia Van Duijn
- Nuffield Department of Population Health Oxford University, Oxford, UK
- Department of Epidemiology, Erasmus MC, Rotterdam, The Netherlands
| | - Mikko Hiltunen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Agustín Ruiz
- Research Center and Memory Clinic, ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya, Barcelona, Spain
- CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, QC, Canada
| | - Eden Martin
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
- Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami, Miami, FL, USA
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jean-Charles Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France
| | - Brian Kunkle
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, FL, USA
| | - Céline Bellenguez
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, LabEx DISTALZ - U1167-RID-AGE Facteurs de Risque et Déterminants Moléculaires des Maladies Liées au Vieillissement, Lille, France.
| |
Collapse
|
8
|
Singh R, Jain S, Paliwal V, Verma K, Paliwal S, Sharma S. Does Metabolic Manager Show Encouraging Outcomes in Alzheimer's?: Challenges and Opportunity for Protein Tyrosine Phosphatase 1b Inhibitors. Drug Dev Res 2024; 85:e70026. [PMID: 39655712 DOI: 10.1002/ddr.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/22/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024]
Abstract
Protein tyrosine phosphatase 1b (PTP1b) is a member of the protein tyrosine phosphatase (PTP) enzyme group and encoded as PTP1N gene. Studies have evidenced an overexpression of the PTP1b enzyme in metabolic syndrome, anxiety, schizophrenia, neurodegeneration, and neuroinflammation. PTP1b inhibitor negatively regulates insulin and leptin pathways and has been explored as an antidiabetic agent in various clinical trials. Notably, the preclinical studies have shown that recuperating metabolic dysfunction and dyshomeostasis can reverse cognition and could be a possible approach to mitigate multifaceted Alzheimer's disease (AD). PTP1b inhibitor thus has attracted attention in neuroscience, though the development is limited to the preclinical stage, and its exploration in large clinical trials is warranted. This review provides an insight on the development of PTP1b inhibitors from different sources in diabesity. The crosstalk between metabolic dysfunction and insulin insensitivity in AD and type-2 diabetes has also been highlighted. Furthermore, this review presents the significance of PTP1b inhibition in AD based on pathophysiological facets, and recent evidences from preclinical and clinical studies.
Collapse
Affiliation(s)
- Ritu Singh
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Smita Jain
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Vartika Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Internal Medicine, Division of Cardiology, LSU Health Sciences Center Shreveport, Louisiana, USA
| | - Sarvesh Paliwal
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
9
|
Lopez-Lee C, Kodama L, Fan L, Zhu D, Zhu J, Wong MY, Ye P, Norman K, Foxe NR, Ijaz L, Yu F, Chen H, Carling GK, Torres ER, Kim RD, Dubal DB, Liddelow SA, Sinha SC, Luo W, Gan L. Tlr7 drives sex differences in age- and Alzheimer's disease-related demyelination. Science 2024; 386:eadk7844. [PMID: 39607927 DOI: 10.1126/science.adk7844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 06/30/2024] [Accepted: 10/10/2024] [Indexed: 11/30/2024]
Abstract
Alzheimer's disease (AD) and other age-related disorders associated with demyelination exhibit sex differences. In this work, we used single-nuclei transcriptomics to dissect the contributions of sex chromosomes and gonads in demyelination and AD. In a mouse model of demyelination, we identified the roles of sex chromosomes and gonads in modifying microglia and oligodendrocyte responses before and after myelin loss. In an AD-related mouse model expressing APOE4, XY sex chromosomes heightened interferon (IFN) response and tau-induced demyelination. The X-linked gene, Toll-like receptor 7 (Tlr7), regulated sex-specific IFN response to myelin. Deletion of Tlr7 dampened sex differences while protecting against demyelination. Administering TLR7 inhibitor mitigated tau-induced motor impairment and demyelination in male mice, indicating that Tlr7 plays a role in the male-biased type I Interferon IFN response in aging- and AD-related demyelination.
Collapse
Affiliation(s)
- Chloe Lopez-Lee
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Lay Kodama
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Li Fan
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Daphne Zhu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Jingjie Zhu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Man Ying Wong
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Pearly Ye
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Kendra Norman
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Nessa R Foxe
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Laraib Ijaz
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Fangmin Yu
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Hao Chen
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Gillian K Carling
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Eileen R Torres
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rachel D Kim
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
| | - Dena B Dubal
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York, NY, USA
- Department of Neuroscience & Physiology, NYU Grossman School of Medicine, New York, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA
- Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Subhash C Sinha
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Wenjie Luo
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Li Gan
- Helen and Robert Appel Institute for Alzheimer's Disease Research, Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
- Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
10
|
Rishabh, Rohilla M, Bansal S, Bansal N, Chauhan S, Sharma S, Goyal N, Gupta S. Estrogen signalling and Alzheimer's disease: Decoding molecular mechanisms for therapeutic breakthrough. Eur J Neurosci 2024; 60:3466-3490. [PMID: 38726764 DOI: 10.1111/ejn.16360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 07/06/2024]
Abstract
In females, Alzheimer's disease (AD) incidences increases as compared to males due to estrogen deficiency after menopause. Estrogen therapy is the mainstay therapy for menopause and associated complications. Estrogen, a hormone with multifaceted physiological functions, has been implicated in AD pathophysiology. Estrogen plays a crucial role in amyloid precursor protein (APP) processing and overall neuronal health by regulating various factors such as brain-derived neurotrophic factor (BDNF), intracellular calcium signalling, death domain-associated protein (Daxx) translocation, glutamatergic excitotoxicity, Voltage-Dependent Anion Channel, Insulin-Like Growth Factor 1 Receptor, estrogen-metabolising enzymes and apolipoprotein E (ApoE) protein polymorphisms. All these factors impact the physiology of postmenopausal women. Estrogen replacement therapies play an important treatment strategy to prevent AD after menopause. However, use of these therapies may lead to increased risks of breast cancer, venous thromboembolism and cardiovascular disease. Various therapeutic approaches have been used to mitigate the effects of estrogen on AD. These include hormone replacement therapy, Selective Estrogen Receptor Modulators (SERMs), Estrogen Receptor Beta (ERβ)-Selective Agonists, Transdermal Estrogen Delivery, Localised Estrogen Delivery, Combination Therapies, Estrogen Metabolism Modulation and Alternative Estrogenic Compounds like genistein from soy, a notable phytoestrogen from plant sources. However, mechanism via which these approaches modulate AD in postmenopausal women has not been explained earlier thoroughly. Present review will enlighten all the molecular mechanisms of estrogen and estrogen replacement therapies in AD. Along-with this, the association between estrogen, estrogen-metabolising enzymes and ApoE protein polymorphisms will also be discussed in postmenopausal AD.
Collapse
Affiliation(s)
- Rishabh
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Manni Rohilla
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Seema Bansal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Nitin Bansal
- Department of Pharmacy, Chaudhary Bansilal University, Bhiwani, India
| | - Samrat Chauhan
- Department of Pharmacology, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, India
| | - Sheenam Sharma
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Navjyoti Goyal
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| | - Sumeet Gupta
- Department of Pharmacology, M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Ambala, Haryana, India
| |
Collapse
|
11
|
Dratva MA, Banks SJ, Panizzon MS, Galasko D, Sundermann EE. Low testosterone levels relate to poorer cognitive function in women in an APOE-ε4-dependant manner. Biol Sex Differ 2024; 15:45. [PMID: 38835072 PMCID: PMC11151480 DOI: 10.1186/s13293-024-00620-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND Past research suggests that low testosterone levels relate to poorer cognitive function and higher Alzheimer's disease (AD) risk; however, these findings are inconsistent and are mostly derived from male samples, despite similar age-related testosterone decline in females. Both animal and human studies demonstrate that testosterone's effects on brain health may be moderated by apolipoprotein E ε4 allele (APOE-ε4) carrier status, which may explain some previous inconsistencies. We examined how testosterone relates to cognitive function in older women versus men across healthy aging and the AD continuum and the moderating role of APOE-ε4 genotype. METHODS Five hundred and sixty one participants aged 55-90 (155 cognitively normal (CN), 294 mild cognitive impairment (MCI), 112 AD dementia) from the Alzheimer's Disease Neuroimaging Initiative (ADNI), who had baseline cognitive and plasma testosterone data, as measured by the Rules Based Medicine Human DiscoveryMAP Panel were included. There were 213 females and 348 males (self-reported sex assigned at birth), and 52% of the overall sample were APOE-ε4 carriers. We tested the relationship of plasma testosterone levels and its interaction with APOE-ε4 status on clinical diagnostic group (CN vs. MCI vs. AD), global, and domain-specific cognitive performance using ANOVAs and linear regression models in sex-stratified samples. Cognitive domains included verbal memory, executive function, processing speed, and language. RESULTS We did not observe a significant difference in testosterone levels between clinical diagnostic groups in either sex, regrardless of APOE-ε4 status. Across clinical diagnostic group, we found a significant testosterone by APOE-ε4 interaction in females, such that lower testosterone levels related to worse global cognition, processing speed, and verbal memory in APOE-ε4 carriers only. We did not find that testosterone, nor its interaction with APOE-ε4, related to cognitive outcomes in males. CONCLUSIONS Findings suggest that low testosterone levels in older female APOE-ε4 carriers across the aging-MCI-AD continuum may have deleterious, domain-specific effects on cognitive performance. Although future studies including additional sex hormones and longitudinal cognitive trajectories are needed, our results highlight the importance of including both sexes and considering APOE-ε4 carrier status when examining testosterone's role in cognitive health.
Collapse
Affiliation(s)
- Melanie A Dratva
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA.
- UCSD ACTRI Building, 2W502-B8, 9452 Medical Center Drive (MC-0841), La Jolla, CA, 92037, USA.
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Matthew S Panizzon
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
- Center for Behavior Genetics of Aging, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92092, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| |
Collapse
|
12
|
Do AN, Ali M, Timsina J, Wang L, Western D, Liu M, Sanford J, Rosende-Roca M, Boada M, Puerta R, Wilson T, Ruiz A, Pastor P, Wyss-Coray T, Cruchaga C, Sung YJ. CSF proteomic profiling with amyloid/tau positivity identifies distinctive sex-different alteration of multiple proteins involved in Alzheimer's disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304164. [PMID: 38559166 PMCID: PMC10980123 DOI: 10.1101/2024.03.15.24304164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
In Alzheimer's disease (AD), the most common cause of dementia, females have higher prevalence and faster progression, but sex-specific molecular findings in AD are limited. Here, we comprehensively examined and validated 7,006 aptamers targeting 6,162 proteins in cerebral spinal fluid (CSF) from 2,077 amyloid/tau positive cases and controls to identify sex-specific proteomic signatures of AD. In discovery (N=1,766), we identified 330 male-specific and 121 female-specific proteomic alternations in CSF (FDR <0.05). These sex-specific proteins strongly predicted amyloid/tau positivity (AUC=0.98 in males; 0.99 in females), significantly higher than those with age, sex, and APOE-ε4 (AUC=0.85). The identified sex-specific proteins were well validated (r≥0.5) in the Stanford study (N=108) and Emory study (N=148). Biological follow-up of these proteins led to sex differences in cell-type specificity, pathways, interaction networks, and drug targets. Male-specific proteins, enriched in astrocytes and oligodendrocytes, were involved in postsynaptic and axon-genesis. The male network exhibited direct connections among 152 proteins and highlighted PTEN, NOTCH1, FYN, and MAPK8 as hubs. Drug target suggested melatonin (used for sleep-wake cycle regulation), nabumetone (used for pain), daunorubicin, and verteporfin for treating AD males. In contrast, female-specific proteins, enriched in neurons, were involved in phosphoserine residue binding including cytokine activities. The female network exhibits strong connections among 51 proteins and highlighted JUN and 14-3-3 proteins (YWHAG and YWHAZ) as hubs. Drug target suggested biperiden (for muscle control of Parkinson's disease), nimodipine (for cerebral vasospasm), quinostatin and ethaverine for treating AD females. Together, our findings provide mechanistic understanding of sex differences for AD risk and insights into clinically translatable interventions.
Collapse
Affiliation(s)
- Anh N Do
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Muhammad Ali
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jigyasha Timsina
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Lihua Wang
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel Western
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Menghan Liu
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jessie Sanford
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Matitee Rosende-Roca
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Merce Boada
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Raquel Puerta
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Ted Wilson
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Agustin Ruiz
- Research Center and Memory clinic Fundació ACE. Institut Català de Neurociències Aplicades, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pau Pastor
- Memory Disorders Unit, Department of Neurology, University Hospital Mutua Terrassa, Terrassa, Spain
| | - Tony Wyss-Coray
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Carlos Cruchaga
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurologic Diseases, Washington University in St. Louis, St. Louis, MO, USA
| | - Yun Ju Sung
- Division of Biostatistics, Washington University School of Medicine, St. Louis, MO, USA
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
13
|
Wagemann O, Li Y, Hassenstab J, Aschenbrenner AJ, McKay NS, Gordon BA, Benzinger TLS, Xiong C, Cruchaga C, Renton AE, Perrin RJ, Berman SB, Chhatwal JP, Farlow MR, Day GS, Ikeuchi T, Jucker M, Lopera F, Mori H, Noble JM, Sánchez‐Valle R, Schofield PR, Morris JC, Daniels A, Levin J, Bateman RJ, McDade E, Llibre‐Guerra JJ. Investigation of sex differences in mutation carriers of the Dominantly Inherited Alzheimer Network. Alzheimers Dement 2024; 20:47-62. [PMID: 37740921 PMCID: PMC10841236 DOI: 10.1002/alz.13460] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 09/25/2023]
Abstract
INTRODUCTION Studies suggest distinct differences in the development, presentation, progression, and response to treatment of Alzheimer's disease (AD) between females and males. We investigated sex differences in cognition, neuroimaging, and fluid biomarkers in dominantly inherited AD (DIAD). METHODS Three hundred twenty-five mutation carriers (55% female) and one hundred eighty-six non-carriers (58% female) of the Dominantly Inherited Alzheimer Network Observational Study were analyzed. Linear mixed models and Spearman's correlation explored cross-sectional sex differences in cognition, cerebrospinal fluid (CSF) biomarkers, Pittsburgh compound B positron emission tomography (11 C-PiB PET) and structural magnetic resonance imaging (MRI). RESULTS Female carriers performed better than males on delayed recall and processing speed despite similar hippocampal volumes. As the disease progressed, symptomatic females revealed higher increases in MRI markers of neurodegeneration and memory impairment. PiB PET and established CSF AD markers revealed no sex differences. DISCUSSION Our findings suggest an initial cognitive reserve in female carriers followed by a pronounced increase in neurodegeneration coupled with worse performance on delayed recall at later stages of DIAD.
