1
|
Li Z, Martens YA, Ren Y, Jin Y, Sekiya H, Doss SV, Kouri N, Castanedes-Casey M, Christensen TA, Miller Nevalainen LB, Takegami N, Chen K, Liu CC, Soto-Beasley A, Boon BDC, Labuzan SA, Ikezu TC, Chen Y, Bartkowiak AD, Xhafkollari G, Wetmore AM, Bennett DA, Reichard RR, Petersen RC, Kanekiyo T, Ross OA, Murray ME, Dickson DW, Bu G, Zhao N. APOE genotype determines cell-type-specific pathological landscape of Alzheimer's disease. Neuron 2025; 113:1380-1397.e7. [PMID: 40112813 DOI: 10.1016/j.neuron.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 11/21/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
The apolipoprotein E (APOE) gene is the strongest genetic risk modifier for Alzheimer's disease (AD), with the APOE4 allele increasing risk and APOE2 decreasing it compared with the common APOE3 allele. Using single-nucleus RNA sequencing of the temporal cortex from APOE2 carriers, APOE3 homozygotes, and APOE4 carriers, we found that AD-associated transcriptomic changes were highly APOE genotype dependent. Comparing AD with controls, APOE2 carriers showed upregulated synaptic and myelination-related pathways, preserving synapses and myelination at the protein level. Conversely, these pathways were downregulated in APOE3 homozygotes, resulting in reduced synaptic and myelination proteins. In APOE4 carriers, excitatory neurons displayed reduced synaptic pathways similar to APOE3, but oligodendrocytes showed upregulated myelination pathways like APOE2. However, their synaptic and myelination protein levels remained unchanged or increased. APOE4 carriers also showed increased pro-inflammatory signatures in microglia but reduced responses to amyloid-β pathology. These findings reveal APOE genotype-specific molecular alterations in AD across cell types.
Collapse
Affiliation(s)
- Zonghua Li
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yuka A Martens
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yingxue Ren
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yunjung Jin
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sydney V Doss
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Naomi Kouri
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | | | - Nanaka Takegami
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Kai Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | - Baayla D C Boon
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sydney A Labuzan
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Tadafumi C Ikezu
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Yixing Chen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | | | | | - Allison M Wetmore
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - David A Bennett
- Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, IL 60612, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Owen A Ross
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Melissa E Murray
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA.
| |
Collapse
|
2
|
Eshghi M, Rong P, Dadgostar M, Shin H, Richburg BD, Barnett NV, Salat DH, Arnold SE, Green JR. APOE- ε4 Modulates Facial Neuromuscular Activity in Nondemented Adults: Toward Sensitive Speech-Based Diagnostics for Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.29.25326665. [PMID: 40343015 PMCID: PMC12060952 DOI: 10.1101/2025.04.29.25326665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2025]
Abstract
The APOE-ε4 allele is a genetic risk factor for late-onset Alzheimer's disease (AD). Beyond cognitive decline, APOE-ε4 affects motor function, reducing muscle strength and coordination, potentially through mitochondrial dysfunction and oxidative stress. This study examined the influence of the APOE- ε4 allele on neuromuscular function in oral muscles involved in speech production, using surface electromyography (EMG); and assessed the predictive power of EMG measures in differentiating APOE- ε4 carriers from noncarriers. Forty-two cognitively intact adults (16 APOE- ε4 carriers, 26 noncarriers) completed speech tasks while EMG was recorded from seven craniofacial muscles. Seventy EMG features including amplitude, frequency, complexity, regularity, and functional connectivity were extracted. Statistical analyses assessed genotype effects, sex differences, and correlations with blood metabolic biomarkers. APOE- ε4 carriers exhibited increased motor unit recruitment and synchronization, suggesting accelerated muscle fatigue. EMG-based measures outperformed cognitive tests in distinguishing carriers (AUC = 0.90) and correlated with metabolic biomarkers. Sex differences emerged, with female carriers showing reduced and male carriers showing increased functional connectivity. These findings highlight speech-based neuromuscular changes as potential early biomarkers of Alzheimer's risk before cognition is affected.
Collapse
|
3
|
Ren L, Hu F, Walsh S, Jin X, Hu Y, Li S, Jiang Y, Yu M, Wu Y, Zang GY, Liu K, Chen H, Sun J, Zhang Y, Shirai K, Zeng Y, Samus QM, Livingston G, Yao Y. Healthy lifestyle factors outweigh influence of APOE genetic risk on extending cognitively healthy life expectancy among Chinese older adults: evidence from a nationwide cohort study. Alzheimers Dement 2025; 21:e70090. [PMID: 40226865 PMCID: PMC11995295 DOI: 10.1002/alz.70090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/17/2025] [Accepted: 02/15/2025] [Indexed: 04/15/2025]
Abstract
INTRODUCTION Understanding the interplay between genetic factors and lifestyle choices in cognitive health is crucial for enhancing late-life quality. This study examines the effects of Apolipoprotein E (APOE) genotypes and healthy lifestyles on life expectancy with and without cognitive impairment (CI) in Chinese older adults. METHODS Data from 6488 participants aged at least 65 in the Chinese Longitudinal Healthy Longevity Survey (CLHLS) were analyzed using continuous-time three-state Markov models. Cognitive function was assessed with the Mini-Mental State Examination (MMSE). RESULTS APOE ε4 allele carriers had a higher risk of transitioning from cognitively healthy (CH) to impaired, while ε2 carriers had a reduced risk of transitioning from healthy to death. Participants with 4 or 5 healthy lifestyle factors experienced significant protective effects, extending the cognitively healthy life expectancy. DISCUSSION These findings underscore the importance of promoting healthy lifestyles to delay cognitive decline, regardless of genetic predispositions, particularly in the Asian context. HIGHLIGHTS Compared with ε3 homozygotes, APOE ε4 carriers in China have a higher risk of transitioning from CH to CI, and APOE ε2 carriers with CH have a lower risk of transitioning to death. Healthy lifestyles can extend life expectancy, primarily extending CH life expectancy. Healthy lifestyles reduce the risk of CI and delay its onset in later life, regardless of APOE genetic risk.
Collapse
Affiliation(s)
- Longbing Ren
- School of Public HealthPeking University Health Science CenterBeijingChina
- Center for Healthy Aging Transdisciplinary Sciences, China Center for Health Development StudiesPeking UniversityBeijingChina
- Division of PsychiatryUniversity College LondonLondonUK
| | - Fan Hu
- Department of Endocrinology, The Second Medical Center & National Clinical Research Center for Geriatric DiseaseChinese PLA General HospitalBeijingChina
| | | | - Xurui Jin
- MindRank AI Ltd.HangzhouZhejiangChina
| | - Yang Hu
- School of Public HealthPeking University Health Science CenterBeijingChina
- Center for Healthy Aging Transdisciplinary Sciences, China Center for Health Development StudiesPeking UniversityBeijingChina
| | - Shaojie Li
- School of Public HealthPeking University Health Science CenterBeijingChina
- Center for Healthy Aging Transdisciplinary Sciences, China Center for Health Development StudiesPeking UniversityBeijingChina
| | - Yuling Jiang
- School of Public HealthPeking University Health Science CenterBeijingChina
- Center for Healthy Aging Transdisciplinary Sciences, China Center for Health Development StudiesPeking UniversityBeijingChina
| | - Mingzhi Yu
- School of Public HealthPeking University Health Science CenterBeijingChina
- Center for Healthy Aging Transdisciplinary Sciences, China Center for Health Development StudiesPeking UniversityBeijingChina
| | - Yifei Wu
- School of Public HealthPeking University Health Science CenterBeijingChina
- Center for Healthy Aging Transdisciplinary Sciences, China Center for Health Development StudiesPeking UniversityBeijingChina
| | - Grace Yuange Zang
- Department of Health Policy and Management, Bloomberg School of Public HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Keyang Liu
- Department of Public Health, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Huashuai Chen
- School of managementXiangtan UniversityXiangtanHunanChina
| | - Jing Sun
- School of NursingPeking UniversityBeijingChina
| | - Yan Zhang
- School of Health Service ManagementAnhui Medical UniversityHefeiAnhuiChina
| | - Kokoro Shirai
- Department of Public Health, Graduate School of MedicineOsaka UniversitySuitaOsakaJapan
| | - Yi Zeng
- Center for the Study of Aging and Human Development and Geriatrics DivisionMedical School of Duke UniversityDurhamNorth CarolinaUSA
| | - Quincy M. Samus
- Department of Psychiatry and Behavioral SciencesSchool of Nursing, Johns Hopkins School of MedicineBaltimoreMarylandUSA
| | | | - Yao Yao
- School of Public HealthPeking University Health Science CenterBeijingChina
- Center for Healthy Aging Transdisciplinary Sciences, China Center for Health Development StudiesPeking UniversityBeijingChina
- Center for the Study of Aging and Human Development and Geriatrics DivisionMedical School of Duke UniversityDurhamNorth CarolinaUSA
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
- Key Laboratory of Epidemiology of Major Diseases (Peking University)Ministry of EducationBeijingChina
| |
Collapse
|
4
|
Singh AA, Khan F, Song M. Biofilm-Associated Amyloid Proteins Linked with the Progression of Neurodegenerative Diseases. Int J Mol Sci 2025; 26:2695. [PMID: 40141340 PMCID: PMC11942204 DOI: 10.3390/ijms26062695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/10/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025] Open
Abstract
Biofilm-associated amyloid proteins have emerged as significant contributors to the progression of neurodegenerative diseases, representing a complex intersection of microorganisms and human health. The cross-beta sheet structure characteristic of amyloids produced by gut-colonizing bacteria remains intact, crucial for the resilience of biofilms. These amyloids exacerbate neurodegenerative disorders such as Alzheimer's and Parkinson's by cross-seeding human amyloidogenic proteins like amyloid-beta and α-synuclein, accelerating their misfolding and aggregation. Despite molecular chaperones and heat shock proteins maintaining protein homeostasis, bacterial amyloids can overwhelm them, worsening neuronal damage. Genetic variations in chaperone genes further influence amyloidogenesis and neurodegeneration. Persistent bacterial infections and inflammation compromise the blood-brain barrier, allowing inflammatory molecules and amyloids to enter the brain, perpetuating the cycle of neurodegeneration. The gut-brain axis underscores the impact of dysbiosis and gut microbiota on brain function, potentially contributing to neurodegeneration. The enhancement of biofilm resilience and antibiotic resistance by functional amyloid fibrils complicates the treatment landscape. The interplay among chaperone systems, microbial amyloids, and neurodegenerative diseases underscores the urgent need for advanced treatment strategies targeting these pathways to attenuate disease progression. Understanding the processes that relate biofilm-associated amyloids to the onset of neurological disorders is critical for diagnosing and developing novel treatment strategies.
Collapse
Affiliation(s)
- Alka Ashok Singh
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Fazlurrahman Khan
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan 48513, Republic of Korea
- International Graduate Program of Fisheries Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
5
|
Chen X, Lin K, Ye Z, Qiu L, Qiu Y, Yuan R, Yu X, Huang C, Cheng B, Lin W, Lai T, Chen W, Wang N, Gan S, Su Q, Fu Y. Apolipoprotein E epsilon4 allele is associated with better performance language and visual memory in spinocerebellar ataxia type 3. Eur J Neurol 2025; 32:e70017. [PMID: 39731318 DOI: 10.1111/ene.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/11/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND The regulatory role of the apolipoprotein E (APOE) ε4 allele in the clinical manifestations of spinocerebellar ataxia type 3 (SCA3) remains unclear. This study aimed to evaluate the impact of the APOE ε4 allele on cognitive and motor functions in SCA3 patients. METHODS This study included 281 unrelated SCA3 patients and 182 controls. APOE genotypes were analyzed using PCR amplification combined with Sanger sequencing. Additionally, 96 SCA3 patients were prospectively recruited for neuropsychological and motor function assessments. Neuropsychological phenotypes were evaluated using the modified Chinese version of the Minimal Assessment of Cognitive Function in Multiple Sclerosis (MACFIMS). Motor function was assessed using the Scale for the Assessment and Rating of Ataxia (SARA) and the International Cooperative Ataxia Rating Scale (ICARS). RESULTS The frequency of the APOE ε4 allele was increased in SCA3 patients compared to the control group. The APOE ε4 allele was associated with better performance in language and visual memory, but also with more severe speech disturbances in SCA3 patients. Furthermore, in SCA3, the expanded CAG repeat length was correlated with poorer language memory performance and slower information processing speed, as well as more severe gait disturbances, fast alternating hand movements, speech disturbance, and oculomotor disorders. CONCLUSIONS The APOE ε4 allele may serve as a disease-modifying factor in SCA3, influencing both cognitive and motor functions.
