1
|
Yilmaz B, Genc GC, Celik SK, Cinar BP, Acikgoz M, Dursun A. PARP-1 gene promoter region may be associated with progression in multiple sclerosis. Clin Chim Acta 2025; 572:120275. [PMID: 40169083 DOI: 10.1016/j.cca.2025.120275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 03/28/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Multiple Sclerosis (MS) is a leading cause of disability among young adults. Most cases begin with relapsing-remitting MS (RRMS) and can transition to secondary progressive MS (SPMS) over time. It is known that the inflammatory status of the central nervous system changes during the progression of MS. Poly (ADP-ribose) polymerase-1 (PARP-1) is an enzyme involved in several cellular processes. Our study aimed to investigate the relationship between MS and the PARP-1 gene. We analyzed the PARP-1 gene's missense polymorphism rs1136410, promoter region polymorphism rs7527192, and 3'UTR polymorphism rs8679 in 123 MS patients and 168 healthy controls using the PCR-RFLP method. We examined genotype and allele frequency distributions among case-control groups and clinical subgroups. We observed that the CC genotype of rs7527192 polymorphism was increased in SPMS patients compared to controls. We also found that the CC genotype and C allele frequency were increased in the EDSS score > 3-6 group compared to healthy controls. The C allele frequency was increased in EDSS score > 3-6 compared to those with ≤ 3 and ≥ 6. When the results observed in our study are evaluated with the known effect of PARP-1 on the inflammasome pathway, we suggest that rs7527192 may be effective in the progression process through the activity of the PARP-1 inflammasome pathway.
Collapse
Affiliation(s)
- Busra Yilmaz
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey.
| | - Gunes Cakmak Genc
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Sevim Karakas Celik
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Bilge Piri Cinar
- Department of Neurology, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Mustafa Acikgoz
- Department of Neurology, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - Ahmet Dursun
- Department of Medical Genetics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
2
|
D'hondt R, Dedja K, Aerts S, Van Wijmeersch B, Kalincik T, Reddel S, Havrdova EK, Lugaresi A, Weinstock-Guttman B, Mrabet S, Lalive P, Kermode AG, Ozakbas S, Patti F, Prat A, Tomassini V, Roos I, Alroughani R, Gerlach O, Khoury SJ, van Pesch V, Sá MJ, Prevost J, Spitaleri D, McCombe P, Solaro C, van der Walt A, Butzkueven H, Laureys G, Sánchez-Menoyo JL, de Gans K, Al-Asmi A, Deri N, Csepany T, Al-Harbi T, Carroll WM, Rozsa C, Singhal B, Hardy TA, Ramanathan S, Peeters L, Vens C. Explainable time-to-progression predictions in multiple sclerosis. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2025; 263:108624. [PMID: 39965473 DOI: 10.1016/j.cmpb.2025.108624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/09/2024] [Accepted: 01/29/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Prognostic machine learning research in multiple sclerosis has been mainly focusing on black-box models predicting whether a patients' disability will progress in a fixed number of years. However, as this is a binary yes/no question, it cannot take individual disease severity into account. Therefore, in this work we propose to model the time to disease progression instead. Additionally, we use explainable machine learning techniques to make the model outputs more interpretable. METHODS A preprocessed subset of 29,201 patients of the international data registry MSBase was used. Disability was assessed in terms of the Expanded Disability Status Scale (EDSS). We predict the time to significant and confirmed disability progression using random survival forests, a machine learning model for survival analysis. Performance is evaluated on a time-dependent area under the receiver operating characteristic and the precision-recall curves. Importantly, predictions are then explained using SHAP and Bellatrex, two explainability toolboxes, and lead to both global (population-wide) as well as local (patient visit-specific) insights. RESULTS On the task of predicting progression in 2 years, the random survival forest achieves state-of-the-art performance, comparable to previous work employing a random forest. However, here the random survival forest has the added advantage of being able to predict progression over a longer time horizon, with AUROC >60% for the first 10 years after baseline. Explainability techniques further validated the model by extracting clinically valid insights from the predictions made by the model. For example, a clear decline in the per-visit probability of progression is observed in more recent years since 2012, likely reflecting globally increasing use of more effective MS therapies. CONCLUSION The binary classification models found in the literature can be extended to a time-to-event setting without loss of performance, thus allowing a more comprehensive prediction of patient prognosis. Furthermore, explainability techniques proved to be key to reach a better understanding of the model and increase validation of its behaviour.
Collapse
Affiliation(s)
- Robbe D'hondt
- KU Leuven, Dept. Public Health and Primary Care, Kortrijk, Belgium; itec, imec research group at KU Leuven, Kortrijk, Belgium.
| | - Klest Dedja
- KU Leuven, Dept. Public Health and Primary Care, Kortrijk, Belgium; itec, imec research group at KU Leuven, Kortrijk, Belgium
| | - Sofie Aerts
- University MS Centre (UMSC), Hasselt University, Hasselt-Pelt, Belgium; Department of Immunology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Noorderhart Hospitals, Rehabilitation and MS Centre, Pelt, Belgium; UHasselt, Rehabilitation Research Center (REVAL), Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Bart Van Wijmeersch
- University MS Centre (UMSC), Hasselt University, Hasselt-Pelt, Belgium; Department of Immunology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; Noorderhart Hospitals, Rehabilitation and MS Centre, Pelt, Belgium; UHasselt, Rehabilitation Research Center (REVAL), Faculty of Rehabilitation Sciences, Diepenbeek, Belgium
| | - Tomas Kalincik
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia; CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Stephen Reddel
- Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine, Charles University in Prague and General University Hospital, Prague, Czech Republic
| | - Alessandra Lugaresi
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy; IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | | | - Saloua Mrabet
- Department of Neurology, LR 18SP03, Clinical Investigation Centre Neurosciences and Mental Health, Razi University Hospital, Tunis, Tunisia; Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Patrice Lalive
- Department of Clinical Neurosciences, Division of Neurology, Unit of Neuroimmunology, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Allan G Kermode
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, Australia; Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia
| | - Serkan Ozakbas
- Izmir University of Economics, Medical Point Hospital, Izmir, Turkey; Multiple Sclerosis Research Association, Izmir, Turkey
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania, Italy; Multiple Sclerosis Unit, AOU Policlinico "G Rodolico-San Marco", University of Catania, Italy
| | - Alexandre Prat
- CHUM MS Center and Universite de Montreal, Montreal, Canada
| | - Valentina Tomassini
- Institute for Advanced Biomedical Technologies (ITAB), Dept Neurosciences, Imaging and Clinical Sciences, University G. d'Annunzio of Chieti-Pescara, Chieti, Italy; MS Centre, Clinical Neurology, SS Annunziata University Hospital, Chieti, Italy
| | - Izanne Roos
- Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne, Australia; CORe, Department of Medicine, University of Melbourne, Melbourne, Australia
| | - Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Sharq, Kuwait
| | - Oliver Gerlach
- Academic MS Center Zuyd, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen, Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht 6131 BK, Netherlands
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Centre, Beirut, Lebanon
| | - Vincent van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Brussels, Belgium; Université Catholique de Louvain, Belgium
| | - Maria José Sá
- Department of Neurology, Centro Hospitalar Universitario de Sao Joao, Porto, Portugal; FP-I3ID, Instituto de Investigação, Inovação e Desenvolvimento Fernando Pessoa, Portugal; FCS-UFP, Faculdade de Ciências da Saúde, Portugal; RISE-UFP, rede de Investigação em Saúde, Universidade Fernando Pessoa, Porto, Portugal
| | | | - Daniele Spitaleri
- Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino, Italy
| | - Pamela McCombe
- Department of Neurology, Royal Brisbane and Women's Hospital, Brisbane, Australia; University of Queensland, Australia
| | - Claudio Solaro
- Department of Neurology, Galliera Hospital, Genova, Italy; Department of Rehabilitation, ML Novarese Hospital Moncrivello, Moncrivello, Italy
| | - Anneke van der Walt
- Department of Neurology, The Alfred Hospital, Melbourne, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Helmut Butzkueven
- Department of Neurology, The Alfred Hospital, Melbourne, Australia; Department of Neuroscience, School of Translational Medicine, Monash University, Melbourne, Australia
| | - Guy Laureys
- Department of Neurology, Universitary Hospital Ghent, Ghent, Belgium
| | - José Luis Sánchez-Menoyo
- Department of Neurology, Galdakao-Usansolo University Hospital, Osakidetza-Basque Health Service, Galdakao, Spain; Biocruces-Bizkaia Health Research Institute, Spain
| | | | - Abdullah Al-Asmi
- Sultan Qaboos University, Al-Khodh, Oman; College of Medicine & Health Sciences and Sultan Qaboos University Hospital, Oman
| | - Norma Deri
- Neurology department, Hospital Fernandez, Capital Federal, Argentina
| | - Tunde Csepany
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Talal Al-Harbi
- Neurology Department, King Fahad Specialist Hospital-Dammam, Saudi Arabia
| | - William M Carroll
- Perron Institute for Neurological and Translational Science, The University of Western Australia, Perth, Australia; Sir Charles Gairdner Hospital, Perth, Australia
| | - Csilla Rozsa
- Jahn Ferenc Teaching Hospital, Budapest, Hungary
| | - Bhim Singhal
- Bombay Hospital Institute of Medical Sciences, Mumbai, India
| | - Todd A Hardy
- Department of Neurology, Concord Repatriation General Hospital, Sydney, Australia
| | - Sudarshini Ramanathan
- Translational Neuroimmunology Group, Kids Neuroscience Centre and Brain and Mind Centre, Faculty of Medicine and Health, University of Sydney, Sydney, Australia; Department of Neurology, Concord Clinical School, Concord Hospital, Sydney, Australia
| | - Liesbet Peeters
- University MS Centre (UMSC), Hasselt University, Hasselt-Pelt, Belgium; Department of Immunology, Biomedical Research Institute (BIOMED), Hasselt University, Diepenbeek, Belgium; I-Biostat, Data Science Institute (DSI), Hasselt University, Diepenbeek, Belgium
| | - Celine Vens
- KU Leuven, Dept. Public Health and Primary Care, Kortrijk, Belgium; itec, imec research group at KU Leuven, Kortrijk, Belgium
| |
Collapse
|
3
|
van Veggel L, Schepers M, Tiane A, Kumar V, Willems E, Rombaut B, Noordijk J, Vangansewinkel T, Li A, Wolfs E, Ozcan B, Nouboers E, Moya PR, Sauer DB, Diliën H, Hellings N, Schreiber R, Vanmierlo T. EAAT3 modulation: A potential novel avenue towards remyelination in multiple sclerosis. Biomed Pharmacother 2025; 186:117960. [PMID: 40138922 DOI: 10.1016/j.biopha.2025.117960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 02/24/2025] [Accepted: 03/04/2025] [Indexed: 03/29/2025] Open
Abstract
Modulating the excitatory amino acid transporter 3 (EAAT3) can be considered a novel approach for the treatment of multiple sclerosis (MS). EAAT3 plays a crucial role in regulating oxidative stress and oligodendrocyte function through its ability to transport cysteine, the rate-limiting building block in the synthesis of the antioxidant glutathione. Therefore, EAAT3 activation is hypothesised to improve oligodendrocyte health and relieve its differentiation block in MS, improving remyelination capacity. Using a cuprizone-induced demyelination model, the effects of EAAT3 overexpression by viral transduction of oligodendrocytes and pharmacological inhibition of EAAT3 were examined. Surprisingly, EAAT3 overexpression significantly hampered remyelination, while EAAT3 inhibition prevented demyelination and improved functional remyelination as assessed by visual evoked potentials and post mortem myelin basic protein fluorescent staining. Next, cellular mechanisms underlying these results were investigated. Consistent with the in vivo findings, post mortem gene expression analysis of the corpus callosum of cuprizone treated animals revealed a trend towards upregulation of oligodendrocyte lineage genes in response to EAAT3 inhibition, supporting its role in oligodendrocyte health and myelination processes. In vitro studies using the human oligodendroglioma (HOG) cell line demonstrated the beneficial effects of EAAT3 inhibition on cellular morphology, indicating potential roles in promoting oligodendrocyte maturation and myelination. In contrast, EAAT3 overexpression appears to hamper these processes. These findings suggest that, contrary to our initial hypothesis, EAAT3 inhibition could improve oligodendrocyte function and myelination processes, highlighting its potential as a therapeutic target for demyelinating disorders. Future studies should address the exact molecular mechanism through which this effect is obtained.
Collapse
Affiliation(s)
- Lieve van Veggel
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Melissa Schepers
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Assia Tiane
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Vijay Kumar
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Emily Willems
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Ben Rombaut
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium
| | - Jurrie Noordijk
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Tim Vangansewinkel
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Anna Li
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Esther Wolfs
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Berra Ozcan
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Evelien Nouboers
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium
| | - Pablo R Moya
- Facultad de Ciencias, Instituto de Fisiología, Centro Interdisciplinario de Neurociencia de Valparaíso (CINV), Universidad de Valparaíso, Valparaíso, Chile
| | - David B Sauer
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Hanne Diliën
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, Maastricht, the Netherlands
| | - Niels Hellings
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands
| | - Rudy Schreiber
- Section of Psychopharmacology, Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Tim Vanmierlo
- Department of Neuroscience, BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Hasselt, Belgium; Department of Psychiatry and Neuropsychology, Division of Translational Neuroscience, European Graduate School of Neuroscience, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, the Netherlands; University MS Center (UMSC), Hasselt-Pelt, Belgium.
| |
Collapse
|
4
|
Ghaffary EM, Bjørklund G, Bhat RS, Mirmosayyeb O. Adipokines in multiple sclerosis: Immune dysregulation, neuroinflammation, and therapeutic opportunities. Autoimmun Rev 2025:103825. [PMID: 40311722 DOI: 10.1016/j.autrev.2025.103825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic autoimmune disorder of the central nervous system (CNS), characterized by demyelination, neuroinflammation, and the progressive accumulation of neurologic deficits. Adipose tissue secretes predominantly the bioactive molecules, known as adipokines, which have drawn considerable attention for their roles in modulating immune and metabolic pathways in people with MS (PwMS). Dysregulated adipokines, such as resistin, leptin, and chemerin, induce pro-inflammatory T-cell polarization while deteriorating Blood-Brain Barrier (BBB) integrity. Adiponectin, by contrast, has both immunomodulatory and neuroprotective functions. The opposing functionality highlights the biomarker and the therapeutic potential of adipokines. Preclinical and translational findings have shed light on the role of adipokines in the pathophysiology of MS by influencing T-cell, glial, and BBB functions. In clinical settings, the assessment of adipokines can function as an indicator of prognosis and diagnosis via distinct patterns of expression. In addition, alterations to adipokine profiles through lifestyle changes and pharmaceutical treatment may complement established disease-modifying treatments (DMTs). This study has highlighted the multifaceted role of adipokines in MS management, while further studies exploring the role of adipokine-mediated immunometabolic regulation are suggested.
Collapse
Affiliation(s)
- Elham Moases Ghaffary
- Division of Pharmacology and Pharmaceutical Sciences, University of Missouri-Kansas City School of Pharmacy, Kansas City, MO, USA
| | - Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Ramesa Shafi Bhat
- Biochemistry Department, Science College of King Saud University, Riyadh, Saudi Arabia
| | - Omid Mirmosayyeb
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
5
|
Motyer A, Jackson S, Yang B, Harliwong I, Tian W, Shiu WIA, Shao Y, Wang B, McLean C, Barnett M, Kilpatrick TJ, Leslie S, Rubio JP. Neuronal somatic mutations are increased in multiple sclerosis lesions. Nat Neurosci 2025; 28:757-765. [PMID: 40038527 DOI: 10.1038/s41593-025-01895-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/09/2025] [Indexed: 03/06/2025]
Abstract
Neuroinflammation underpins neurodegeneration and clinical progression in multiple sclerosis (MS), but knowledge of processes linking these disease mechanisms remains incomplete. Here we investigated somatic single-nucleotide variants (sSNVs) in the genomes of 106 single neurons from post-mortem brain tissue of ten MS cases and 16 controls to determine whether somatic mutagenesis is involved. We observed an increase of 43.9 sSNVs per year in neurons from chronic MS lesions, a 2.5 times faster rate than in neurons from normal-appearing MS and control tissues. This difference was equivalent to 1,291 excess sSNVs in lesion neurons at 70 years of age compared to controls. We performed mutational signature analysis to investigate mechanisms underlying neuronal sSNVs and identified a signature characteristic of lesions with a strong, age-associated contribution to sSNV counts. This research suggests that neuroinflammation is mutagenic in the MS brain, potentially contributing to disease progression.