Collapse
Affiliation(s)
- Olivia Wagemann
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Yan Li
- Department of BiostatisticsWashington University St. LouisSt. LouisMissouriUSA
| | - Jason Hassenstab
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | | | - Nicole S. McKay
- Department of RadiologyWashington University St. LouisSt. LouisMissouriUSA
| | - Brian A. Gordon
- Department of RadiologyWashington University St. LouisSt. LouisMissouriUSA
| | | | - Chengjie Xiong
- Department of BiostatisticsWashington University St. LouisSt. LouisMissouriUSA
| | - Carlos Cruchaga
- Department of PsychiatryWashington University St. LouisSt. LouisMissouriUSA
| | - Alan E. Renton
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Richard J. Perrin
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
- Department of Pathology and ImmunologyWashington University St. LouisSt. LouisMissouriUSA
| | - Sarah B. Berman
- Department of NeurologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Jasmeer P. Chhatwal
- Department of NeurologyMassachusetts General and Brigham & Female's HospitalsHarvard Medical SchoolBostonMassachusettsUSA
| | - Martin R. Farlow
- Department of NeurologyIndiana University School of MedicineIndianapolisIndianaUSA
| | - Gregory S. Day
- Department of NeurologyMayo Clinic FloridaJacksonvilleFloridaUSA
| | - Takeshi Ikeuchi
- Department of Molecular GeneticsBrain Research InstituteNiigata UniversityNiigataJapan
| | - Mathias Jucker
- Hertie Institute for Clinical Brain ResearchUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)TübingenGermany
| | - Francisco Lopera
- Grupo de Neurociencias de Antioquia (GNA)Universidad de AntioquiaMedellinColombia
| | - Hiroshi Mori
- Department of Clinical NeuroscienceOsaka Metropolitan University Medical SchoolNagaoka Sutoku UniversityOsakaJapan
| | - James M. Noble
- Department of NeurologyColumbia University Irving Medical CenterNew YorkNew YorkUSA
| | - Raquel Sánchez‐Valle
- Department of NeurologyHospital Clínic de Barcelona (IDIBAPS)University of BarcelonaBarcelonaSpain
| | - Peter R. Schofield
- Neuroscience Research AustraliaSydneyNew South WalesAustralia
- School of Biomedical SciencesUniversity of New South WalesSydneyNew South WalesAustralia
| | - John C. Morris
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Alisha Daniels
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Johannes Levin
- Department of NeurologyLudwig‐Maximilians‐Universität MünchenMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Randall J. Bateman
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | - Eric McDade
- Department of NeurologyWashington University St. LouisSt. LouisMissouriUSA
| | | | | |
Collapse
|
14
|
Li Z, Fan Z, Zhang Q. The Associations of Phosphorylated Tau 181 and Tau 231 Levels in Plasma and Cerebrospinal Fluid with Cognitive Function in Alzheimer's Disease: A Systematic Review and Meta-Analysis. J Alzheimers Dis 2024; 98:13-32. [PMID: 38339929 DOI: 10.3233/jad-230799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Background Cerebrospinal fluid (CSF) or blood biomarkers like phosphorylated tau proteins (p-tau) are used to detect Alzheimer's disease (AD) early. Increasing studies on cognitive function and blood or CSF p-tau levels are controversial. Objective Our study examined the potential of p-tau as a biomarker of cognitive status in normal control (NC), mild cognitive impairment (MCI), and AD patients. Methods We searched PubMed, Cochrane, Embase, and Web of Science for relevant material through 12 January 2023. 5,017 participants from 20 studies-1,033 AD, 2,077 MCI, and 1,907 NC-were evaluated. Quantitative analysis provided continuous outcomes as SMDs with 95% CIs. Begg tested publication bias. Results MCI patients had lower CSF p-tau181 levels than AD patients (SMD =-0.60, 95% CI (-0.85, -0.36)) but higher than healthy controls (SMD = 0.67). AD/MCI patients had greater plasma p-tau181 levels than healthy people (SMD =-0.73, 95% CI (-1.04, -0.43)). MCI patients had significantly lower p-tau231 levels than AD patients in plasma and CSF (SMD =-0.90, 95% CI (-0.82, -0.45)). MCI patients showed greater CSF and plasma p-tau231 than healthy controls (SMD = 1.34, 95% CI (0.89, 1.79) and 0.43, (0.23, 0.64)). Plasma p-tau181/231 levels also distinguished the three categories. MCI patients had higher levels than healthy people, while AD patients had higher levels than MCI patients. Conclusions CSF p-tau181 and p-tau231 biomarkers distinguished AD, MCI, and healthy populations. Plasma-based p-tau181 and p-tau231 biomarkers for AD and MCI need further study.
Collapse
Affiliation(s)
- Zhirui Li
- Department of Disease Control and Prevention, Sichuan Provincial Center for Disease Control and Prevention, Sichuan Chengdu, China
| | - Zixuan Fan
- School of Health Policy and Management, Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Oncology, Xiamen Fifth Hospital, Fujian Xiamen, China
| |
Collapse
|
15
|
Demby T, Gross PS, Mandelblatt J, Huang JK, Rebeck GW. The chemotherapeutic agent doxorubicin induces brain senescence, with modulation by APOE genotype. Exp Neurol 2024; 371:114609. [PMID: 37944881 PMCID: PMC11302516 DOI: 10.1016/j.expneurol.2023.114609] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/18/2023] [Accepted: 11/06/2023] [Indexed: 11/12/2023]
Abstract
Many cancer patients experience serious cognitive problems related to their treatment, which can greatly affect their quality of life. The molecular mechanisms of this cancer chemotherapy-induced cognitive impairment (CICI) are unknown, thus slowing the development of preventative approaches. We hypothesized that cancer chemotherapies could induce cellular senescence in the brain, creating a pro-inflammatory environment and damaging normal brain communication. We tested this hypothesis using the common chemotherapeutic agent doxorubicin in two independent mouse models. In the first model, we used mice that express tdTomato under the pdkn2a (p16) promoter; p16 is a regulator of cellular senescence, and its upregulation is denoted by the presence of fluorescently tagged cells. Two weeks after exposure to three doses of 5 mg/kg doxorubicin, the number of tdTomato positive cells were increased nearly three-fold in both the cerebral cortex and the hippocampus. tdTomato staining co-localized with neurons, microglia, oligodendrocyte precursor cells, and endothelial cells, but not astrocytes. In the second model, we used APOE knock-in mice, since the APOE4 allele is a risk factor for CICI in humans and mouse models. We isolated RNA from the cerebral cortex of APOE3 and APOE4 mice from one to 21 days after a single dose of 10 mg/kg doxorubicin. Using NanoString analysis of over 700 genes related to neuroinflammation and RT-qPCR analysis of cerebral cortex transcripts, we found two-fold induction of four senescence-related genes at three weeks in the APOE4 mice compared to the APOE3 control mice: p21(cdkn1a), p16, Gadd45a, and Egr1. We conclude that doxorubicin promotes cellular senescence pathways in the brain, supporting the hypothesis that drugs to eliminate senescent cells could be useful in preventing CICI.
Collapse
Affiliation(s)
- Tamar Demby
- National Institute of Diabetes and Digestive and Kidney Disease, Bethesda, MD, United States of America
| | - Phillip S Gross
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC, United States of America
| | - Jeanne Mandelblatt
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center and Georgetown Lombardi Institute for Cancer and Aging Research, Georgetown University, Washington, DC, United States of America
| | - Jeffrey K Huang
- Department of Biology, Georgetown University, Washington, DC, United States of America
| | - G William Rebeck
- Department of Neuroscience, Georgetown University, Washington, DC, United States of America.
| |
Collapse
|
16
|
Samson AD, Rajagopal S, Pasvanis S, Villeneuve S, McIntosh AR, Rajah MN. Sex differences in longitudinal changes of episodic memory-related brain activity and cognition in cognitively unimpaired older adults with a family history of Alzheimer's disease. Neuroimage Clin 2023; 40:103532. [PMID: 37931333 PMCID: PMC10652211 DOI: 10.1016/j.nicl.2023.103532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/25/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023]
Abstract
Episodic memory decline is an early symptom of Alzheimer's disease (AD) - a neurodegenerative disease that has a higher prevalence rate in older females compared to older males. However, little is known about why these sex differences in prevalence rate exist. In the current longitudinal task fMRI study, we explored whether there were sex differences in the patterns of memory decline and brain activity during object-location (spatial context) encoding and retrieval in a large sample of cognitively unimpaired older adults from the Pre-symptomatic Evaluation of Novel or Experimental Treatments for Alzheimer's Disease (PREVENT-AD) program who are at heightened risk of developing AD due to having a family history (+FH) of the disease. The goal of the study was to gain insight into whether there are sex differences in the neural correlates of episodic memory decline, which may advance knowledge about sex-specific patterns in the natural progression to AD. Our results indicate that +FH females performed better than +FH males at both baseline and follow-up on neuropsychological and task fMRI measures of episodic memory. Moreover, multivariate data-driven task fMRI analysis identified generalized patterns of longitudinal decline in medial temporal lobe activity that was paralleled by longitudinal increases in lateral prefrontal cortex, caudate and midline cortical activity during successful episodic retrieval and novelty detection in +FH males, but not females. Post-hoc analyses indicated that higher education had a stronger effect on +FH females neuropsychological scores compared to +FH males. We conclude that higher educational attainment may have a greater neuroprotective effect in older +FH females compared to +FH males.
Collapse
Affiliation(s)
- Alexandria D Samson
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada
| | - Sricharana Rajagopal
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Quebec H4H 1R3, Canada
| | - Stamatoula Pasvanis
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Quebec H4H 1R3, Canada
| | - Sylvia Villeneuve
- Centre for Studies on the Prevention of Alzheimer's Disease (StoP-AD), Douglas Hospital Research Centre, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada
| | - Anthony R McIntosh
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario M6A 2E1, Canada; Department of Psychology, University of Toronto, Toronto, Ontario M5S 3G3, Canada; Institute for Neuroscience and Neurotechnology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada; Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - M Natasha Rajah
- Centre for Cerebral Imaging, Douglas Hospital Research Centre, Montreal, Quebec H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal, Quebec H3A 1A1, Canada; Department of Psychology, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
17
|
Bocancea DI, Svenningsson AL, van Loenhoud AC, Groot C, Barkhof F, Strandberg O, Smith R, La Joie R, Rosen HJ, Pontecorvo MJ, Rabinovici GD, van der Flier WM, Hansson O, Ossenkoppele R. Determinants of cognitive and brain resilience to tau pathology: a longitudinal analysis. Brain 2023; 146:3719-3734. [PMID: 36967222 PMCID: PMC10473572 DOI: 10.1093/brain/awad100] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/03/2023] [Accepted: 02/23/2023] [Indexed: 09/03/2023] Open
Abstract
Mechanisms of resilience against tau pathology in individuals across the Alzheimer's disease spectrum are insufficiently understood. Longitudinal data are necessary to reveal which factors relate to preserved cognition (i.e. cognitive resilience) and brain structure (i.e. brain resilience) despite abundant tau pathology, and to clarify whether these associations are cross-sectional or longitudinal. We used a longitudinal study design to investigate the role of several demographic, biological and brain structural factors in yielding cognitive and brain resilience to tau pathology as measured with PET. In this multicentre study, we included 366 amyloid-β-positive individuals with mild cognitive impairment or Alzheimer's disease dementia with baseline 18F-flortaucipir-PET and longitudinal cognitive assessments. A subset (n = 200) additionally underwent longitudinal structural MRI. We used linear mixed-effects models with global cognition and cortical thickness as dependent variables to investigate determinants of cognitive resilience and brain resilience, respectively. Models assessed whether age, sex, years of education, APOE-ε4 status, intracranial volume (and cortical thickness for cognitive resilience models) modified the association of tau pathology with cognitive decline or cortical thinning. We found that the association between higher baseline tau-PET levels (quantified in a temporal meta-region of interest) and rate of cognitive decline (measured with repeated Mini-Mental State Examination) was adversely modified by older age (Stβinteraction = -0.062, P = 0.032), higher education level (Stβinteraction = -0.072, P = 0.011) and higher intracranial volume (Stβinteraction = -0.07, P = 0.016). Younger age, higher education and greater cortical thickness were associated with better cognitive performance at baseline. Greater cortical thickness was furthermore associated with slower cognitive decline independent of tau burden. Higher education also modified the negative impact of tau-PET on cortical thinning, while older age was associated with higher baseline cortical thickness and slower rate of cortical thinning independent of tau. Our analyses revealed no (cross-sectional or longitudinal) associations for sex and APOE-ε4 status on cognition and cortical thickness. In this longitudinal study of clinically impaired individuals with underlying Alzheimer's disease neuropathological changes, we identified education as the most robust determinant of both cognitive and brain resilience against tau pathology. The observed interaction with tau burden on cognitive decline suggests that education may be protective against cognitive decline and brain atrophy at lower levels of tau pathology, with a potential depletion of resilience resources with advancing pathology. Finally, we did not find major contributions of sex to brain nor cognitive resilience, suggesting that previous links between sex and resilience might be mainly driven by cross-sectional differences.