Collapse
Affiliation(s)
- Xuanyu Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Kunxin Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Zhixian Ye
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Liangliang Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Yusen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Ruying Yuan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Xintong Yu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Chunyu Huang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Bi Cheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Tianmin Lai
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Shirui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Qiuni Su
- Center for Precision Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Ying Fu
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
6
|
Canal‐Garcia A, Branca RM, Francis PT, Ballard C, Winblad B, Lehtiö J, Nilsson P, Aarsland D, Pereira JB, Bereczki E. Proteomic signatures of Alzheimer's disease and Lewy body dementias: A comparative analysis. Alzheimers Dement 2025; 21:e14375. [PMID: 39711511 PMCID: PMC11780320 DOI: 10.1002/alz.14375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/06/2024] [Accepted: 10/08/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION We aimed to identify unique proteomic signatures of Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and Parkinson's disease dementia (PDD). METHODS We conducted a comparative proteomic analysis of 33 post mortem brains from AD, DLB, and PDD individuals without dementia focusing on prefrontal, cingulate, and parietal cortices, using weighted gene co-expression network analyses with differential enrichment analysis. RESULTS Network modules revealed hub proteins common to all dementias. Lewy body dementias differed from AD by reduced levels of the autophagy protein p62 (SQSTM1), whereas DLB was distinguished from both AD and PDD by altered TRIM33 and cysteine/glutamate transporter (SLC7A11) across brain regions. An increase in mitochondrial and synaptic proteins was related to better cognition whereas enrichment in the extracellular matrix, complement system, and autophagy proteins was associated with greater cognitive impairment. DISCUSSION Our study offers valuable insights into the network-based biomarker characterization of molecular signatures of AD, DLB, and PDD. HIGHLIGHTS Reduced levels of the autophagy protein p62 (SQSTM1) differentiated Lewy body dementias from Alzheimer's disease (AD) across multiple brain regions. Dementia with Lewy bodies (DLB) was distinguished from both AD and Parkinson's disease dementia (PDD) by altered TRIM33 and cysteine/glutamate transporter (SLC7A11) levels across brain regions. Key mitochondrial oxidative phosphorylation proteins (e.g., COX7A2, TOMM40L, NDUFV1), and synaptic proteins (e.g., GABRB3, GABRB2, GLUA3, GLUA4, SNAP47, dynamin1) were more abundant in preserved cognitive states. Extracellular matrix proteins and members of the complement system (decorin, biglycan, C4A, C4B) showed a strong positive correlation with cognitive decline.
Collapse
Affiliation(s)
- Anna Canal‐Garcia
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Rui M. Branca
- Department of Oncology‐PathologyScience for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Paul T. Francis
- King's College LondonWolfson Centre for Age‐Related DiseasesLondonUK
- University of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Clive Ballard
- University of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Bengt Winblad
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska Institutet, BioClinicumStockholmSweden
| | - Janne Lehtiö
- Department of Oncology‐PathologyScience for Life LaboratoryKarolinska InstitutetStockholmSweden
| | - Per Nilsson
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska Institutet, BioClinicumStockholmSweden
| | - Dag Aarsland
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska Institutet, BioClinicumStockholmSweden
- Institute of PsychiatryPsychology and NeuroscienceKing's College LondonLondonUK
- Centre for Age‐Related MedicineStavanger University HospitalStavangerNorway
| | - Joana B. Pereira
- Department of Clinical NeuroscienceKarolinska InstitutetStockholmSweden
| | - Erika Bereczki
- Department of NeurobiologyCare Sciences and SocietyCenter for Alzheimer ResearchDivision of NeurogeriatricsKarolinska Institutet, BioClinicumStockholmSweden
| |
Collapse
|
7
|
Nsor NA, Bourassa KJ, Barnes LL, Brown CK. The Effects of APOE Alleles, Cognitive Activities, and Social Activities on Cognitive Decline in African Americans. J Gerontol B Psychol Sci Soc Sci 2024; 80:gbae172. [PMID: 39392924 PMCID: PMC11632228 DOI: 10.1093/geronb/gbae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Indexed: 10/13/2024] Open
Abstract
OBJECTIVES Older African Americans are among the fastest-growing populations, yet are underrepresented in studies examining risk factors related to decline. The present study examines whether biological factors (apolipoprotein [APOE] alleles) interact with behavioral factors including cognitive activities (e.g., reading, playing games) and social activities (e.g., participating in social groups) to predict cognitive decline in African Americans. METHODS In total, 734 African American adults from the Minority Aging Research Study, aged 65 and older (with no known dementia at the time of enrollment), underwent annual cognitive testing for up to 10 years. At baseline, APOE status was determined and participants reported their frequency of participation in social and cognitive activities. Structural equation modeling was used to examine the effects of APOE, cognitive activities, and social activities on cognitive decline, and their interaction effects over a 10-year period. RESULTS The number of APOE alleles had an effect on cognitive decline, such that a greater number of APOE4 alleles was associated with greater cognitive decline, whereas a greater number of APOE2 alleles was associated with less cognitive decline. Cognitive and social activities did not interact with APOE count to predict cognitive decline; however, APOE4 and social activities had additive, independent effects on cognitive decline. DISCUSSION Results replicate prior findings linking APOE4 to cognitive decline and highlight the importance of APOE2 and social activities in delaying cognitive decline in African Americans.
Collapse
Affiliation(s)
- Neke A Nsor
- Department of Neuroscience, Georgetown University Medical Center, Washington, District of Columbia, USA
| | - Kyle J Bourassa
- VA Mid-Atlantic Mental Illness Research, Education and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, North Carolina, USA
| | - Lisa L Barnes
- Department of Neurological Sciences, Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, Illinois, USA
| | - Casey K Brown
- Department of Psychology, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
8
|
Pecher H, Storch M, Beyer F, Witte V, Baasner CF, Schönknecht P, Weise CM. Hypothalamic atrophy and structural covariance in amnestic mild cognitive impairment and Alzheimer's dementia. Neuroimage Clin 2024; 44:103687. [PMID: 39406040 PMCID: PMC11525751 DOI: 10.1016/j.nicl.2024.103687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 09/10/2024] [Accepted: 10/08/2024] [Indexed: 11/03/2024]
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive cognitive decline and specific brain atrophy patterns, primarily involving the medial temporal lobes. A number of studies have discussed hypothalamic involvement in AD with consecutive metabolic and/or autonomic disturbances yet only few studies have investigated hypothalamic atrophy in AD and its early stages in particular. METHODS We applied semi-automated volumetry of the hypothalamus (HTH) in 3 T MRI in a sample N = 175 participants [age 74.9 ± 7.22; gender 85 m/90f; cognitively normal controls (CN; N = 56); amnestic mild cognitive impairment (MCI; N = 78); AD (N = 41)] from the Alzheimer's Disease Neuroimaging Initiative (ADNI). In addition, we used voxel-based morphometry (VBM), cortical thickness (CTH) analyses and source-based morphometry (SBM) derived networks of structural covariance to investigate brain structural covariance patterns of the HTH under consideration of diagnostic groups, β-amyloid (AB) positivity and apolipoprotein E (APOE) ε4 status. RESULTS Hypothalamic atrophy was observed in both early and advanced disease stages (i.e. hypothalamic volume CN > MCI > AD). VBM, CTH analysis and SBM revealed positive associations between hypothalamic volume (HV) and AD-vulnerable regions, largely corresponding to the Papez circuit and brain regions implicated in autonomic regulation, however, group differences regarding HTH structural covariance were not observed. Similar observations were made in carriers and non-carriers of the ε4 allele, yet more pronounced in ε4 carriers. Although not reaching significance, comparisons of AB positive vs. negative subjects indicated stronger HTH atrophy in biomarker positive participants. HV was not associated with body mass index or longitudinal weight change. CONCLUSIONS Our findings support early structural changes of the HTH in AD. HV covaries with regional volumes of AD-vulnerable regions. This could point to secondary atrophy of the HTH following atrophy of the hippocampus and other structures of the Papez circuit in AD.
Collapse
Affiliation(s)
- Hannah Pecher
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), German; Department of Radiology, Bundeswehrkrankenhaus Berlin, Scharnhorststr. 13, 10115 Berlin, Germany.
| | - Melanie Storch
- Department of Psychiatry and Psychotherapy, University Hospital Leipzig, Semmelweisstr. 10, 04103 Leipzig, Germany; Department of Biology, University of Leipzig, 04103 Leipzig, Germany
| | - Frauke Beyer
- Department of Neurology, Max Planck-Institute for Human Cognitive and Brain Sciences, and Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Veronica Witte
- Department of Neurology, Max Planck-Institute for Human Cognitive and Brain Sciences, and Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany
| | - Christian-Frank Baasner
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), German
| | - Peter Schönknecht
- Medical Faculty, Department of Psychiatry and Psychotherapy, University Hospital Leipzig, 04103 Leipzig, Germany; Out-Patient Department for Sexual-Therapeutic Prevention and Forensic Psychiatry, University Hospital Leipzig, 04103, Leipzig, Germany; Academic Saxon State Hospital Altscherbitz, 04435 Schkeuditz, Germany
| | - Christopher M Weise
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, 06120 Halle (Saale), German
| |
Collapse
|
9
|
Cui C, Yu T, Zhai Y, Zhang S, Su Z. Prevalence of cognitive impairment and its associated factors in middle-aged and elderly people in Anhui Province, China: An observational study. Medicine (Baltimore) 2024; 103:e39587. [PMID: 39252239 PMCID: PMC11383731 DOI: 10.1097/md.0000000000039587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
To understand the prevalence of cognitive impairment (CI) in middle-aged and elderly individuals in Anhui Province and to develop a CI risk prediction model. From May to June 2022, a multistage, stratified cluster-sampling method was used to select 3200 middle-aged and elderly people over 45 years old in Anhui Province for a questionnaire survey, and the Chinese version of the Mini-Mental State Examination (MMSE) was used to assess cognitive function. SPSS 25.0 was used for univariate and multivariate analyses, and R software was used to establish and validate the nomogram. A total of 3059 valid questionnaires were included, of which 384 were from participants who were diagnosed with CI, and the prevalence rate was 12.6%. Multivariate logistic analysis showed that female sex, advanced age, family history, etc., were closely related to the occurrence of CI. The area under curve (AUC) values in the modeling and validation groups were 0.845 (95% CI: 0.822-0.868) and 0.868 (95% CI: 0.835-0.902), respectively, indicating that the predictive ability of the model was good. The Hosmer-Lemeshow test suggested that the model had good goodness-of-fit, and the decision-curve evaluation nomogram had a high benefit within the threshold, which had a certain clinical importance. The prevalence rate of CI among middle-aged and elderly individuals in Anhui Province was 12.6%. Female sex, elderly age, family history, low educational status, current smoking status, sleep disorders, hypertension, stroke, and diabetes were shown to be risk factors for CI, while exercise was shown to be a protective factor.