Collapse
Affiliation(s)
- Allan Motyer
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Stacey Jackson
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
| | | | | | - Wei Tian
- BGI-Australia, Herston, Queensland, Australia
| | | | | | - Bo Wang
- China National GeneBank, Shenzhen, China
- Shenzhen Key Laboratory of Environmental Microbial Genomics and Application, BGI Research, Shenzhen, China
| | - Catriona McLean
- Department of Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Barnett
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
- Department of Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Trevor J Kilpatrick
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
- Department of Neurology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
| | - Stephen Leslie
- Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
- School of Mathematics and Statistics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Justin P Rubio
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
6
|
Quintanilla-Bordás C, Fernández-Patón M, Ten A, Ferrer-Pardo C, Carratala-Bosca S, Castillo-Villalba J, Cubas-Núñez L, Gasqué-Rubio R, Verdini-Martínez L, Pérez-Miralles F, Martí-Bonmatí L, Casanova B. Dynamic 18 F-FDG PET to detect differences among patients with progressive and relapsing multiple sclerosis: a pilot study. Neurol Sci 2025; 46:1783-1787. [PMID: 39692831 DOI: 10.1007/s10072-024-07921-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND Patients with multiple sclerosis (MS) may remain in a relapsing-remitting (RRMS) course despite long-standing disease, while others will develop secondary progression (SPMS). Chronic inflammation and changes in the blood-brain barrier resulting in perturbed glucose metabolism may account for these differences. PET-MRI with kinetic analysis of 2-deoxy-2(18 F)fluoro-d-glucose (18 F-FDG) provides insight into glucose metabolism and has proven useful in several chronic inflammatory diseases. However, to our knowledge, it has never been studied in MS. OBJECTIVE To explore potential differences in glucose distribution kinetics among individuals with long-standing SPMS and RRMS using dynamic 18-F-FDG PET-MRI. METHODS Dynamic 18-F-FDG PET-MRI scans were obtained in 11 patients with long-standing MS: 4 with RRMS and 7 with SPMS. Kinetic analysis of PET data was performed using a three-compartment model equation that represents plasma, tissue and 18 F-FDG phosphorylation. Individual rate constants of 18-F-FDG across the compartments were calculated. RESULTS Patients with SPMS exhibited a trend towards an increased net influx rate of glucose (p = 0.059) and an increased rate constant representing glucose phosphorylation. Together, the data suggest increased uptake of glucose and glycolysis in these patients. CONCLUSION Dynamic 18 F-FDG PET-MRI is a feasible technique that may show information in vivo of glucose metabolism in MS. Although preliminary data suggest a potential radiological marker of progression in MS, further studies are required to confirm this hypothesis.
Collapse
Affiliation(s)
- Carlos Quintanilla-Bordás
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Avda. Fernando Abril Martorell, 106, Valencia, 46026, Spain.
| | - Matías Fernández-Patón
- Grupo de Investigación Biomédica de Imagen, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Amadeo Ten
- Grupo de Investigación Biomédica de Imagen, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Cristina Ferrer-Pardo
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Avda. Fernando Abril Martorell, 106, Valencia, 46026, Spain
| | | | | | - Laura Cubas-Núñez
- Neuroimmunology Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Raquel Gasqué-Rubio
- Neuroimmunology Unit, Health Research Institute Hospital La Fe, Valencia, Spain
| | | | - Francisco Pérez-Miralles
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Avda. Fernando Abril Martorell, 106, Valencia, 46026, Spain
| | - Luís Martí-Bonmatí
- Medical Imaging department, La Fe University and Polytechnic Hospital, Valencia, Spain
| | - Bonaventura Casanova
- Neuroimmunology Unit, La Fe University and Polytechnic Hospital, Avda. Fernando Abril Martorell, 106, Valencia, 46026, Spain
| |
Collapse
|
7
|
Komiya H, Takeuchi H, Ogasawara A, Ogawa Y, Kubota S, Hashiguchi S, Takahashi K, Kunii M, Tanaka K, Tada M, Doi H, Tanaka F. Siponimod inhibits microglial inflammasome activation. Neurosci Res 2025; 213:138-145. [PMID: 39921000 DOI: 10.1016/j.neures.2025.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 01/16/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Siponimod is the first oral drug approved for active secondary progressive multiple sclerosis. It acts as a functional antagonist of sphingosine-1-phosphate (S1P) receptor 1 (S1P1) through S1P1 internalization, and also serves an agonist of S1P5; however, the detailed mechanisms of its therapeutic effects on glial cells have yet to be elucidated. In this study, we investigated the anti-inflammatory mechanism of siponimod in microglia. Pretreatment with either siponimod or the S1P1 antagonist W146 significantly suppressed the production of interleukin-1β in activated microglia stimulated with lipopolysaccharide plus nigericin, an inflammasome activator. Furthermore, siponimod treatment reduced the protein levels of cleaved caspase-1 and inhibited the formation of aggregates of apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (ASC specks) in microglia. Our data indicate that siponimod achieves its anti-inflammatory effects by inhibiting inflammasome activation in microglia via S1P1 antagonism. This process is inferred to play a crucial role in mitigating the secondary progression of multiple sclerosis, where microglial activation in the gray matter is considered a key pathological factor.
Collapse
Affiliation(s)
- Hiroyasu Komiya
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hideyuki Takeuchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan; Department of Neurology, Graduate School of Medicine, International University of Health and Welfare, Narita, Japan; Center for Intractable Neurological Diseases and Dementia, International University of Health and Welfare Atami Hospital, Atami, Japan.
| | - Akihiro Ogasawara
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yuki Ogawa
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shun Kubota
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Shunta Hashiguchi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Keita Takahashi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Misako Kunii
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kenichi Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Mikiko Tada
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Fumiaki Tanaka
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan.
| |
Collapse
|
8
|
Brieva L, Calles C, Landete L, Oreja-Guevara C. Current challenges in secondary progressive multiple sclerosis: diagnosis, activity detection and treatment. Front Immunol 2025; 16:1543649. [PMID: 40191208 PMCID: PMC11968352 DOI: 10.3389/fimmu.2025.1543649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/25/2025] [Indexed: 04/09/2025] Open
Abstract
Approximately 50% diagnosed with relapsing-remitting multiple sclerosis (RRMS) transition to secondary progressive multiple sclerosis (SPMS) within 20 years following disease onset. However, early diagnosis of SPMS and effective treatment remain important clinical challenges. The lack of established diagnostic criteria often leads to delays in identifying SPMS. Also, there are limited disease-modifying therapies (DMTs) available for progressive forms of MS, and these therapies require evidence of disease activity to be initiated. This review examines the challenges in diagnosing SPMS at an early stage and summarizes the current and potential use of biomarkers of disease progression in clinical practice. We also discuss the difficulties in initiating the DMTs indicated for active SPMS (aSPMS), particularly in patients already undergoing treatment with DMTs that suppress disease activity, which may mask the presence of inflammatory activity required for the therapy switch. The article also addresses the DMTs available for both active and non-active SPMS, along with the clinical trials that supported the approval of DMTs indicated for aSPMS or relapsing MS in Europe, which includes aSPMS. We also offer insights on when discontinuing these treatments may be appropriate.
Collapse
Affiliation(s)
- Luis Brieva
- Neurology Department, Hospital Universitari Arnau de Vilanova, Lleida, Spain
- Medicine Department, Universitat de Lleida (UdL), Lleida, Spain
- Neuroimmunology Group, Institut de Recerca Biomedica de Lleida (IRBLLEIDA), Lleida, Spain
| | - Carmen Calles
- Neurology Department, Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | - Lamberto Landete
- Neurology Department, Hospital Universitario Doctor Peset, Valencia, Spain
| | - Celia Oreja-Guevara
- Department of Neurology, Hospital Clinico San Carlos, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), Madrid, Spain
- Departament of Medicine, Medicine Faculty, Universidad Complutense de Madrid (UCM), Madrid, Spain
| |
Collapse
|
9
|
Di Santo A, Malimpensa L, Canevelli M, Zampelli A, Belvisi D, Leodori G, Forte F, Giannantoni A, Bruno G, Conte A, Ferrazzano G. Frailty and urinary symptoms share pathophysiological mechanisms involved in disease progression in people with multiple sclerosis. Neurol Sci 2025:10.1007/s10072-025-08089-8. [PMID: 40100557 DOI: 10.1007/s10072-025-08089-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
BACKGROUND Urinary symptoms represent a significant source of distress and disability in multiple sclerosis (MS), but the factors influencing their occurrence and exacerbation remain unclear. Frailty has been proposed as a measure of clinical complexity in MS and has been associated with its main phenotypic manifestations. The present study investigated the relationship between frailty and the presence and burden of urinary symptoms in MS. MATERIALS AND METHODS The present study considered 149 outpatients. The presence of urinary symptoms was systematically explored. Frailty was assessed using a 40-item Frailty Index (FI). Participants with urinary symptoms underwent a urinary evaluation, including the 8-item overactive bladder questionnaire, the Urinary Incontinence Quality of Life Scale, Uroflowmetry, and Ultrasound for Postvoid Residual. RESULTS The mean disease duration was 13.7 years (SD 10.5), the median EDSS score was 1.5 (IQR = 0-3). Frailty was significantly associated with the presence and burden of urinary symptoms. Additionally, there was a positive correlation between the frailty index and chronological age, EDSS, disease duration, OAB, and I-QOL (all p < 0.05). In people with urinary symptoms, two multivariable logistic regression models showed that only the frailty index score was significantly associated with the Incontinence Quality of Life Scale total score and the 8-item overactive bladder questionnaire. No correlations were found between uroflowmetry data, postvoid residual, and frailty. CONCLUSION Frailty is associated with the presence and burden of disability due to urinary symptoms. Frailty possibly affects the pathophysiological mechanisms of MS involved in the development and worsening of urinary symptoms.
Collapse
Affiliation(s)
- Angelo Di Santo
- University of Rome "Foro Italic", Via dei Robilant 1, Rome, 00135, Italy
| | | | - Marco Canevelli
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Alessandra Zampelli
- Urology Department, Ospedale Madre Giuseppina Vannini, Via di Acqua Bullicante 4, Rome, 00177, Italy
| | - Daniele Belvisi
- IRCCS NEUROMED, Via Atinense 18, Pozzilli, 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Giorgio Leodori
- IRCCS NEUROMED, Via Atinense 18, Pozzilli, 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Flavio Forte
- Urology Department, Ospedale Madre Giuseppina Vannini, Via di Acqua Bullicante 4, Rome, 00177, Italy
| | - Antonella Giannantoni
- Diagnosis and Treatment of Pelvic Floor Dysfunction Unit, Department of Urology, San Camillo De Lellis Hospital, Viale Kennedy, Rieti, 02100, Italy
| | - Giuseppe Bruno
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Antonella Conte
- IRCCS NEUROMED, Via Atinense 18, Pozzilli, 86077, Italy
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy
| | - Gina Ferrazzano
- Department of Human Neurosciences, Sapienza University of Rome, Viale dell'Università 30, Rome, 00185, Italy.
| |
Collapse
|
10
|
Le NQK. On how SAM might help improving personalized treatments in relapsing-remitting multiple sclerosis. Eur Radiol 2025; 35:1225-1227. [PMID: 39545982 DOI: 10.1007/s00330-024-11190-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Nguyen Quoc Khanh Le
- In-Service Master Program in Artificial Intelligence in Medicine, College of Medicine, Taipei Medical University, Taipei, 110, Taiwan.
- AIBioMed Research Group, Taipei Medical University, Taipei, 110, Taiwan.
| |
Collapse
|
11
|
Toscano S, Spelman T, Ozakbas S, Alroughani R, Chisari CG, Lo Fermo S, Prat A, Girard M, Duquette P, Izquierdo G, Eichau S, Grammond P, Boz C, Kalincik T, Blanco Y, Buzzard K, Skibina O, Sa MJ, van der Walt A, Butzkueven H, Terzi M, Gerlach O, Grand'Maison F, Foschi M, Surcinelli A, Barnett M, Lugaresi A, Onofrj M, Yamout B, Khoury SJ, Prevost J, Lechner-Scott J, Maimone D, Amato MP, Spitaleri D, Van Pesch V, Macdonell R, Cartechini E, de Gans K, Slee M, Castillo-Triviño T, Soysal A, Sanchez-Menoyo JL, Laureys G, Van Hijfte L, McCombe P, Altintas A, Weinstock-Guttman B, Aguera-Morales E, Etemadifar M, Ramo-Tello C, John N, Turkoglu R, Hodgkinson S, Besora S, Van Wijmeersch B, Fernandez-Bolaños R, Patti F. First-year treatment response predicts the following 5-year disease course in patients with relapsing-remitting multiple sclerosis. Neurotherapeutics 2025; 22:e00552. [PMID: 39965993 PMCID: PMC12014414 DOI: 10.1016/j.neurot.2025.e00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/04/2025] [Accepted: 02/04/2025] [Indexed: 02/20/2025] Open
Abstract
Predicting long-term prognosis and choosing the appropriate therapeutic approach in patients with Multiple Sclerosis (MS) at the time of diagnosis is crucial in view of a personalized medicine. We investigated the impact of early therapeutic response on the 5-year prognosis of patients with relapsing-remitting MS (RRMS). We recruited patients from MSBase Registry covering the period between 1996 and 2022. All patients were diagnosed with RRMS and actively followed-up for at least 5 years to explore the following outcomes: clinical relapses, confirmed disability worsening (CDW) and improvement (CDI), EDSS 3.0, EDSS 6.0, conversion to secondary progressive MS (SPMS), new MRI lesions, Progression Independent of Relapse Activity (PIRA). Predictors included demographic, clinical and radiological data, and sub-optimal response (SR) within the first year of treatment. Female sex (HR 1.27; 95 % CI 1.16-1.40) and EDSS at baseline (HR 1.19; 95 % CI 1.15-1.24) were independent risk factors for the occurrence of relapses during the first 5 years after diagnosis, while high-efficacy treatment (HR 0.78; 95 % CI 0.67-0.91) and age at diagnosis (HR 0.83; 95 % CI 0.79-0.86) significantly reduced the risk. SR predicted clinical relapses (HR = 3.84; 95 % CI 3.51-4.19), CDW (HR = 1.74; 95 % CI 1.56-1.93), EDSS 3.0 (HR = 3.01; 95 % CI 2.58-3.51), EDSS 6.0 (HR = 1.77; 95 % CI 1.43-2.20) and new brain (HR = 2.33; 95 % CI 2.04-2.66) and spinal (HR 1.65; 95 % CI 1.29-2.09) MRI lesions. This study highlights the importance of selecting the appropriate DMT for each patient soon after MS diagnosis, also providing clinicians with a practical tool able to calculate personalized risk estimates for different outcomes.