Collapse
Affiliation(s)
- Diana I Bocancea
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | | | - Anna C van Loenhoud
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Colin Groot
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, 211 46 Lund, Sweden
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Center for Medical Image Computing, University College London, London WC1N 3BG, UK
| | - Olof Strandberg
- Clinical Memory Research Unit, Lund University, 211 46 Lund, Sweden
| | - Ruben Smith
- Clinical Memory Research Unit, Lund University, 211 46 Lund, Sweden
- Department of Neurology, Skåne University Hospital, 221 84 Lund, Sweden
| | - Renaud La Joie
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
| | | | - Gil D Rabinovici
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, CA 94158, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1081 HV Amsterdam, The Netherlands
| | - Oskar Hansson
- Clinical Memory Research Unit, Lund University, 211 46 Lund, Sweden
- Memory Clinic, Skåne University Hospital, 214 28 Malmö, Sweden
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, 211 46 Lund, Sweden
| |
Collapse
|
18
|
Lutshumba J, Wilcock DM, Monson NL, Stowe AM. Sex-based differences in effector cells of the adaptive immune system during Alzheimer's disease and related dementias. Neurobiol Dis 2023; 184:106202. [PMID: 37330146 PMCID: PMC10481581 DOI: 10.1016/j.nbd.2023.106202] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/19/2023] Open
Abstract
Neurological conditions such as Alzheimer's disease (AD) and related dementias (ADRD) present with many challenges due to the heterogeneity of the related disease(s), making it difficult to develop effective treatments. Additionally, the progression of ADRD-related pathologies presents differently between men and women. With two-thirds of the population affected with ADRD being women, ADRD has presented itself with a bias toward the female population. However, studies of ADRD generally do not incorporate sex-based differences in investigating the development and progression of the disease, which is detrimental to understanding and treating dementia. Additionally, recent implications for the adaptive immune system in the development of ADRD bring in new factors to be considered as part of the disease, including sex-based differences in immune response(s) during ADRD development. Here, we review the sex-based differences of pathological hallmarks of ADRD presentation and progression, sex-based differences in the adaptive immune system and how it changes with ADRD, and the importance of precision medicine in the development of a more targeted and personalized treatment for this devastating and prevalent neurodegenerative condition.
Collapse
Affiliation(s)
- Jenny Lutshumba
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Donna M Wilcock
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America; Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, United States of America
| | - Nancy L Monson
- Department of Neurology and Immunology, University of Texas Southwestern Medical Center, Dallas, TX, United States of America
| | - Ann M Stowe
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, United States of America; Center for Advanced Translational Stroke Science, University of Kentucky, Lexington, KY, United States of America.
| |
Collapse
|
19
|
Hu WT, Nayyar A, Kaluzova M. Charting the Next Road Map for CSF Biomarkers in Alzheimer's Disease and Related Dementias. Neurotherapeutics 2023; 20:955-974. [PMID: 37378862 PMCID: PMC10457281 DOI: 10.1007/s13311-023-01370-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2023] [Indexed: 06/29/2023] Open
Abstract
Clinical prediction of underlying pathologic substrates in people with Alzheimer's disease (AD) dementia or related dementia syndromes (ADRD) has limited accuracy. Etiologic biomarkers - including cerebrospinal fluid (CSF) levels of AD proteins and cerebral amyloid PET imaging - have greatly modernized disease-modifying clinical trials in AD, but their integration into medical practice has been slow. Beyond core CSF AD biomarkers (including beta-amyloid 1-42, total tau, and tau phosphorylated at threonine 181), novel biomarkers have been interrogated in single- and multi-centered studies with uneven rigor. Here, we review early expectations for ideal AD/ADRD biomarkers, assess these goals' future applicability, and propose study designs and performance thresholds for meeting these ideals with a focus on CSF biomarkers. We further propose three new characteristics: equity (oversampling of diverse populations in the design and testing of biomarkers), access (reasonable availability to 80% of people at risk for disease, along with pre- and post-biomarker processes), and reliability (thorough evaluation of pre-analytical and analytical factors influencing measurements and performance). Finally, we urge biomarker scientists to balance the desire and evidence for a biomarker to reflect its namesake function, indulge data- as well as theory-driven associations, re-visit the subset of rigorously measured CSF biomarkers in large datasets (such as Alzheimer's disease neuroimaging initiative), and resist the temptation to favor ease over fail-safe in the development phase. This shift from discovery to application, and from suspended disbelief to cogent ingenuity, should allow the AD/ADRD biomarker field to live up to its billing during the next phase of neurodegenerative disease research.
Collapse
Affiliation(s)
- William T Hu
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA.
- Center for Innovation in Health and Aging Research, Institute for Health, Health Care Policy, and Aging Research, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, 08901, USA.
| | - Ashima Nayyar
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA
| | - Milota Kaluzova
- Department of Neurology, Rutgers Biomedical and Health Sciences, Rutgers-Robert Wood Johnson Medical School, 125 Paterson Street, Suite 6200, New Brunswick, NJ, 08901, USA
| |
Collapse
|
20
|
Kloske CM, Barnum CJ, Batista AF, Bradshaw EM, Brickman AM, Bu G, Dennison J, Gearon MD, Goate AM, Haass C, Heneka MT, Hu WT, Huggins LKL, Jones NS, Koldamova R, Lemere CA, Liddelow SA, Marcora E, Marsh SE, Nielsen HM, Petersen KK, Petersen M, Piña-Escudero SD, Qiu WQ, Quiroz YT, Reiman E, Sexton C, Tansey MG, Tcw J, Teunissen CE, Tijms BM, van der Kant R, Wallings R, Weninger SC, Wharton W, Wilcock DM, Wishard TJ, Worley SL, Zetterberg H, Carrillo MC. APOE and immunity: Research highlights. Alzheimers Dement 2023; 19:2677-2696. [PMID: 36975090 DOI: 10.1002/alz.13020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 03/29/2023]
Abstract
INTRODUCTION At the Alzheimer's Association's APOE and Immunity virtual conference, held in October 2021, leading neuroscience experts shared recent research advances on and inspiring insights into the various roles that both the apolipoprotein E gene (APOE) and facets of immunity play in neurodegenerative diseases, including Alzheimer's disease and other dementias. METHODS The meeting brought together more than 1200 registered attendees from 62 different countries, representing the realms of academia and industry. RESULTS During the 4-day meeting, presenters illuminated aspects of the cross-talk between APOE and immunity, with a focus on the roles of microglia, triggering receptor expressed on myeloid cells 2 (TREM2), and components of inflammation (e.g., tumor necrosis factor α [TNFα]). DISCUSSION This manuscript emphasizes the importance of diversity in current and future research and presents an integrated view of innate immune functions in Alzheimer's disease as well as related promising directions in drug development.
Collapse
Affiliation(s)
| | | | - Andre F Batista
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth M Bradshaw
- Department of Neurology, Columbia University Irving Medical Center, New York, New York, USA
| | - Adam M Brickman
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, G.H. Sergievsky Center, and Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, New York, New York, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Jessica Dennison
- Department of Psychiatry & Behavioral Sciences, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Mary D Gearon
- Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Alison M Goate
- Department of Genetics & Genomic Sciences, Ronald M. Loeb Center for Alzheimer's disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christian Haass
- Metabolic Biochemistry, Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany 3 Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB) University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - William T Hu
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School and Center for Healthy Aging, Rutgers Institute for Health, Health Care Policy, and Aging Research, New Brunswick, New Jersey, USA
| | - Lenique K L Huggins
- Department of Biology, Duke University, Durham, North Carolina, USA
- Yale School of Medicine, New Haven, Connecticut, USA
| | - Nahdia S Jones
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, District of Columbia, USA
| | - Radosveta Koldamova
- EOH, School of Public Health University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Cynthia A Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Departments of Neurology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shane A Liddelow
- Neuroscience Institute and Departments of Neuroscience & Physiology and of Ophthalmology, NYU Grossman School of Medicine, New York, New York, USA
| | - Edoardo Marcora
- Ronald M. Loeb Center for Alzheimer's disease, Dept. of Genetics & Genomic Sciences, Dept. of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Samuel E Marsh
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Henrietta M Nielsen
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Kellen K Petersen
- The Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Melissa Petersen
- Department of Family Medicine, Institute of Translational Research, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Stefanie D Piña-Escudero
- Global Brain Health Institute, Department of Neurology, University of California, San Francisco, California, USA
| | - Wei Qiao Qiu
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Yakeel T Quiroz
- Departments of Psychiatry and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric Reiman
- Banner Alzheimer's Institute, Phoenix, Arizona, USA
- Banner Research, Phoenix, Arizona, USA
| | | | - Malú Gámez Tansey
- Department of Neuroscience and Center for Translational Research in Neurodegenerative Disease, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Julia Tcw
- Department of Pharmacology & Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Clinical Chemistry department, Amsterdam Neuroscience, Program Neurodegeneration, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Betty M Tijms
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Rik van der Kant
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research (CNCR), VU University Amsterdam, Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Rebecca Wallings
- CTRND, Department of Neuroscience, University of Florida, Florida, USA
| | | | | | - Donna M Wilcock
- Sanders-Brown Center on Aging and Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Tyler James Wishard
- Psychiatry & Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California, USA
| | - Susan L Worley
- Independent science writer, Bryn Mawr, Pennsylvania, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | | |
Collapse
|
21
|
Reitz C, Pericak-Vance MA, Foroud T, Mayeux R. A global view of the genetic basis of Alzheimer disease. Nat Rev Neurol 2023; 19:261-277. [PMID: 37024647 PMCID: PMC10686263 DOI: 10.1038/s41582-023-00789-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2023] [Indexed: 04/08/2023]
Abstract
The risk of Alzheimer disease (AD) increases with age, family history and informative genetic variants. Sadly, there is still no cure or means of prevention. As in other complex diseases, uncovering genetic causes of AD could identify underlying pathological mechanisms and lead to potential treatments. Rare, autosomal dominant forms of AD occur in middle age as a result of highly penetrant genetic mutations, but the most common form of AD occurs later in life. Large-scale, genome-wide analyses indicate that 70 or more genes or loci contribute to AD. One of the major factors limiting progress is that most genetic data have been obtained from non-Hispanic white individuals in Europe and North America, preventing the development of personalized approaches to AD in individuals of other ethnicities. Fortunately, emerging genetic data from other regions - including Africa, Asia, India and South America - are now providing information on the disease from a broader range of ethnicities. Here, we summarize the current knowledge on AD genetics in populations across the world. We predominantly focus on replicated genetic discoveries but also include studies in ethnic groups where replication might not be feasible. We attempt to identify gaps that need to be addressed to achieve a complete picture of the genetic and molecular factors that drive AD in individuals across the globe.
Collapse
Affiliation(s)
- Christiane Reitz
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
- Department of Epidemiology, Columbia University, New York, NY, USA
| | - Margaret A Pericak-Vance
- The John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, USA
- The Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tatiana Foroud
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
- National Centralized Repository for Alzheimer's Disease and Related Dementias, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Richard Mayeux
- The Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- The Gertrude H. Sergievsky Center, Columbia University, New York, NY, USA.
- Department of Neurology, Columbia University, New York, NY, USA.
- Department of Epidemiology, Columbia University, New York, NY, USA.
| |
Collapse
|
22
|
Mank A, van Maurik IS, Rijnhart JJM, Rhodius‐Meester HFM, Visser LNC, Lemstra AW, Sikkes SAM, Teunissen CE, van Giessen EM, Berkhof J, van der Flier WM. Determinants of informal care time, distress, depression, and quality of life in care partners along the trajectory of Alzheimer's disease. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12418. [PMID: 37114014 PMCID: PMC10126754 DOI: 10.1002/dad2.12418] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 04/29/2023]
Abstract
Introduction We evaluated determinants associated with care partner outcomes along the Alzheimer's disease (AD) stages. Methods We included n = 270 care partners of amyloid-positive patients in the pre-dementia and dementia stages of AD. Using linear regression analysis, we examined determinants of four care partner outcomes: informal care time, caregiver distress, depression, and quality of life (QoL). Results More behavioral symptoms and functional impairment in patients were associated with more informal care time and depressive symptoms in care partners. More behavioral symptoms were related with more caregiver distress. Spouse care partners spent more time on informal care and QoL was lower in female care partners. Behavioral problems and subtle functional impairment of the patient predisposed for worse care partner outcomes already in the pre-dementia stages. Discussion Both patient and care partner determinants contribute to the care partner outcomes, already in early disease stages. This study provides red flags for high care partner burden.
Collapse
Affiliation(s)
- Arenda Mank
- Alzheimer Center Amsterdam, Department of NeurologyVrije Universiteit AmsterdamAmsterdam UMC VUmcAmsterdamthe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamthe Netherlands
- Amsterdam UMCVrije Universiteit AmsterdamDepartment of Epidemiology and Data ScienceAmsterdam Public Health InstituteAmsterdamthe Netherlands
| | - Ingrid S. van Maurik
- Alzheimer Center Amsterdam, Department of NeurologyVrije Universiteit AmsterdamAmsterdam UMC VUmcAmsterdamthe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamthe Netherlands
- Amsterdam UMCVrije Universiteit AmsterdamDepartment of Epidemiology and Data ScienceAmsterdam Public Health InstituteAmsterdamthe Netherlands
| | | | - Hanneke F. M. Rhodius‐Meester
- Alzheimer Center Amsterdam, Department of NeurologyVrije Universiteit AmsterdamAmsterdam UMC VUmcAmsterdamthe Netherlands
- Department of Internal MedicineGeriatric Medicine SectionVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
- Department of Geriatric MedicineThe Memory ClinicOslo University HospitalOsloNorway
| | - Leonie N. C. Visser
- Department of Medical PsychologyAmsterdam UMC, AMCUniversity of AmsterdamAmsterdamthe Netherlands
- Amsterdam Public Health Research InstituteQuality of CareAmsterdamthe Netherlands
| | - Afina W. Lemstra
- Alzheimer Center Amsterdam, Department of NeurologyVrije Universiteit AmsterdamAmsterdam UMC VUmcAmsterdamthe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamthe Netherlands
| | - Sietske A. M. Sikkes
- Alzheimer Center Amsterdam, Department of NeurologyVrije Universiteit AmsterdamAmsterdam UMC VUmcAmsterdamthe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamthe Netherlands
| | - Charlotte E. Teunissen
- Amsterdam NeuroscienceNeurodegenerationAmsterdamthe Netherlands
- Neurochemistry LaboratoryDepartment of Clinical ChemistryVrije UniversiteitAmsterdam UMC, VUmcAmsterdamthe Netherlands
| | - Elsmarieke M. van Giessen
- Department of Radiology & Nuclear Medicine Vrije Universiteit AmsterdamAmsterdam UMC, VUmcAmsterdamthe Netherlands
| | - Johannes Berkhof
- Amsterdam UMCVrije Universiteit AmsterdamDepartment of Epidemiology and Data ScienceAmsterdam Public Health InstituteAmsterdamthe Netherlands
| | - Wiesje M. van der Flier
- Alzheimer Center Amsterdam, Department of NeurologyVrije Universiteit AmsterdamAmsterdam UMC VUmcAmsterdamthe Netherlands
- Amsterdam NeuroscienceNeurodegenerationAmsterdamthe Netherlands
- Amsterdam UMCVrije Universiteit AmsterdamDepartment of Epidemiology and Data ScienceAmsterdam Public Health InstituteAmsterdamthe Netherlands
| |
Collapse
|
23
|
Cai Y, Fu P, Zhang X. Association of plasma phosphor-tau181 with Aβ levels may vary by APOE ε4 status and sex among non-demented old adults. Neurosci Lett 2023; 802:137161. [PMID: 36858305 DOI: 10.1016/j.neulet.2023.137161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 02/24/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND To evaluate the relationship between blood tau phosphorylated at threonine 181 (p-tau181) levels and β-amyloid (Aβ) levels, this study took the potential role of sex differences and apolipoprotein E (APOE)-ε4 status into account. METHODS We examined 620 participants with normal cognition (n = 178) and mild cognitive impairment (n = 442). Three-way interactions between sex, APOE ε4 status, and the levels of plasma p-tau181 were examined with linear regression models for Aβ levels adjusting for age, education, and diagnosis. The correlation analysis was performed to detect the association of the levels of plasma p-tau181 with brain Aβ stratified for APOE status and sex. RESULTS Blood p-tau181 levels were higher in APOE ε4+ participants as compared to APOE ε4 - participants (p < 0.001). A comparison of APOE ε4 status within each gender showed that APOE ε4 carriers had higher levels of plasma p-tau181 and amyloid-β than APOE ε4 noncarriers in both men and women (p < 0.001). In sex/APOE-stratified analyses, individuals with the APOE ε4 allele showed stronger correlations between plasma p-tau181 and brain Aβ levels in both females (r = 0.49, p < 0.001 for APOE ε4 carriers vs r = 0.28, p < 0.001 for APOE ε4 noncarrier.) and males (r = 0.34, p < 0.001 for APOE ε4 carriers vs r = 0.21, p = 0.04 for APOE ε4 noncarriers.). In interactive analysis, the association of plasma p-tau181 and Aβ levels was significant in the female APOE ε4 carriers (p < 0.003). DISCUSSION APOE ε4 status and female sex interact to impact the correlation between plasma p-tau181 and Aβ levels. Although the APOE ε4 genotype is one of the most important risky genes for AD, sex differences may also modify the degree of risk at critical times among non-demented older adults.