Collapse
Affiliation(s)
- Can Cui
- Department of General Medicine, Chaohu Hospital affiliated with Anhui Medical University, Chaohu, China
| | - Tianyun Yu
- Department of General Medicine, Chaohu Hospital affiliated with Anhui Medical University, Chaohu, China
| | - Yujia Zhai
- Department of General Medicine, Chaohu Hospital affiliated with Anhui Medical University, Chaohu, China
| | - Shan Zhang
- Department of General Medicine, Chaohu Hospital affiliated with Anhui Medical University, Chaohu, China
| | - Zengfeng Su
- Department of General Medicine, Chaohu Hospital affiliated with Anhui Medical University, Chaohu, China
| |
Collapse
|
10
|
Livingston G, Huntley J, Liu KY, Costafreda SG, Selbæk G, Alladi S, Ames D, Banerjee S, Burns A, Brayne C, Fox NC, Ferri CP, Gitlin LN, Howard R, Kales HC, Kivimäki M, Larson EB, Nakasujja N, Rockwood K, Samus Q, Shirai K, Singh-Manoux A, Schneider LS, Walsh S, Yao Y, Sommerlad A, Mukadam N. Dementia prevention, intervention, and care: 2024 report of the Lancet standing Commission. Lancet 2024; 404:572-628. [PMID: 39096926 DOI: 10.1016/s0140-6736(24)01296-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 04/08/2024] [Accepted: 06/16/2024] [Indexed: 08/05/2024]
Affiliation(s)
- Gill Livingston
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK.
| | - Jonathan Huntley
- Department of Clinical and Biomedical Sciences, University of Exeter, Exeter, UK
| | - Kathy Y Liu
- Division of Psychiatry, University College London, London, UK
| | - Sergi G Costafreda
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Geir Selbæk
- Norwegian National Advisory Unit on Ageing and Health, Vestfold Hospital Trust, Tønsberg, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Geriatric Department, Oslo University Hospital, Oslo, Norway
| | - Suvarna Alladi
- National Institute of Mental Health and Neurosciences, Bangalore, India
| | - David Ames
- National Ageing Research Institute, Melbourne, VIC, Australia; University of Melbourne Academic Unit for Psychiatry of Old Age, Melbourne, VIC, Australia
| | - Sube Banerjee
- Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | | | - Carol Brayne
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Nick C Fox
- The Dementia Research Centre, Department of Neurodegenerative Disease, University College London, London, UK
| | - Cleusa P Ferri
- Health Technology Assessment Unit, Hospital Alemão Oswaldo Cruz, São Paulo, Brazil; Department of Psychiatry, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Laura N Gitlin
- College of Nursing and Health Professions, AgeWell Collaboratory, Drexel University, Philadelphia, PA, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Helen C Kales
- Department of Psychiatry and Behavioral Sciences, UC Davis School of Medicine, University of California, Sacramento, CA, USA
| | - Mika Kivimäki
- Division of Psychiatry, University College London, London, UK; Department of Public Health, University of Helsinki, Helsinki, Finland
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - Noeline Nakasujja
- Department of Psychiatry College of Health Sciences, Makerere University College of Health Sciences, Makerere University, Kampala City, Uganda
| | - Kenneth Rockwood
- Centre for the Health Care of Elderly People, Geriatric Medicine, Dalhousie University, Halifax, NS, Canada
| | - Quincy Samus
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins Bayview, Johns Hopkins University, Baltimore, MD, USA
| | - Kokoro Shirai
- Graduate School of Social and Environmental Medicine, Osaka University, Osaka, Japan
| | - Archana Singh-Manoux
- Division of Psychiatry, University College London, London, UK; Université Paris Cité, Inserm U1153, Paris, France
| | - Lon S Schneider
- Department of Psychiatry and the Behavioural Sciences and Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Sebastian Walsh
- Cambridge Public Health, University of Cambridge, Cambridge, UK
| | - Yao Yao
- China Center for Health Development Studies, School of Public Health, Peking University, Beijing, China; Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Andrew Sommerlad
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| | - Naaheed Mukadam
- Division of Psychiatry, University College London, London, UK; Camden and Islington NHS Foundation Trust, London, UK
| |
Collapse
|
11
|
Jackson RJ, Hyman BT, Serrano-Pozo A. Multifaceted roles of APOE in Alzheimer disease. Nat Rev Neurol 2024; 20:457-474. [PMID: 38906999 DOI: 10.1038/s41582-024-00988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
For the past three decades, apolipoprotein E (APOE) has been known as the single greatest genetic modulator of sporadic Alzheimer disease (AD) risk, influencing both the average age of onset and the lifetime risk of developing AD. The APOEε4 allele significantly increases AD risk, whereas the ε2 allele is protective relative to the most common ε3 allele. However, large differences in effect size exist across ethnoracial groups that are likely to depend on both global genetic ancestry and local genetic ancestry, as well as gene-environment interactions. Although early studies linked APOE to amyloid-β - one of the two culprit aggregation-prone proteins that define AD - in the past decade, mounting work has associated APOE with other neurodegenerative proteinopathies and broader ageing-related brain changes, such as neuroinflammation, energy metabolism failure, loss of myelin integrity and increased blood-brain barrier permeability, with potential implications for longevity and resilience to pathological protein aggregates. Novel mouse models and other technological advances have also enabled a number of therapeutic approaches aimed at either attenuating the APOEε4-linked increased AD risk or enhancing the APOEε2-linked AD protection. This Review summarizes this progress and highlights areas for future research towards the development of APOE-directed therapeutics.
Collapse
Affiliation(s)
- Rosemary J Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| | - Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Massachusetts Alzheimer's Disease Research Center, Charlestown, MA, USA.
| |
Collapse
|
12
|
Wefel JS, Deshmukh S, Brown PD, Grosshans DR, Sulman EP, Cerhan JH, Mehta MP, Khuntia D, Shi W, Mishra MV, Suh JH, Laack NN, Chen Y, Curtis AA, Laba JM, Elsayed A, Thakrar A, Pugh SL, Bruner DW. Impact of Apolipoprotein E Genotype on Neurocognitive Function in Patients With Brain Metastases: An Analysis of NRG Oncology's RTOG 0614. Int J Radiat Oncol Biol Phys 2024; 119:846-857. [PMID: 38101486 PMCID: PMC11162903 DOI: 10.1016/j.ijrobp.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 11/28/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023]
Abstract
PURPOSE Whole-brain radiation therapy (WBRT) is a common treatment for brain metastases and is frequently associated with decline in neurocognitive functioning (NCF). The e4 allele of the apolipoprotein E (APOE) gene is associated with increased risk of Alzheimer disease and NCF decline associated with a variety of neurologic diseases and insults. APOE carrier status has not been evaluated as a risk factor for onset time or extent of NCF impairment in patients with brain metastases treated with WBRT. METHODS AND MATERIALS NRG/Radiation Therapy Oncology Group 0614 treated adult patients with brain metastases with 37.5 Gy of WBRT (+/- memantine), performed longitudinal NCF testing, and included an optional blood draw for APOE analysis. NCF test results were compared at baseline and over time with mixed-effects models. A cause-specific Cox model for time to NCF failure was performed to assess the effects of treatment arm and APOE carrier status. RESULTS APOE results were available for 45% of patients (n = 227/508). NCF did not differ by APOE e4 carrier status at baseline. Mixed-effects modeling showed that APOE e4 carriers had worse memory after WBRT compared with APOE e4 noncarriers (Hopkins Verbal Learning Test-Revised total recall [least square mean difference, 0.63; P = .0074], delayed recognition [least square mean difference, 0.75; P = .023]). However, APOE e4 carrier status was not associated with time to NCF failure (hazard ratio, 0.86; 95% CI, 0.60-1.23; P = .40). Memantine delayed the time to NCF failure, regardless of carrier status (hazard ratio, 0.72; 95% CI, 0.52-1.01; P = .054). CONCLUSIONS APOE e4 carriers with brain metastases exhibited greater decline in learning and memory, executive function, and the Clinical Trial Battery Composite score after treatment with WBRT (+/- memantine), without acceleration of onset of difference in time to NCF failure.
Collapse
Affiliation(s)
- Jeffrey S Wefel
- University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Snehal Deshmukh
- NRG Oncology Statistics and Data Management Center/American College of Radiology, Philadelphia, Pennsylvania
| | | | | | - Erik P Sulman
- Laura and Isaac Perlmutter Cancer Center, New York University Langone, New York, New York
| | | | - Minesh P Mehta
- Baptist Hospital of Miami and Florida International University, Miami, Florida
| | | | - Wenyin Shi
- Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Mark V Mishra
- University of Maryland Medical Systems, Baltimore, Maryland
| | - John H Suh
- Cleveland Clinic Foundation, Cleveland, Ohio
| | | | | | - Amarinthia Amy Curtis
- Spartanburg Medical Center, Accruals for Upstate Carolina NCORP-Gibbs Regional Cancer Center, Spartanburg, South Carolina
| | - Joanna M Laba
- London Regional Cancer Program, Accruals for University of Western Ontario, London, Ontario, Canada
| | - Ahmed Elsayed
- Toledo Community Hospital Oncology Program CCOP, Toledo, Ohio
| | - Anu Thakrar
- John H. Stroger Jr Hospital of Cook County MBCCOP, Chicago, Illinois
| | - Stephanie L Pugh
- NRG Oncology Statistics and Data Management Center/American College of Radiology, Philadelphia, Pennsylvania
| | | |
Collapse
|
13
|
He M, Liu Z, Lian T, Guo P, Zhang W, Huang Y, Zhang Y, Liu G, Zhang W, Li J, Guan H, Zhang W, Luo D, Qi J, Yue H, Wang X, Zhang W. Role of nerve growth factor on cognitive impairment in patients with Alzheimer's disease carrying apolipoprotein E ε4. CNS Neurosci Ther 2024; 30:e14560. [PMID: 38112032 PMCID: PMC11163191 DOI: 10.1111/cns.14560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/20/2023] Open
Abstract
AIMS To investigate the roles of neurotrophic factors on cognition in patients with Alzheimer's disease (AD) carrying Apolipoprotein E (APOE) ε4. METHODS Totals of 173 patients with AD were divided into APOE ε4 carrier and non-carrier groups, and their demographics, cognition, and neurotrophic factors in cerebrospinal fluid (CSF) were compared. Multiple linear regression analyses were performed to assess correlations among APOE ε4, neurotrophic factors and cognition. Mediation analyses were conducted to assess the sequential associations among APOE ε4, nerve growth factor (NGF), and cognition. RESULTS Global cognition and multiple domains were impaired in the APOE ε4 carrier group (all p < 0.05). NGF level in the APOE ε4 carrier group was lower than that in the non-carrier group (p = 0.016). NGF level showed significant correlations with both global and multiple domains cognitions. Specifically, NGF mediated the association between APOE ε4 and Animal Fluency Test score (β, -0.45; 95% CI [-0.96, -0.07]; p < 0.001) and Trail Making Test-A (time) (β, 0.15; 95% CI [0.01, 0.33]; p < 0.001). CONCLUSION APOE ε4 is associated with cognitive impairment, and those carrying APOE ε4 have decreased NGF level in CSF. Declined NGF level is correlated with compromised cognition. NGF mediates APOE ε4-associated cognitive impairment.
Collapse
Affiliation(s)
- Mingyue He
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Zhan Liu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Tenghong Lian
- Center for Cognitive Neurology, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Peng Guo
- Center for Cognitive Neurology, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Wenjing Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Yue Huang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & HealthUNSW SydneySydneyNew South WalesAustralia
| | - Yanan Zhang
- Department of Blood TransfusionBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Gaifen Liu
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Weijiao Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jinghui Li
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Huiying Guan
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Weijia Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Dongmei Luo
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Jing Qi
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Hao Yue
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
| | - Xiaomin Wang
- Department of PhysiologyCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Center for Cognitive Neurology, Department of NeurologyBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological DiseasesBeijing Tiantan Hospital, Capital Medical UniversityBeijingChina
- Center of Parkinson's DiseaseBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory on Parkinson DiseaseBeijingChina
| |
Collapse
|
14
|
Ritchie M, Sajjadi SA, Grill JD. Apolipoprotein E Genetic Testing in a New Age of Alzheimer Disease Clinical Practice. Neurol Clin Pract 2024; 14:e200230. [PMID: 38223345 PMCID: PMC10783973 DOI: 10.1212/cpj.0000000000200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/01/2023] [Indexed: 01/16/2024]
Abstract
The recent FDA approval of amyloid-lowering drugs is changing the landscape of Alzheimer disease (AD) clinical practice. Previously, apolipoprotein E (APOE) genetic testing was not recommended in the care of people with AD because of limited clinical utility. With the advent of amyloid-lowering drugs, APOE genotype will play an important role in guiding treatment recommendations. Recent clinical trials have reported strong associations between APOE genotype and the safety and possibly the efficacy of amyloid-lowering drugs. Therefore, a clinical workflow that includes biomarker and genetic testing should be implemented to provide patients with the opportunity to make informed decisions and instruct safety monitoring for clinicians. Pretest consent, education, and counseling will be an essential aspect of this process for patients and their family members to understand the implications of these tests and their results. Given that the approved amyloid-lowering drugs are indicated for patients with mild cognitive impairment or mild dementia with biomarker evidence of AD, biomarker testing should be performed before genetic testing and genetic testing should only be performed in patients interested in treatment with amyloid-lowering drugs. It is also important to consider other implications of genetic testing, including burden on and need for additional training for clinicians, the role of additional providers, and the potential challenges for patients and families.