Collapse
Affiliation(s)
- Simona Toscano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 78, 95123 Catania, Italy; Multiple Sclerosis Unit, University-Hospital G. Rodolico - San Marco, Catania, Italy
| | - Tim Spelman
- MSBase Foundation, VIC, Melbourne, Australia; Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | | - Raed Alroughani
- Division of Neurology, Department of Medicine, Amiri Hospital, Sharq 73767, Kuwait
| | - Clara G Chisari
- Multiple Sclerosis Unit, University-Hospital G. Rodolico - San Marco, Catania, Italy; Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania 95123, Italy
| | - Salvatore Lo Fermo
- Multiple Sclerosis Unit, University-Hospital G. Rodolico - San Marco, Catania, Italy; Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania 95123, Italy
| | - Alexandre Prat
- CHUM MS Center and Universite de Montreal, Montreal H2L 4M1, Canada
| | - Marc Girard
- CHUM MS Center and Universite de Montreal, Montreal H2L 4M1, Canada
| | - Pierre Duquette
- CHUM MS Center and Universite de Montreal, Montreal H2L 4M1, Canada
| | | | - Sara Eichau
- Hospital Universitario Virgen Macarena, Sevilla 41009, Spain
| | | | - Cavit Boz
- KTU Medical Faculty Farabi Hospital, Trabzon 61080, Turkey
| | - Tomas Kalincik
- CORe, Department of Medicine, The University of Melbourne, Melbourne 3050, Australia; Neuroimmunology Centre, Department of Neurology, Royal Melbourne Hospital, Melbourne 3050, Australia
| | - Yolanda Blanco
- Center of Neuroimmunology, Service of Neurology, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Katherine Buzzard
- Department of Neurology, Box Hill Hospital, Melbourne 3128, Australia
| | - Olga Skibina
- Department of Neurology, Box Hill Hospital, Melbourne 3128, Australia
| | - Maria Jose Sa
- Department of Neurology, Centro Hospitalar Universitario de Sao Joao, Porto 4200-319, Portugal; Faculty of Health Sciences, University Fernando Pessoa, Porto, Portugal
| | | | - Helmut Butzkueven
- Department of Neurology, The Alfred Hospital, Melbourne 3000, Australia
| | - Murat Terzi
- Medical Faculty, 19 Mayis University, Samsun 55160, Turkey
| | - Oliver Gerlach
- Academic MS Center Zuyd, Department of Neurology, Zuyderland Medical Center, Sittard-Geleen 5500, the Netherlands; School for Mental Health and Neuroscience, Department of Neurology, Maastricht University Medical Center, Maastricht 6131 BK, the Netherlands
| | | | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center, Neurology Unit, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Surcinelli
- Department of Neuroscience, Multiple Sclerosis Center, Neurology Unit, S. Maria delle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | | | - Alessandra Lugaresi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy; Department of Biomedical and Neuromotor Science, University of Bologna, Bologna, Italy
| | - Marco Onofrj
- Department of Neuroscience, Imaging, and Clinical Sciences, University G. D'Annunzio, Chieti 66013, Italy
| | - Bassem Yamout
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | - Samia J Khoury
- Nehme and Therese Tohme Multiple Sclerosis Center, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
| | | | | | - Davide Maimone
- Centro Sclerosi Multipla, Garibaldi Hospital, Catania 95124, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, University of Florence, Florence 50134, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Daniele Spitaleri
- Azienda Ospedaliera di Rilievo Nazionale San Giuseppe Moscati Avellino, Avellino 83100, Italy
| | - Vincent Van Pesch
- Department of Neurology, Cliniques Universitaires Saint-Luc, Université Catholique de Louvain (UCLouvain), Brussels, Belgium
| | | | | | - Koen de Gans
- Department of Neurology, Groene Hart Ziekenhuis, Gouda, Zuid-Holland, the Netherlands
| | - Mark Slee
- Flinders University, Adelaide 5042, Australia
| | | | - Aysun Soysal
- Bakirkoy Education and Research Hospital for Psychiatric and Neurological Diseases, Istanbul 34147, Turkey
| | - Jose Luis Sanchez-Menoyo
- Department of Neurology, Galdakao-Usansolo University Hospital, Osakidetza-Basque Health Service, Biocruces, Spain
| | - Guy Laureys
- Department of Neurology, Ghent Universitary Hospital, Ghent 9000, Belgium
| | | | - Pamela McCombe
- Royal Brisbane and Women's Hospital, University of Queensland, Brisbane 4000, Australia
| | - Ayse Altintas
- Department of Neurology, School of Medicine, Koc University, Koc University Research Center for Translational Medicine (KUTTAM), Istanbul 34450, Turkey
| | | | | | - Masoud Etemadifar
- Department of Neurosurgery, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Nevin John
- Department of Medicine, School of Clinical Sciences, Monash University, Clayton, Australia; Department of Neurology, Monash Health, Clayton, Australia
| | - Recai Turkoglu
- Haydarpasa Numune Training and Research Hospital, Istanbul 34668, Turkey
| | | | - Sarah Besora
- Hospital Universitari Mútua de Terrassa, Barcelona, Spain
| | - Bart Van Wijmeersch
- Universitair MS Centrum, Hasselt University, Hasselt-Pelt, Belgium; Rehabilitation & MS Centre, Pelt, Belgium
| | | | - Francesco Patti
- Multiple Sclerosis Unit, University-Hospital G. Rodolico - San Marco, Catania, Italy; Department of Medical and Surgical Sciences and Advanced Technologies, GF Ingrassia, Catania 95123, Italy.
| |
Collapse
|
12
|
Rida Zainab S, Zeb Khan J, Khalid Tipu M, Jahan F, Irshad N. A review on multiple sclerosis: Unravelling the complexities of pathogenesis, progression, mechanisms and therapeutic innovations. Neuroscience 2025; 567:133-149. [PMID: 39709058 DOI: 10.1016/j.neuroscience.2024.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 11/25/2024] [Accepted: 12/14/2024] [Indexed: 12/23/2024]
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory demyelinating disorder of the central nervous system (CNS) targeting myelinated axons. Pathogenesis of MS entails an intricate genetic, environmental, and immunological interaction. Dysregulation of immune response i.e. autoreactive T & B-Cells and macrophage infiltration into the CNS leads to inflammation, demyelination, and neurodegeneration. Disease progression of MS varies among individuals transitioning from one form of relapsing-remitting to secondary progressive MS (SPMS). Research advances have unfolded various molecular targets involved in MS from oxidative stress to blood-brain barrier (BBB) disruption. Different pathways are being targeted so far such as inflammatory and cytokine signaling pathways to overcome disease progression. Therapeutic innovations have significantly transformed the management of MS, especially the use of disease-modifying therapies (DMTs) to reduce relapse rates and control disease progression. Advancements in research, neuroprotective strategies, and remyelination strategies hold promising results in reversing CNS damage. Various mice models are being adopted for testing new entities in MS research.
Collapse
Affiliation(s)
- Syeda Rida Zainab
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Jehan Zeb Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Muhammad Khalid Tipu
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| | - Faryal Jahan
- Shifa College of Pharmaceutical Sciences, STMU, Islamabad, Pakistan.
| | - Nadeem Irshad
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
13
|
Krüger J, Behrangi N, Schliep D, Heinig L, Vankriekelsvenne E, Wigger N, Kipp M. Siponimod supports remyelination in the non-supportive environment. Sci Rep 2025; 15:4216. [PMID: 39905182 PMCID: PMC11794462 DOI: 10.1038/s41598-025-87825-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025] Open
Abstract
Inflammatory demyelination, a hallmark of multiple sclerosis (MS) lesions, leads to functional impairments and progressive axonal loss over time. Although remyelination is thought to protect axons, endogenous regenerative processes are often incomplete or fail entirely in many MS patients. While the precise reasons for remyelination failure remain unclear, repeated demyelination in previously affected white matter regions is a recognized contributing factor. In a previous study, we demonstrated that the sphingosine-1-phosphate modulator Siponimod ameliorates metabolic oligodendrocyte injury in an MS animal model. In this study, we explored the potential of Siponimod to enhance remyelination in a non-supportive environment. To this end, male mice were subjected to Cuprizone intoxication for seven weeks. From the onset of the fifth week, when oligodendrocyte progenitor cells begin to differentiate, mice were administered either a vehicle or Siponimod solution. Post-treatment, brain specimens were processed for (immune-) histochemical analyses. After four weeks of Cuprizone intoxication, staining intensities for various myelination markers, were significantly reduced. At the end of week seven, loss of myelin staining intensities was still pronounced, but anti-myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) expression was significantly higher in Siponimod- versus vehicle-treated mice. Consistent with this finding, densities of OLIG2+ oligodendrocytes significantly recovered in Siponimod-treated but not in vehicle-treated mice. This enhanced recovery was paralleled by the trend of lower densities of Ki67+ proliferating oligodendrocyte progenitor cells. Our findings suggest that Siponimod has modest pro-regenerative capacities, partly explaining the amelioration of disease progression in secondary progressive MS patients.
Collapse
Affiliation(s)
- Johann Krüger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Newshan Behrangi
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - David Schliep
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Leo Heinig
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Elise Vankriekelsvenne
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Nicole Wigger
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany
| | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, Gertrudenstraße 9, 18057, Rostock, Germany.
| |
Collapse
|
14
|
Alabbadi I, Al-Ajlouny S, Alsoud Y, BaniHani A, Arar BA, Massad EM, Muflih S, Shawawrah M. The cost-of-illness of multiple sclerosis in Jordan. Expert Rev Pharmacoecon Outcomes Res 2025; 25:179-186. [PMID: 39292516 DOI: 10.1080/14737167.2024.2406797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024]
Abstract
BACKGROUND Multiple Sclerosis (MS) imposes a significant financial burden on health-care systems. This study aims to determine the cost-of-illness (COI) for MS in Jordan, a country where data on the economic impact of MS are scarce. METHODS Data were collected for one year, annual COI was estimated using a cross-sectional snowball sampling design. Eligible patients completed a self-reported questionnaire to provide sociodemographic, physician visit, and diagnostic and laboratory test data. Indirect costs were estimated using an adjusted Human Capital Approach. RESULTS This study included 383 patients, (73% females, 61% between 26-45). Eighty % took disease-modifying therapies (DMTs), and 40% had relapses in that year. One-third use non-DMTs and equipment for assistance. The average annual cost per patient was $11,719 (direct costs=$11,252, indirect costs=$467). The total annual cost for all participants was $748,299. The estimated cost of non-DMT, medical tools, diagnostic tests, and hospitalization per patient was $53, 51, 99, and 235 respectively. CONCLUSION High costs of DMTs state the necessity of resource optimization in Jordan public healthcare facilities. Such findings yield policy-informing actionable insights, suggesting strategic investments in more cost-effective DMTs with potential improvement in accessibility and reduction in the overall economic burden faced by both patients and governments.
Collapse
Affiliation(s)
- Ibrahim Alabbadi
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | | | - Yazan Alsoud
- Department of Biopharmaceutics and Clinical Pharmacy, Faculty of Pharmacy, University of Jordan, Amman, Jordan
| | - Ayah BaniHani
- International Society for Pharmacoeconomics and Outcomes Research, Amman, Jordan
| | - Bayan A Arar
- Faculty of Pharmacy, Applied Science Private University, Amman, Jordan
| | - Eman M Massad
- Clinical Pharmacy Department, Jordan University Hospital, Amman, Jordan
| | - Suhaib Muflih
- Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mays Shawawrah
- Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
15
|
Lechner-Scott J, Giovannoni G, Ch H, Levy M, Ea Y. Is there truly no progression in NMOSD and MOGAD? Mult Scler Relat Disord 2025; 94:106300. [PMID: 39892175 DOI: 10.1016/j.msard.2025.106300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Affiliation(s)
- J Lechner-Scott
- Department of Neurology, John Hunter Hospital, Newcastle, Australia; Hunter Medical Research Institute, University of Newcastle, UK.
| | - G Giovannoni
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Hawkes Ch
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - M Levy
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yeh Ea
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, University of Toronto, ON, Canada
| |
Collapse
|
16
|
Blaylock RL. Immunoexcitoxicity as the possible major pathophysiology behind multiple sclerosis and other autoimmune disorders. Surg Neurol Int 2025; 16:26. [PMID: 39926461 PMCID: PMC11799683 DOI: 10.25259/sni_1114_2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 12/27/2024] [Indexed: 02/11/2025] Open
Abstract
Autoimmune disorders are destructive processes considered to be an attack on "self " antigens by the immune system CD-+4 T-cells that are directed toward antigens, in the case of multiple sclerosis (MS), particularly myelin antigens. Yet, there is growing evidence that the major destructive events in MS, as well as other non-central nervous system (CNS) autoimmune disorders, are much more than an immune attack on the CNS initiated by a misdirected immune system that attacks a "self " antigen or antigens by a process called molecular mimicry. Extensive evidence suggests that inflammation, in turn, initiates excitotoxicity, which is responsible for the majority of pathological findings in all stages of the disease, especially a loss of oligodendroglia (source of myelin) and axon injury in MS. Excitotoxicity also is a better explanation for progressive MS, in which the immune attack has either slowed or is halted; yet, the destructive pathology continues to progress. It also explains the destructive lesions seen in gray matter, which is essentially devoid of inflammation. It has recently been shown that most of the damage to the oligodendrocytes, as well as axonal injury, is secondary to excitotoxicity. While there is a growing appreciation that excitotoxicity plays a major role, there has been little effort to link the immune changes to the excitotoxic process, recently named immunoexcitotoxicity, even though the role of excitotoxicity has been shown to occur in the inflammatory stage in the beginning and throughout the process of the disease, particularly the chronic progressive stage. It is also known that peripheral glutamate receptors exist throughout the body, thus making the process of immunoexcitotoxicity a possible integral part of all or most autoimmune disorders in which the immune system is intimately linked to enhancing the excitotoxic process. This is of special concern now that peripheral glutamate receptors have been isolated in many peripheral tissues and are known to be fully functional.
Collapse
|
17
|
Silverman HE, Bostrom A, Nylander AN, Akula A, Lazar AA, Gomez R, Santaniello A, Renschen A, Harms MM, Cooper TP, Lincoln R, Poole S, Abdelhak A, Henry RG, Oksenberg J, Hauser SL, Cree BAC, Bove R. Association of Menopause With Functional Outcomes and Disease Biomarkers in Women With Multiple Sclerosis. Neurology 2025; 104:e210228. [PMID: 39715474 PMCID: PMC11666275 DOI: 10.1212/wnl.0000000000210228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/30/2024] [Indexed: 12/25/2024] Open
Abstract
BACKGROUND AND OBJECTIVE The impact of menopause on the brain is not well understood. Hormonal changes, including puberty and pregnancy, influence the onset and course of multiple sclerosis (MS). After menopause, a worsening of MS disease trajectory measured on the clinician-rated Expanded Disability Status Scale (EDSS) was reported in some, but not all, studies. Evaluating the association between menopause and more objective measures of CNS injury is warranted. This study sought to assess the trajectory of objective functional outcomes and disease biomarkers in women with MS before and after menopause in a longitudinal prospective observational cohort. METHODS Data were collected prospectively from a longitudinally followed MS cohort, including the performance-based Multiple Sclerosis Functional Composite (MSFC) as the primary functional outcome and the paraclinical marker of neuronal injury serum neurofilament light chain (sNfL) as the primary biomarker outcome. Outcomes were analyzed using segmented linear mixed model regressions adjusted for age, BMI, and tobacco use, with a change in slope at the time of menopause, as the a priori inflection point. RESULTS One hundred and eighty-four postmenopausal women met inclusion criteria. Participants were followed for a median of 13 years (interquartile range [IQR] = 4, range: 1-17). The median MS duration was 24 years (IQR = 13, range: 3-64), and the median EDSS score was 2.5 (IQR = 2, range: 0-8). The median age at natural menopause was 50 years (IQR = 5, range: 33-60); 17% of participants used any systemic menopausal hormone therapy. Menopause reflected an inflection point in MSFC worsening (slope difference 0.08, 95% CI 0.01, 0.14, p = 0.0163) and increase in serum neurofilament light chain (slope difference -0.95, 95% CI -1.74 to -0.16, p = 0.0194) while the opposite was found for EDSS (slope difference 0.05, 95% CI 0.01-0.09, p = 0.0200). Findings remained significant after adjustment for multiple covariates. When using additional nonlinear regression modeling, similar inflection points were found (within 3 years of the final menstrual period) for sNfL and EDSS but not MSFC. DISCUSSION The menopausal transition may represent an inflection in accumulation of neuronal injury and functional decline in MS.
Collapse
Affiliation(s)
- Hannah E Silverman
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Alan Bostrom
- Division of Oral Epidemiology, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco;and
| | - Alyssa N Nylander
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Amit Akula
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Ann A Lazar
- Division of Oral Epidemiology, Department of Preventive and Restorative Dental Sciences, University of California, San Francisco;and
- Division of Biostatistics, Department of Epidemiology and Biostatistics, University of California, San Francisco
| | - Refujia Gomez
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Adam Santaniello
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Adam Renschen
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Meagan Michaela Harms
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Tiffany P Cooper
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Robin Lincoln
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Shane Poole
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Ahmed Abdelhak
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Roland G Henry
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Jorge Oksenberg
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | - Stephen L Hauser
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| | | | - Riley Bove
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco
| |
Collapse
|
18
|
Giovannoni G, Hetherington S, Jones E, Dominguez Castro P, Karu H, Ansari S, Karlsson G, de las Heras V, Lines C. MRI versus relapse: optimal activity monitoring for management of progressive multiple sclerosis. Brain Commun 2025; 7:fcaf010. [PMID: 39906569 PMCID: PMC11791681 DOI: 10.1093/braincomms/fcaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 12/04/2024] [Accepted: 01/13/2025] [Indexed: 02/06/2025] Open
Abstract
Secondary progressive multiple sclerosis is often categorized as 'active'/'non-active' based on inflammatory activity on MRI, or relapse; however, the value of MRI/relapse as indicators of disease activity in real-world and clinical trial settings merits further investigation. We separately analysed retrospective data from patients with clinically diagnosed secondary progressive multiple sclerosis in the Adelphi Real-World Disease Specific Programme (a cross-sectional survey) in multiple sclerosis (Adelphi: n = 2554) and the placebo group of the Phase III EXploring the efficacy and safety of siponimod in PAtients with secoNDary progressive multiple sclerosis (EXPAND) trial, [EXPAND-PBO (placebo group of the EXPAND): n = 546] to assess: differences between active/non-active disease in the real-world (characteristics; monitoring); the value of MRI and relapse to indicate disease activity; and the number and characteristics of non-active patients with disease activity in the clinical study. In Adelphi, 1889 patients had 'active' disease (≥1 relapse in the year before index date and/or ≥1 new lesion on most recent MRI) versus 665 with 'non-active' disease (no relapses in the previous year and no new lesions on MRI); median age was 48 versus 53 years; 73.5 versus 87.8% had moderate-to-severe disease; 75.7 versus 54.3% were taking disease-modifying treatment; 87.7 versus 58.7% had received an MRI in the past year. Most active cases (n = 1116; 59.1%) were identified by MRI versus 239 (12.7%) by relapse and 534 (28.3%) by MRI plus relapse. In EXPAND-PBO, 263 patients were classified 'active' (≥1 relapse in 2 years before screening and/or ≥1 gadolinium-enhancing lesion) and 270 'non-active' (no relapse in the 2 years before screening and no gadolinium-enhancing lesion[s]) at baseline; similar proportions of these groups had received disease-modifying treatment prior to placebo: 77.2 and 80.7%. Of non-active patients, 53.0% had disease activity on study; in these patients, 74.1% had disease activity identified by MRI, 8.4% by relapse, and 17.5% by MRI plus relapse. In patients classified non-active at baseline: age and percentage with Expanded Disability Status Scale score 6.0-6.5 were similar between patients with disease activity on study versus patients who remained non-active: 48 versus 52 years; 49.7 versus 56.7%, respectively. In real-world and clinical trial settings, MRI could be a better option than relapse for the identification of disease activity. However, in the real-world, fewer non-active patients had received an MRI in the last year than active patients, which is concerning given that most disease activity in EXPAND-PBO was identified via MRI. We highlight difficulties in consistently identifying disease activity and the negative implications of infrequent monitoring of non-active disease.