Collapse
Affiliation(s)
- Yan Cai
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, China
| | - Pan Fu
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, China
| | - Xin Zhang
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, China.
| | -
- Department of Neurology, Taizhou First People's Hospital, Zhejiang, China
| |
Collapse
|
24
|
Yang Q, Wang J, Mi N, Zou Y. Literature Overview of the Relation Between Psoriasis and Alzheimer. Neuropsychiatr Dis Treat 2023; 19:461-468. [PMID: 36879948 PMCID: PMC9985423 DOI: 10.2147/ndt.s403854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023] Open
Abstract
The most common type of dementia disease is Alzheimer, which placing a heavy burden on the healthcare system all over the world. At the same time, psoriasis is also one of the most common health problems, as a skin disease. Alzheimer's disease (AD) is more often in patients with psoriasis than in the general people. Several evidence has proved the relation between AD and psoriasis through immune-mediated pathophysiologic processes. This review aims to summary the potential relation between AD and psoriasis, and provide suggestions based on the relationship at the same time. Neurologists, dermatologists should pay attention to the relationship between Alzheimer's disease and psoriasis. Dermatology and neurology need referral each other when it is necessary.
Collapse
Affiliation(s)
- Qian Yang
- Department of Obstetrics, Renmin Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Jing Wang
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Ningyu Mi
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| | - Yulin Zou
- Department of Dermatology, Renmin Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
- Department of Dermatology, Jinzhou Medical University Graduate Training Base, Renmin Hospital, Hubei University of Medicine, Shiyan, People’s Republic of China
| |
Collapse
|
25
|
Strefeler A, Jan M, Quadroni M, Teav T, Rosenberg N, Chatton JY, Guex N, Gallart-Ayala H, Ivanisevic J. Molecular insights into sex-specific metabolic alterations in Alzheimer's mouse brain using multi-omics approach. Alzheimers Res Ther 2023; 15:8. [PMID: 36624525 PMCID: PMC9827669 DOI: 10.1186/s13195-023-01162-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is characterized by altered cellular metabolism in the brain. Several of these alterations have been found to be exacerbated in females, known to be disproportionately affected by AD. We aimed to unravel metabolic alterations in AD at the metabolic pathway level and evaluate whether they are sex-specific through integrative metabolomic, lipidomic, and proteomic analysis of mouse brain tissue. METHODS We analyzed male and female triple-transgenic mouse whole brain tissue by untargeted mass spectrometry-based methods to obtain a molecular signature consisting of polar metabolite, complex lipid, and protein data. These data were analyzed using multi-omics factor analysis. Pathway-level alterations were identified through joint pathway enrichment analysis or by separately evaluating lipid ontology and known proteins related to lipid metabolism. RESULTS Our analysis revealed significant AD-associated and in part sex-specific alterations across the molecular signature. Sex-dependent alterations were identified in GABA synthesis, arginine biosynthesis, and in alanine, aspartate, and glutamate metabolism. AD-associated alterations involving lipids were also found in the fatty acid elongation pathway and lysophospholipid metabolism, with a significant sex-specific effect for the latter. CONCLUSIONS Through multi-omics analysis, we report AD-associated and sex-specific metabolic alterations in the AD brain involving lysophospholipid and amino acid metabolism. These findings contribute to the characterization of the AD phenotype at the molecular level while considering the effect of sex, an overlooked yet determinant metabolic variable.
Collapse
Affiliation(s)
- Abigail Strefeler
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Maxime Jan
- grid.9851.50000 0001 2165 4204Bioinformatics Competence Center, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Manfredo Quadroni
- grid.9851.50000 0001 2165 4204Protein Analysis Facility, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Tony Teav
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Nadia Rosenberg
- grid.9851.50000 0001 2165 4204Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jean-Yves Chatton
- grid.9851.50000 0001 2165 4204Department of Fundamental Neurosciences, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Nicolas Guex
- grid.9851.50000 0001 2165 4204Bioinformatics Competence Center, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Hector Gallart-Ayala
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- grid.9851.50000 0001 2165 4204Metabolomics Unit, Faculty of Biology and Medicine, University de Lausanne, Lausanne, Switzerland
| |
Collapse
|
26
|
Santiago JA, Potashkin JA. Biological and Clinical Implications of Sex-Specific Differences in Alzheimer's Disease. Handb Exp Pharmacol 2023; 282:181-197. [PMID: 37460661 DOI: 10.1007/164_2023_672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Mounting evidence indicates that the female sex is a risk factor for Alzheimer's disease (AD), the most common cause of dementia worldwide. Decades of research suggest that sex-specific differences in genetics, environmental factors, hormones, comorbidities, and brain structure and function may contribute to AD development. However, although significant progress has been made in uncovering specific genetic factors and biological pathways, the precise mechanisms underlying sex-biased differences are not fully characterized. Here, we review several lines of evidence, including epidemiological, clinical, and molecular studies addressing sex differences in AD. In addition, we discuss the challenges and future directions in advancing personalized treatments for AD.
Collapse
Affiliation(s)
| | - Judith A Potashkin
- Cellular and Molecular Pharmacology Department, Center for Neurodegenerative Diseases and Therapeutics, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| |
Collapse
|
27
|
Zhao B, Ou YN, Zhang XY, Fu Y, Tan L. Differential Associations of APOEɛ2 and APOEɛ4 Genotypes with Cerebrospinal Fluid Biomarkers of Alzheimer's Disease in Individuals Without Dementia. J Alzheimers Dis 2023; 96:1813-1825. [PMID: 38073392 DOI: 10.3233/jad-230761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
BACKGROUND The APOE genotype has emerged as the major genetic factor for AD but differs among different alleles. OBJECTIVE To investigate the discrepant effects of APOE genotype on AD cerebrospinal fluid (CSF) biomarkers. METHODS A total of 989 non-demented ADNI participants were included. The associations of APOEɛ2 and APOEɛ4 with CSF biomarkers were investigated using linear regression models. Interaction and subgroup analyses were used to investigate the effects of sex and age on these associations. Furthermore, we used mediation analyses to assess whether Aβ mediated the associations between APOE genotypes and tau. RESULTS APOEɛ2 carriers only showed higher Aβ levels (β [95% CI] = 0.07 [0.01, 0.13], p = 0.026). Conversely, APOEɛ4 carriers exhibited lower Aβ concentration (β [95% CI] = -0.27 [-0.31, -0.24], p < 0.001), higher t-Tau (β [95% CI] = 0.25 [0.08, 0.18], p < 0.001) and higher p-Tau (β [95% CI] = 0.31 [0.25, 0.37], p < 0.001). Subgroup analysis showed that APOE ɛ2 was significantly positively associated with Aβ only in females (β [95% CI] = 0.12 [0.04, 0.21], p = 0.005) and older people (β [95% CI] = 0.06 [0.001, 0.12], p = 0.048). But the effects of APOE ɛ4 were independent of gender and age. Besides, the associations of APOE ɛ4 with t-Tau and p-Tau were both mediated by baseline Aβ. CONCLUSIONS Our data suggested that APOEɛ2 could promote Aβ clearance, while the process could be modified by sex and age. However, APOEɛ4 might cause the accumulation of Aβ and tau pathology independent of sex and age.
Collapse
Affiliation(s)
- Bing Zhao
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Ya-Nan Ou
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Xuan-Yue Zhang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| |
Collapse
|
28
|
Shir D, Mielke MM, Hofrenning EI, Lesnick TG, Knopman DS, Petersen RC, Jack CR, Algeciras-Schimnich A, Vemuri P, Graff-Radford J. Associations of Neurodegeneration Biomarkers in Cerebrospinal Fluid with Markers of Alzheimer's Disease and Vascular Pathology. J Alzheimers Dis 2023; 92:887-898. [PMID: 36806507 PMCID: PMC10193844 DOI: 10.3233/jad-221015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND The National Institute on Aging-Alzheimer's Association Research Framework proposes defining Alzheimer's disease by grouping imaging and fluid biomarkers by their respective pathologic processes. The AT(N) structure proposes several neurodegenerative fluid biomarkers (N) including total tau (t-tau), neurogranin (Ng), and neurofilament light chain (NfL). However, pathologic drivers influencing each biomarker remain unclear. OBJECTIVE To determine whether cerebrospinal fluid (CSF)-neurodegenerative biomarkers (N) map differentially to Alzheimer's disease pathology measured by Aβ42 (an indicator of amyloidosis, [A]), p-tau (an indicator of tau deposition, [T]), and MRI vascular pathology indicators (measured by white-matter integrity, infarcts, and microbleeds [V]). METHODS Participants were from Mayo Clinic Study of Aging (MCSA) with CSF measures of NfL, Ng, t-tau, Aβ42, and p-tau and available MRI brain imaging. Linear models assessed associations between CSF neurodegeneration (N) markers, amyloid markers (A), tau (T), and vascular pathology (V). RESULTS Participants (n = 408) had a mean age of 69.2±10.7; male, 217 (53.2%); cognitively unimpaired, 359 (88%). All three neurodegeneration biomarkers correlated with age (p < 0.001 for NfL and t-tau, p = 0.018 for Ng). Men had higher CSF-NfL levels; women had higher Ng (p < 0.001). NfL and t-tau levels correlated with infarcts (p = 0.009, p = 0.034 respectively); no biomarkers correlated with white-matter integrity. N biomarkers correlated with p-tau levels (T, p < 0.001). Higher Aβ42 levels associated with higher N-biomarker levels but only among cognitively unimpaired (A, p < 0.001). CONCLUSION The influence of vascular pathology in the general population on CSF (N) biomarkers is modest, with greater influence of infarcts than white-matter disruption. Neurodegeneration markers more closely correlated with tau than amyloid markers.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101
| | | | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - David S. Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
29
|
Reagan AM, Christensen KE, Graham LC, Bedwell AA, Eldridge K, Speedy R, Figueiredo LL, Persohn SC, Bottiglieri T, Nho K, Sasner M, Territo PR, Rozen R, Howell GR. The 677C > T variant in methylenetetrahydrofolate reductase causes morphological and functional cerebrovascular deficits in mice. J Cereb Blood Flow Metab 2022; 42:2333-2350. [PMID: 36050860 PMCID: PMC9670012 DOI: 10.1177/0271678x221122644] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/30/2022] [Accepted: 07/12/2022] [Indexed: 02/03/2023]
Abstract
Vascular contributions to cognitive impairment and dementia (VCID) particularly Alzheimer's disease and related dementias (ADRDs) are increasing; however, mechanisms driving cerebrovascular decline are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is a critical enzyme in the folate and methionine cycles. Variants in MTHFR, notably 677 C > T, are associated with dementias, but no mouse model existed to identify mechanisms by which MTHFR677C > T increases risk. Therefore, MODEL-AD created a novel knock-in (KI) strain carrying the Mthfr677C > T allele on the C57BL/6J background (Mthfr677C > T) to characterize morphology and function perturbed by the variant. Consistent with human clinical data, Mthfr677C > T mice have reduced enzyme activity in the liver and elevated plasma homocysteine levels. MTHFR enzyme activity is also reduced in the Mthfr677C > T brain. Mice showed reduced tissue perfusion in numerous brain regions by PET/CT as well as significantly reduced vascular density, pericyte number and increased GFAP-expressing astrocytes in frontal cortex. Electron microscopy revealed cerebrovascular damage including endothelial and pericyte apoptosis, reduced luminal size, and increased astrocyte and microglial presence in the microenvironment. Collectively, these data support a mechanism by which variations in MTHFR perturb cerebrovascular health laying the foundation to incorporate our new Mthfr677C > T mouse model in studies examining genetic susceptibility for cerebrovascular dysfunction in ADRDs.