Collapse
Affiliation(s)
- Marina Ritchie
- UC Irvine Institute for Memory Impairments and Neurological Disorders (MR, SAS); Department of Neurobiology and Behavior (MR); Department of Neurology (SAS); and Department of Psychiatry and Human Behavior, University of California, Irvine
| | - Seyed Ahmad Sajjadi
- UC Irvine Institute for Memory Impairments and Neurological Disorders (MR, SAS); Department of Neurobiology and Behavior (MR); Department of Neurology (SAS); and Department of Psychiatry and Human Behavior, University of California, Irvine
| | - Joshua D Grill
- UC Irvine Institute for Memory Impairments and Neurological Disorders (MR, SAS); Department of Neurobiology and Behavior (MR); Department of Neurology (SAS); and Department of Psychiatry and Human Behavior, University of California, Irvine
| |
Collapse
|
15
|
He M, Lian T, Guo P, Zhang W, Zhang Y, Huang Y, Liu G, Guan H, Li J, Luo D, Zhang W, Zhang W, Qi J, Yue H, Wang X, Zhang W. The roles of apolipoprotein E ε4 on neuropathology and neuroinflammation in patients with Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14440. [PMID: 37697966 PMCID: PMC10916449 DOI: 10.1111/cns.14440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/16/2023] [Indexed: 09/13/2023] Open
Abstract
AIMS To explore the roles of apolipoprotein E (APOE) ε4 on the neuropathology and neuroinflammation in Alzheimer's disease (AD) patients. METHODS AD patients were divided into the APOE ε4 carrier and the APOE ε4 non-carrier groups according to APOE genotype. Demographic information, cognitive function, the levels of neuropathological proteins and neuroinflammatory factors in cerebrospinal fluid (CSF) were compared between the two groups, and their correlations were subsequently analyzed. RESULTS β amyloid protein (Aβ)1-42 level from the APOE ε4 carrier group was significantly lower than that from the non-carrier group (p = 0.023), which was associated with worse cognitive function. The nitric oxide (NO) level was significantly elevated in the APOE ε4 carrier group compared to the non-carrier group (p = 0.016), which was significantly and positively correlated with the Trail Making Test (TMT)-A-time (r = 0.21, p = 0.026) and TMT-B-time (r = 0.38, p < 0.01). CONCLUSION APOE ε4 is associated with poorer cognition, particularly the early symptoms of memory, language, and attention. APOE ε4 is associated with lower Aβ1-42 level, and the more numbers of APOE ε4 are carried, the lower level of Aβ1-42 is measured. APOE ε4 is associated with elevated NO level, which is linked to the impaired attention and executive function.
Collapse
Grants
- Basic-Clinical Research Cooperation Funding of Capital Medical University, China (2015-JL-PT-X04, 10-JL-49, 14-JL-15)
- Beijing Healthcare Research Project, China (JING-15-2)
- Capital Clinical Characteristic Application Research (Z121107001012161)
- Capital's Funds for Health Improvement and Research (CFH) (2022-2-2048)
- Excellent Personnel Training Project of Beijing, China (20071D0300400076)
- High Level Technical Personnel Training Project of Beijing Health System, China (2009-3-26)
- Key Project of Natural Science Foundation of Beijing, China (4161004)
- Key Technology R&D Program of Beijing Municipal Education Commission (kz201610025030)
- National Key Research and Development Program of China (2016YFC1306300, 2016YFC1306000)
- National Natural Science Foundation of China (81970992, 81571229, 81071015, 30770745, 82201639)
- Natural Science Foundation of Beijing, China (7082032)
- Natural Science Foundation of Capital Medical University, Beijing, China (PYZ2018077)
- Project of Beijing Institute for Brain Disorders (BIBD-PXM2013_014226_07_000084)
- Project of Construction of Innovative Teams and Teacher Career Development for Universities and Colleges Under Beijing Municipality (IDHT20140514)
- Project of Scientific and Technological Development of Traditional Chinese Medicine in Beijing (JJ2018-48)
- The National Key R&D Program of China-European Commission Horizon 2020 (2017YFE0118800-779238)
- Youth Research Funding, Beijing Tiantan Hospital, Capital Medical University, China (2015-YQN-14, 2015-YQN-15, 2015-YQN-17)
- Capital's Funds for Health Improvement and Research (CFH) (2022‐2‐2048)
- National Key Research and Development Program of China (2016YFC1306300, 2016YFC1306000)
- National Natural Science Foundation of China (81970992, 81571229, 81071015, 30770745, 82201639)
- Natural Science Foundation of Beijing, China (7082032)
Collapse
Affiliation(s)
- Mingyue He
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Tenghong Lian
- Department of Neurology, Center for Cognitive Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peng Guo
- Department of Neurology, Center for Cognitive Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Weijiao Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yanan Zhang
- Department of Blood Transfusion, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Yue Huang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine & HealthUNSW SydneySydneyNew South WalesAustralia
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Gaifen Liu
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Huiying Guan
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jinghui Li
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Dongmei Luo
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Weijia Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Wenjing Zhang
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Jing Qi
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Hao Yue
- Department of Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xiaomin Wang
- Department of PhysiologyCapital Medical UniversityBeijingChina
| | - Wei Zhang
- Department of Neurology, Center for Cognitive Neurology, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Center of Parkinson's DiseaseBeijing Institute for Brain DisordersBeijingChina
- Beijing Key Laboratory on Parkinson DiseaseBeijingChina
| |
Collapse
|
16
|
Rai P, Sundarakumar JS, Basavaraju N, Kommaddi RP, Issac TG. Association between ApoE ε4 genotype and attentional function in non-demented, middle-aged, and older adults from rural India. J Neurosci Rural Pract 2024; 15:117-125. [PMID: 38476424 PMCID: PMC10927062 DOI: 10.25259/jnrp_272_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/28/2023] [Indexed: 03/14/2024] Open
Abstract
Objectives Several genetic factors have been associated with cognitive decline in aging. Apolipoprotein E (ApoE) ε4 has been widely studied in the risk for pathological cognitive decline, including dementia. However, the association between ApoE ε4 and cognitive functioning in the healthy aging Indian population has been understudied, and the results are ambiguous. Materials and Methods This study aims to examine the role of the ApoE genotype with attentional function in aging adults (≥45 years) in a rural Indian population. Cross-sectional (baseline) data (n = 2100) was utilized from an ongoing longitudinal cohort study on aging (Srinivaspura Aging, Neurosenescence, and Cognition study). Participants hailed from villages of Srinivaspura in Karnataka, southern India. Participants were categorized based on ApoE-ε4 status into three categories: No ε4, heterozygous ε4, and homozygous ε4. Attentional function was assessed using the auditory and visual attention subtests from a computerized neurocognitive test battery. Linear regression was performed adjusting for age, gender, and education. Results In model 1 (unadjusted), we did not find an association between ApoE and attention function. In the partially adjusted model 2 (adjusting for age), ApoE ε4 with age was significantly associated with the attention function. Further, with increasing age, there was a decline in attention among homozygous ε4 individuals. Model 3 (model 2 + gender) found that ApoE ε4, age, and gender explained a significant variance in attention function. In addition, with increasing age, males had poor attention in the homozygous as compared to heterozygous group. Model 4 (model 3+ education) explained a significant variance in attention and also revealed that with increasing age, attention declined in the illiterate and low literacy groups in both homozygous and heterozygous groups among both genders. Conclusion Although ApoE ε4 alone was not associated, it interacted with age, gender, and education to affect attention function in this rural Indian population. Longitudinal cognitive monitoring will yield insights into understanding whether the ApoE ε4 genotype influences the rate of cognitive decline in this rural, aging population.
Collapse
Affiliation(s)
- Pooja Rai
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | | | - Nimisha Basavaraju
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Reddy Peera Kommaddi
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Thomas Gregor Issac
- Centre for Brain Research, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
17
|
Das S, Li Z, Wachter A, Alla S, Noori A, Abdourahman A, Tamm JA, Woodbury ME, Talanian RV, Biber K, Karran EH, Hyman BT, Serrano‐Pozo A. Distinct transcriptomic responses to Aβ plaques, neurofibrillary tangles, and APOE in Alzheimer's disease. Alzheimers Dement 2024; 20:74-90. [PMID: 37461318 PMCID: PMC10792109 DOI: 10.1002/alz.13387] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 07/28/2023]
Abstract
INTRODUCTION Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE-linked differences remain unclear. METHODS We performed laser capture microdissection of amyloid beta (Aβ) plaques, the 50 μm halo around them, tangles with the 50 μm halo around them, and areas distant (> 50 μm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS Aβ plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aβ plaques had more differentially expressed genes than tangles. We identified a gradient Aβ plaque > peri-plaque > tangle > distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aβ plaques. DISCUSSION Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aβ plaques, and are exacerbated by the APOE ε4 allele.
Collapse
Affiliation(s)
- Sudeshna Das
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Zhaozhi Li
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
| | - Astrid Wachter
- AbbVie Deutschland GmbH & Co. KGGenomics Research CenterLudwigshafenGermany
| | - Srinija Alla
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
| | - Ayush Noori
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
| | | | - Joseph A. Tamm
- AbbVie, Cambridge Research CenterCambridgeMassachusettsUSA
| | | | | | - Knut Biber
- AbbVie Deutschland GmbH & Co. KGNeuroscience Research CenterLudwigshafenGermany
| | - Eric H. Karran
- AbbVie, Cambridge Research CenterCambridgeMassachusettsUSA
| | - Bradley T. Hyman
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Alberto Serrano‐Pozo
- Neurology DepartmentMassachusetts General HospitalBostonMassachusettsUSA
- Massachusetts Alzheimer's Disease Research CenterCharlestownMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
18
|
Belloy ME, Andrews SJ, Le Guen Y, Cuccaro M, Farrer LA, Napolioni V, Greicius MD. APOE Genotype and Alzheimer Disease Risk Across Age, Sex, and Population Ancestry. JAMA Neurol 2023; 80:1284-1294. [PMID: 37930705 PMCID: PMC10628838 DOI: 10.1001/jamaneurol.2023.3599] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/03/2023] [Indexed: 11/07/2023]
Abstract
Importance Apolipoprotein E (APOE)*2 and APOE*4 are, respectively, the strongest protective and risk-increasing, common genetic variants for late-onset Alzheimer disease (AD), making APOE status highly relevant toward clinical trial design and AD research broadly. The associations of APOE genotypes with AD are modulated by age, sex, race and ethnicity, and ancestry, but these associations remain unclear, particularly among racial and ethnic groups understudied in the AD and genetics research fields. Objective To assess the stratified associations of APOE genotypes with AD risk across sex, age, race and ethnicity, and global population ancestry. Design, Setting, Participants This genetic association study included case-control, family-based, population-based, and longitudinal AD-related cohorts that recruited referred and volunteer participants. Data were analyzed between March 2022 and April 2023. Genetic data were available from high-density, single-nucleotide variant microarrays, exome microarrays, and whole-exome and whole-genome sequencing. Summary statistics were ascertained from published AD genetic studies. Main Outcomes and Measures The main outcomes were risk for AD (odds ratios [ORs]) and risk of conversion to AD (hazard ratios [HRs]), with 95% CIs. Risk for AD was evaluated through case-control logistic regression analyses. Risk of conversion to AD was evaluated through Cox proportional hazards regression survival analyses. Results Among 68 756 unique individuals, analyses included 21 852 East Asian (demographic data not available), 5738 Hispanic (68.2% female; mean [SD] age, 75.4 [8.8] years), 7145 non-Hispanic Black (hereafter referred to as Black) (70.8% female; mean [SD] age, 78.4 [8.2] years), and 34 021 non-Hispanic White (hereafter referred to as White) (59.3% female; mean [SD] age, 77.0 [9.1] years) individuals. There was a general, stepwise pattern of ORs for APOE*4 genotypes and AD risk across race and ethnicity groups. Odds ratios for APOE*34 and AD risk attenuated following East Asian (OR, 4.54; 95% CI, 3.99-5.17),White (OR, 3.46; 95% CI, 3.27-3.65), Black (OR, 2.18; 95% CI, 1.90-2.49) and Hispanic (OR, 1.90; 95% CI, 1.65-2.18) individuals. Similarly, ORs for APOE*22+23 and AD risk attenuated following White (OR, 0.53, 95% CI, 0.48-0.58), Black (OR, 0.69, 95% CI, 0.57-0.84), and Hispanic (OR, 0.89; 95% CI, 0.72-1.10) individuals, with no association for Hispanic individuals. Deviating from the global pattern of ORs, APOE*22+23 was not associated with AD risk in East Asian individuals (OR, 0.97; 95% CI, 0.77-1.23). Global population ancestry could not explain why Hispanic individuals showed APOE associations with less pronounced AD risk compared with Black and White individuals. Within Black individuals, decreased global African ancestry or increased global European ancestry showed a pattern of APOE*4 dosage associated with increasing AD risk, but no such pattern was apparent for APOE*2 dosage with AD risk. The sex-by-age-specific interaction effect of APOE*34 among White individuals (higher risk in women) was reproduced but shifted to ages 60 to 70 years (OR, 1.48; 95% CI, 1.10-2.01) and was additionally replicated in a meta-analysis of Black individuals and Hispanic individuals (OR, 1.72; 95% CI, 1.01-2.94). Conclusion and Relevance Through recent advances in AD-related genetic cohorts, this study provided the largest-to-date overview of the association of APOE with AD risk across age, sex, race and ethnicity, and population ancestry. These novel insights are critical to guide AD clinical trial design and research.