Collapse
Affiliation(s)
- Gavin Giovannoni
- The Faculty of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London E1 2AT, UK
| | | | | | | | - Himanshu Karu
- Novartis Healthcare Pvt. Ltd, Hyderabad 500081, India
| | | | | | | | - Carol Lines
- Novartis Pharma AG, Basel CH-4056, Switzerland
| |
Collapse
|
19
|
Lowinski A, Dabringhaus A, Kraemer M, Doshi H, Weier A, Hintze M, Chunder R, Kuerten S. MRI-based morphometric structural changes correlate with histopathology in experimental autoimmune encephalomyelitis. J Neurol Sci 2025; 468:123358. [PMID: 39729930 DOI: 10.1016/j.jns.2024.123358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 12/04/2024] [Accepted: 12/13/2024] [Indexed: 12/29/2024]
Abstract
BACKGROUND AND OBJECTIVES Magnetic resonance imaging (MRI) and neurohistopathology are important correlates for evaluation of disease progression in multiple sclerosis (MS). Here we used experimental autoimmune encephalomyelitis (EAE) as an animal model of MS to determine the correlation between clinical EAE severity, MRI and histopathological parameters. METHODS N = 11 female C57BL/6J mice were immunized with human myelin oligodendrocyte glycoprotein 1-125, while N = 9 remained non-immunized. Mice were scanned longitudinally over a period of 13 weeks using a 11.7 Tesla (T) Bruker BioSpec® preclinical MRI instrument, and regional volume changes of the lumbar spinal cord were analyzed using Voxel-Guided Morphometry (VGM). Following the final in vivo T1-weighted MRI scan, the lumbar spinal cord of each mouse was subjected to an ex vivo MRI scan using T1-, T2*- and diffusion tensor imaging (DTI)-weighted sequences. Tissue sections were then stained for immune cell infiltration, demyelination, astrogliosis, and axonal damage using hematoxylin-eosin staining and immunohistochemistry. RESULTS While in vivo MRI VGM detected an overall increase in volume over time, no differences were observed between EAE animals and controls. Ex vivo MRI showed a generalized atrophy of the spinal cord, which was pronounced in the anterolateral tract. The most striking correlation was observed between EAE score, white matter atrophy in ex vivo T1-weighted scans and histological parameters. DISCUSSION The data demonstrate that ex vivo MRI is a valuable tool to assess white matter atrophy in EAE, which was shown to be directly linked to the severity of EAE and spinal cord histopathology.
Collapse
Affiliation(s)
- Anna Lowinski
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany
| | | | - Matthias Kraemer
- VGMorph GmbH, Waterloostr. 32, 45472 Mülheim an der Ruhr, Germany; NeuroCentrum, Am Ziegelkamp 1f, 41515 Grevenbroich, Germany
| | - Hardik Doshi
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Venusberg-Campus 1, 53127 Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany
| | - Maik Hintze
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Nussallee 10, 53115 Bonn, Germany.
| |
Collapse
|
20
|
Sastri KT, Gupta NV, Kannan A, Dutta S, Ali M Osmani R, V B, Ramkishan A, S S. The next frontier in multiple sclerosis therapies: Current advances and evolving targets. Eur J Pharmacol 2024; 985:177080. [PMID: 39491741 DOI: 10.1016/j.ejphar.2024.177080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/11/2024] [Accepted: 10/28/2024] [Indexed: 11/05/2024]
Abstract
Recent advancements in research have significantly enhanced our comprehension of the intricate immune components that contribute to multiple sclerosis (MS) pathogenesis. By conducting an in-depth analysis of complex molecular interactions involved in the immunological cascade of the disease, researchers have successfully identified novel therapeutic targets, leading to the development of innovative therapies. Leveraging pioneering technologies in proteomics, genomics, and the assessment of environmental factors has expedited our understanding of the vulnerability and impact of these factors on the progression of MS. Furthermore, these advances have facilitated the detection of significant biomarkers for evaluating disease activity. By integrating these findings, researchers can design novel molecules to identify new targets, paving the way for improved treatments and enhanced patient care. Our review presents recent discoveries regarding the pathogenesis of MS, highlights their genetic implications, and proposes an insightful approach for engaging with newer therapeutic targets in effectively managing this debilitating condition.
Collapse
Affiliation(s)
- K Trideva Sastri
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - N Vishal Gupta
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India.
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysuru, India
| | - Suman Dutta
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Riyaz Ali M Osmani
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - Balamuralidhara V
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Shivarathreeshwara Nagara, Bannimantap, Mysuru, India
| | - A Ramkishan
- Deputy Drugs Controller (India), Central Drugs Standard Control Organization, Directorate General of Health Services, Ministry of Health & Family Welfare, Government of India, India
| | | |
Collapse
|
21
|
Guo H, Li Z, Wang Y. BCL3, GBP1, IFI16, and CCR1 as potential brain-derived biomarkers for parietal grey matter lesions in multiple sclerosis. Sci Rep 2024; 14:28543. [PMID: 39557900 PMCID: PMC11574279 DOI: 10.1038/s41598-024-76949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 10/17/2024] [Indexed: 11/20/2024] Open
Abstract
Multiple Sclerosis (MS) is a chronic autoimmune disease of the central nervous system, progressing from Relapsing-Remitting MS (RRMS) to Secondary Progressive MS (SPMS) in many cases. The transition involves complex biological changes. Our study aims to identify potential biomarkers for distinguishing SPMS by analyzing gene expression differences between normal-appearing and lesioned parietal grey matter, which may also contribute to understand the pathogenesis of SPMS. We utilized public datasets from the Gene Expression Omnibus (GEO), applying bioinformatics and machine learning techniques including Weighted Gene Co-expression Network Analysis (WGCNA), Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO) enrichment analysis, protein-protein interaction (PPI) networks, the Least Absolute Shrinkage and Selection Operator (LASSO), and Random Forest (RF) for predictive model construction. Our study also included analyses of immune cell infiltration. The study identified 359 DEGs, with 105 up-regulated and 254 down-regulated. WGCNA identified 264 common genes, which were subjected to KEGG and GO enrichment analyses, highlighting their role in immune response and viral infection pathways. Four genes (BCL3, GBP1, IFI16, and CCR1) were identified as key biomarkers for SPMS, supported by LASSO regression and RF analyses. These genes were further validated through receiver operating characteristic (ROC) curves, demonstrating significant predictive potential for SPMS. Our study provides a novel set of biomarkers for SPMS from lesioned grey matter of SPMS cases, offering potential for diagnosis and targeted therapeutic strategies. The identified biomarkers link closely with SPMS pathology, especially regarding immune system modulation.
Collapse
Affiliation(s)
- Hua Guo
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhaocheng Li
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yanqing Wang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
22
|
Bastos A, Soares M, Guimarães J. Markers of secondary progression in multiple sclerosis. Mult Scler Relat Disord 2024; 91:105881. [PMID: 39277977 DOI: 10.1016/j.msard.2024.105881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION There is no globally accepted definition of Secondary Progressive Multiple Sclerosis (SPMS) or set of unambiguous clinical, radiological, or other criteria that can accurately identify patients who transition to SPMS. Thus, the SPMS diagnosis is almost always a retrospective and frequently delayed process. OBJECTIVE The aim of this study was to elucidate the current understanding of phenotypic changes throughout MS course and provide insights into the detection of SPMS from the available literature on this diagnostic landscape. METHODS Comprehensive literature review aiming at detecting the transition from RRMS to SPMS. A search for relevant publications was conducted across different databases, scrutinizing studies that investigated tools and biomarkers for an accurate diagnosis of SPMS. RESULTS 62 studies from the past two decades were included. The EDSS-plus was shown to be more sensitive than the EDSS alone in identifying disability progression. We found some helpful indicators for diagnosing SPMS, including cognitive impairment, particularly on working memory, information processing speed, and verbal fluency; presence of slowly expanding lesions on MRI; thinning of retinal layers on OCT. Also, glial markers as Glial Fibrillary Acidic Protein and Chitinase-3-like protein 1 might be more suitable to identify the conversion to progressive disease than Neurofilament light chain. Certain subjective symptoms seem to be more prevalent in the SPMS phase, although further studies are needed to understand whether patient reported outcomes' measures (PROMs) and which ones could be useful in detecting the transition to a progressive phenotype. CONCLUSION Our review highlights the emergence of useful biomarkers in early detection of progression of MS, such as cognitive impairment, MRI, and glial markers. We are getting closer to revolutionising the SPMS diagnosis and clinical management as we get a deeper understanding of these biomarkers.
Collapse
Affiliation(s)
- André Bastos
- Faculty of Medicine of University of Porto, Porto, Portugal.
| | - Mafalda Soares
- Faculty of Medicine of University of Porto, Porto, Portugal; Department of Neurology, Saint Joseph's Local Health Unit, Lisbon, Portugal
| | - Joana Guimarães
- Faculty of Medicine of University of Porto, Porto, Portugal; Department of Neurology, Saint John's Local Health Unit, Porto, Portugal
| |
Collapse
|
23
|
Bolton C. Review of evidence linking exposure to environmental stressors and associated alterations in the dynamics of immunosenescence (ISC) with the global increase in multiple sclerosis (MS). Immun Ageing 2024; 21:73. [PMID: 39438909 PMCID: PMC11494837 DOI: 10.1186/s12979-024-00473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024]
Abstract
Historical survey confirms that, over the latter part of the 20th century, autoimmune-based diseases, including multiple sclerosis (MS), have shown a worldwide increase in incidence and prevalence. Analytical population studies have established that the exponential rise in MS is not solely due to improvements in diagnosis and healthcare but relates to an increase in autoimmune risk factors. Harmful environmental exposures, including non-communicable social determinants of health, anthropogens and indigenous or transmissible microbes, constitute a group of causal determinants that have been closely linked with the global rise in MS cases. Exposure to environmental stressors has profound effects on the adaptive arm of the immune system and, in particular, the associated intrinsic process of immune ageing or immunosenescence (ISC). Stressor-related disturbances to the dynamics of ISC include immune cell-linked untimely or premature (p) alterations and an accelerated replicative (ar) change. A recognised immune-associated feature of MS is pISC and current evidence supports the presence of an arISC during the disease. Moreover, collated data illustrates the immune-associated alterations that characterise pISC and arISC are inducible by environmental stressors strongly implicated in causing duplicate changes in adaptive immune cells during MS. The close relationship between exposure to environmental risk factors and the induction of pISC and arISC during MS offers a valid mechanism through which pro-immunosenescent stressors may act and contribute to the recorded increase in the global rate and number of new cases of the disease. Confirmation of alterations to the dynamics of ISC during MS provides a rational and valuable therapeutic target for the use of senolytic drugs to either prevent accumulation and enhance ablation of less efficient untimely senescent adaptive immune cells or decelerate the dysregulated process of replicative proliferation. A range of senotherapeutics are available including kinase and transcriptase inhibitors, rapalogs, flavanols and genetically-engineered T cells and the use of selective treatments to control emerging and unspecified aspects of pISC and arISC are discussed.
Collapse
|
24
|
Saragih ID, Gervais W, Lamora JP, Batcho CS, Everard G. Effect of serious games over conventional therapy in the rehabilitation of people with multiple sclerosis - a systematic review and meta-analysis. Disabil Rehabil 2024:1-21. [PMID: 39421950 DOI: 10.1080/09638288.2024.2415328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 10/02/2024] [Accepted: 10/03/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE This meta-analysis aimed to quantify the effect of serious games over conventional therapy on upper-limb activity, balance, gait, fatigue, and cognitive functions in people with multiple sclerosis. MATERIALS AND METHODS Search strategies were developed for PubMed, Embase, Cochrane Library, and Scopus. Studies were selected if participants were adults with multiple sclerosis; the intervention consisted of a virtual reality serious game-based program; the control group received conventional therapy; outcomes included upper limb activity, balance, gait, fatigue, or cognitive functions; and used a randomized controlled trial design. Data were synthesized using a standardized mean difference with a random-effects model. RESULTS From 2532 studies, seventeen trials were selected (n = 740). Overall, serious games programs effect on upper limb activity, gait, verbal memory, verbal fluency and attention seemed neutral. Balance functions appeared to be improved by semi-immersive virtual reality serious games (SMD = 0.48;95%CI = 0.12-0.84;p = 0.01;I2=0%), fatigue by treadmill serious games (SMD = 0.80;95%CI = 0.40-1.20;p < 0.001) and visuo-spatial memory by semi-immersive virtual reality general cognitive serious games (SMD = 0.35;95%CI = 0.04-0.65;p = 0.03;I2=0%). CONCLUSION This review suggests, with a very-low-to-low certainty of evidence, that while some specific serious games may improve balance, fatigue and visuo-spatial memory, their overall effect on upper limb activity, gait, and other cognitive functions appears neutral.
Collapse
Affiliation(s)
| | - Willy Gervais
- Institut de formation en masso-kinésithérapie La Musse, Saint Sébastien de Morsent, France
| | - Jean-Philippe Lamora
- Institut de formation en masso-kinésithérapie La Musse, Saint Sébastien de Morsent, France
| | - Charles Sebiyo Batcho
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Québec, Canada
- Department of rehabilitation, Faculty of medicine, Laval University, Quebec, QC, Canada
| | - Gauthier Everard
- Centre interdisciplinaire de recherche en réadaptation et intégration sociale, Université Laval, Québec, Canada
- Department of rehabilitation, Faculty of medicine, Laval University, Quebec, QC, Canada
- Institut de Recherche Expérimentale et Clinique, Neuro Musculo Skeletal Lab (NMSK), Bruxelles, Belgium
| |
Collapse
|
25
|
Maktabi B, Collins A, Safee R, Bouyer J, Wisner AS, Williams FE, Schiefer IT. Zebrafish as a Model for Multiple Sclerosis. Biomedicines 2024; 12:2354. [PMID: 39457666 PMCID: PMC11504653 DOI: 10.3390/biomedicines12102354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Zebrafish have become a key model organism in neuroscience research because of their unique advantages. Their genetic, anatomical, and physiological similarities to humans, coupled with their rapid development and transparent embryos, make them an excellent tool for investigating various aspects of neurobiology. They have specifically emerged as a valuable and versatile model organism in biomedical research, including the study of neurological disorders such as multiple sclerosis. Multiple sclerosis is a chronic autoimmune disease known to cause damage to the myelin sheath that protects the nerves in the brain and spinal cord. Objective: This review emphasizes the importance of continued research in both in vitro and in vivo models to advance our understanding of MS and develop effective treatments, ultimately improving the quality of life for those affected by this debilitating disease. Conclusions: Recent studies show the significance of zebrafish as a model organism for investigating demyelination and remyelination processes, providing new insights into MS pathology and potential therapies.
Collapse
Affiliation(s)
- Briana Maktabi
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Abigail Collins
- Center for Drug Design and Development 3, University of Toledo, Toledo, OH 43614, USA
| | - Raihaanah Safee
- Department of Pharmacy Practice, University of Toledo, Toledo, OH 43614, USA
| | - Jada Bouyer
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Alexander S. Wisner
- Center for Drug Design and Development 3, University of Toledo, Toledo, OH 43614, USA
| | - Frederick E. Williams
- Department of Pharmacology and Experimental Therapeutics, University of Toledo, Toledo, OH 43614, USA
| | - Isaac T. Schiefer
- Department of Pharmacy Practice, University of Toledo, Toledo, OH 43614, USA
- Department of Medicinal and Biological Chemistry, University of Toledo, Toledo, OH 43614, USA
| |
Collapse
|
26
|
Stefan B, Eleni K, Philip VH, Arnfin B, Jelena S, Aksel S, Ntd Study Group, Refik P. Accuracy of MSBase criteria to diagnose secondary progressive multiple sclerosis in large German real-world patient cohort. Mult Scler Relat Disord 2024; 90:105844. [PMID: 39197353 DOI: 10.1016/j.msard.2024.105844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/03/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND AND OBJECTIVES Accurate diagnosis of secondary progression in multiple sclerosis (MS) remains a challenge since standardized criteria are missing. In 2016, the MSBase registry presented an algorithm that enabled the diagnosis of secondary progressive multiple sclerosis (SPMS) more than three years earlier compared to diagnosis by neurologists. This work aimed to test whether this approach is equally effective in a real-world cohort of MS patients. METHODS This longitudinal retrospective study analyzed clinical data of outpatients with MS recorded until October 2020 in the NeuroTransData registry, a Germany-wide network of 153 certified neurologists. Patient data had been captured in time during clinical visits employing a defined standardized clinical data set in the webbased NeuroTransData patient management platform DESTINY®. The time between the diagnosis of relapsing-remitting multiple sclerosis (RRMS) to SPMS onset was compared with one determined using MSBase criteria (MSBC). Group 1 consisted of patients diagnosed with SPMS during the observation period, whereas group 2 included RRMS patients who did not convert to SPMS during the observation period. RESULTS Of 21,281 patients with MS included in our registry, 194 and 9506 patients were allocated to groups 1 and 2, respectively. 10.3% of patients with RRMS were diagnosed with SPMS simultaneously, whereas 60.8% were diagnosed with SPMS at least 3 months earlier by treating neurologists compared to the MSBC. In group 1, the MSBC showed a low sensitivity of 32.0% and an accuracy of 61.4% but a high specificity of 89.6%. In group 2, the MSBC identified 7.8% of patients with SPMS at some point during the observation time. Moreover, test-retest variability remains a challenge since 29.4% of patients diagnosed with SPMS by treating physicians did not fulfil the MSBC at a later point in time. DISCUSSION These results are inconsistent with earlier SPMS diagnosis using the MSBC compared to clinical diagnosis by treating physicians. Therefore, there remains a need for an operational, structured, and validated approach to SPMS diagnosis.