Collapse
Affiliation(s)
| | - Karen E Christensen
- Departments of Human Genetics and Pediatrics, McGill University,
Research Institute of the Health Center, Montreal, QC, Canada
| | | | - Amanda A Bedwell
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kierra Eldridge
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rachael Speedy
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Lucas L Figueiredo
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Scott C Persohn
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Teodoro Bottiglieri
- Center of Metabolomics, Institute of Metabolic Disease, Baylor
Scott & White Research Institute, Dallas, TX, USA
| | - Kwangsik Nho
- Center for Neuroimaging, Indiana Alzheimer’s Disease Research
Center, Department of Radiology and Imaging Sciences, Indiana University School
of Medicine, Indianapolis, IN, USA
| | | | - Paul R Territo
- Department of Medicine, Division of Clinical Pharmacology,
Indiana University School of Medicine, Indianapolis, IN, USA
| | - Rima Rozen
- Departments of Human Genetics and Pediatrics, McGill University,
Research Institute of the Health Center, Montreal, QC, Canada
| | - Gareth R Howell
- The Jackson Laboratory, Bar Harbor, ME, USA
- Graduate School of Biomedical Sciences, Tufts University School
of Medicine, Boston, MA, USA
- Graduate School of Biomedical Sciences and Engineering,
University of Maine, Orono, ME, USA
| |
Collapse
|
30
|
Tsiknia AA, Sundermann EE, Reas ET, Edland SD, Brewer JB, Galasko D, Banks SJ. Sex differences in Alzheimer's disease: plasma MMP-9 and markers of disease severity. Alzheimers Res Ther 2022; 14:160. [PMID: 36324151 PMCID: PMC9628176 DOI: 10.1186/s13195-022-01106-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 10/16/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Studies have reported higher plasma matrix metalloproteinase-9 (MMP-9) levels in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Despite evidence that MMP-9 activity and its influence on AD pathophysiology may be modulated by sex hormones, sex differences in the association between MMP-9 and AD biomarkers and cognition have not been explored. METHODS Our sample included 238 amyloid-β (Aβ)-positive participants with MCI or AD dementia from the Alzheimer's Disease Neuroimaging Initiative (37.4% women, 74.6 ± 7.3 years). We used linear regression models to examine whether sex modified free and total plasma MMP-9 associations with CSF t-tau, p-tau181, and Aβ42. We used linear mixed effects models to examine whether sex modified total and free plasma MMP-9 associations with cognition, using longitudinal Mini-Mental Status Examination (MMSE) and Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-cog) data. RESULTS Total and free MMP-9 levels did not differ by sex, but AD dementia patients had higher total MMP-9 levels than participants with MCI (β = 0.06 [-0.11 to -0.01], p = 0.031). Sex modified the association of CSF t-tau with total (β = 128.68 [55.37 to 201.99], p < 0.001) and free MMP-9 (β = 98.61 [33.61 to 163.62], p = 0.003), whereby higher total and free MMP-9 correlated with higher CSF t-tau in women and lower CSF t-tau in men. Higher free MMP-9 correlated with lower CSF p-tau181 among men (β = -14.98 [-27.37 to -2.58], p = 0.018), but not women. In participants with MCI, higher free MMP-9 levels were associated with higher CSF Aβ42 among men (β = 26.88 [4.03 to 49.73], p = 0.022) but not women. In the overall sample, higher free and total MMP-9 at baseline predicted worsening MMSE scores in women (β = -2.10 [-3.97 to -0.27], p = 0.027 and β = -2.24 [-4.32 to -0.18], p = 0.035) but not men. Higher free MMP-9 correlated with worse ADAS-cog scores (β = 12.34 [3.02 to 21.65], p = 0.011) in women (β = 12.34 [3.02 to 21.65], p = 0.011) but not men with AD dementia cross-sectionally but correlated with worsening ADAS-cog scores longitudinally only in men (β = 8.98 [0.27 to 17.68], p = 0.042). CONCLUSIONS MMP-9 may have more detrimental effects on AD-related pathological and cognitive changes in women. If replicated, our findings could help uncover potential mechanisms contributing to women's elevated susceptibility to AD.
Collapse
Affiliation(s)
- Amaryllis A. Tsiknia
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Erin E. Sundermann
- grid.410371.00000 0004 0419 2708Research Service, VA San Diego Healthcare System, San Diego, CA 92161 USA ,grid.266100.30000 0001 2107 4242Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093 USA
| | - Emilie T. Reas
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Steven D. Edland
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA ,grid.266100.30000 0001 2107 4242Division of Biostatistics, School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA 92093 USA
| | - James B. Brewer
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Douglas Galasko
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | - Sarah J. Banks
- Department of Neurosciences, School of Medicine, University of California, San Diego, 9500 Gilman Dr, La Jolla, CA 92093 USA
| | | |
Collapse
|
31
|
del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh‐Momoh C, Lleó A, Teunissen CE, Pijnenburg Y. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement 2022; 18:2292-2307. [PMID: 35235699 PMCID: PMC9790674 DOI: 10.1002/alz.12643] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.
Collapse
Affiliation(s)
- Marta del Campo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesMadridSpain
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK,Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fabricio Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo (UNIFESP)São PauloSão PauloBrazil
| | - Chi Udeh‐Momoh
- Ageing Epidemiology Research UnitSchool of Public HealthFaculty of MedicineImperial College LondonLondonUK,Translational Health SciencesFaculty of MedicineUniversity of BristolBristolUK
| | - Alberto Lleó
- Neurology DepartmentHospital de la Santa Creu I Sant PauBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam University Medical CentersVrije UniversiteitAmsterdamthe Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
32
|
Yan Y, Wang X, Chaput D, Shin MK, Koh Y, Gan L, Pieper AA, Woo JAA, Kang DE. X-linked ubiquitin-specific peptidase 11 increases tauopathy vulnerability in women. Cell 2022; 185:3913-3930.e19. [PMID: 36198316 PMCID: PMC9588697 DOI: 10.1016/j.cell.2022.09.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/31/2022] [Accepted: 08/31/2022] [Indexed: 01/26/2023]
Abstract
Although women experience significantly higher tau burden and increased risk for Alzheimer's disease (AD) than men, the underlying mechanism for this vulnerability has not been explained. Here, we demonstrate through in vitro and in vivo models, as well as human AD brain tissue, that X-linked ubiquitin specific peptidase 11 (USP11) augments pathological tau aggregation via tau deubiquitination initiated at lysine-281. Removal of ubiquitin provides access for enzymatic tau acetylation at lysines 281 and 274. USP11 escapes complete X-inactivation, and female mice and people both exhibit higher USP11 levels than males. Genetic elimination of usp11 in a tauopathy mouse model preferentially protects females from acetylated tau accumulation, tau pathology, and cognitive impairment. USP11 levels also strongly associate positively with tau pathology in females but not males. Thus, inhibiting USP11-mediated tau deubiquitination may provide an effective therapeutic opportunity to protect women from increased vulnerability to AD and other tauopathies.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Xinming Wang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA
| | - Dale Chaput
- Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA
| | - Min-Kyoo Shin
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Yeojung Koh
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Li Gan
- Helen and Robert Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Andrew A Pieper
- Department of Psychiatry, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Institute for Transformative Molecular Medicine, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Geriatric Psychiatry, GRECC, Cleveland, Louis Stokes Cleveland VA Medical Center, OH, USA; Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Jung-A A Woo
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| | - David E Kang
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH, USA; Louis Strokes Cleveland VA Medical Center, Cleveland, OH, USA; Department of Molecular Medicine, USF Health College of Medicine, Tampa, FL, USA.
| |
Collapse
|
33
|
Greenberg BD, Pettigrew C, Soldan A, Wang J, Wang MC, Darrow JA, Albert MS, Moghekar A. CSF Alzheimer Disease Biomarkers: Time-Varying Relationships With MCI Symptom Onset and Associations With Age, Sex, and ApoE4. Neurology 2022; 99:e1640-e1650. [PMID: 36216518 PMCID: PMC9559947 DOI: 10.1212/wnl.0000000000200953] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/24/2022] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND AND OBJECTIVES This study aimed to examine whether baseline CSF measures of Alzheimer disease (AD)-related pathology are associated with the time to onset of mild cognitive impairment (MCI) and whether these associations differ by age, sex, Apolipoprotein E (ApoE4) status, and proximal (≤7 years) vs distal (>7 years) time to symptom onset. METHODS Measures of amyloid (Aβ1-42 and Aβ1-40), phospho-tau (ptau181), and total tau (t-tau) were determined from CSF samples obtained at baseline from participants in an ongoing longitudinal project, known as the Biomarkers for Older Controls at Risk for Alzheimer Disease study (BIOCARD) study. The fully automated, Lumipulse G immunoassay was used to analyze the specimens. Cox regression models were used to examine the relationship of baseline biomarker levels with time to symptom onset of MCI and interactions with age, sex, and ApoE allelic status in subjects who progressed from normal cognition to MCI. RESULTS Analyses included 273 participants from the BIOCARD cohort, who were cognitively normal and predominantly middle-aged at baseline, and have been followed for an average of 16 years (max = 23.6). During follow-up, 94 progressed to MCI (median time to symptom onset = 6.9 years). In Cox regression models, elevated ptau181 and t-tau levels were associated with time to MCI symptom onset if it occurred within 7 years of baseline (HR 1.386 and 1.329; p = 0.009 and 0.017, respectively), while a lower Aβ42/Aβ40 ratio was associated with symptom onset if it occurred >7 years from baseline (HR 0.596, p = 0.003). There were also significant 3-way CSF × age × sex interactions for ptau181 and Aβ42/Aβ40, with follow-up analyses indicating that associations between these biomarkers and progression to MCI were stronger among men than among women, but this difference between sexes diminished with increasing age. DISCUSSION The lengthy follow-up of BIOCARD participants permitted an examination of time-varying associations between CSF AD biomarkers with MCI symptom onset and the influence of sex, baseline age, and ApoE4 genotype on these associations. These factors may inform clinical trial enrollment strategies, or trial duration and outcomes, which may use these measures as surrogate markers of treatment response.
Collapse
Affiliation(s)
- Barry D Greenberg
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD.
| | - Corinne Pettigrew
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Anja Soldan
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jiangxia Wang
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Mei-Cheng Wang
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Jacqueline A Darrow
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Marilyn S Albert
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| | - Abhay Moghekar
- From the Department of Neurology (B.D.G., C.P., A.S., J.A.D., M.S.A., A.M.), Johns Hopkins University School of Medicine; and Department of Biostatistics (J.W., M.-C.W.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD
| |
Collapse
|
34
|
Tsiknia AA, Edland SD, Sundermann EE, Reas ET, Brewer JB, Galasko D, Banks SJ. Sex differences in plasma p-tau181 associations with Alzheimer's disease biomarkers, cognitive decline, and clinical progression. Mol Psychiatry 2022; 27:4314-4322. [PMID: 35768637 PMCID: PMC9718670 DOI: 10.1038/s41380-022-01675-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/27/2022] [Accepted: 06/10/2022] [Indexed: 02/07/2023]
Abstract
Studies have shown that women on the Alzheimer's disease (AD) continuum have more pathological tau in the brain and cerebrospinal fluid (CSF), than men. Some studies have found that higher levels of tau biomarkers are more strongly associated with clinical AD, cognitive decline and neurodegeneration in women than in men. Despite major developments in the use of plasma tau phosphorylated at threonine 181 (p-tau181) as an AD biomarker, it is unknown whether these sex differences apply to plasma p-tau181. In 1060 Alzheimer's Disease Neuroimaging Initiative (ADNI) participants (47% women, 73.8 ± 7.6 years old), we examined sex differences in plasma p-tau181 levels and their association with other biomarkers, cognitive decline and incident AD. Linear regressions tested for an effect of sex on plasma p-tau181 levels and for plasma p-tau181 × sex interactions on CSF p-tau181, as well as entorhinal cortex tau, cortical amyloid-β (Aβ) deposition, and brain glucose metabolism, quantified using PET imaging. Linear mixed effects models tested for a sex × baseline plasma p-tau181 interaction on change in cognition over time. Finally, Cox models tested for a sex × plasma p-tau181 interaction on the risk of AD dementia in participants who were free of dementia at baseline. Despite similar plasma p-tau181 levels between sexes, women had lower brain glucose metabolism, greater brain Aβ and entorhinal cortex tau deposition, higher CSF p-tau181 and faster cognitive decline in relation to higher baseline plasma p-tau181 levels compared with men. Among Aβ positive, dementia-free participants, women had higher rates of incident AD dementia associated with increasing baseline plasma p-tau181 levels, relative to men. Our results suggest that sex may impact the clinical interpretation of plasma p-tau181 concentrations. If replicated, these findings could have important implications for the use of plasma p-tau181 as an accessible AD biomarker and screening tool for preventive and therapeutic clinical trials.
Collapse
Affiliation(s)
- Amaryllis A Tsiknia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Steven D Edland
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Division of Biostatistics, School of Public Health and Human Longevity Science, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Erin E Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Emilie T Reas
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - James B Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Sarah J Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
35
|
Interactions between apolipoprotein E, sex, and amyloid-beta on cerebrospinal fluid p-tau levels in the European prevention of Alzheimer's dementia longitudinal cohort study (EPAD LCS). EBioMedicine 2022; 83:104241. [PMID: 36041266 PMCID: PMC9440380 DOI: 10.1016/j.ebiom.2022.104241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Background Alzheimer's Disease, the leading cause of dementia, is over-represented in females. The apolipoprotein E (APOE)ε4 allele is the strongest genetic risk factor for late-onset AD and is associated with aberrant cerebrospinal fluid levels (CSF) of total tau (t-tau), phosphorylated tau (p-tau), and amyloid-β (Aβ). There is some evidence that sex may mediate the relationship between APOE status and CSF tau, however, evidence is mixed. Methods We aimed to examine the interaction between sex, APOE ε4 status, CSF Aβ on t-tau and p-tau in 1599 mid-to-late life individuals without a diagnosis of dementia in the European Prevention of Alzheimer's Dementia (EPAD) longitudinal cohort study. Findings We found a significant interaction between APOE status, sex, and CSF Aβ on CSF p-tau levels (β = 0·18, p = 0·04). Specifically, there was a stronger association between APOE status and CSF Aβ42 on CSF p-tau in males compared to females. Further, in females with high Aβ levels (reflecting less cortical deposition), ε4 carriers had significantly elevated p-tau levels relative to non-carriers (W = 39663, p = 0·01). However, there were no significant differences in p-tau between male ε4 carriers and non-carriers with high Aβ (W = 23523, p = 0·64). Interpretation An interaction between sex and cerebrospinal fluid Aβ may mediate the relationship between APOE status and CSF p-tau. These data suggest tau accumulation may be independent of Aβ in females, but not males. Funding Innovative Medicines Initiative, Swedish Research Council, Alzheimer Drug Discovery Foundation, Swedish Alzheimer Foundation, the Swedish state under the agreement between the Swedish government and the County Councils: the ALF-agreement, and the Alzheimer's Association 2021 Zenith Award.