Collapse
Affiliation(s)
- Michael E. Belloy
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
- NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, Missouri
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri
| | - Shea J. Andrews
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco
| | - Yann Le Guen
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| | - Michael Cuccaro
- John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, Florida
- Dr. John T. Macdonald Foundation, Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida
| | - Lindsay A. Farrer
- Department of Medicine, Biomedical Genetics, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Ophthalmology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Michael D. Greicius
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, California
| |
Collapse
|
19
|
Zenuni H, Bovenzi R, Bissacco J, Grillo P, Simonetta C, Mascioli D, Pieri M, Bernardini S, Sancesario GM, Stefani A, Mercuri NB, Schirinzi T. Clinical and neurochemical correlates of the APOE genotype in early-stage Parkinson's disease. Neurobiol Aging 2023; 131:24-28. [PMID: 37572524 DOI: 10.1016/j.neurobiolaging.2023.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 08/14/2023]
Abstract
Emerging evidence indicates that apolipoprotein E (APOE) genotype may influence Parkinson's disease (PD) course, although clinical and neurochemical correlates have not been completely established. This study aimed to determine the associations of APOE genotypes (ε4 vs. non-ε4) with cerebrospinal fluid (CSF) neurodegeneration biomarkers and clinical parameters in early-stage PD patients. One hundred and seventy-five PD patients and 89 non-neurodegenerative controls grouped in APOE-ε4 carriers (28 PD; 12 controls) and non-APOE-ε4 carriers (147 PD; 78 controls) were enrolled. CSF levels of amyloid-β-42, amyloid-β-40, total and 181-phosphorylated tau, and clinical scores were compared among groups adjusting for main covariates. APOE genotypes prevalence was similar in PD and controls. PD APOE-ε4 carriers had lower amyloid-β-42 CSF levels than PD non-APOE-ε4 carriers and controls, independently from age. PD APOE-ε4 carriers also had higher total and "item 5" (attention and memory) non-motor symptoms scale scores than PD non-APOE-ε4 carriers, independently from confounding factors. APOE-ε4 genotype might thus account for a more vulnerable PD subtype characterized by prominent amyloidopathy and a greater burden of non-motor symptoms in the early disease stages. DATA AVAILABILITY: Data are available upon reasonable request.
Collapse
Affiliation(s)
- Henri Zenuni
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Roberta Bovenzi
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Jacopo Bissacco
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Piergiorgio Grillo
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Clara Simonetta
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Davide Mascioli
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Massimo Pieri
- Clinical Biochemistry Unit, Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Segio Bernardini
- Clinical Biochemistry Unit, Department of Experimental Medicine, University of Roma Tor Vergata, Rome, Italy
| | | | - Alessandro Stefani
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Nicola Biagio Mercuri
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Tommaso Schirinzi
- Unit of Neurology, Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy.
| |
Collapse
|
20
|
Balu D, Valencia-Olvera AC, Islam Z, Mielczarek C, Hansen A, Perez Ramos TM, York J, LaDu MJ, Tai LM. APOE genotype and sex modulate Alzheimer's disease pathology in aged EFAD transgenic mice. Front Aging Neurosci 2023; 15:1279343. [PMID: 38020764 PMCID: PMC10644540 DOI: 10.3389/fnagi.2023.1279343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
Increasing evidence supports that age, APOE and sex interact to modulate Alzheimer's disease (AD) risk, however the underlying pathways are unclear. One way that AD risk factors may modulate cognition is by impacting amyloid beta (Aβ) accumulation as plaques, and/or neuroinflammation Therefore, the goal of the present study was to evaluate the extent to which age, APOE and sex modulate Aβ pathology, neuroinflammation and behavior in vivo. To achieve this goal, we utilized the EFAD mice, which express human APOE3 or APOE4 and have five familial AD mutations (FAD) that result in Aβ42 overproduction. We assessed Aβ levels, reactive glia and Morris water maze performance in 6-, 10-, 14-, and 18-month-old EFAD mice. Female APOE4 mice had the highest Aβ deposition, fibrillar amyloid deposits and neuroinflammation as well as earlier behavior deficits. Interestingly, we found that female APOE3 mice and male APOE4 mice had similar levels of pathology. Collectively our data support that the combination of APOE4 and female sex is the most detrimental combination for AD, and that at older ages, female sex may be equivalent to APOE4 genotype.
Collapse
Affiliation(s)
- Deebika Balu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Ana C. Valencia-Olvera
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Zarak Islam
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois College of Medicine, Chicago, IL, United States
| | - Clare Mielczarek
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Allison Hansen
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- University of Illinois College of Medicine, Peoria, IL, United States
| | - Tamara M. Perez Ramos
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
- School of Medicine, St. George’s University, St. George’s, Grenada
| | - Jason York
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Mary Jo LaDu
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| | - Leon M. Tai
- Department of Anatomy and Cell Biology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
21
|
Xue Y, Xie X. The Association between Metformin Use and Risk of Developing Severe Dementia among AD Patients with Type 2 Diabetes. Biomedicines 2023; 11:2935. [PMID: 38001936 PMCID: PMC10669124 DOI: 10.3390/biomedicines11112935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/26/2023] Open
Abstract
This study explores the potential impact of metformin on the development of severe dementia in individuals with Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM). With an emerging interest in the role of the APOE genotype in mediating metformin's effects on cognitive decline in AD patients, we sought to investigate whether metformin usage is associated with a reduced risk of severe dementia. Using data from the National Alzheimer's Coordinating Center (NACC) database (2005-2021), we identified 1306 participants with both AD and T2DM on diabetes medications. These individuals were categorized based on metformin usage, and a propensity score-matched cohort of 1042 participants was analyzed. Over an average follow-up of 3.6 years, 93 cases of severe dementia were observed. A Kaplan-Meier analysis revealed that metformin users and non-users had similar probabilities of remaining severe dementia-free (log-rank p = 0.56). Cox proportional hazards models adjusted for covariates showed no significant association between metformin usage and a lower risk of severe dementia (HR, 0.96; 95% CI, 0.63-1.46; p = 0.85). A subgroup analysis based on APOE ε4 carrier status demonstrated consistent results, with metformin use not correlating with a reduced severe dementia risk. In conclusion, our findings from a substantial cohort of AD and T2DM patients suggest that metformin usage is not significantly associated with a decreased risk of severe dementia. This observation persists across APOE ε4 carriers and non-carriers, indicating a lack of genotype-mediated effect.
Collapse
Affiliation(s)
- Ying Xue
- Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics, School of Pharmacy, Pittsburgh, PA 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiangqun Xie
- Department of Pharmaceutical Sciences and Computational Chemical Genomics Screening Center, Pharmacometrics & System Pharmacology (PSP) PharmacoAnalytics, School of Pharmacy, Pittsburgh, PA 15261, USA
- National Center of Excellence for Computational Drug Abuse Research, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
22
|
Palmer JM, Huentelman M, Ryan L. More than just risk for Alzheimer's disease: APOE ε4's impact on the aging brain. Trends Neurosci 2023; 46:750-763. [PMID: 37460334 DOI: 10.1016/j.tins.2023.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 06/12/2023] [Indexed: 08/18/2023]
Abstract
The apolipoprotein ε4 (APOE ε4) allele is most commonly associated with increased risk for late-onset Alzheimer's disease (AD). However, recent longitudinal studies suggest that these risks are overestimated; most ε4 carriers will not develop dementia in their lifetime. In this article, we review new evidence regarding the impact of APOE ε4 on cognition among healthy older adults. We discuss emerging work from animal models suggesting that ε4 impacts brain structure and function in multiple ways that may lead to age-related cognitive impairment, independent from AD pathology. We discuss the importance of taking an individualized approach in future studies by incorporating biomarkers and neuroimaging methods that may better disentangle the phenotypic influences of APOE ε4 on the aging brain from prodromal AD pathology.
Collapse
Affiliation(s)
- Justin M Palmer
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| | - Matthew Huentelman
- Translational Genomics Research Institute, Phoenix, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA
| | - Lee Ryan
- The University of Arizona, Tucson, AZ, USA; Arizona Alzheimer's Consortium, Phoenix, AZ, USA.
| |
Collapse
|
23
|
Vasiljevic E, Koscik RL, Jonaitis E, Betthauser T, Johnson SC, Engelman CD. Cognitive trajectories diverge by genetic risk in a preclinical longitudinal cohort. Alzheimers Dement 2023; 19:3108-3118. [PMID: 36723444 PMCID: PMC10390653 DOI: 10.1002/alz.12920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 02/02/2023]
Abstract
INTRODUCTION We sought to characterize the timing of changes in cognitive trajectories related to genetic risk using the apolipoprotein E (APOE) score, a continuous measure of Alzheimer's disease (AD) risk. We also aimed to determine whether that timing was different when genetic risk was measured using an AD polygenic risk score (PRS) that contains APOE. METHODS We analyzed trajectories (N ≈1135) for four neuropsychological composite scores using mixed effects regression for longitudinal change across APOE scores and PRS of participants in the Wisconsin Registry for Alzheimer's Prevention, a longitudinal study of adults aged 40 to 70 at baseline, with a median participant follow-up time of 7.8 years. RESULTS We found a significant non-linear age-by-APOE score interaction in predicting cognitive decline. Cognitive trajectories diverged by APOE score at approximately 65 years of age. A 0.5 standard deviation difference in cognition between extreme percentiles of the PRS was predicted to occur 1 to 2 years before that of the APOE score. DISCUSSION Cognitive decline differs across time and APOE score. Estimates did not substantially shift with the AD PRS. HIGHLIGHTS The apolipoprotein E (APOE) score, a continuous measure, accounts for non-linear genetic risk of Alzheimer's disease. Non-linear age interacts with the APOE score to affect cognition. Cognitive decline starts to differ by APOE score levels at approximately age 65. Cognitive decline timing by polygenic risk (including APOE) is similar to APOE alone.
Collapse
Affiliation(s)
- Eva Vasiljevic
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut Dr., Madison, WI 53726, USA
- Center for Demography of Health and Aging, University of Wisconsin-Madison, 1180 Observatory Drive Madison, WI 53706, USA
| | - Rebecca Langhough Koscik
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
| | - Erin Jonaitis
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
| | - Tobey Betthauser
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI 53705, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Corinne D. Engelman
- Department of Population Health Sciences, University of Wisconsin School of Medicine and Public Health, 610 Walnut Dr., Madison, WI 53726, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut Street, 9th Floor, Madison, WI 53726, USA
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, MC 2420, Madison, Wisconsin 53792, USA
| |
Collapse
|
24
|
Polsinelli AJ, Logan PE, Lane KA, Manchella MK, Nemes S, Sanjay AB, Gao S, Apostolova LG. APOE ε4 carrier status and sex differentiate rates of cognitive decline in early- and late-onset Alzheimer's disease. Alzheimers Dement 2023; 19:1983-1993. [PMID: 36394443 PMCID: PMC10182251 DOI: 10.1002/alz.12831] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/19/2022] [Accepted: 09/19/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND We studied the effect of apolipoprotein E (APOE) ε4 status and sex on rates of cognitive decline in early- (EO) and late- (LO) onset Alzheimer's disease (AD). METHOD We ran mixed-effects models with longitudinal cognitive measures as dependent variables, and sex, APOE ε4 carrier status, and interaction terms as predictor variables in 998 EOAD and 2562 LOAD participants from the National Alzheimer's Coordinating Center. RESULTS APOE ε4 carriers showed accelerated cognitive decline relative to non-carriers in both EOAD and LOAD, although the patterns of specific cognitive domains that were affected differed. Female participants showed accelerated cognitive decline relative to male participants in EOAD only. The effect of APOE ε4 was greater in EOAD for executive functioning (p < 0.0001) and greater in LOAD for language (p < 0.0001). CONCLUSION We found APOE ε4 effects on cognitive decline in both EOAD and LOAD and female sex in EOAD only. The specific patterns and magnitude of decline are distinct between the two disease variants. HIGHLIGHTS Apolipoprotein E (APOE) ε4 carrier status and sex differentiate rates of cognitive decline in early-onset (EO) and late-onset (LO) Alzheimer's disease (AD). APOE ε4 in EOAD accelerated decline in memory, executive, and processing speed domains. Female sex in EOAD accelerated decline in language, memory, and global cognition. The effect of APOE ε4 was stronger for language in LOAD and for executive function in EOAD. Sex effects on language and executive function decline differed between EOAD and LOAD.