Collapse
Affiliation(s)
- Braune Stefan
- NeuroTransData, 86633 Neuburg an der Donau, Germany.
| | | | | | | | - Skuljec Jelena
- NeuroTransData, 86633 Neuburg an der Donau, Germany
- Department of Neurology, University Medicine Essen, Essen, Germany; Centre for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| | - Siva Aksel
- Department of Neurology, Clinical Neuroimmunology Unit & MS Clinic, Istanbul University Cerrahpaşa School of Medicine, Istanbul, Turkey
| | | | - Pul Refik
- NeuroTransData, 86633 Neuburg an der Donau, Germany
- Department of Neurology, University Medicine Essen, Essen, Germany; Centre for Translational Neuro- and Behavioral Sciences, University Medicine Essen, Essen, Germany
| |
Collapse
|
27
|
Intarakhao P, Laipasu T, Jitprapaikulsan J, Apiraksattayakul N, Kosiyakul P, Siritho S, Prayoonwiwat N, Ongphichetmetha T. Rituximab in secondary progressive multiple sclerosis: a meta-analysis. Ann Clin Transl Neurol 2024; 11:2707-2718. [PMID: 39186371 PMCID: PMC11514939 DOI: 10.1002/acn3.52186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/29/2024] [Accepted: 08/03/2024] [Indexed: 08/27/2024] Open
Abstract
OBJECTIVE To evaluate the efficacy of rituximab (RTX) in stabilizing disability progression in secondary progressive multiple sclerosis (SPMS). METHODS A systematic review was conducted, encompassing studies from inception to April 2023, utilizing the MEDLINE and EMBASE databases. Inclusion criteria comprised studies with a minimum of 3 SPMS patients receiving intravenous RTX in at least one infusion, with a follow-up duration of at least 6 months. Primary outcome measures included changes in Expanded Disability Status Scale (EDSS) scores. Mean differences in pre- and post-RTX EDSS scores were analyzed using a random-effects model. Meta-regression examined age at RTX initiation, pre-RTX EDSS scores, disease duration, and outcome reported time as variables. Secondary outcomes assessed changes in the annualized relapse rate (ARR). RESULTS Thirteen studies, involving 604 SPMS patients, met the inclusion criteria. Following a mean follow-up of 2 years, the mean difference in EDSS scores (ΔEDSS = EDSSpre-RTX - EDSSpost-RTX) was -0.21 (95% CI -0.51 to 0.08, p = 0.16), indicating no significant variation. Multivariable meta-regression identified significant associations between EDSS score mean difference and pre-RTX EDSS scores, disease duration at RTX initiation, and outcome reported time. However, age at RTX initiation showed no significant association. Pre- and post-RTX ARR data were available for 245 out of 604 SPMS patients across seven studies, revealing a mean difference in ARR (ΔARR = ARRpre-RTX - ARRpost-RTX) of 0.74 (95% CI 0.19-1.29, p = 0.008). INTERPRETATION RTX demonstrates efficacy in reducing relapse frequency and exhibits potential in stabilizing disability progression over a 2-year follow-up, particularly among individuals with shorter disease duration.
Collapse
Affiliation(s)
- Pasin Intarakhao
- Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Taksaporn Laipasu
- Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Jiraporn Jitprapaikulsan
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Natnasak Apiraksattayakul
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Punchika Kosiyakul
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Sasitorn Siritho
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Bumrungrad International HospitalBangkokThailand
| | - Naraporn Prayoonwiwat
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| | - Tatchaporn Ongphichetmetha
- Siriraj Neuroimmunology Center, Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Division of Neurology, Department of Medicine, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
- Division of Clinical Epidemiology, Department of Research and Development, Faculty of Medicine Siriraj HospitalMahidol UniversityBangkokThailand
| |
Collapse
|
28
|
Emeršič A, Karikari TK, Kac PR, Gonzalez-Ortiz F, Dulewicz M, Ashton NJ, Brecl Jakob G, Horvat Ledinek A, Hanrieder J, Zetterberg H, Rot U, Čučnik S, Blennow K. Biomarkers of tau phosphorylation state are associated with the clinical course of multiple sclerosis. Mult Scler Relat Disord 2024; 90:105801. [PMID: 39153429 DOI: 10.1016/j.msard.2024.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND Mechanisms underlying neurodegeneration in multiple sclerosis (MS) remain poorly understood but mostly implicate molecular pathways that are not unique to MS. Recently detected tau seeding activity in MS brain tissues corroborates previous neuropathological reports of hyperphosphorylated tau (p-tau) accumulation in secondary and primary progressive MS (PPMS). We aimed to investigate whether aberrant tau phosphorylation can be detected in the cerebrospinal fluid (CSF) of MS patients by using novel ultrasensitive immunoassays for different p-tau biomarkers. METHODS CSF samples of patients with MS (n = 55) and non-inflammatory neurological disorders (NIND, n = 31) were analysed with in-house Single molecule array (Simoa) assays targeting different tau phosphorylation sites (p-tau181, p-tau212, p-tau217 and p-tau231). Additionally, neurofilament light (NFL) and glial fibrillary acidic protein (GFAP) were measured with a multiplexed Simoa assay. Patients were diagnosed with clinically isolated syndrome (CIS, n = 10), relapsing-remitting MS (RRMS, n = 21) and PPMS (n = 24) according to the 2017 McDonald criteria and had MRI, EDSS and basic CSF analysis performed at the time of diagnosis. RESULTS Patients with progressive disease course had between 1.4-fold (p-tau217) and 2.2-fold (p-tau212) higher p-tau levels than relapsing MS patients (PPMS compared with CIS + RRMS, p < 0.001 for p-tau181, p-tau212, p-tau231 and p = 0.042 for p-tau217). P-tau biomarkers were associated with disease duration (ρ=0.466-0.622, p < 0.0001), age (ρ=0.318-0.485, p < 0.02, all but p-tau217) and EDSS at diagnosis and follow-up (ρ=0.309-0.440, p < 0.02). In addition, p-tau biomarkers correlated with GFAP (ρ=0.517-0.719, p ≤ 0.0001) but not with the albumin quotient, CSF cell count or NFL. Patients with higher MRI lesion load also had higher p-tau levels p ≤ 0.01 (<10 vs. ≥ 10 lesions, all p ≤ 0.01). CONCLUSION CSF concentrations of novel p-tau biomarkers point to a higher degree of tau phosphorylation in PPMS than in RRMS. Associations with age, disease duration and EDSS suggest this process increases with disease severity; however, replication of these results in larger cohorts is needed to further clarify the relevance of altered tau phosphorylation throughout the disease course in MS.
Collapse
Affiliation(s)
- Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana 1000, Slovenia.
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15215, USA
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Fernando Gonzalez-Ortiz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden
| | - Maciej Dulewicz
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg 405 30, Sweden; Department of Old Age Psychiatry, Maurice Wohl Clinical Neuroscience Institute, King's College London, London SE5 8AF, UK; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London SE5 8AF, UK
| | - Gregor Brecl Jakob
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Alenka Horvat Ledinek
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Jörg Hanrieder
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; UK Dementia Research Institute at UCL, London WC1N 3AR, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong 518172, China; School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Uroš Rot
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia; Faculty of Medicine, University of Ljubljana, Ljubljana 1000, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia; Faculty of Pharmacy, University of Ljubljana, Ljubljana 1000, Slovenia; Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana 1000, Slovenia
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg 413 45, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal 431 80, Sweden; Paris Brain Institute, ICM, Pitié-Salpêtrière Hospital, Sorbonne University, Paris 75013, France; Neurodegenerative Disorder Research Center, Division of Life Sciences and Medicine, and Department of Neurology, Institute on Aging and Brain Disorders, University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei 230001, PR China
| |
Collapse
|
29
|
Laketa D, Lavrnja I. Extracellular Purine Metabolism-Potential Target in Multiple Sclerosis. Mol Neurobiol 2024; 61:8361-8386. [PMID: 38499905 DOI: 10.1007/s12035-024-04104-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 03/07/2024] [Indexed: 03/20/2024]
Abstract
The purinergic signaling system comprises a complex network of extracellular purines and purine-metabolizing ectoenzymes, nucleotide and nucleoside receptors, ATP release channels, and nucleoside transporters. Because of its immunomodulatory function, this system is critically involved in the pathogenesis of multiple sclerosis (MS) and its best-characterized animal model, experimental autoimmune encephalomyelitis (EAE). MS is a chronic neuroinflammatory demyelinating and neurodegenerative disease with autoimmune etiology and great heterogeneity, mostly affecting young adults and leading to permanent disability. In MS/EAE, alterations were detected in almost all components of the purinergic signaling system in both peripheral immune cells and central nervous system (CNS) glial cells, which play an important role in the pathogenesis of the disease. A decrease in extracellular ATP levels and an increase in its downstream metabolites, particularly adenosine and inosine, were frequently observed at MS, indicating a shift in metabolism toward an anti-inflammatory environment. Accordingly, upregulation of the major ectonucleotidase tandem CD39/CD73 was detected in the blood cells and CNS of relapsing-remitting MS patients. Based on the postulated role of A2A receptors in the transition from acute to chronic neuroinflammation, the association of variants of the adenosine deaminase gene with the severity of MS, and the beneficial effects of inosine treatment in EAE, the adenosinergic system emerged as a promising target in neuroinflammation. More recently, several publications have identified ADP-dependent P2Y12 receptors and the major extracellular ADP producing enzyme nucleoside triphosphate diphosphohydrolase 2 (NTPDase2) as novel potential targets in MS.
Collapse
Affiliation(s)
- Danijela Laketa
- Department of General Physiology and Biophysics, Institute for Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski Trg 3, Belgrade, Republic of Serbia.
| | - Irena Lavrnja
- Institute for Biological Research, Sinisa Stankovic" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, Belgrade, Republic of Serbia
| |
Collapse
|
30
|
Chisari CG, Amato MP, Di Sapio A, Foschi M, Iaffaldano P, Inglese M, Fermo SL, Lugaresi A, Lus G, Mascoli N, Montepietra S, Pesci I, Quatrale R, Salemi G, Torri Clerici V, Totaro R, Valentino P, Filippi M, Patti F. Active and non-active secondary progressive multiple sclerosis patients exhibit similar disability progression: results of an Italian MS registry study (ASPERA). J Neurol 2024; 271:6801-6810. [PMID: 39190108 PMCID: PMC11446943 DOI: 10.1007/s00415-024-12621-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/29/2024] [Accepted: 08/01/2024] [Indexed: 08/28/2024]
Abstract
'Active' and 'non-active' secondary progressive MS (SPMS) have distinct pathophysiological mechanisms and clinical characteristics, but there is still no consensus regarding the frequency of these MS forms in the real-world setting. We aimed to evaluate the frequency of 'active' and 'non-active' SPMS in a large cohort of Italian MS patients and the differences in terms of clinical and MRI characteristics and disease progression. This multicenter study collected data about MS patients who have transitioned to the SP form in the period between 1st January 2014 and 31st December 2019 and followed by the MS centers contributing to the Italian MS Registry. Patients were divided into 'active SPMS' and 'non-active SPMS', based on both reported MRI data and relapse activity in the year before conversion to SPMS. Out of 68,621, 8,316 (12.1%) patients were diagnosed with SPMS. Out of them, 872 (10.5%) were classified into patients with either 'active' or 'non-active' SPMS. A total of 237 were classified into patients with 'active SPMS' (27.2%) and 635 as 'non-active SPMS' (72.8%). 'Non-active SPMS' patients were older, with a longer disease duration compared to those with 'active SPMS'. The percentages of patients showing progression independent of relapse activity (PIRA) at 24 months were similar between 'active' and 'non-active' SPMS patients (67 [27.4%] vs 188 [29.6%]; p = 0.60). In the 'active' group, 36 (15.2%) patients showed relapse-associated worsening (RAW). Comparison of the survival curves to EDSS 6 and 7 according to disease activity did not show significant differences (p = 0.68 and p = 0.71). 'Active' and 'non-active' SPMS patients had a similar risk of achieving disability milestones, suggesting that progression is primarily attributed to PIRA and only to a small extent to disease activity.
Collapse
Affiliation(s)
- Clara Grazia Chisari
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", Multiple Sclerosis Center, University of Catania, Catania, Italy
- Multiple Sclerosis Unit; Neurology Clinic, Policlinico "G. Rodolico- San Marco", Catania, Italy
| | - Maria Pia Amato
- Department of NEUROFARBA, Section of Neurosciences, University of Florence, Florence, Italy
| | - Alessia Di Sapio
- Department of Neurology, Regional Referral Multiple Sclerosis Center, University Hospital San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center, S. Maria delle Croci Hospital of Ravenna, Ravenna, Italy
- Department of Biotechnological and Applied Clinical Sciences (DISCAB), University of L'Aquila, L'Aquila, Italy
| | - Pietro Iaffaldano
- Department of Translational Biomedicine and Neurosciences (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Salvatore Lo Fermo
- Multiple Sclerosis Unit; Neurology Clinic, Policlinico "G. Rodolico- San Marco", Catania, Italy
| | - Alessandra Lugaresi
- UOSI Riabilitazione Sclerosi Multipla, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Giacomo Lus
- Multiple Sclerosis Center, Second Division of Neurology, Department of Advanced Medical and Surgical Science, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Nerina Mascoli
- Neurology Unit, Department of Medicine, S. Anna Hospital, Como, Italy
| | - Sara Montepietra
- MS Centre, SMN Hospital, AUSL Reggio Emilia, Reggio Emilia, Italy
| | - Ilaria Pesci
- Centro Sclerosi Multipla Unità Operativa Neurologia, Azienda Unità Sanitaria Locale, Ospedale Di Vaio, Fidenza, Parma, Italy
| | - Rocco Quatrale
- Dipartimento Di Scienze Neurologiche, UOC Di Neurologia, Ospedale Dell'Angelo AULSS 3 Serenissima, Venice Mestre, Italy
| | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Valentina Torri Clerici
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Rocco Totaro
- Demyelinating Disease Center, San Salvatore Hospital, L'Aquila, Italy
| | - Paola Valentino
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Patti
- Department of Medical and Surgical Sciences and Advanced Technologies "GF Ingrassia", Multiple Sclerosis Center, University of Catania, Catania, Italy.
- Multiple Sclerosis Unit; Neurology Clinic, Policlinico "G. Rodolico- San Marco", Catania, Italy.
| |
Collapse
|
31
|
Niedziela N, Nowak-Kiczmer M, Malciene L, Stasiołek M, Niedziela JT, Czuba ZP, Lis M, Sowa A, Adamczyk-Sowa M. Serum Vitamin D3 as a Potential Biomarker for Neuronal Damage in Smoldering Multiple Sclerosis. Int J Mol Sci 2024; 25:10502. [PMID: 39408830 PMCID: PMC11476431 DOI: 10.3390/ijms251910502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/24/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Permanent inflammatory demyelinating and neurodegenerative processes lead to neurological disability in patients with multiple sclerosis (MS). The anti-inflammatory properties of vitamin D3 (VitD) are well established, but its role in neurodegeneration is still uncertain. The usefulness of the serum concentration of VitD as a potential biomarker in evaluating brain injury in terms of recently known smoldering MS was under consideration. Methods: We assessed the concentrations of the parameters of brain injury (NF-H, GPAF, S100B, UCHL1) in the cerebrospinal fluid (CSF) of relapsing-remitting (RRMS, n = 123) and progressive MS (PMS, n = 88) patients in the group with normal levels of VitD (VitDn) and in the VitD deficiency group (VitDd). The levels of NF-H and UCHL1 were higher in the group of VitDd compared to VitDn. The higher serum levels of VitD were correlated with lower concentrations of GFAP, NF-H and S100B in the CSF of the whole group of MS patients and in women with MS as opposed to the levels of UCHL1. In men, there were noted negative correlations between the levels of serum VitD and GFAP and NF-H in CSF but not between VitD and S100B and UCHL1. The negative correlations were observed between VitD and the selected parameters of brain injury in MS patients, in women as well as in men. The concentrations of serum VitD together with selected parameters of brain injury in CSF seem to be promising biomarkers of neurodegeneration processes in smoldering MS.