Collapse
|
36
|
Contador J, Pérez-Millan A, Guillen N, Sarto J, Tort-Merino A, Balasa M, Falgàs N, Castellví M, Borrego-Écija S, Juncà-Parella J, Bosch B, Fernández-Villullas G, Ramos-Campoy O, Antonell A, Bargalló N, Sanchez-Valle R, Sala Llonch R, Lladó A. Sex differences in early-onset Alzheimer's disease. Eur J Neurol 2022; 29:3623-3632. [PMID: 36005384 DOI: 10.1111/ene.15531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Sex is believed to drive heterogeneity in Alzheimer's disease (AD), although evidence in early-onset AD (<65 years, EOAD) is scarce. METHODS We included 62 EOAD patients and 44 healthy controls (HC) with cerebrospinal fluid (CSF) AD's core biomarkers and neurofilament light chain levels, neuropsychological assessment, and 3T-MRI. We measured cortical thickness (CTh) and hippocampal subfield volumes (HpS) using Freesurfer. Adjusted linear models were used to analyze sex-differences and the relationship between atrophy and cognition. RESULTS Compared to same-sex HC, female-EOAD showed greater cognitive impairment and broader atrophy burden than male-EOAD. In a direct female-EOAD and male-EOAD comparison, there were slight differences in temporal CTh, with no differences in cognition or HpS. CSF tau levels were higher in female-EOAD than in male-EOAD. Greater atrophy was associated with worse cognition in female-EOAD. CONCLUSIONS At diagnosis, there are sex-differences in the pattern of cognitive impairment, atrophy burden and CSF tau in EOAD, suggesting there is an influence of sex on pathology spreading and susceptibility to the disease in EOAD.
Collapse
Affiliation(s)
- José Contador
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Agnès Pérez-Millan
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Institute of Neurosciences. Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Nuria Guillen
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Sarto
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Adrià Tort-Merino
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Atlantic Fellow for Equity in Brain Health, Global Brain Heath Institute
| | - Neus Falgàs
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain.,Atlantic Fellow for Equity in Brain Health, Global Brain Heath Institute
| | - Magdalena Castellví
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Jordi Juncà-Parella
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Guadalupe Fernández-Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Oscar Ramos-Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Nuria Bargalló
- Image Diagnostic Centre Radiology Department, Hospital Clínic de Barcelona, Magnetic Resonance Image Core facility Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Salud Mental. CIBERSAM., Spain
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| | - Roser Sala Llonch
- Institute of Neurosciences. Department of Biomedicine, Faculty of Medicine, University of Barcelona, Barcelona, Spain.,Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
37
|
Fan DY, Jian JM, Huang S, Li WW, Shen YY, Wang Z, Zeng GH, Yi X, Jin WS, Liu YH, Zeng F, Bu XL, Chen LY, Mao QX, Xu ZQ, Yu JT, Wang J, Wang YJ. Establishment of combined diagnostic models of Alzheimer's disease in a Chinese cohort: the Chongqing Ageing & Dementia Study (CADS). Transl Psychiatry 2022; 12:252. [PMID: 35710549 PMCID: PMC9203516 DOI: 10.1038/s41398-022-02016-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 05/18/2022] [Accepted: 05/31/2022] [Indexed: 11/09/2022] Open
Abstract
Cerebrospinal fluid (CSF) biomarkers are essential for the accurate diagnosis of Alzheimer's disease (AD), yet their measurement levels vary widely across centers and regions, leaving no uniform cutoff values to date. Diagnostic cutoff values of CSF biomarkers for AD are lacking for the Chinese population. As a member of the Alzheimer's Association Quality Control program for CSF biomarkers, we aimed to establish diagnostic models based on CSF biomarkers and risk factors for AD in a Chinese cohort. A total of 64 AD dementia patients and 105 age- and sex-matched cognitively normal (CN) controls from the Chongqing Ageing & Dementia Study cohort were included. CSF Aβ42, P-tau181, and T-tau levels were measured by ELISA. Combined biomarker models and integrative models with demographic characteristics were established by logistic regression. The cutoff values to distinguish AD from CN were 933 pg/mL for Aβ42, 48.7 pg/mL for P-tau181 and 313 pg/mL for T-tau. The AN model, including Aβ42 and T-tau, had a higher diagnostic accuracy of 89.9%. Integrating age and APOE ε4 status to AN model (the ANA'E model) increased the diagnostic accuracy to 90.5% and improved the model performance. This study established cutoff values of CSF biomarkers and optimal combined models for AD diagnosis in a Chinese cohort.
Collapse
Affiliation(s)
- Dong-Yu Fan
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China ,grid.410570.70000 0004 1760 6682Shigatse Branch, Xinqiao Hospital, Third Military Medical University, Shigatse, China
| | - Jie-Ming Jian
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Shan Huang
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China ,grid.263452.40000 0004 1798 4018First Clinical Medical College, Shanxi Medical University, Taiyuan, China ,grid.263452.40000 0004 1798 4018Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, China
| | - Wei-Wei Li
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China ,Department of Neurology, Western Theater General Hospital, Chengdu, China
| | - Ying-Ying Shen
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Zhen Wang
- grid.410570.70000 0004 1760 6682Department of Critical Care Medicine, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Gui-Hua Zeng
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xu Yi
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Wang-Sheng Jin
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Yu-Hui Liu
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Fan Zeng
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Xian-Le Bu
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Li-Yong Chen
- grid.410570.70000 0004 1760 6682Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Qing-Xiang Mao
- grid.410570.70000 0004 1760 6682Department of Anaesthesiology, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Zhi-Qiang Xu
- grid.410570.70000 0004 1760 6682Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China ,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China
| | - Jin-Tai Yu
- grid.8547.e0000 0001 0125 2443Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jun Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China.
| | - Yan-Jiang Wang
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, China. .,Chongqing Key Laboratory of Ageing and Brain Diseases, Chongqing, China. .,State Key Laboratory of Trauma, Burn and Combined Injury, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
38
|
Wesenhagen KE, Gobom J, Bos I, Vos SJ, Martinez‐Lage P, Popp J, Tsolaki M, Vandenberghe R, Freund‐Levi Y, Verhey F, Lovestone S, Streffer J, Dobricic V, Bertram L, Blennow K, Pikkarainen M, Hallikainen M, Kuusisto J, Laakso M, Soininen H, Scheltens P, Zetterberg H, Teunissen CE, Visser PJ, Tijms BM. Effects of age, amyloid, sex, and APOE ε4 on the CSF proteome in normal cognition. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12286. [PMID: 35571963 PMCID: PMC9074716 DOI: 10.1002/dad2.12286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/07/2022]
Abstract
Introduction It is important to understand which biological processes change with aging, and how such changes are associated with increased Alzheimer's disease (AD) risk. We studied how cerebrospinal fluid (CSF) proteomics changed with age and tested if associations depended on amyloid status, sex, and apolipoprotein E Ɛ4 genotype. Methods We included 277 cognitively intact individuals aged 46 to 89 years from Alzheimer's Disease Neuroimaging Initiative, European Medical Information Framework for Alzheimer's Disease Multimodal Biomarker Discovery, and Metabolic Syndrome in Men. In total, 1149 proteins were measured with liquid chromatography mass spectrometry with multiple reaction monitoring/Rules-Based Medicine, tandem mass tag mass spectrometry, and SOMAscan. We tested associations between age and protein levels in linear models and tested enrichment for Reactome pathways. Results Levels of 252 proteins increased with age independently of amyloid status. These proteins were associated with immune and signaling processes. Levels of 21 proteins decreased with older age exclusively in amyloid abnormal participants and these were enriched for extracellular matrix organization. Discussion We found amyloid-independent and -dependent CSF proteome changes with older age, perhaps representing physiological aging and early AD pathology.
Collapse
Affiliation(s)
- Kirsten E.J. Wesenhagen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Johan Gobom
- Clinical Neurochemistry Lab, Institute of Neuroscience and PhysiologySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
| | | | - Stephanie J.B. Vos
- Alzheimer Center Limburg, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Pablo Martinez‐Lage
- Center for Research and Advanced TherapiesCITA‐Alzheimers FoundationDonostia‐San SebastianSpain
| | - Julius Popp
- Geriatric Psychiatry, Department of Mental Health and PsychiatryGeneva University HospitalsGenevaSwitzerland
- Department of PsychiatryUniversity Hospital of LausanneLausanneSwitzerland
| | - Magda Tsolaki
- 1st Department of Neurology, AHEPA University Hospital, Medical School, Faculty of Health SciencesAristotle University of ThessalonikiMakedoniaThessalonikiGreece
| | - Rik Vandenberghe
- Neurology ServiceUniversity Hospitals LeuvenLeuvenBelgium
- Laboratory for Cognitive Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
| | - Yvonne Freund‐Levi
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetStockholmSweden
- School of Medical Sciences Örebro University and Dep of Psychiatry Örebro University HospitalÖrebroSweden
| | - Frans Verhey
- Alzheimer Center Limburg, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
| | - Simon Lovestone
- Janssen‐cilagHigh WycombeUK
- (at the time of study conduct)University of OxfordOxfordUK
| | - Johannes Streffer
- formerly Janssen R&D, LLC, Beerse, Belgium (at the time of study conduct)AC Immune SALausanneSwitzerland
- Department of Biomedical SciencesUniversity of AntwerpAntwerpBelgium
| | | | - Lars Bertram
- Lübeck UniversityLübeckGermany
- Center for Lifespan Changes in Brain and Cognition (LCBC), Department of PsychologyUniversity of OsloOsloNorway
| | | | - Kaj Blennow
- Clinical Neurochemistry Lab, Institute of Neuroscience and PhysiologySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
| | - Maria Pikkarainen
- Institute of Clinical Medicine, NeurologyUniversity of Eastern FinlandKuopioFinland
| | - Merja Hallikainen
- Institute of Clinical MedicineInternal Medicineand Kuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Johanna Kuusisto
- Institute of Clinical MedicineInternal Medicineand Kuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Markku Laakso
- Institute of Clinical MedicineInternal Medicineand Kuopio University HospitalUniversity of Eastern FinlandKuopioFinland
| | - Hilkka Soininen
- Institute of Clinical Medicine, NeurologyUniversity of Eastern FinlandKuopioFinland
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| | - Henrik Zetterberg
- Clinical Neurochemistry Lab, Institute of Neuroscience and PhysiologySahlgrenska University HospitalMölndalSweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and PhysiologyUniversity of GothenburgMölndalSweden
- Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK
- UK Dementia Research InstituteLondonUK
| | - Charlotte E. Teunissen
- Neurochemistry Lab, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam UMCVrije UniversiteitAmsterdamthe Netherlands
| | - Pieter Jelle Visser
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
- Alzheimer Center Limburg, School for Mental Health and NeuroscienceMaastricht UniversityMaastrichtthe Netherlands
- Department of Neurobiology, Care Sciences and Society, Division of NeurogeriatricsKarolinska InstitutetStockholmSweden
| | - Betty M. Tijms
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam UMCVrije Universiteit AmsterdamAmsterdamthe Netherlands
| |
Collapse
|
39
|
Huang S, Wang YJ, Guo J. Biofluid Biomarkers of Alzheimer’s Disease: Progress, Problems, and Perspectives. Neurosci Bull 2022; 38:677-691. [PMID: 35306613 PMCID: PMC9206048 DOI: 10.1007/s12264-022-00836-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
Since the establishment of the biomarker-based A-T-N (Amyloid/Tau/Neurodegeneration) framework in Alzheimer’s disease (AD), the diagnosis of AD has become more precise, and cerebrospinal fluid tests and positron emission tomography examinations based on this framework have become widely accepted. However, the A-T-N framework does not encompass the whole spectrum of AD pathologies, and problems with invasiveness and high cost limit the application of the above diagnostic methods aimed at the central nervous system. Therefore, we suggest the addition of an “X” to the A-T-N framework and a focus on peripheral biomarkers in the diagnosis of AD. In this review, we retrospectively describe the recent progress in biomarkers based on the A-T-N-X framework, analyze the problems, and present our perspectives on the diagnosis of AD.
Collapse
|
40
|
Tsiknia AA, Reas E, Bangen KJ, Sundermann EE, McEvoy L, Brewer JB, Edland SD, Banks SJ. Sex and APOE ε4 modify the effect of cardiovascular risk on tau in cognitively normal older adults. Brain Commun 2022; 4:fcac035. [PMID: 35233525 PMCID: PMC8882003 DOI: 10.1093/braincomms/fcac035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/12/2021] [Accepted: 02/15/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The interaction between APOE ε4 and vascular risk factors on cognitive function is stronger in women than in men. These effects may be mediated by the amount of tau pathology in the brain. Therefore, we examined whether APOE ε4 and sex modify cross-sectional associations between cardiovascular risk and tau deposition in cognitively normal older adults from the Alzheimer’s Disease Neuroimaging Initiative. We calculated the Framingham Heart Study cardiovascular disease risk score for 141 participants (74 women, 47 APOE ε4 carriers) with complete medical history data, processed tau PET data and a Clinical Dementia Rating global score of 0.0 at the time of the tau PET scan, implying no significant cognitive or functional impairment. We used linear regression models to examine the effects of sex, APOE ε4, cardiovascular risk and their interactions on tau deposition in the entorhinal cortex, inferior temporal cortex and a composite meta-region of interest of temporal lobe areas. We found a significant three-way interaction among sex, APOE ε4 status, and cardiovascular disease risk on tau deposition in the entorhinal cortex (β = 0.04; 95% CI, 0.01 to 0.07; P =0.008), inferior temporal cortex (β = 0.02; 95% CI, 0.0 to 0.05; P =0.029) and meta-region (β = 0.02; 95% CI, 0.0–0.04; P = 0.042). After stratifying by APOE ε4 status to examine interactions between sex and cardiovascular disease risk on tau in APOE ε4 carriers and non-carriers, we found a significant two-way interaction between sex and cardiovascular disease risk on tau in the entorhinal cortex (β = 0.05; 95% CI, 0.02 to 0.08; P =0.001), inferior temporal cortex (β = 0.03; 95% CI, 0.01 to 0.05; P =0.009) and meta-region (β = 0.02; 95% CI, 0.01 to 0.04; P =0.008) only among APOE ε4 carriers. In analyses stratified by sex, higher cardiovascular risk scores were associated with higher levels of tau in the entorhinal cortex (β = 0.05; 95% CI, 0.02 to 0.08; P =0.002), inferior temporal cortex (β = 0.02; 95% CI, 0.0 to 0.05; P =0.023) and meta-region (β = 0.02; 95% CI, 0.01 to 0.04; P =0.013) in female APOE ε4 carriers but not in male carriers. Our findings suggest that cognitively normal older women carrying at least one APOE ε4 allele, may be particularly vulnerable to the effects of cardiovascular disease risk on early tau deposition.