Collapse
Affiliation(s)
- Angelina J. Polsinelli
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, Indiana, USA
| | - Paige E. Logan
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, Indiana, USA
| | - Kathleen A. Lane
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mohit K. Manchella
- Department of Chemistry, University of Southern Indiana Evansville, Indiana, USA
| | - Sára Nemes
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | | | - Sujuan Gao
- Indiana Alzheimer’s Disease Research Center, Indianapolis, Indiana, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Liana G. Apostolova
- Department of Neurology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Indiana Alzheimer’s Disease Research Center, Indianapolis, Indiana, USA
| |
Collapse
|
25
|
Das S, Li Z, Wachter A, Alla S, Noori A, Abdourahman A, Tamm JA, Woodbury ME, Talanian RV, Biber K, Karran EH, Hyman BT, Serrano-Pozo A. Distinct Transcriptomic Responses to Aβ plaques, Neurofibrillary Tangles, and APOE in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533303. [PMID: 36993332 PMCID: PMC10055287 DOI: 10.1101/2023.03.20.533303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
INTRODUCTION Omics studies have revealed that various brain cell types undergo profound molecular changes in Alzheimer's disease (AD) but the spatial relationships with plaques and tangles and APOE -linked differences remain unclear. METHODS We performed laser capture microdissection of Aβ plaques, the 50μm halo around them, tangles with the 50μm halo around them, and areas distant (>50μm) from plaques and tangles in the temporal cortex of AD and control donors, followed by RNA-sequencing. RESULTS Aβ plaques exhibited upregulated microglial (neuroinflammation/phagocytosis) and downregulated neuronal (neurotransmission/energy metabolism) genes, whereas tangles had mostly downregulated neuronal genes. Aβ plaques had more differentially expressed genes than tangles. We identified a gradient Aβ plaque>peri-plaque>tangle>distant for these changes. AD APOE ε4 homozygotes had greater changes than APOE ε3 across locations, especially within Aβ plaques. DISCUSSION Transcriptomic changes in AD consist primarily of neuroinflammation and neuronal dysfunction, are spatially associated mainly with Aβ plaques, and are exacerbated by the APOE ε4 allele.
Collapse
Affiliation(s)
- Sudeshna Das
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| | - Zhaozhi Li
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129
| | - Astrid Wachter
- AbbVie Deutschland GmbH & Co. KG, Genomics Research Center, Knollstrasse, 67061 Ludwigshafen
| | - Srinija Alla
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
| | - Ayush Noori
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
| | - Aicha Abdourahman
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Joseph A. Tamm
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Maya E. Woodbury
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Robert V. Talanian
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Knut Biber
- AbbVie Deutschland GmbH & Co. KG, Neuroscience Research Center, Knollstrasse, 67061 Ludwigshafen
| | - Eric H. Karran
- AbbVie, Cambridge Research Center, 200 Sidney Street, Cambridge, MA 02139
| | - Bradley T. Hyman
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| | - Alberto Serrano-Pozo
- Massachusetts General Hospital, Neurology Dept. Boston, MA 02114
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA 02129
- Harvard Medical School, Boston, MA 02115
| |
Collapse
|
26
|
Singh NA, Tosakulwong N, Graff-Radford J, Machulda MM, Pham NTT, Sintini I, Weigand SD, Schwarz CG, Senjem ML, Carrasquillo MM, Ertekin-Taner N, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. APOE ε4 influences medial temporal atrophy and tau deposition in atypical Alzheimer's disease. Alzheimers Dement 2023; 19:784-796. [PMID: 35691047 PMCID: PMC9742387 DOI: 10.1002/alz.12711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Apolipoprotein E (APOE) ε4 is an important genetic risk factor for typical Alzheimer's disease (AD), influencing brain volume and tau burden. Little is known about its influence in atypical presentations of AD. METHODS An atypical AD cohort of 140 patients diagnosed with either posterior cortical atrophy or logopenic progressive aphasia underwent magnetic resonance imaging and positron emission tomography. Linear mixed effects models were fit to assess the influence of APOE ε4 on cross-sectional and longitudinal regional metrics. RESULTS At baseline, APOE ε4 carriers had smaller hippocampal and amygdala volumes and greater tau standardized uptake volume ratio in the hippocampus and entorhinal cortex compared to non-carriers while longitudinally, APOE ε4 non-carriers showed faster rates of atrophy and tau accumulation in the entorhinal cortex, with faster tau accumulation in the hippocampus. DISCUSSION APOE ε4 influences patterns of neurodegeneration and tau deposition and was associated with more medial temporal involvement, although there is evidence that non-carriers may be catching up over time.
Collapse
Affiliation(s)
| | | | | | - Mary M. Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | | | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Stephen D. Weigand
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
27
|
Welikovitch LA, Dujardin S, Dunn AR, Fernandes AR, Khasnavis A, Chibnik LB, Kaczorowski CC, Hyman BT. Rate of tau propagation is a heritable disease trait in genetically diverse mouse strains. iScience 2023; 26:105983. [PMID: 36756365 PMCID: PMC9900390 DOI: 10.1016/j.isci.2023.105983] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/04/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The speed and scope of cognitive deterioration in Alzheimer's disease is highly associated with the advancement of tau neurofibrillary lesions across brain networks. We tested whether the rate of tau propagation is a heritable disease trait in a large, well-characterized cohort of genetically divergent mouse strains. Using an AAV-based model system, P301L-mutant human tau (hTau) was introduced into the entorhinal cortex of mice derived from 18 distinct lines. The extent of tau propagation was measured by distinguishing hTau-producing cells from neurons that were recipients of tau transfer. Heritability calculation revealed that 43% of the variability in tau spread was due to genetic variants segregating across background strains. Strain differences in glial markers were also observed, but did not correlate with tau propagation. Identifying unique genetic variants that influence the progression of pathological tau may uncover novel molecular targets to prevent or slow the pace of tau spread and cognitive decline.
Collapse
Affiliation(s)
- Lindsay A. Welikovitch
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Amy R. Dunn
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | - Anita Khasnavis
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Lori B. Chibnik
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Qian J, Zhang Y, Betensky RA, Hyman BT, Serrano-Pozo A. Neuropathology-Independent Association Between APOE Genotype and Cognitive Decline Rate in the Normal Aging-Early Alzheimer Continuum. Neurol Genet 2023; 9:e200055. [PMID: 36698453 PMCID: PMC9869750 DOI: 10.1212/nxg.0000000000200055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/16/2022] [Indexed: 01/22/2023]
Abstract
Background and Objectives We previously found that the APOE genotype affects the rate of cognitive decline in mild-to-moderate Alzheimer disease (AD) dementia independently of its effects on AD neuropathologic changes (ADNC) and copathologies. In this study, we tested the hypothesis that the APOE alleles differentially affect the rate of cognitive decline at the normal aging-early AD continuum and that this association is independent of their effects on classical ADNC and copathologies. Methods We analyzed APOE associations with the cognitive trajectories (Clinical Dementia Rating scale Sum of Boxes [CDR-SOB] and Mini-Mental State Examination [MMSE]) of more than 1,000 individuals from a national clinicopathologic sample who had either no, mild (sparse neuritic plaques and the Braak neurofibrillary tangle [NFT] stage I/II), or intermediate (moderate neuritic plaques and the Braak NFT stage III/IV) ADNC levels at autopsy via 2 latent classes reverse-time longitudinal modeling. Results Carrying the APOEε4 allele was associated with a faster rate of cognitive decline by both CDR-SOB and MMSE relative to APOEε3 homozygotes. This association remained statistically significant after adjusting for ADNC severity, comorbid pathologies, and the effects of ADNC on the slope of cognitive decline. Our modeling strategy identified 2 latent classes in which APOEε4 carriers declined faster than APOEε3 homozygotes, with latent class 1 members representing slow decliners (CDR-SOB: 76.7% of individuals, 0.195 vs 0.146 points/y in APOEε4 vs APOEε3/ε3; MMSE: 88.6% of individuals, -0.303 vs -0.153 points/y in APOEε4 vs APOEε3/ε3), whereas latent class 2 members were fast decliners (CDR-SOB: 23.3% of participants, 1.536 vs 1.487 points/y in APOEε4 vs APOEε3/ε3; MMSE: 11.4% of participants, -2.538 vs -2.387 points/y in APOEε4 vs APOEε3/ε3). Compared with slow decliners, fast decliners were more likely to carry the APOEε4 allele, younger at initial visit and death, more impaired at initial and last visits, and more likely to have intermediate (vs none or mild) ADNC levels, as well as concurrent Lewy bodies and hippocampal sclerosis at autopsy. Discussion In a large national sample selected to represent the normal aging-early AD continuum, the APOEε4 allele is associated with a modest but statistically significant acceleration of the cognitive decline rate even after controlling for its effects on ADNC and comorbid pathologies.