Collapse
Affiliation(s)
- Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3-go Maja 13-15, 41-800 Zabrze, Poland; (M.N.-K.); (A.S.); (M.A.-S.)
| | - Maria Nowak-Kiczmer
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3-go Maja 13-15, 41-800 Zabrze, Poland; (M.N.-K.); (A.S.); (M.A.-S.)
| | - Lina Malciene
- Klaipeda University Hospital, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania;
| | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, ul. Kopcińskiego 22, 90-153 Lodz, Poland;
| | - Jacek T. Niedziela
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease ul, M.C. Sklodowskiej 9, 41-800 Zabrze, Poland;
| | - Zenon P. Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. Jordana 19, 41-808 Zabrze, Poland
| | - Martyna Lis
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3-go Maja 13-15, 41-800 Zabrze, Poland; (M.N.-K.); (A.S.); (M.A.-S.)
| | - Agata Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3-go Maja 13-15, 41-800 Zabrze, Poland; (M.N.-K.); (A.S.); (M.A.-S.)
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, ul. 3-go Maja 13-15, 41-800 Zabrze, Poland; (M.N.-K.); (A.S.); (M.A.-S.)
| |
Collapse
|
32
|
Niedziela N, Nowak-Kiczmer M, Malciene L, Stasiołek M, Zalejska-Fiolka J, Czuba ZP, Niedziela JT, Szczygieł J, Lubczyński M, Adamczyk-Sowa M. Can Selected Parameters of Brain Injury Reflect Neuronal Damage in Smoldering Multiple Sclerosis? Diagnostics (Basel) 2024; 14:1993. [PMID: 39272777 PMCID: PMC11394557 DOI: 10.3390/diagnostics14171993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/31/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Inflammatory demyelination and impaired recovery processes result in permanent neurodegeneration and neurological disability in patients with multiple sclerosis (MS). In terms of smoldering MS, chronic neuroinflammation develops in the early period of the disease and leads to confirmed disability accumulation. There is a great need to identify biomarkers of neurodegeneration and disease progression. METHODS A single-center prospective observational study was performed. The median age of the patients was 40 (31-52) years. Women comprised 64% of the study population. We evaluated the concentrations of the parameters of brain injury (NF-H, GFAP, S100B and UCHL1) in the cerebrospinal fluid (CSF) and the selected interleukins (ILs) in serum of 123 relapsing-remitting MS (RRMS) and 88 progressive MS (PMS) patients. RESULTS The levels of GFAP, S100B and UCHL were higher in the PMS group than the RRMS group, in contrast to the levels of NF-H. We observed a positive correlation between the selected pro-inflammatory cytokines and the parameters of brain injury. The Expanded Disability Status Scale (EDSS) score increased with GFAP and NF-H levels and was correlated with the selected ILs. The concentrations of S100B, UCHL1 and NF-H reflected the duration of MS symptoms. CONCLUSIONS The levels of brain injury parameters in the CSF and the selected serum ILs in MS patients seem to be promising biomarkers to determine neurodegeneration and neuroinflammation in smoldering MS. Further studies are warranted in this respect.
Collapse
Affiliation(s)
- Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| | - Maria Nowak-Kiczmer
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| | - Lina Malciene
- Klaipeda University Hospital, Lithuanian University of Health Sciences, 44307 Kaunas, Lithuania
| | - Mariusz Stasiołek
- Department of Neurology, Medical University of Lodz, Ul. Kopcińskiego 22, 90-419 Łódź, Poland
| | - Jolanta Zalejska-Fiolka
- Department of Biochemistry, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul, Jordana 19, 41-808 Zabrze, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. Jordana 19, 41-808 Zabrze, Poland
| | - Jacek T Niedziela
- 3rd Department of Cardiology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Silesian Centre for Heart Disease, Ul. M.C. Sklodowskiej 9, 41-800 Zabrze, Poland
| | - Jarosław Szczygieł
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| | - Michał Lubczyński
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Ul. 3-go Maja 13-15, 41-800 Zabrze, Poland
| |
Collapse
|
33
|
Portaccio E, Magyari M, Havrdova EK, Ruet A, Brochet B, Scalfari A, Di Filippo M, Tur C, Montalban X, Amato MP. Multiple sclerosis: emerging epidemiological trends and redefining the clinical course. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:100977. [PMID: 39444703 PMCID: PMC11496978 DOI: 10.1016/j.lanepe.2024.100977] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis is a chronic, inflammatory, and neurodegenerative disease of the central nervous system and a major cause of neurological disability in young adults. Its prevalence and incidence are increasing, and it has been estimated at over 2.8 million cases worldwide, in addition to recent trends towards a shift in MS prevalence to older ages, with peak prevalence estimates in the sixth decade of life. Although historically the relapsing and progressive phases of the disease have been considered separate clinical entities, recent evidence of progression independent of relapse activity (PIRA) has led to a reconsideration of multiple sclerosis as a continuum, in which relapsing and progressive features variably coexist from the earliest stages of the disease, challenging the traditional view of the disease course. In this Series article, we provide an overview of how the traditional description of the clinical course of MS and epidemiological trends in Europe have evolved. For this purpose, we focus on the concept of PIRA, discussing its potential as the main mechanism by which patients acquire disability, how its definition varies between studies, and ongoing research in this field. We emphasise the importance of incorporating the assessment of hidden clinical manifestations into patient management to help uncover and quantify the PIRA phenomenon and the possible implications for future changes in the clinical classification of the disease. At the same time, we provide insights into overcoming the challenges of identifying and defining PIRA and adopting a new understanding of the clinical course of MS.
Collapse
Affiliation(s)
- Emilio Portaccio
- Department of NEUROFARBA, Unviersity of Florence, Florence, Italy
| | - Melinda Magyari
- Danish Multiple Sclerosis Center, Department of Neurology, Copenhagen University Hospital-Rigshospitalet, Glostrup, Denmark
| | - Eva Kubala Havrdova
- Department of Neurology and Center of Clinical Neuroscience, First Faculty of Medicine and General University Hospital, Charles University, Prague, Czech Republic
| | - Aurelie Ruet
- Magendie, INSERM U 1215, Université de Bordeaux, 30776, Bordeaux Cedex, France
- Service de Neurologie et Maladies Inflammatoires du Système Nerveux Central, Centre de Ressources et Compétences Sclérose en plaques CHU de Bordeaux, 33076, Bordeaux Cedex, France
| | - Bruno Brochet
- Magendie, INSERM U 1215, Université de Bordeaux, 30776, Bordeaux Cedex, France
| | - Antonio Scalfari
- Centre of Neuroscience, Department of Medicine, Imperial College London, London, UK
| | | | - Carmen Tur
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier Montalban
- Multiple Sclerosis Centre of Catalonia, Department of Neurology/Neuroimmunology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Pia Amato
- Department of NEUROFARBA, Unviersity of Florence, Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
34
|
Bose A, Pahan K. Build muscles and protect myelin. NEUROIMMUNE PHARMACOLOGY AND THERAPEUTICS 2024; 3:175-182. [PMID: 39741558 PMCID: PMC11683878 DOI: 10.1515/nipt-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 10/02/2024] [Indexed: 01/03/2025]
Abstract
Multiple sclerosis (MS) is a chronic and debilitating autoimmune disease of the central nervous system (CNS) in which a CNS-driven immune response destroys myelin, leading to wide range of symptoms including numbness and tingling, vision problems, mobility impairment, etc. Oligodendrocytes are the myelinating cells in the CNS, which are generated from oligodendroglial progenitor cells (OPCs) via differentiation. However, for multiple reasons, OPCs fail to differentiate to oligodendrocytes in MS and as a result, stimulating the differentiation of OPCs to oligodendrocytes is considered beneficial for MS. The β-hydroxy β-methylbutyrate (HMB) is a widely-used muscle-building supplement in human and recently it has been shown that low-dose HMB is capable of stimulating the differentiation of cultured OPCs to oligodendrocytes for remyelination. Moreover, other causes of autoimmune demyelination are the decrease and/or suppression of Foxp3-expressing anti-autoimmune regulatory T cells (Tregs) and upregulation of autoimmune T-helper 1(Th1) and Th17 cells. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS in which the autoimmune demyelination is nicely visible. It has been reported that in EAE mice, oral HMB upregulates Tregs and decreases Th1 and Th17 responses, leading to remyelination in the CNS. Here, we analyze these newly-described features of HMB, highlighting the putative promyelinating nature of this supplement.
Collapse
Affiliation(s)
- Ahana Bose
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|
35
|
Portaccio E, Betti M, De Meo E, Addazio I, Pastò L, Razzolini L, Totaro R, Spitaleri D, Lugaresi A, Cocco E, Onofrj M, Di Palma F, Patti F, Maimone D, Valentino P, Torri Clerici V, Protti A, Ferraro D, Lus G, Maniscalco GT, Brescia Morra V, Salemi G, Granella F, Pesci I, Bergamaschi R, Aguglia U, Vianello M, Simone M, Lepore V, Iaffaldano P, Comi G, Filippi M, Trojano M, Amato MP. Progression independent of relapse activity in relapsing multiple sclerosis: impact and relationship with secondary progression. J Neurol 2024; 271:5074-5082. [PMID: 38805052 PMCID: PMC11319422 DOI: 10.1007/s00415-024-12448-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/12/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024]
Abstract
OBJECTIVES We investigated the occurrence and relative contribution of relapse-associated worsening (RAW) and progression independent of relapse activity (PIRA) to confirmed disability accrual (CDA) and transition to secondary progression (SP) in relapsing multiple sclerosis (MS). METHODS Relapsing-onset MS patients with follow-up > / = 5 years (16,130) were extracted from the Italian MS Registry. CDA was a 6-month confirmed increase in Expanded Disability Status Scale (EDSS) score. Sustained disability accumulation (SDA) was a CDA with no EDSS improvement in all subsequent visits. Predictors of PIRA and RAW and the association between final EDSS score and type of CDA were assessed using logistic multivariable regression and multivariable ordinal regression models, respectively. RESULTS Over 11.8 ± 5.4 years, 16,731 CDA events occurred in 8998 (55.8%) patients. PIRA (12,175) accounted for 72.3% of CDA. SDA occurred in 8912 (73.2%) PIRA and 2583 (56.7%) RAW (p < 0.001). 4453 (27.6%) patients transitioned to SPMS, 4010 (73.2%) out of 5476 patients with sustained PIRA and 443 (24.8%) out of 1790 patients with non-sustained PIRA. In the multivariable ordinal regression analysis, higher final EDSS score was associated with PIRA (estimated coefficient 0.349, 95% CI 0.120-0.577, p = 0.003). DISCUSSION In this real-world relapsing-onset MS cohort, PIRA was the main driver of disability accumulation and was associated with higher disability in the long term. Sustained PIRA was linked to transition to SP and could represent a more accurate PIRA definition and a criterion to mark the putative onset of the progressive phase.
Collapse
Affiliation(s)
- Emilio Portaccio
- Department of NEUROFARBA, University of Florence, Careggi University Hospital, Florence, Italy.
| | - Matteo Betti
- Department of NEUROFARBA, University of Florence, Careggi University Hospital, Florence, Italy
| | - Ermelinda De Meo
- Department of NEUROFARBA, University of Florence, Careggi University Hospital, Florence, Italy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Ilaria Addazio
- Department of NEUROFARBA, University of Florence, Careggi University Hospital, Florence, Italy
| | - Luisa Pastò
- Department of NEUROFARBA, University of Florence, Careggi University Hospital, Florence, Italy
| | - Lorenzo Razzolini
- Department of NEUROFARBA, University of Florence, Careggi University Hospital, Florence, Italy
| | | | | | - Alessandra Lugaresi
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Dipartimento Di Scienze Biomediche E Neuromotorie, Università Di Bologna, Bologna, Italy
| | | | - Marco Onofrj
- University G. d'Annunzio Di Chieti-Pescara, Chieti, Italy
| | | | - Francesco Patti
- University of Catania, Catania, Italy
- UOS Sclerosi Multipla, Policlinico G Rodolico-San Marco, University of Catania, Catania, Italy
| | - Davide Maimone
- Centro Sclerosi Multipla, Azienda Ospedaliera Cannizzaro, Catania, Italy
| | - Paola Valentino
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
| | | | | | - Diana Ferraro
- Department of Neurosciences, Ospedale Civile Di Baggiovara, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy
| | - Giacomo Lus
- University of Campania Luigi Vanvitelli, Naples, Italy
| | | | | | - Giuseppe Salemi
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
| | | | - Ilaria Pesci
- Ospedale VAIO Di Fidenza AUSL PR, Fidenza (PR), Italy
| | | | - Umberto Aguglia
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | | | - Marta Simone
- Pediatric MS Center, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari Aldo Moro, Bari, Italy
| | - Vito Lepore
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Pietro Iaffaldano
- Department of Translational Biomedicine and Neurosciences, University of Bari Aldo Moro, DiBraiN, Bari, Italy
| | - Giancarlo Comi
- Casa Di Cura del Policlinico, Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Trojano
- Department of Translational Biomedicine and Neurosciences, University of Bari Aldo Moro, DiBraiN, Bari, Italy
| | - Maria Pia Amato
- Department of NEUROFARBA, University of Florence, Careggi University Hospital, Florence, Italy
- NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London, London, UK
- San Salvatore Hospital, L'Aquila, Italy
- AORN San G. Moscati, Avellino, Italy
- IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Bologna, Italy
- Dipartimento Di Scienze Biomediche E Neuromotorie, Università Di Bologna, Bologna, Italy
- University of Cagliari, Cagliari, Italy
- University G. d'Annunzio Di Chieti-Pescara, Chieti, Italy
- ASST Lariana Ospedale S. Anna, Como, Italy
- University of Catania, Catania, Italy
- UOS Sclerosi Multipla, Policlinico G Rodolico-San Marco, University of Catania, Catania, Italy
- Centro Sclerosi Multipla, Azienda Ospedaliera Cannizzaro, Catania, Italy
- Institute of Neurology, University Magna Graecia, Catanzaro, Italy
- Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
- Niguarda Hospital, Milan, Italy
- Department of Neurosciences, Ospedale Civile Di Baggiovara, Azienda Ospedaliero-Universitaria Di Modena, Modena, Italy
- University of Campania Luigi Vanvitelli, Naples, Italy
- A Cardarelli Hospital, Naples, Italy
- Federico II University, Naples, Italy
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BIND), University of Palermo, Palermo, Italy
- University of Parma, Parma, Italy
- Ospedale VAIO Di Fidenza AUSL PR, Fidenza (PR), Italy
- IRCCS Fondazione Mondino, Pavia, Italy
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
- Ca' Fancello Hospital, AULSS2, Treviso, Italy
- Department of Translational Biomedicine and Neurosciences, University of Bari Aldo Moro, DiBraiN, Bari, Italy
- Istituto Di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
- Casa Di Cura del Policlinico, Vita-Salute San Raffaele University, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- IRCCS San Raffaele Scientific Institute, Milan, Italy
- IRCCS Don Carlo Gnocchi Foundation, Florence, Italy
| |
Collapse
|
36
|
Jacob A, Shatila AO, Inshasi J, Massouh J, Mir R, Noori S, Yamout B. Disease modifying treatment guidelines for multiple sclerosis in the United Arab Emirates. Mult Scler Relat Disord 2024; 88:105703. [PMID: 38924933 DOI: 10.1016/j.msard.2024.105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/13/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024]
Abstract
The newly constituted National Multiple Sclerosis (MS) Society (NMSS)of the United Arab Emirates (UAE), set up a scientific committee to create a MS disease modifying treatment (DMT) guideline for UAE. The committee considered several unique features of the MS community in UAE including large number of expatriate population, wide variations in health insurance coverage, physician and patient preferences for DMT. The overall goal of the treatment guideline is to facilitate the most appropriate DMT to the widest number of patients. To this end it has adapted recommendations from various health systems and regulatory authorities into a pragmatic amalgamation of best practices from across the world. Importantly where data is unavailable or controversial, a common sense approach is taken rather than leave physicians and patients in limbo. The committee classifies MS into subcategories and suggests appropriate treatment choices. It recommends treatment of RIS and CIS with poor prognostic factors. It largely equates the efficacy and safety of DMT with similar mechanisms of action or drug classes e.g. ocrelizumab is similar to rituximab. It allows early switching of treatment for unambiguous disease activity and those with progression independent of relapses. Autologous hematopoietic stem cell transplantation can be offered to patients who fail one high efficacy DMT. Pragmatic guidance on switching and stopping DMT, DMT choices in pregnancy, lactation and pediatric MS have been included. It is expected that these guidelines will be updated periodically as new data becomes available.