Collapse
Affiliation(s)
- Amaryllis A. Tsiknia
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Emilie Reas
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Katherine J. Bangen
- Research Service, VA San Diego Healthcare System, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Erin E. Sundermann
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | - Linda McEvoy
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - James B. Brewer
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Radiology, University of California, San Diego, La Jolla, CA, USA
| | - Steven D. Edland
- Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA, USA
| | - Sarah J. Banks
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
| | | |
Collapse
|
41
|
Benson GS, Bauer C, Hausner L, Couturier S, Lewczuk P, Peters O, Hüll M, Jahn H, Jessen F, Pantel J, Teipel SJ, Wagner M, Schuchhardt J, Wiltfang J, Kornhuber J, Frölich L. Don’t forget about tau: the effects of ApoE4 genotype on Alzheimer’s disease cerebrospinal fluid biomarkers in subjects with mild cognitive impairment—data from the Dementia Competence Network. J Neural Transm (Vienna) 2022; 129:477-486. [PMID: 35061102 PMCID: PMC9188507 DOI: 10.1007/s00702-022-02461-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/06/2022] [Indexed: 11/28/2022]
Abstract
ApoE4, the strongest genetic risk factor for Alzheimer’s disease (AD), has been shown to be associated with both beta-amyloid (Aβ) and tau pathology, with the strongest evidence for effects on Aβ, while the association between ApoE4 and tau pathology remains inconsistent. This study aimed to investigate the associations between ApoE4 with CSF Aβ42, total tau (t-tau), phospho-tau181 (p-tau), and with the progression of decline in a large cohort of MCI subjects, both progressors to AD and other dementias, as well as non-progressors. We analyzed associations of CSF Aβ42, p-tau and t-tau with ApoE4 allele frequency cross-sectionally and longitudinally over 3 years of follow-up in 195 individuals with a diagnosis of MCI-stable, MCI-AD converters and MCI progressing to other dementias from the German Dementia Competence Network. In the total sample, ApoE4 carriers had lower concentrations of CSF Aβ42, and increased concentrations of t-tau and p-tau compared to non-carriers in a gene dose-dependent manner. Comparisons of these associations stratified by MCI-progression groups showed a significant influence of ApoE4 carriership and diagnostic group on all CSF biomarker levels. The effect of ApoE4 was present in MCI-stable individuals but not in the other groups, with ApoE4 + carriers having decreased CSF Aβ 42 levels, and increased concentration of t-tau and p-tau. Longitudinally, individuals with abnormal t-tau and Aβ42 had a more rapid progression of cognitive and clinical decline, independently of ApoE4 genotype. Overall, our results contribute to an emerging framework in which ApoE4 involves mechanisms associated with both CSF amyloid-β burden and tau aggregation at specific time points in AD pathogenesis.
Collapse
|
42
|
Sass D, Guedes VA, Smith EG, Vorn R, Devoto C, Edwards KA, Mithani S, Hentig J, Lai C, Wagner C, Dunbar K, Hyde DR, Saligan L, Roy MJ, Gill J. Sex Differences in Behavioral Symptoms and the Levels of Circulating GFAP, Tau, and NfL in Patients With Traumatic Brain Injury. Front Pharmacol 2021; 12:746491. [PMID: 34899299 PMCID: PMC8662747 DOI: 10.3389/fphar.2021.746491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/08/2021] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) affects millions of Americans each year and has been shown to disproportionately impact those subject to greater disparities in health. Female sex is one factor that has been associated with disparities in health outcomes, including in TBI, but sex differences in biomarker levels and behavioral outcomes after TBI are underexplored. This study included participants with both blunt and blast TBI with majority rating their TBI as mild. Time since injury was 5.4 (2.0, 15.5) years for females and 6.8 (2.4, 11.3) years for males. The aim of this cross sectional study is to investigate the relationship between postconcussive, depression, and post-traumatic stress disorder (PTSD) symptoms, as well as health related quality of life (HRQOL), and the levels of glial fibrillary acidic protein (GFAP), total tau (t-tau), neurofilament light chain (NfL), and ubiquitin C-terminal hydrolase-L1 (UCH-L1). Behavioral outcomes were evaluated with the Neurobehavioral Symptom Inventory (NSI), Patient Health Questionnaire-9 (PHQ-9), PTSD Checklist- Civilian Version (PCL-C), short form (SF)-36, and plasma levels of total tau, GFAP, NfL, and UCHL-1 measured with the Simoa-HDX. We observed that females had significantly higher levels of GFAP and tau (ps < 0.05), and higher PHQ-9 scores, NSI total scores, NSI- vestibular, NSI-somatosensory, NSI-affective sub-scale scores (ps < 0.05)), than males. In addition, females had lower scores in HRQOL outcomes of role limitations due to emotional problems, vitality, emotional well-being, social functioning, and pain compared to males (ps < 0.05). Correlation analysis showed positive associations between levels of tau and the NSI-total and NSI-cognitive sub-scale scores (ps < 0.05) in females. No significant associations were found for NfL or GFAP with NSI scores. For female participants, negative correlations were observed between tau and NfL concentrations and the SF-36 physical function subscale (ps < 0.05), as well as tau and the social function subscale (p < 0.001), while GFAP levels positively correlated with role limitations due to emotional problems (p = 0.004). No significant associations were observed in males. Our findings suggest that sex differences exist in TBI-related behavioral outcomes, as well as levels of biomarkers associated with brain injury, and that the relationship between biomarker levels and behavioral outcomes is more evident in females than males. Future studies are warranted to corroborate these results, and to determine the implications for prognosis and treatment. The identification of candidate TBI biomarkers may lead to development of individualized treatment guidelines.
Collapse
Affiliation(s)
- Dilorom Sass
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Vivian A. Guedes
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Ethan G. Smith
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Rany Vorn
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Christina Devoto
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
- Henry M. Jackson Foundation, Bethesda, MD, United States
| | - Katie A. Edwards
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Sara Mithani
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - James Hentig
- Department of Biological Sciences, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Chen Lai
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Chelsea Wagner
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Kerri Dunbar
- Henry M. Jackson Foundation, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Rockville, MD, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - David R. Hyde
- Department of Biological Sciences, Notre Dame, IN, United States
- Center for Stem Cells and Regenerative Medicine, Galvin Life Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Leorey Saligan
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
| | - Michael J. Roy
- Center for Neuroscience and Regenerative Medicine, Rockville, MD, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Jessica Gill
- National Institutes of Nursing Research, NIH, Bethesda, MD, United States
- Center for Neuroscience and Regenerative Medicine, Rockville, MD, United States
| |
Collapse
|
43
|
Udeh-Momoh C, Watermeyer T. Female specific risk factors for the development of Alzheimer's disease neuropathology and cognitive impairment: Call for a precision medicine approach. Ageing Res Rev 2021; 71:101459. [PMID: 34508876 DOI: 10.1016/j.arr.2021.101459] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/13/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) includes a long asymptomatic stage, which precedes the formal diagnosis of dementia. AD biomarker models provide a framework for precision medicine approaches during this stage. However, such approaches have ignored the possible influence of sex on cognition and brain health, despite female sex noted as a major risk factor. Since AD-related changes may emerge in midlife, intervention efforts are being redirected around this period. Midlife coincides with several endocrinological changes, such as the menopausal transition experienced by women. In this narrative review, we discuss evidence for sex-differences in AD neuropathological burden and outline key endocrinological mechanisms for both sexes, focussing on hormonal events throughout the lifespan that may influence female susceptibility to AD neuropathology and dementia onset. We further consider common non-modifiable (genetic) and modifiable (lifestyle and health) risk factors, highlighting possible sex-dependent differential effects for the AD disease course. Finally, we evaluate the studies selected for this review demonstrating sex-differences in cognitive, pathological and health factors, summarising the state of sex differences in AD risk factors. We further provide recommendations for targeted research on female-specific risk factors, to inform personalised strategies for AD-prevention and the promotion of female brain health.
Collapse
|
44
|
Zhou HH, Luo L, Zhai XD, Chen L, Wang G, Qin LQ, Yu Z, Xin LL, Wan Z. Sex-Specific Neurotoxicity of Dietary Advanced Glycation End Products in APP/PS1 Mice and Protective Roles of Trehalose by Inhibiting Tau Phosphorylation via GSK-3β-TFEB. Mol Nutr Food Res 2021; 65:e2100464. [PMID: 34669246 DOI: 10.1002/mnfr.202100464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/04/2021] [Indexed: 11/11/2022]
Abstract
SCOPE It remains unclear whether dietary advanced glycation end products (dAGEs)-induced cognitive impairment is sex-dependent. Trehalose may antagonize dAGEs-induced neurotoxicity via glycogen synthase kinase-3 beta (GSK3β)-transcription factor EB (TFEB) signaling. METHODS AND RESULTS The sex-specific neurotoxicity of dAGEs and the protective role of trehalose are investigated both in vivo and in vitro. Both sexes of APP/PS1 mice are divided into three groups: that is, control, dAGEs, and dAGEs supplemented with trehalose. SHSY-5Y cells incubated with AGE-BSA and trehalose are also utilized. Dietary AGEs impair cognitive function only in female mice, which is restored by trehalose. Trehalose upregulates phosphorylated-GSK3β serine9 (p-GSK3β ser9), TFEB and transient receptor potential mucolipin 1, ADAM10, oligosaccharyl transferase-48, estrogen receptor α and induces TFEB nuclear translocation in hippocampus, elevates IDE and ERβ in cortex, while reduces p-tau ser396&404, CDK5, cathepsin B, and glial fibrillary acidic protein in hippocampus. Trehalose elevates p-GSK3β ser9, induces TFEB nuclear translocation, consequently reverses AGE-BSA-induced tau phosphorylation in vitro. CONCLUSIONS Female mice are more susceptible to the deleterious effects of dAGEs on cognitive function, which may be owing to its regulation on ERβ. Trehalose can strongly reverse dAGEs-induced tau phosphorylation by potentiating TFEB nuclear translocation via inhibiting GSK-3β.
Collapse
Affiliation(s)
- Huan-Huan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Lan Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Xue-Di Zhai
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Liangkai Chen
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guiping Wang
- School of Physical Education, Soochow University, No. 50, Donghuan Road, Suzhou, 215006, China
| | - Li-Qiang Qin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zengli Yu
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Li-Li Xin
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China
| | - Zhongxiao Wan
- Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, 199 Ren'ai Road, Suzhou, 215123, China.,Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou, Henan, 450001, China
| |
Collapse
|
45
|
Martinkova J, Quevenco FC, Karcher H, Ferrari A, Sandset EC, Szoeke C, Hort J, Schmidt R, Chadha AS, Ferretti MT. Proportion of Women and Reporting of Outcomes by Sex in Clinical Trials for Alzheimer Disease: A Systematic Review and Meta-analysis. JAMA Netw Open 2021; 4:e2124124. [PMID: 34515784 DOI: 10.1001/jamanetworkopen.2021.24124] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
IMPORTANCE Women represent two-thirds of patients with Alzheimer disease (AD), and sex differences might affect results of randomized clinical trials (RCTs). However, little information exists on differences in sex as reported in RCTs for AD. OBJECTIVE To assess the ratio of females to males and the reporting of sex-stratified data in large pharmaceutical RCTs for AD. DATA SOURCES A search for pharmaceutical RCTs for AD was conducted on September 4, 2019, using ClinicalTrials.gov with the key word Alzheimer disease, and articles related to those trials were identified using the PubMed, Scopus, and Google Scholar databases. Searches were conducted between September 4 and October 31, 2019, and between April 15 and May 31, 2020. STUDY SELECTION Controlled RCTs that had more than 100 participants and tested the efficacy of drugs or herbal extracts were included. Of 1047 RCTs identified, 409 were published and therefore screened. A total of 77 articles were included in the final analysis, including 56 primary articles on AD, 13 secondary articles on AD, and 8 articles on mild cognitive impairment. DATA EXTRACTION AND SYNTHESIS The location and date of publication; number, sex, and age of patients enrolled; disease severity; experimental or approved status of the drug; and whether the study included a sex-stratified analysis in the protocol, methods, or results were extracted by 1 reviewer for each article, and the meta-analysis followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline. Data were analyzed using a mixed-effects model. MAIN OUTCOMES AND MEASURES The mean proportion of women enrolled in the trials and the associations between prespecified variables were analyzed. The proportion of articles that included sex-stratified results and the temporal trends in the reporting of these results were also studied. RESULTS In this review of 56 RCTs for AD involving 39 575 participants, 23 348 women (59.0%) were included. The mean (SD) proportion of women in RCTs of approved drugs was 67.3% (6.9%), and in RCTs of experimental drugs was 57.9% (5.9%). The proportion of women in RCTs of experimental drugs was significantly lower than the proportion of women in the general population with AD in the US (62.1%; difference, -4.56% [95% CI, -6.29% to -2.87%]; P < .001) and Europe (68.2%; difference, -10.67% [95% CI, -12.39% to -8.97%]; P < .001). Trials of approved drugs had a higher probability of including women than trials of experimental drugs (odds ratio [OR], 1.26; 95% CI, 1.05-1.52; P = .02). Both the severity of AD at baseline and the trial location were associated with the probability of women being enrolled in trials (severity: OR, 0.98; 95% CI, 0.97-1.00; P = .02; location in Europe: OR, 1.26; 95% CI, 1.05-1.52; P = .01; location in North America: OR, 0.81; 95% CI, 0.71-0.93; P = .002). Only 7 articles (12.5%) reported sex-stratified results, with an increasing temporal trend (R, 0.30; 95% CI, 0.05-0.59; P = .03). CONCLUSIONS AND RELEVANCE In this systematic review and meta-analysis, the proportion of women in RCTs for AD, although higher than the proportion of men, was significantly lower than that in the general population. Only a small proportion of trials reported sex-stratified results. These findings support strategies to improve diversity in enrollment and data reporting in RCTs for AD.