Collapse
Affiliation(s)
- Jing Qian
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Yiding Zhang
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Rebecca A Betensky
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Bradley T Hyman
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| | - Alberto Serrano-Pozo
- University of Massachusetts School of Public Health & Health Sciences (J.Q., Y.Z.), Amherst; Massachusetts General Hospital Biostatistics Center (J.Q.), Boston; New York University School of Global Public Health (R.A.B.); New York University Alzheimer's Disease Research Center (R.A.B.); Massachusetts General Hospital Neurology Department (B.T.H., A.S.-P.), Boston; Massachusetts Alzheimer's Disease Research Center (B.T.H., A.S.-P.), Charlestown; and Harvard Medical School (B.T.H., A.S.-P.), Boston, MA
| |
Collapse
|
29
|
Nakamura T, Kawarabayashi T, Ueda T, Shimomura S, Hoshino M, Itoh K, Ihara K, Nakaji S, Takatama M, Ikeda Y, Shoji M. Plasma ApoE4 Levels Are Lower than ApoE2 and ApoE3 Levels, and Not Associated with Plasma Aβ40/42 Ratio as a Biomarker of Amyloid-β Amyloidosis in Alzheimer's Disease. J Alzheimers Dis 2023; 93:333-348. [PMID: 36970894 DOI: 10.3233/jad-220996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND APOE4 is the strongest risk factor for Alzheimer's disease (AD). However, limited information is currently available on APOE4 and the pathological role of plasma apolipoprotein E (ApoE) 4 remains unclear. OBJECTIVE The aims of the present study were to measure plasma levels of total ApoE (tE), ApoE2, ApoE3, and ApoE4 using mass spectrometry and elucidate the relationships between plasma ApoE and blood test items. METHODS We herein examined plasma levels of tE, ApoE2, ApoE3, and ApoE4 in 498 subjects using liquid chromatograph-mass spectrometry (LC-MS/MS). RESULTS Among 498 subjects, mean age was 60 years and 309 were female. tE levels were distributed as ApoE2/E3 = ApoE2/E4 >ApoE3/E3 = ApoE3/E4 >ApoE4/E4. In the heterozygous group, ApoE isoform levels were distributed as ApoE2 >ApoE3 >ApoE4. ApoE levels were not associated with aging, the plasma amyloid-β (Aβ) 40/42 ratio, or the clinical diagnosis of AD. Total cholesterol levels correlated with the level of each ApoE isoform. ApoE2 levels were associated with renal function, ApoE3 levels with low-density lipoprotein cholesterol and liver function, and ApoE4 levels with triglycerides, high-density lipoprotein cholesterol, body weight, erythropoiesis, and insulin metabolism. CONCLUSION The present results suggest the potential of LC-MS/MS for the phenotyping and quantitation of plasma ApoE. Plasma ApoE levels are regulated in the order of ApoE2 >ApoE3 >ApoE4 and are associated with lipids and multiple metabolic pathways, but not directly with aging or AD biomarkers. The present results provide insights into the multiple pathways by which peripheral ApoE4 influences the progression of AD and atherosclerosis.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Takeshi Kawarabayashi
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Tetsuya Ueda
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Sachiko Shimomura
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Masaki Hoshino
- Bioanalysis Department, LSI Medience Corporation, Itabashi-ku, Tokyo, Japan
| | - Ken Itoh
- Department of Stress Response Science, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazushige Ihara
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Shigeyuki Nakaji
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| | - Masamitsu Takatama
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
| | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Mikio Shoji
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
- Department of Neurology, Geriatrics Research Institute and Hospital, Maebashi, Japan
- Department of Social Medicine, Hirosaki University School of Medicine, Hirosaki, Japan
| |
Collapse
|
30
|
27-Hydroxycholesterol-Induced Dysregulation of Cholesterol Metabolism Impairs Learning and Memory Ability in ApoE ε4 Transgenic Mice. Int J Mol Sci 2022; 23:ijms231911639. [PMID: 36232940 PMCID: PMC9569856 DOI: 10.3390/ijms231911639] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulated brain cholesterol metabolism is one of the characteristics of Alzheimer’s disease (AD). 27-Hydroxycholesterol (27-OHC) is a cholesterol metabolite that plays an essential role in regulating cholesterol metabolism and it is suggested that it contributes to AD-related cognitive deficits. However, the link between 27-OHC and cholesterol homeostasis, and how this relationship relates to AD pathogenesis, remain elusive. Here, 12-month-old ApoE ε4 transgenic mice were injected with saline, 27-OHC, 27-OHC synthetase inhibitor (anastrozole, ANS), and 27-OHC+ANS for 21 consecutive days. C57BL/6J mice injected with saline were used as wild-type controls. The indicators of cholesterol metabolism, synaptic structure, amyloid β 1-42 (Aβ1-42), and learning and memory abilities were measured. Compared with the wild-type mice, ApoE ε4 mice had poor memory and dysregulated cholesterol metabolism. Additionally, damaged brain tissue and synaptic structure, cognitive decline, and higher Aβ1-42 levels were observed in the 27-OHC group. Moreover, cholesterol transport proteins such as ATP-binding cassette transporter A1 (ABCA1), apolipoprotein E (ApoE), low-density lipoprotein receptor (LDLR), and low-density lipoprotein receptor-related protein1 (LRP1) were up-regulated in the cortex after the 27-OHC treatment. The levels of cholesterol metabolism-related indicators in the hippocampus were not consistent with those in the cortex. Additionally, higher serum apolipoprotein A1 (ApoA1) levels and lower serum ApoE levels were observed in the 27-OHC group. Notably, ANS partially reversed the effects of 27-OHC. In conclusion, the altered cholesterol metabolism induced by 27-OHC was involved in Aβ1-42 deposition and abnormalities in both the brain tissue and synaptic structure, ultimately leading to memory loss in the ApoE ε4 transgenic mice.
Collapse
|
31
|
Piccoli T, Blandino V, Maniscalco L, Matranga D, Graziano F, Guajana F, Agnello L, Lo Sasso B, Gambino CM, Giglio RV, La Bella V, Ciaccio M, Colletti T. Biomarkers Related to Synaptic Dysfunction to Discriminate Alzheimer's Disease from Other Neurological Disorders. Int J Mol Sci 2022; 23:10831. [PMID: 36142742 PMCID: PMC9501545 DOI: 10.3390/ijms231810831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/07/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Recently, the synaptic proteins neurogranin (Ng) and α-synuclein (α-Syn) have attracted scientific interest as potential biomarkers for synaptic dysfunction in neurodegenerative diseases. In this study, we measured the CSF Ng and α-Syn concentrations in patients affected by AD (n = 69), non-AD neurodegenerative disorders (n-AD = 50) and non-degenerative disorders (n-ND, n = 98). The concentrations of CSF Ng and α-Syn were significantly higher in AD than in n-AD and n-ND. Moreover, the Aβ42/Ng and Aβ42/α-Syn ratios showed statistically significant differences between groups and discriminated AD patients from n-AD patients, better than Ng or α-Syn alone. Regression analyses showed an association of higher Ng concentrations with MMSE < 24, pathological Aβ 42/40 ratios, pTau, tTau and the ApoEε4 genotype. Aβ 42/Ng was associated with MMSE < 24, an AD-related FDG-PET pattern, the ApoEε4 genotype, pathological Aβ 42 levels and Aβ 42/40 ratios, pTau, and tTau. Moreover, APO-Eε4 carriers showed higher Ng concentrations than non-carriers. Our results support the idea that the Aβ 42/Ng ratio is a reliable index of synaptic dysfunction/degeneration able to discriminate AD from other neurological conditions.
Collapse
Affiliation(s)
- Tommaso Piccoli
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Valeria Blandino
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Laura Maniscalco
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Domenica Matranga
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy
| | - Fabiola Graziano
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Fabrizio Guajana
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Luisa Agnello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
| | - Bruna Lo Sasso
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Caterina Maria Gambino
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Rosaria Vincenza Giglio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
- Department of Laboratory Medicine, University Hospital “P. Giaccone”, 90127 Palermo, Italy
| | - Vincenzo La Bella
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| | - Marcello Ciaccio
- Department of Biomedicine, Neurosciences and Advanced Diagnostics, Institute of Clinical Biochemistry, Clinical Molecular Medicine and Clinical Laboratory Medicine, University of Palermo, 90127 Palermo, Italy
| | - Tiziana Colletti
- ALS Clinical Research Center and Laboratory of Neurochemistry, Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, 90129 Palermo, Italy
| |
Collapse
|
32
|
The association of apolipoprotein E (ApoE) genotype and cognitive outcomes in multiple sclerosis; a systematic review and meta-analysis. Mult Scler Relat Disord 2022; 65:104011. [DOI: 10.1016/j.msard.2022.104011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
|
33
|
Ho WY, Hartmann H, Ling SC. Central nervous system cholesterol metabolism in health and disease. IUBMB Life 2022; 74:826-841. [PMID: 35836360 DOI: 10.1002/iub.2662] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 06/23/2022] [Indexed: 12/19/2022]
Abstract
Cholesterol is a ubiquitous and essential component of cellular membranes, as it regulates membrane structure and fluidity. Furthermore, cholesterol serves as a precursor for steroid hormones, oxysterol, and bile acids, that are essential for maintaining many of the body's metabolic processes. The biosynthesis and excretion of cholesterol is tightly regulated in order to maintain homeostasis. Although virtually all cells have the capacity to make cholesterol, the liver and brain are the two main organs producing cholesterol in mammals. Once produced, cholesterol is transported in the form of lipoprotein particles to other cell types and tissues. Upon formation of the blood-brain barrier (BBB) during embryonic development, lipoproteins cannot move between the central nervous system (CNS) and the rest of the body. As such, cholesterol biosynthesis and metabolism in the CNS operate autonomously without input from the circulation system in normal physiological conditions. Nevertheless, similar regulatory mechanisms for maintaining cholesterol homeostasis are utilized in both the CNS and peripheral systems. Here, we discuss the functions and metabolism of cholesterol in the CNS. We further focus on how different CNS cell types contribute to cholesterol metabolism, and how ApoE, the major CNS apolipoprotein, is involved in normal and pathophysiological functions. Understanding these basic mechanisms will aid our ability to elucidate how CNS cholesterol dysmetabolism contributes to neurogenerative diseases.
Collapse
Affiliation(s)
- Wan Y Ho
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore
| | - Hannelore Hartmann
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Shuo-Chien Ling
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Program in Neuroscience and Behavior Disorders, Duke-NUS Medical School, Singapore.,Healthy Longevity Translational Research Programme, National University Health System, Singapore
| |
Collapse
|
34
|
Goikolea J, Gerenu G, Daniilidou M, Mangialasche F, Mecocci P, Ngandu T, Rinne J, Solomon A, Kivipelto M, Cedazo-Minguez A, Sandebring-Matton A, Maioli S. Serum Thioredoxin-80 is associated with age, ApoE4, and neuropathological biomarkers in Alzheimer's disease: a potential early sign of AD. Alzheimers Res Ther 2022; 14:37. [PMID: 35209952 PMCID: PMC8876266 DOI: 10.1186/s13195-022-00979-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Background Thioredoxin-80 (Trx80) is a cleavage product from the redox-active protein Thioredoxin-1 and has been previously described as a pro-inflammatory cytokine secreted by immune cells. Previous studies in our group reported that Trx80 levels are depleted in Alzheimer’s disease (AD) brains. However, no studies so far have investigated peripheral Trx80 levels in the context of AD pathology and whether could be associated with the main known AD risk factors and biomarkers. Methods Trx80 was measured in serum samples from participants from two different cohorts: the observational memory clinic biobank (GEDOC) (N = 99) with AD CSF biomarker data was available and the population-based lifestyle multidomain intervention trial Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability (FINGER) (N = 47), with neuroimaging data and blood markers of inflammation available. The GEDOC cohort consists of participants diagnosed with subjective cognitive impairment (SCI), mild cognitive impairment (MCI), and AD, whereas the FINGER participants are older adults at-risk of dementia, but without substantial cognitive impairment. One-way ANOVA and multiple comparison tests were used to assess the levels of Trx80 between groups. Linear regression models were used to explore associations of Trx80 with cognition, AD CSF biomarkers (Aβ42, t-tau, p-tau and p-tau/t-tau ratio), inflammatory cytokines, and neuroimaging markers. Results In the GEDOC cohort, Trx80 was associated to p-tau/t-tau ratio in the MCI group. In the FINGER cohort, serum Trx80 levels correlated with lower hippocampal volume and higher pro-inflammatory cytokine levels. In both GEDOC and FINGER cohorts, ApoE4 carriers had significantly higher serum Trx80 levels compared to non-ApoE4 carriers. However, Trx80 levels in the brain were further decreased in AD patients with ApoE4 genotype. Conclusion We report that serum Trx80 levels are associated to AD disease stage as well as to several risk factors for AD such as age and ApoE4 genotype, which suggests that Trx80 could have potential as serum AD biomarker. Increased serum Trx80 and decreased brain Trx80 levels was particularly seen in ApoE4 carriers. Whether this could contribute to the mechanism by which ApoE4 show increased vulnerability to develop AD would need to be further investigated. Trial registration ClinicalTrials.govNCT01041989. Registered on 4 January 2010—retrospectively registered Supplementary Information The online version contains supplementary material available at 10.1186/s13195-022-00979-9.
Collapse
Affiliation(s)
- Julen Goikolea
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.
| | - Gorka Gerenu
- Biodonostia Health Research Institute, Neuroscience Area, 20014, Donostia-San Sebastián, Gipuzkoa, Spain.,CIBERNED (Network Center for Biomedical Research in Neurodegenerative Diseases), Carlos III Institute, Madrid, Spain.,Department of Physiology, Medicine and Nursing School, University of Basque Country UPV/EHU, Leioa, Spain
| | - Makrina Daniilidou
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Francesca Mangialasche
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Patrizia Mecocci
- Department of Medicine and Surgery, Santa Maria della Misericordia Hospital, Section of Gerontology and Geriatrics, University of Perugia, Perugia, Italy
| | - Tiia Ngandu
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Public Health Solutions, Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Alina Solomon
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK
| | - Miia Kivipelto
- Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Anna Sandebring-Matton
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Department of Neurobiology, Care Sciences and Society, Division of Clinical Geriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
35
|
Dujardin S, Fernandes A, Bannon R, Commins C, De Los Santos M, Kamath TV, Hayashi M, Hyman BT. Tau propagation is dependent on the genetic background of mouse strains. Brain Commun 2022; 4:fcac048. [PMID: 35350555 PMCID: PMC8952249 DOI: 10.1093/braincomms/fcac048] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 01/02/2022] [Accepted: 02/21/2022] [Indexed: 12/14/2022] Open
Abstract
Progressive cognitive decline in Alzheimer's disease correlates closely with the spread of tau protein aggregation across neural networks of the cortical mantle. We tested the hypothesis that heritable factors may influence the rate of propagation of tau pathology across brain regions in a model system, taking advantage of well-defined genetically diverse background strains in mice. We virally expressed human tau locally in the hippocampus and the entorhinal cortex neurons and monitored the cell-to-cell tau protein spread by immunolabelling. Interestingly, some strains showed more tau spreading than others while tau misfolding accumulated at the same rate in all tested mouse strains. Genetic factors may contribute to tau pathology progression across brain networks, which could help refine mechanisms underlying tau cell-to-cell transfer and accumulation, and potentially provide targets for understanding patient-to-patient variability in the rate of disease progression in Alzheimer's disease.