Collapse
Affiliation(s)
- Anu Jacob
- Neurological Institute, Cleveland Clinic, Abu Dhabi, United Arab Emirates; The Walton Centre, Liverpool, United Kingdom.
| | - Ahmed Osman Shatila
- Department of Neurology, Sheikh Shakhbout Medical City Abu Dhabi, United Arab Emirates
| | - Jihad Inshasi
- Department of Neurology, Rashid Hospital and Dubai Medical College, Dubai Health Authority, Dubai, United Arab Emirates
| | - Joelle Massouh
- Neurology Institute and Multiple Sclerosis Centre, Harley Street Medical centre, Abu Dhabi, United Arab Emirates
| | - Ruquia Mir
- Abu Dhabi stem Cell Clinic, United Arab Emirates
| | - Suzan Noori
- University Hospital Sharjah, United Arab Emirates
| | - Bassem Yamout
- Neurology Institute and Multiple Sclerosis Centre, Harley Street Medical centre, Abu Dhabi, United Arab Emirates; American University of Beirut, Lebanon
| |
Collapse
|
37
|
Ciccarelli O, Barkhof F, Calabrese M, De Stefano N, Eshaghi A, Filippi M, Gasperini C, Granziera C, Kappos L, Rocca MA, Rovira À, Sastre-Garriga J, Sormani MP, Tur C, Toosy AT. Using the Progression Independent of Relapse Activity Framework to Unveil the Pathobiological Foundations of Multiple Sclerosis. Neurology 2024; 103:e209444. [PMID: 38889384 PMCID: PMC11226318 DOI: 10.1212/wnl.0000000000209444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/04/2024] [Indexed: 06/20/2024] Open
Abstract
Progression independent of relapse activity (PIRA), a recent concept to formalize disability accrual in multiple sclerosis (MS) independent of relapses, has gained popularity as a potential clinical trial outcome. We discuss its shortcomings and appraise the challenges of implementing it in clinical settings, experimental trials, and research. The current definition of PIRA assumes that acute inflammation, which can manifest as a relapse, and neurodegeneration, manifesting as progressive disability accrual, can be disentangled by introducing specific time windows between the onset of relapses and the observed increase in disability. The term PIRMA (progression independent of relapse and MRI activity) was recently introduced to indicate disability accrual in the absence of both clinical relapses and new brain and spinal cord MRI lesions. Assessing PIRMA in clinical practice is highly challenging because it necessitates frequent clinical assessments and brain and spinal cord MRI scans. PIRA is commonly assessed using Expanded Disability Status Scale, a scale heavily weighted toward motor disability, whereas a more granular assessment of disability deterioration, including cognitive decline, using composite measures or other tools, such as digital tools, would possess greater utility. Similarly, using PIRA as an outcome measure in randomized clinical trials is also challenging and requires methodological considerations. The underpinning pathobiology of disability accumulation, that is not associated with relapses, may encompass chronic active lesions (slowly expanding lesions and paramagnetic rim lesions), cortical lesions, brain and spinal cord atrophy, particularly in the gray matter, diffuse and focal microglial activation, persistent leptomeningeal enhancement, and white matter tract damage. We propose to use PIRA to understand the main determinant of disability accrual in observational, cohort studies, where regular MRI scans are not included, and introduce the term of "advanced-PIRMA" to investigate the contributions to disability accrual of the abovementioned processes, using conventional and advanced imaging. This is supported by the knowledge that MRI reflects the MS pathogenic mechanisms better than purely clinical descriptors. Any residual disability accrual, which remains unexplained after considering all these mechanisms with imaging, will highlight future research priorities to help complete our understanding of MS pathogenesis.
Collapse
Affiliation(s)
- Olga Ciccarelli
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Frederik Barkhof
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Massimiliano Calabrese
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Nicola De Stefano
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Arman Eshaghi
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Massimo Filippi
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Claudio Gasperini
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Cristina Granziera
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Ludwig Kappos
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Maria A Rocca
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Àlex Rovira
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Jaume Sastre-Garriga
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Maria Pia Sormani
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Carmen Tur
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| | - Ahmed T Toosy
- From the Queen Square MS Centre (O.C., F.B., A.E., A.T.T.), Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London; National Institute for Health and Care Research (NIHR) (O.C.), University College London Hospitals (UCLH) Biomedical Research Centre; Centre for Medical Image Computing (F.B.), University College London, United Kingdom; Department of Radiology and Nuclear Medicine (F.B.), Amsterdam UMC, Vrije Universiteit Amsterdam, the Netherlands; Department of Neurosciences, Biomedicine and Movement Sciences (M.C.), University of Verona; Department of Medicine, Surgery and Neuroscience (N.D.S.), University of Siena; Neuroimaging Research Unit (M.F., M.A.R.), Division of Neuroscience, and Neurology Unit (M.F., M.A.R.), Neurorehabilitation Unit, Neurophysiology Service, IRCCS San Raffaele Scientific Institute; Vita-Salute San Raffaele University (M.F., M.A.R.), Milan; Department of Neuroscience (C. Gasperini), San Camillo Hospital, Rome, Italy; Translational Imaging in Neurology (ThINK) Basel (C. Granziera, L.K.), Department of Biomedical Engineering, Faculty of Medicine, University Hospital Basel and University of Basel; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB) (C. Granziera, L.K.); University Hospital Basel and University of Basel (C. Granziera, L.K.), Switzerland; Section of Neuroradiology (À.R.), Department of Radiology, and Multiple Sclerosis Centre of Catalonia (J.S.-G., C.T.), Department of Neurology, Hospital Universitari Vall d'Hebron, Universitat Autònoma de Barcelona, Spain; Department of Health Sciences (M.P.S.), University of Genova; and IRCCS Ospedale Policlinico San Martino (M.P.S.), Genova, Italy
| |
Collapse
|
38
|
Signoriello E, Signori A, Lus G, Romano G, Marfia GA, Landi D, Napoli F, D' Amico E, Zanghí A, Di Filippo PS, Caliendo D, Carotenuto A, Spiezia AL, Fantozzi R, Centonze D, Lucchini M, Mirabella M, Cocco E, Frau J, Maniscalco GT, Di Battista ME, Foschi M, Surcinelli A, Bonavita S, Abbadessa G, Pasquali L, Di Gregorio M, Ferrò MT, Sormani MP, Schiavetti I. NEDA-3 achievement in early highly active relapsing remitting multiple sclerosis patients treated with Ocrelizumab or Natalizumab. Mult Scler Relat Disord 2024; 87:105594. [PMID: 38718748 DOI: 10.1016/j.msard.2024.105594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND in the early stages of Multiple Sclerosis (MS), initiating high-efficacy disease-modifying therapy (HE DMTs) may represent an optimal strategy for delaying neurological damage and long-term disease progression, especially in highly active MS patients (HAMS). Natalizumab (NAT) and Ocrelizumab (OCR) are recognized as HE DMTs with significant anti-inflammatory effects. This study investigates NEDA-3 achievement in treatment-naïve HAMS patients receiving NAT or OCR over three years. METHODS we retrospectively enrolled treatment-naïve HAMS patients undergoing NAT or OCR, collecting demographic, clinical, and instrumental data before and after treatment initiation to compare with propensity score analysis disease activity, time to disability worsening, and NEDA-3 achievement. RESULTS we recruited 281 HAMS patients with a mean age of 32.7 years (SD 10.33), treated with NAT (157) or OCR (124). After three years, the Kaplan-Meier probability of achieving NEDA-3 was 66.0 % (95 % CI: 57.3 % - 76.0 %) with OCR and 68.2 % (95 % CI: 59.9 % - 77.7 %) with NAT without significant differences between the two groups (p = 0.27) DISCUSSION AND CONCLUSION: starting HE DMT with monoclonal antibodies for HAMS could achieve NEDA-3 in a high percentage of patients without differences between NAT or OCR.
Collapse
Affiliation(s)
| | - Alessio Signori
- Department of Health Sciences, Section of Biostatistics, University of Genoa, Genoa, Italy
| | - Giacomo Lus
- Second Division of Neurology, University of Campania Luigi Vanvitelli - Naples, Italy
| | - Giuseppe Romano
- Second Division of Neurology, University of Campania Luigi Vanvitelli - Naples, Italy
| | - Girolama Alessandra Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Doriana Landi
- Multiple Sclerosis Clinical and Research Unit, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Francesca Napoli
- Multiple Sclerosis Clinical and Research Unit, Department of System Medicine, Tor Vergata University, Rome, Italy
| | - Emanuele D' Amico
- Department of Medical and Surgical Sciences, University of Foggia, Italy
| | - Aurora Zanghí
- Department of Medical and Surgical Sciences, University of Foggia, Italy
| | | | - Daniele Caliendo
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Antonio Carotenuto
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy
| | - Antonio Luca Spiezia
- Department of Neuroscience, Reproductive Science and Odontostomatology, Federico II University of Naples, Naples, Italy
| | | | - Diego Centonze
- IRCCS Neuromed, 86077 Pozzilli, Italy; Department of System Medicine, Tor Vergata University, 00133 Rome, Italy
| | - Matteo Lucchini
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, CERSM, Roma, Italy
| | - Massimiliano Mirabella
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy; Università Cattolica del Sacro Cuore, CERSM, Roma, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Centre, ASL Cagliari, Cagliari, Italy; Dpt of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Jessica Frau
- Multiple Sclerosis Centre, ASL Cagliari, Cagliari, Italy
| | | | | | - Matteo Foschi
- Department of Neuroscience, Multiple Sclerosis Center - Neurology Unit, S.Mariadelle Croci Hospital, AUSL Romagna, Ravenna, Italy; Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Surcinelli
- Department of Neuroscience, Multiple Sclerosis Center - Neurology Unit, S.Mariadelle Croci Hospital, AUSL Romagna, Ravenna, Italy
| | - Simona Bonavita
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, I Clinic of Neurology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Gianmarco Abbadessa
- Department of Medical, Surgical, Neurological, Metabolic and Aging Sciences, I Clinic of Neurology, University of Campania "Luigi Vanvitelli," Naples, Italy
| | - Livia Pasquali
- Neurology Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Maria Di Gregorio
- Neurology Unit, University Hospital "San Giovanni di Dio e Ruggi d'Aragona", Largo Città di Ippocrate, 84100, Salerno, Italy
| | | | - Maria Pia Sormani
- Department of Health Sciences, Section of Biostatistics, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Irene Schiavetti
- Department of Health Sciences, Section of Biostatistics, University of Genoa, Genoa, Italy.
| |
Collapse
|
39
|
Chisari CG, Aguglia U, Amato MP, Bergamaschi R, Bertolotto A, Bonavita S, Morra VB, Cavalla P, Cocco E, Conte A, Cottone S, De Luca G, Di Sapio A, Filippi M, Gallo A, Gasperini C, Granella F, Lus G, Maimone D, Maniscalco GT, Marfia G, Moiola L, Paolicelli D, Pesci I, Ragonese P, Rovaris M, Salemi G, Solaro C, Totaro R, Trojano M, Vianello M, Zaffaroni M, Lepore V, Patti F. Long-term effectiveness of natalizumab in secondary progressive multiple sclerosis: A propensity-matched study. Neurotherapeutics 2024; 21:e00363. [PMID: 38714462 PMCID: PMC11284548 DOI: 10.1016/j.neurot.2024.e00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024] Open
Abstract
Treatment options for secondary progressive MS (SPMS) are limited, especially considering that the new drugs recently approved are licensed for actively relapsing patients. We aimed to compare the disability progression in a real-world cohort of SPMS patients treated with natalizumab (NTZ) or interferon beta-1b (IFNb-1b). This multicenter retrospective enrolled patients with a diagnosis of SPMS according to 2014 Lublin criteria, who received NTZ or IFNb-1b for at least 48 months between the 1st June 2012 and the 15th May 2018 at 33 Italian MS centers contributing to the Italian MS Registry NTZ or IFNb-1b. Confirmed Expanded Disability Status Scale worsening (CEW) and progression independent of relapse (PIRA) were evaluated. In order to correct for non-randomization, a propensity score matching of the groups was performed. Out of 5206 MS patients identified at the time of data extraction, 421 SPMS patients treated with NTZ (224 [53.2%] females, mean age 45.3 ± 25.4 years) and 353 with IFNb-1b (133 [37.8%] females, mean age 48.5 ± 19.8 years) were enrolled. After applying the matching procedure, 102 patients were retained in the NTZ group and 98 in the IFNb-2b group. The proportion of patients who reached the 48-month 1-point CEW was significantly higher in IFNb-1b compared to NTZ group (58.2% versus 30.4%, p = 0.01). The proportion of patients who developed PIRA at 48 months were significantly higher in IFNb-1b compared to NTZ (72.4% versus 40.2%, p = 0.01). EDSS before treatment initiation and SPMS duration were risk factors for disability progression in terms of PIRA (HR 2.54, 25%CI 1.67-5.7; p = 0.006 and HR 2.04, 25%CI 1.22-3.35; p = 0.01, respectively). Patients treated with IFNb-1b were 1.64 times more to likely to develop PIRA (HR 1.64, 25%CI 1.04-4.87; p = 0.001). Treatment with NTZ in SPMS patients showed more favorable disability outcomes compared to IFNb-1b with beneficial effects over 48 months.
Collapse
Affiliation(s)
- Clara G Chisari
- Department "GF. Ingrassia"; Section of Neurosciences, University of Catania, Italy; UOS Sclerosi Multipla, AOU Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy
| | - Umberto Aguglia
- Regional Epilepsy Centre, Great Metropolitan "Bianchi-Melacrino-Morelli" Hospital, Reggio Calabria, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Antonio Bertolotto
- Department of Neurology and Multiple Sclerosis Regional Referral Centre, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Simona Bonavita
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli" Naples, Italy
| | | | - Paola Cavalla
- Multiple Sclerosis Center, Department of Neuroscience and Mental Health, City of Health and Science University Hospital of Torino, Torino, Italy
| | - Eleonora Cocco
- Multiple Sclerosis Centre Binaghi Hospital, ATS Sardegna-University of Cagliari, Italy
| | - Antonella Conte
- Department of Human Neurosciences, Sapienza University of Rome, Italy; IRCCS Neuromed Pozzili, Italy
| | | | - Giovanna De Luca
- Multiple Sclerosis Center, Neurology Clinic, Policlinico SS Annunziata, University of Chieti-Pescara, Chieti, Italy
| | - Alessia Di Sapio
- Department of Neurology and Multiple Sclerosis Regional Referral Centre, AOU San Luigi Gonzaga, Orbassano, Turin, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy; Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonio Gallo
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli" Naples, Italy
| | - Claudio Gasperini
- Department of Neuroscience, UOC Neurology, San Camillo-Forlanini Hospital, Rome, Italy
| | - Franco Granella
- Neurosciences Unit, Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Giacomo Lus
- Department of Advanced Medical and Surgical Sciences, II Division of Neurology, Multiple Sclerosis Center, University of Campania 'L. Vanvitelli', Naples, Italy
| | - Davide Maimone
- Centro Sclerosi Multipla, UOC Neurologia, Azienda Ospedaliera Cannizzaro, Catania, Italy
| | | | - Girolama Marfia
- Multiple Sclerosis Clinical and Research Unit, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Damiano Paolicelli
- Department of Translational Biomedicines and Neurosciences University of Bari, A. Moro, Bari, Italy
| | - Ilaria Pesci
- Centro Sclerosi Multipla Unità Operativa Neurologia, Azienda Unità Sanitaria Locale, Ospedale Di Vaio, Fidenza, Parma, Italy
| | - Paolo Ragonese
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo University, Palermo, Italy
| | | | - Giuseppe Salemi
- Unit of Neurology, Department of Biomedicine, Neurosciences and Advanced Diagnostics, Palermo University, Palermo, Italy
| | - Claudio Solaro
- Department of Rehabilitation, C.R.R.F. "Mons. L. Novarese", Loc. Trompone, Moncrivello, (VC), Italy
| | - Rocco Totaro
- Demyelinating Disease Center, Neurology Unit, University of L'Aquila, L'Aquila, Italy
| | - Maria Trojano
- School of Medicine, University "Aldo Moro", Bari, Italy
| | | | - Mauro Zaffaroni
- Multiple Sclerosis Center, ASST della Valle Olona, Ospedale di Gallarate, (VA), Italy
| | - Vito Lepore
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy
| | - Francesco Patti
- Department "GF. Ingrassia"; Section of Neurosciences, University of Catania, Italy; UOS Sclerosi Multipla, AOU Policlinico "G. Rodolico-San Marco", University of Catania, Catania, Italy.
| |
Collapse
|
40
|
Kalnina J, Trapina I, Sjakste N, Paramonova N. Clinical characteristics and dynamics of disability progression in a cohort of patients with multiple sclerosis in Latvians. Neurol Sci 2024; 45:3347-3358. [PMID: 38393441 PMCID: PMC11176098 DOI: 10.1007/s10072-024-07404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/13/2024] [Indexed: 02/25/2024]
Abstract
There is wide variation in the time from the onset to secondary progressive multiple sclerosis (MS) and some controversy regarding the clinical characteristics of the courses (phenotypes) of MS. The present study aimed to characterize demographic and clinical factors that potentially influence long-term disability progression in the cohort of Latvian MS patients. A descriptive longitudinal incidence study was conducted using a cohort of 288 MS patients beginning in 2011 (disease duration from 1 to 51 years). Socio-demographic and clinical information from the first visit to 15/20 years was analysed in groups stratified by gender and visits at five-time points (the first visit; after a year or 2; after 5 ± 1 year; after 10 ± 2 years; after 15-20 years). Our study was dominated by patients from urban areas and non-smokers. The female/male ratio was 2.4:1; the distribution of clinical courses at the first visit was consistent with most European studies. The most common symptom at presentation in our study was optic manifestations, followed by sensory disturbances and motor deficits. In the Latvian study, gender was not a significant influencing factor on the rate of disease progression; however, patient age was statistically significantly associated with EDSS (Expanded Disability Status Scale) value at the first visit. Early clinical features of MS are important in predicting the disability accumulation of patients. Despite the small differences regarding the first MS symptoms, the disability outcomes in the cohort of Latvian patients are similar to other regions of the world.