Collapse
Affiliation(s)
- Julie Martinkova
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- Women's Brain Project, Guntershausen, Switzerland
| | - Frances-Catherine Quevenco
- Women's Brain Project, Guntershausen, Switzerland
- Roche Diagnostics International Ltd, Rotkreuz, Switzerland
| | | | | | | | - Cassandra Szoeke
- Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
| | - Jakub Hort
- Memory Clinic, Department of Neurology, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
- International Clinical Research Center, St Anne's University Hospital Brno, Brno, Czech Republic
| | - Reinhold Schmidt
- Department of Neurogeriatrics, University Clinic of Neurology, Medical University Graz, Graz, Austria
| | | | | |
Collapse
|
46
|
Duarte-Guterman P, Albert AY, Barha CK, Galea LAM. Sex influences the effects of APOE genotype and Alzheimer's diagnosis on neuropathology and memory. Psychoneuroendocrinology 2021; 129:105248. [PMID: 33962245 DOI: 10.1016/j.psyneuen.2021.105248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/10/2021] [Accepted: 04/22/2021] [Indexed: 11/19/2022]
Abstract
Alzheimer's disease (AD) is characterized by severe cognitive decline and pathological changes in the brain (brain atrophy, hyperphosphorylation of tau, and deposition of amyloid-beta protein). Females have greater neuropathology (AD biomarkers and brain atrophy rates) and cognitive decline than males, however these effects can depend on diagnosis (amnestic mild cognitive impairment (aMCI) or AD) and APOE genotype (presence of ε4 alleles). Using the ADNI database (N = 630 females, N = 830 males), we analyzed the effect of sex, APOE genotype (non-carriers or carriers of APOEε4 alleles), and diagnosis (cognitively normal (CN), early aMCI (EMCI), late aMCI (LMCI), probable AD) on cognition (memory and executive function), hippocampal volume, and AD biomarkers (CSF levels of amyloid beta, tau, and ptau). Regardless of APOE genotype, memory scores were higher in CN, EMCI, and LMCI females compared to males but this sex difference was absent in probable AD, which may suggest a delay in the onset of cognitive decline or diagnosis and/or a faster trajectory of cognitive decline in females. We found that, regardless of diagnosis, CSF tau-pathology was disproportionately elevated in female carriers of APOEε4 alleles compared to males. In contrast, male carriers of APOEε4 alleles had reduced levels of CSF amyloid beta compared to females, irrespective of diagnosis. We also detected sex differences in hippocampal volume but the direction was dependent on the method of correction. Altogether results suggest that across diagnosis females show greater memory decline compared to males and APOE genotype affects AD neuropathology differently in males and females which may influence sex differences in incidence and progression of aMCI and AD.
Collapse
Affiliation(s)
- Paula Duarte-Guterman
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada
| | - Arianne Y Albert
- Women's Health Research Institute of British Columbia, Vancouver, BC, Canada
| | - Cindy K Barha
- Djavad Mowafaghian Centre for Brain Health and Department of Physical Therapy, University of British Columbia, Vancouver, BC, Canada
| | - Liisa A M Galea
- Djavad Mowafaghian Centre for Brain Health and Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
47
|
Ashton NJ, Leuzy A, Karikari TK, Mattsson-Carlgren N, Dodich A, Boccardi M, Corre J, Drzezga A, Nordberg A, Ossenkoppele R, Zetterberg H, Blennow K, Frisoni GB, Garibotto V, Hansson O. The validation status of blood biomarkers of amyloid and phospho-tau assessed with the 5-phase development framework for AD biomarkers. Eur J Nucl Med Mol Imaging 2021; 48:2140-2156. [PMID: 33677733 PMCID: PMC8175325 DOI: 10.1007/s00259-021-05253-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 02/09/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE The development of blood biomarkers that reflect Alzheimer's disease (AD) pathophysiology (phosphorylated tau and amyloid-β) has offered potential as scalable tests for dementia differential diagnosis and early detection. In 2019, the Geneva AD Biomarker Roadmap Initiative included blood biomarkers in the systematic validation of AD biomarkers. METHODS A panel of experts convened in November 2019 at a two-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of blood biomarkers was assessed based on the Biomarker Roadmap methodology and discussed fully during the workshop which also evaluated cerebrospinal fluid (CSF) and positron emission tomography (PET) biomarkers. RESULTS Plasma p-tau has shown analytical validity (phase 2 primary aim 1) and first evidence of clinical validity (phase 3 primary aim 1), whereas the maturity level for Aβ remains to be partially achieved. Full and partial achievement has been assigned to p-tau and Aβ, respectively, in their associations to ante-mortem measures (phase 2 secondary aim 2). However, only preliminary evidence exists for the influence of covariates, assay comparison and cut-off criteria. CONCLUSIONS Despite the relative infancy of blood biomarkers, in comparison to CSF biomarkers, much has already been achieved for phases 1 through 3 - with p-tau having greater success in detecting AD and predicting disease progression. However, sufficient data about the effect of covariates on the biomarker measurement is lacking. No phase 4 (real-world performance) or phase 5 (assessment of impact/cost) aim has been tested, thus not achieved.
Collapse
Affiliation(s)
- N J Ashton
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden.
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.
| | - A Leuzy
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
| | - T K Karikari
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
| | - N Mattsson-Carlgren
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Department of Neurology, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | - A Dodich
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Center for Neurocognitive Rehabilitation (CeRiN), CIMeC, University of Trento, Trento, Italy
| | - M Boccardi
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- LANVIE - Laboratory of Neuroimaging of Aging, University of Geneva, Geneva, Switzerland
| | - J Corre
- Centre National de la Recherche Scientifique, Montpellier, France
| | - A Drzezga
- Medical Faculty and University Hospital of Cologne, Cologne, Germany
| | - A Nordberg
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital Stockholm, Stockholm, Sweden
| | - R Ossenkoppele
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - H Zetterberg
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| | - K Blennow
- Institute of Neuroscience & Physiology, Department of Psychiatry & Neurochemistry, Sahlgrenska Academy, University of Gothenburg, House V3/SU, SE-431 80, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - G B Frisoni
- German Center for Neurodegenerative Diseases (DZNE), Rostock-Greifswald, Rostock, Germany
- Memory Clinic, Geneva University Hospitals, Geneva, Switzerland
| | - V Garibotto
- NIMTlab - Neuroimaging and Innovative Molecular Tracers Laboratory, University of Geneva, Geneva, Switzerland
- Diagnostic Department, University Hospitals of Geneva, Geneva, Switzerland
| | - O Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences, Malmö, Lund University, Lund, Sweden.
- UK Dementia Research Institute at UCL, London, UK.
- Memory Clinic, Skåne University Hospital, SE-205 02, Malmö, Sweden.
| |
Collapse
|
48
|
Salvadó G, Grothe MJ, Groot C, Moscoso A, Schöll M, Gispert JD, Ossenkoppele R. Differential associations of APOE-ε2 and APOE-ε4 alleles with PET-measured amyloid-β and tau deposition in older individuals without dementia. Eur J Nucl Med Mol Imaging 2021; 48:2212-2224. [PMID: 33521872 PMCID: PMC8175302 DOI: 10.1007/s00259-021-05192-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/03/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE To examine associations between the APOE-ε2 and APOE-ε4 alleles and core Alzheimer's disease (AD) pathological hallmarks as measured by amyloid-β (Aβ) and tau PET in older individuals without dementia. METHODS We analyzed data from 462 ADNI participants without dementia who underwent Aβ ([18F]florbetapir or [18F]florbetaben) and tau ([18F]flortaucipir) PET, structural MRI, and cognitive testing. Employing APOE-ε3 homozygotes as the reference group, associations between APOE-ε2 and APOE-ε4 carriership with global Aβ PET and regional tau PET measures (entorhinal cortex (ERC), inferior temporal cortex, and Braak-V/VI neocortical composite regions) were investigated using linear regression models. In a subset of 156 participants, we also investigated associations between APOE genotype and regional tau accumulation over time using linear mixed models. Finally, we assessed whether Aβ mediated the cross-sectional and longitudinal associations between APOE genotype and tau. RESULTS Compared to APOE-ε3 homozygotes, APOE-ε2 carriers had lower global Aβ burden (βstd [95% confidence interval (CI)]: - 0.31 [- 0.45, - 0.16], p = 0.034) but did not differ on regional tau burden or tau accumulation over time. APOE-ε4 participants showed higher Aβ (βstd [95%CI]: 0.64 [0.42, 0.82], p < 0.001) and tau burden (βstd range: 0.27-0.51, all p < 0.006). In mediation analyses, APOE-ε4 only retained an Aβ-independent effect on tau in the ERC. APOE-ε4 showed a trend towards increased tau accumulation over time in Braak-V/VI compared to APOE-ε3 homozygotes (βstd [95%CI]: 0.10 [- 0.02, 0.18], p = 0.11), and this association was fully mediated by baseline Aβ. CONCLUSION Our data suggest that the established protective effect of the APOE-ε2 allele against developing clinical AD is primarily linked to resistance against Aβ deposition rather than tau pathology.
Collapse
Affiliation(s)
- Gemma Salvadó
- Alzheimer Prevention Program, Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30 08005, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands.
| | - Michel J Grothe
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden.
- Unidad de Trastornos del Movimiento, Servicio de Neurología y Neurofisiología Clínica, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Avda. Manuel Siurot, s/n 41013, Seville, Spain.
| | - Colin Groot
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Alexis Moscoso
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Michael Schöll
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Juan Domingo Gispert
- Alzheimer Prevention Program, Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, C/ Wellington, 30 08005, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, Lund, Sweden
| |
Collapse
|
49
|
Scheltens P, De Strooper B, Kivipelto M, Holstege H, Chételat G, Teunissen CE, Cummings J, van der Flier WM. Alzheimer's disease. Lancet 2021; 397:1577-1590. [PMID: 33667416 PMCID: PMC8354300 DOI: 10.1016/s0140-6736(20)32205-4] [Citation(s) in RCA: 2382] [Impact Index Per Article: 595.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/21/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022]
Abstract
In this Seminar, we highlight the main developments in the field of Alzheimer's disease. The most recent data indicate that, by 2050, the prevalence of dementia will double in Europe and triple worldwide, and that estimate is 3 times higher when based on a biological (rather than clinical) definition of Alzheimer's disease. The earliest phase of Alzheimer's disease (cellular phase) happens in parallel with accumulating amyloid β, inducing the spread of tau pathology. The risk of Alzheimer's disease is 60-80% dependent on heritable factors, with more than 40 Alzheimer's disease-associated genetic risk loci already identified, of which the APOE alleles have the strongest association with the disease. Novel biomarkers include PET scans and plasma assays for amyloid β and phosphorylated tau, which show great promise for clinical and research use. Multidomain lifestyle-based prevention trials suggest cognitive benefits in participants with increased risk of dementia. Lifestyle factors do not directly affect Alzheimer's disease pathology, but can still contribute to a positive outcome in individuals with Alzheimer's disease. Promising pharmacological treatments are poised at advanced stages of clinical trials and include anti-amyloid β, anti-tau, and anti-inflammatory strategies.
Collapse
Affiliation(s)
- Philip Scheltens
- Alzheimer Centre Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Neurology, Amsterdam University Medical Centers, Amsterdam, Netherlands; Life Science Partners, Amsterdam, Netherlands.
| | - Bart De Strooper
- VIB Center for Brain and Disease Research, Leuven, Belgium; KU Leuven Department for Neurology, Leuven, Belgium; Dementia Research Institute, University College London, London, UK
| | - Miia Kivipelto
- Division of Clinical Geriatrics and Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska University Hospital, Stockholm, Sweden; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland; Ageing and Epidemiology Research Unit, School of Public Health, Imperial College London, London, UK
| | - Henne Holstege
- Alzheimer Centre Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Gael Chételat
- Normandie Université, Université de Caen, Institut National de la Santé et de la Recherche Médicale, Groupement d'Intérêt Public Cyceron, Caen, France
| | - Charlotte E Teunissen
- Department of Clinical Chemistry, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Jeffrey Cummings
- Chambers-Grundy Center for Transformative Neuroscience, Department of Brain Health, University of Nevada, Las Vegas, NV, USA; Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, NV, USA
| | - Wiesje M van der Flier
- Alzheimer Centre Amsterdam, Amsterdam University Medical Centers, Amsterdam, Netherlands; Department of Epidemiology and Datascience, Amsterdam University Medical Centers, Amsterdam, Netherlands
| |
Collapse
|
50
|
2020 update on the clinical validity of cerebrospinal fluid amyloid, tau, and phospho-tau as biomarkers for Alzheimer's disease in the context of a structured 5-phase development framework. Eur J Nucl Med Mol Imaging 2021; 48:2121-2139. [PMID: 33674895 PMCID: PMC8175301 DOI: 10.1007/s00259-021-05258-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 02/11/2021] [Indexed: 12/15/2022]
Abstract
Purpose In the last decade, the research community has focused on defining reliable biomarkers for the early detection of Alzheimer’s disease (AD) pathology. In 2017, the Geneva AD Biomarker Roadmap Initiative adapted a framework for the systematic validation of oncological biomarkers to cerebrospinal fluid (CSF) AD biomarkers—encompassing the 42 amino-acid isoform of amyloid-β (Aβ42), phosphorylated-tau (P-tau), and Total-tau (T-tau)—with the aim to accelerate their development and clinical implementation. The aim of this work is to update the current validation status of CSF AD biomarkers based on the Biomarker Roadmap methodology. Methods A panel of experts in AD biomarkers convened in November 2019 at a 2-day workshop in Geneva. The level of maturity (fully achieved, partly achieved, preliminary evidence, not achieved, unsuccessful) of CSF AD biomarkers was assessed based on the Biomarker Roadmap methodology before the meeting and presented and discussed during the workshop. Results By comparison to the previous 2017 Geneva Roadmap meeting, the primary advances in CSF AD biomarkers have been in the area of a unified protocol for CSF sampling, handling and storage, the introduction of certified reference methods and materials for Aβ42, and the introduction of fully automated assays. Additional advances have occurred in the form of defining thresholds for biomarker positivity and assessing the impact of covariates on their discriminatory ability. Conclusions Though much has been achieved for phases one through three, much work remains in phases four (real world performance) and five (assessment of impact/cost). To a large degree, this will depend on the availability of disease-modifying treatments for AD, given these will make accurate and generally available diagnostic tools key to initiate therapy. Supplementary Information The online version contains supplementary material available at 10.1007/s00259-021-05258-7.
Collapse
|