Collapse
Affiliation(s)
- Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Analiese Fernandes
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Riley Bannon
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Caitlin Commins
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mark De Los Santos
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Tarun V. Kamath
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | | | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
36
|
Karran E, De Strooper B. The amyloid hypothesis in Alzheimer disease: new insights from new therapeutics. Nat Rev Drug Discov 2022; 21:306-318. [PMID: 35177833 DOI: 10.1038/s41573-022-00391-w] [Citation(s) in RCA: 384] [Impact Index Per Article: 128.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2022] [Indexed: 12/14/2022]
Abstract
Many drugs that target amyloid-β (Aβ) in Alzheimer disease (AD) have failed to demonstrate clinical efficacy. However, four anti-Aβ antibodies have been shown to mediate the removal of amyloid plaque from brains of patients with AD, and the FDA has recently granted accelerated approval to one of these, aducanumab, using reduction of amyloid plaque as a surrogate end point. The rationale for approval and the extent of the clinical benefit from these antibodies are under intense debate. With the aim of informing this debate, we review clinical trial data for drugs that target Aβ from the perspective of the temporal interplay between the two pathognomonic protein aggregates in AD - Aβ plaques and tau neurofibrillary tangles - and their relationship to cognitive impairment, highlighting differences in drug properties that could affect their clinical performance. On this basis, we propose that Aβ pathology drives tau pathology, that amyloid plaque would need to be reduced to a low level (~20 centiloids) to reveal significant clinical benefit and that there will be a lag between the removal of amyloid and the potential to observe a clinical benefit. We conclude that the speed of amyloid removal from the brain by a potential therapy will be important in demonstrating clinical benefit in the context of a clinical trial.
Collapse
Affiliation(s)
- Eric Karran
- Cambridge Research Center, AbbVie, Inc., Cambridge, MA, USA.
| | - Bart De Strooper
- VIB Centre for Brain Disease Research, KU Leuven, Leuven, Belgium.,UK Dementia Research Institute, University College London, London, UK
| |
Collapse
|
37
|
Duara R, Barker W. Heterogeneity in Alzheimer's Disease Diagnosis and Progression Rates: Implications for Therapeutic Trials. Neurotherapeutics 2022; 19:8-25. [PMID: 35084721 PMCID: PMC9130395 DOI: 10.1007/s13311-022-01185-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 01/03/2023] Open
Abstract
The clinical presentation and the pathological processes underlying Alzheimer's disease (AD) can be very heterogeneous in severity, location, and composition including the amount and distribution of AB deposition and spread of neurofibrillary tangles in different brain regions resulting in atypical clinical patterns and the existence of distinct AD variants. Heterogeneity in AD may be related to demographic factors (such as age, sex, educational and socioeconomic level) and genetic factors, which influence underlying pathology, the cognitive and behavioral phenotype, rate of progression, the occurrence of neuropsychiatric features, and the presence of comorbidities (e.g., vascular disease, neuroinflammation). Heterogeneity is also manifest in the individual resilience to the development of neuropathology (brain reserve) and the ability to compensate for its cognitive and functional impact (cognitive and functional reserve). The variability in specific cognitive profiles and types of functional impairment may be associated with different progression rates, and standard measures assessing progression may not be equivalent for individual cognitive and functional profiles. Other factors, which may govern the presence, rate, and type of progression of AD, include the individuals' general medical health, the presence of specific systemic conditions, and lifestyle factors, including physical exercise, cognitive and social stimulation, amount of leisure activities, environmental stressors, such as toxins and pollution, and the effects of medications used to treat medical and behavioral conditions. These factors that affect progression are important to consider while designing a clinical trial to ensure, as far as possible, well-balanced treatment and control groups.
Collapse
Affiliation(s)
- Ranjan Duara
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA
- Departments of Neurology, University of Florida College of Medicine, Gainesville, FL, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL, USA
| | - Warren Barker
- Wien Center for Alzheimer's Disease and Memory Disorders, Mount Sinai Medical Center, Miami Beach, FL, USA.
| |
Collapse
|
38
|
Imbimbo BP, Watling M. What have we learned from past failures of investigational drugs for Alzheimer's disease? Expert Opin Investig Drugs 2021; 30:1175-1182. [PMID: 34890262 DOI: 10.1080/13543784.2021.2017881] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION In the last 15 years, huge efforts against Alzheimer's disease (AD) with drugs targeting β-amyloid (Aβ) and tau have produced poor clinical results. Aducanumab, a recently FDA-approved anti-Aβ monoclonal antibody has been greeted with distrust by most experts, hospitals and insurance companies for its level of efficacy and poor tolerability. AREA COVERED We reviewed literature on Alzheimer trials using PubMed, meeting abstracts and ClnicalTrials.gov and discuss what we can learn from past failures of investigational drugs for Alzheimer's disease, especially anti-Aβ and anti-tau drugs. EXPERT OPINION It is our opinion that previous failures of anti-AD drugs suggest that soluble Aβ and tau are not appropriate drug targets. In addition, pivotal clinical trials of future clinical candidates should avoid major protocol amendments and futility analyses. Study protocols should adopt better measures to protect study blinding and minimize the potential introduction of major biases in the evaluation of clinical results. Finally, alternative biological targets should be pursued as well as more multimodal approaches to addressing neurodegeneration in AD.
Collapse
Affiliation(s)
- Bruno P Imbimbo
- Department of Research & Development, Chiesi Farmaceutici, Parma, Italy
| | - Mark Watling
- CNS & Pain Department, TranScrip Ltd, Reading, UK
| |
Collapse
|
39
|
Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2021; 129:1-24. [DOI: 10.1007/s00702-021-02449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
|
40
|
Mc Auley MT. DNA methylation in genes associated with the evolution of ageing and disease: A critical review. Ageing Res Rev 2021; 72:101488. [PMID: 34662746 DOI: 10.1016/j.arr.2021.101488] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/30/2021] [Accepted: 10/12/2021] [Indexed: 12/28/2022]
Abstract
Ageing is characterised by a physical decline in biological functioning which results in a progressive risk of mortality with time. As a biological phenomenon, it is underpinned by the dysregulation of a myriad of complex processes. Recently, however, ever-increasing evidence has associated epigenetic mechanisms, such as DNA methylation (DNAm) with age-onset pathologies, including cancer, cardiovascular disease, and Alzheimer's disease. These diseases compromise healthspan. Consequently, there is a medical imperative to understand the link between epigenetic ageing, and healthspan. Evolutionary theory provides a unique way to gain new insights into epigenetic ageing and health. This review will: (1) provide a brief overview of the main evolutionary theories of ageing; (2) discuss recent genetic evidence which has revealed alleles that have pleiotropic effects on fitness at different ages in humans; (3) consider the effects of DNAm on pleiotropic alleles, which are associated with age related disease; (4) discuss how age related DNAm changes resonate with the mutation accumulation, disposable soma and programmed theories of ageing; (5) discuss how DNAm changes associated with caloric restriction intersect with the evolution of ageing; and (6) conclude by discussing how evolutionary theory can be used to inform investigations which quantify age-related DNAm changes which are linked to age onset pathology.
Collapse
Affiliation(s)
- Mark Tomás Mc Auley
- Faculty of Science and Engineering, University of Chester, Exton Park, Chester CH1 4BJ, UK.
| |
Collapse
|
41
|
SOCS1 Mediates Berberine-Induced Amelioration of Microglial Activated States in N9 Microglia Exposed to β Amyloid. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9311855. [PMID: 34778460 PMCID: PMC8589517 DOI: 10.1155/2021/9311855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/24/2021] [Accepted: 10/25/2021] [Indexed: 01/26/2023]
Abstract
Attenuating β amyloid- (Aβ-) induced microglial activation is considered to be effective in treating Alzheimer's disease (AD). Berberine (BBR) can reduce microglial activation in Aβ-treated microglial cells; the mechanism, however, is still illusive. Silencing of cytokine signaling factor 1 (SOCS1) is the primary regulator of many cytokines involved in immune reactions, whose upregulation can reverse the activation of microglial cells. Microglia could be activated into two different statuses, classic activated state (M1 state) and alternative activated state (M2 state), and M1 state is harmful, but M2 is beneficial. In the present study, N9 microglial cells were exposed to Aβ to imitate microglial activation in AD. And Western blot and immunocytochemistry were taken to observe inducible nitric oxide synthase (iNOS), Arginase-1 (Arg-1), and SOCS1 expressions, and the enzyme-linked immunosorbent assay (ELISA) was used to measure inflammatory and neurotrophic factor release. Compared with the normal cultured control cells, Aβ exposure markedly increased the level of microglial M1 state markers (P < 0.05), including iNOS protein expression, tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 releases, and BBR administration upregulated SOSC1 expression and the level of microglial M2 state markers (P < 0.05), such as Arg-1 expression, brain-derived neurotrophic factor (BDNF), and glial cell-derived neurotrophic factor (GDNF) releases, downregulating the SOCS1 expression by using siRNA, however, significantly reversed the BBR-induced effects on microglial M1 and M2 state markers and SOCS1 expression (P < 0.05). These findings indicated that BBR can inhibit Aβ-induced microglial activation via modulating the microglial M1/M2 activated state, and SOCS1 mediates the process.
Collapse
|
42
|
Thambisetty M, Howard R, Glymour MM, Schneider LS. Alzheimer's drugs: Does reducing amyloid work? Science 2021; 374:544-545. [PMID: 34709898 DOI: 10.1126/science.abl8366] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Madhav Thambisetty
- Clinical and Translational Neuroscience Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | - Robert Howard
- Division of Psychiatry, University College London, London W1T 7NF, UK
| | - M Maria Glymour
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA 94158, USA
| | - Lon S Schneider
- Department of Psychiatry and the Behavioral Sciences, Department of Neurology, and the USC Alzheimer Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| |
Collapse
|
43
|
Serrano-Pozo A, Li Z, Noori A, Nguyen HN, Mezlini A, Li L, Hudry E, Jackson RJ, Hyman BT, Das S. Effect of APOE alleles on the glial transcriptome in normal aging and Alzheimer's disease. NATURE AGING 2021; 1:919-931. [PMID: 36199750 PMCID: PMC9531903 DOI: 10.1038/s43587-021-00123-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/03/2021] [Indexed: 05/02/2023]
Abstract
The roles of APOEε4 and APOEε2-the strongest genetic risk and protective factors for Alzheimer's disease-in glial responses remain elusive. We tested the hypothesis that APOE alleles differentially impact glial responses by investigating their effects on the glial transcriptome from elderly control brains with no neuritic amyloid plaques. We identified a cluster of microglial genes that are upregulated in APOEε4 and downregulated in APOEε2 carriers relative to APOEε3 homozygotes. This microglia-APOE cluster is enriched in phagocytosis-including TREM2 and TYROBP-and proinflammatory genes, and is also detectable in brains with frequent neuritic plaques. Next, we tested these findings in APOE knock-in mice exposed to acute (lipopolysaccharide challenge) and chronic (cerebral β-amyloidosis) insults and found that these mice partially recapitulate human APOE-linked expression patterns. Thus, the APOEε4 allele might prime microglia towards a phagocytic and proinflammatory state through an APOE-TREM2-TYROBP axis in normal aging as well as in Alzheimer's disease.
Collapse
Affiliation(s)
- Alberto Serrano-Pozo
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Zhaozhi Li
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
| | - Ayush Noori
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
| | - Huong N. Nguyen
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Aziz Mezlini
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Liang Li
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Eloise Hudry
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rosemary J. Jackson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Bradley T. Hyman
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sudeshna Das
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
- Massachusetts Alzheimer’s Disease Research Center, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|