Collapse
Affiliation(s)
- Jolanta Kalnina
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Riga, LV-1004, Latvia
| | - Ilva Trapina
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Riga, LV-1004, Latvia.
| | - Nikolajs Sjakste
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Riga, LV-1004, Latvia
- Department of Medical Biochemistry of the University of Latvia, Riga, LV-1004, Latvia
| | - Natalia Paramonova
- Genomics and Bioinformatics, Institute of Biology of the University of Latvia, Riga, LV-1004, Latvia
| |
Collapse
|
41
|
Pozzilli V, Haggiag S, Di Filippo M, Capone F, Di Lazzaro V, Tortorella C, Gasperini C, Prosperini L. Incidence and determinants of seizures in multiple sclerosis: a meta-analysis of randomised clinical trials. J Neurol Neurosurg Psychiatry 2024; 95:612-619. [PMID: 38383156 DOI: 10.1136/jnnp-2023-332996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Seizures are reported to be more prevalent in individuals with multiple sclerosis (MS) compared with the general population. Existing data predominantly originate from population-based studies, which introduce variability in methodologies and are vulnerable to selection and reporting biases. METHODS This meta-analysis aims to assess the incidence of seizures in patients participating in randomised clinical trials and to identify potential contributing factors. Data were extracted from 60 articles published from 1993 to 2022. The pooled effect size, representing the incidence rate of seizure events, was estimated using a random-effect model. Metaregression was employed to explore factors influencing the pooled effect size. RESULTS The meta-analysis included data from 53 535 patients and 120 seizure events in a median follow-up of 2 years. The pooled incidence rate of seizures was 68.0 per 100 000 patient-years, significantly higher than the general population rate of 34.6. Generalised tonic-clonic seizures were the most common type reported, although there was a high risk of misclassification for focal seizures with secondary generalisation. Disease progression, longer disease duration, higher disability levels and lower brain volume were associated with a higher incidence of seizures. Particularly, sphingosine-1-phosphate receptor (S1PR) modulators exhibited a 2.45-fold increased risk of seizures compared with placebo or comparators, with a risk difference of 20.5 events per 100 000 patient-years. CONCLUSIONS Patients with MS face a nearly twofold higher seizure risk compared with the general population. This risk appears to be associated not only with disease burden but also with S1PR modulators. Our findings underscore epilepsy as a significant comorbidity in MS and emphasise the necessity for further research into its triggers, preventive measures and treatment strategies.
Collapse
Affiliation(s)
- Valeria Pozzilli
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Lazio, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Shalom Haggiag
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Roma, Italy
| | - Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Fioravante Capone
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Lazio, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology and Neurobiology, Department of Medicine and Surgery, Campus Bio-Medico University, Roma, Lazio, Italy
- Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Carla Tortorella
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Roma, Italy
| | - Claudio Gasperini
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Roma, Italy
| | - Luca Prosperini
- MS Centre, Department of Neurosciences, San Camillo Forlanini Hospital, Roma, Italy
| |
Collapse
|
42
|
Sanna K, Bruno A, Balletta S, Caioli S, Nencini M, Fresegna D, Guadalupi L, Dolcetti E, Azzolini F, Buttari F, Fantozzi R, Borrelli A, Stampanoni Bassi M, Gilio L, Lauritano G, Vanni V, De Vito F, Tartacca A, Mariani F, Rovella V, Musella A, Centonze D, Mandolesi G. Re-emergence of T lymphocyte-mediated synaptopathy in progressive multiple sclerosis. Front Immunol 2024; 15:1416133. [PMID: 38911847 PMCID: PMC11190089 DOI: 10.3389/fimmu.2024.1416133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024] Open
Abstract
Background Secondary progressive multiple sclerosis (SPMS) is defined by the irreversible accumulation of disability following a relapsing-remitting MS (RRMS) course. Despite treatments advances, a reliable tool able to capture the transition from RRMS to SPMS is lacking. A T cell chimeric MS model demonstrated that T cells derived from relapsing patients exacerbate excitatory transmission of central neurons, a synaptotoxic event absent during remitting stages. We hypothesized the re-emergence of T cell synaptotoxicity during SPMS and investigated the synaptoprotective effects of siponimod, a sphingosine 1-phosphate receptor (S1PR) modulator, known to reduce grey matter damage in SPMS patients. Methods Data from healthy controls (HC), SPMS patients, and siponimod-treated SPMS patients were collected. Chimeric experiments were performed incubating human T cells on murine cortico-striatal slices, and recording spontaneous glutamatergic activity from striatal neurons. Homologous chimeric experiments were executed incubating EAE mice T cells with siponimod and specific S1PR agonists or antagonists to identify the receptor involved in siponimod-mediated synaptic recovery. Results SPMS patient-derived T cells significantly increased the striatal excitatory synaptic transmission (n=40 synapses) compared to HC T cells (n=55 synapses), mimicking the glutamatergic alterations observed in active RRMS-T cells. Siponimod treatment rescued SPMS T cells synaptotoxicity (n=51 synapses). Homologous chimeric experiments highlighted S1P5R involvement in the siponimod's protective effects. Conclusion Transition from RRMS to SPMS involves the reappearance of T cell-mediated synaptotoxicity. Siponimod counteracts T cell-induced excitotoxicity, emphasizing the significance of inflammatory synaptopathy in progressive MS and its potential as a promising pharmacological target.
Collapse
Affiliation(s)
- Krizia Sanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Antonio Bruno
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Sara Balletta
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Silvia Caioli
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Monica Nencini
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Diego Fresegna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Ettore Dolcetti
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Federica Azzolini
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Fabio Buttari
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Roberta Fantozzi
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Angela Borrelli
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Mario Stampanoni Bassi
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Luana Gilio
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Gianluca Lauritano
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Valentina Vanni
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
| | - Francesca De Vito
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Alice Tartacca
- Ph.D. Program in Neuroscience, Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Fabrizio Mariani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Valentina Rovella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| | - Diego Centonze
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy
- Unit of Neurology, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, Pozzilli, IS, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Roma, Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, Rome, Italy
| |
Collapse
|
43
|
Nowak-Kiczmer M, Niedziela N, Czuba ZP, Sowa P, Wierzbicki K, Lubczyński M, Adamczyk-Sowa M. Assessment of serum inflammatory parameters in RRMS and SPMS patients. Neurol Res 2024; 46:495-504. [PMID: 38697017 DOI: 10.1080/01616412.2024.2337503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 03/26/2024] [Indexed: 05/04/2024]
Abstract
OBJECTIVES Multiple sclerosis (MS) is a chronic autoimmune inflammatory disease. Patients with relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) differ in their responses to treatment; therefore, the correct diagnosis of the particular type of MS is crucial, and biomarkers that can differentiate between the forms of MS need to be identified. The aim of this study was to compare the levels of inflammatory parameters in serum samples from patients with RRMS and SPMS. METHODS The study group consisted of 60 patients with diagnosed MS. The patients were divided into RRMS and SPMS groups. In the RRMS patients, the usage of disease-modifying treatment was included in our analysis. The serum levels of inflammatory parameters were evaluated. RESULTS The serum levels of BAFF, gp130 and osteopontin were significantly higher in SPMS patients than in RRMS patients. The serum levels of BAFF correlated with age in both RRMS and SPMS patients. The serum levels of MMP-2 were significantly higher in RRMS patients than in SPMS patients and correlated with the number of past relapses. The serum levels of IL-32 were significantly higher in RRMS treatment-naïve patients than in RRMS patients treated with disease-modifying therapy. DISCUSSION Significant differences were found in BAFF, gp130, MMP-2 and osteopontin levels between RRMS and SPMS patients. Serum IL-32 levels were statistically lower in RRMS patients treated with disease-modifying therapy than in treatment-naïve patients.
Collapse
Affiliation(s)
- Maria Nowak-Kiczmer
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Natalia Niedziela
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Zenon P Czuba
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Paweł Sowa
- Department of Otorhinolaryngology and Oncological Laryngology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Krzysztof Wierzbicki
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Michał Lubczyński
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Monika Adamczyk-Sowa
- Department of Neurology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|
44
|
Yang X, Yan Y, Liu S, Wang Z, Feng X. Potential adverse events associated with sphingosine-1-phosphate (S1P) receptor modulators in patients with multiple sclerosis: an analysis of the FDA adverse event reporting system (FAERS) database. Front Pharmacol 2024; 15:1376494. [PMID: 38846098 PMCID: PMC11153721 DOI: 10.3389/fphar.2024.1376494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/06/2024] [Indexed: 06/09/2024] Open
Abstract
Objective Sphingosine-1-phosphate receptor (S1PR) modulators have recently attracted increasing attention for the treatment of multiple sclerosis (MS). Despite their preference in the clinic, multiple adverse events (AEs) continue to be reported every year. This study aimed to investigate the potential AEs as well as related important medical events (IMEs) signal associated with S1PR modulators, including fingolimod, siponimod and ozanimod in a real-world study using the FDA Adverse Event Reporting System (FAERS) database. Methods All data were collected from the FAERS database, spanning from the fourth quarter of 2010(2010Q4) to the second quarter of 2023 (2023Q2). Potential AE and IME signals of S1PR modulators were identified based on a disproportionality analysis using the reporting odds ratio (ROR), proportional reporting ratio (PRR), and the bayesian confidence propagation neural network of information components (IC). Results Overall, 276,436 reports of fingolimod, 20,972 reports of siponimod and 10,742 reports of ozanimod were analyzed from the FAERS database. Among reports, females were more prone to develop AEs (73.71% for females vs. 23.21% for males), and more than 50% of patients suffered from AEs were between 18 and 64 years. Subsequently, we investigated the top 20 AEs associated with the signal strength of S1PR modulators at the preferred term (PT) level, and identified 31 (8 vs. 11 vs. 12, respectively) unlabeled risk signals such as thrombosis, uterine disorder and reproductive system and breast disorders. Furthermore, we discovered that the S1PR modulator reported variations in the possible IMEs, and that the IMEs associated with ocular events were reported frequently. It's interesting to note that infection and malignancy are prominent signals with both fingolimod and siponimod in the top 20 PTs related to mortality reports. Conclusion The present investigation highlights the possible safety risks associated with S1PR modulators. The majority of AEs are generally consistent with previous studies and are mentioned in the prescribing instructions, however, several unexpected AE signals have also been observed. Ozanimod showed the lowest signal intensity and a better safety profile than the other S1PR modulators. Due to the short marketing time of drugs and the limitations of spontaneous reporting database, further research is required to identify potential AEs related to S1PR modulators.
Collapse
Affiliation(s)
| | | | | | - Zhiqing Wang
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Xia Feng
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
45
|
Sriwastava S, Elkhooly M, Amatya S, Shrestha K, Kagzi Y, Bhatia D, Gupta R, Jaiswal S, Lisak RP. Recent advances in the treatment of primary and secondary progressive Multiple Sclerosis. J Neuroimmunol 2024; 390:578315. [PMID: 38554666 DOI: 10.1016/j.jneuroim.2024.578315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 01/26/2024] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND The article highlights upcoming potential treatments, which target different phases of inflammation and offer remyelinating strategies as well as direct and indirect neuroprotective and oligodendrocyte protective effects, providing a hopeful outlook for patients with primary and secondary progressive multiple sclerosis (PPMS and SPMS). OBJECTIVES The review aims to identify potential treatments and ongoing clinical trials for PPMS and SPMS, and compare their mechanisms of action, efficacy, and side effects with current treatments. METHODS We reviewed ongoing clinical trials for PPMS and SPMS on the NIH website, as well as articles from PubMed, Embase, and clinicaltrails.gov since 2010. RESULTS BTKIs like, tolebrutinib, and fenebrutinib are being explored as potential PMS treatments. Vidofludimus calcium, an orally available treatment, has shown a reduction of active and new MRI lesions. Other treatments like simvastatin, N-acetylcysteine (NAC), and alpha-lipoic acid are being explored for their antioxidant properties. AHSCT and mesenchymal stem cell therapy are experimental options for younger patients with high inflammatory activity. CONCLUSIONS SPMS and PPMS are being studied for new treatments and future trials should consider combination therapies targeting inflammation, demyelination, and neuronal death, as the pathogenesis of PMS involves complex factors.
Collapse
Affiliation(s)
- Shitiz Sriwastava
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA.
| | - Mahmoud Elkhooly
- Department of Neurology, Southern Illinois university, Springfield, IL, USA; Department of Neuropsychiatry, Minia University, Egypt
| | - Suban Amatya
- Department of Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Kriti Shrestha
- Department of Medicine, Patan Academy of Health Sciences, Kathmandu, Nepal
| | - Yusuf Kagzi
- Mahatma Gandhi Memorial Medical College, Indore, India
| | - Dipika Bhatia
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA
| | - Rajesh Gupta
- Division of Multiple Sclerosis and Neuroimmunology Department of Neurology, McGovern Medical School (UT Health), University of Texas Health Science Center at Houston, Houston, TX,USA
| | - Shruti Jaiswal
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Robert P Lisak
- Department of Neurology, Wayne state University, Detroit, MI, USA
| |
Collapse
|
46
|
Stojsavljević A, Jagodić J, Pavlović S, Dinčić E, Kuveljić J, Manojlović D, Živković M. Essential trace element levels in multiple sclerosis: Bridging demographic and clinical gaps, assessing the need for supplementation. J Trace Elem Med Biol 2024; 83:127421. [PMID: 38452433 DOI: 10.1016/j.jtemb.2024.127421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic demyelinating disorder intricately linked to perturbations in trace element levels. While previous studies have explored circulating trace elements in a limited sample, understanding the impact of demographic and clinical variables on the elemental profile within a larger cohort remains elusive. METHODS This study aimed to evaluate essential trace elements (Cr, Mn, Co, Cu, Zn, and Se) in the sera of 215 MS patients compared to a meticulously matched control group of 100 individuals with similar gender and age. Our main objective was to identify potential variations in elemental profiles based on demographic and clinical parameters among MS patients, elucidating the prospective relevance of supplementing specific essential trace elements. RESULTS Data indicated a significant decrease in serum levels of Mn, Co, Zn, and Se, and an increase in Cr in MS patients compared to controls. These trace elements not only discriminated between MS patients and controls but also exhibited distinctive capabilities among demographic subgroups. Gender, smoking habits, and age strata (20-40 years and 41-60 years) revealed discernible variations in elemental profiles between MS patients and their control counterparts. Se demonstrated the singular ability to stratify cases of extreme MS severity, mild relapsing-remitting MS (RRMS) and highly severe secondary progressive MS (SPMS). In contrast, Co significantly differentiated RRMS from primary progressive MS (PPMS), while Cu significantly differentiated SPMS from PPMS. Additionally, Cu showed a negative correlation with MSSS, while Mn and Zn showed a positive correlation with EDSS. CONCLUSION These findings underscore a substantive deficiency in Mn, Co, Zn, and Se in the MS cohort, supporting targeted supplementation with these trace elements. This study provides a comprehensive understanding of the intricate relationship between essential trace elements and MS, paving the way for further research into personalized nutritional interventions for this complex neurological disorder.
Collapse
Affiliation(s)
| | - Jovana Jagodić
- University of Belgrade - Faculty of Chemistry, Belgrade, Serbia
| | - Slađan Pavlović
- Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Evica Dinčić
- Military Medical Academy, Clinic for Neurology, Belgrade, Serbia; University of Defense in Belgrade, Serbia
| | - Jovana Kuveljić
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| | | | - Maja Živković
- VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, Laboratory for Radiobiology and Molecular Genetics, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
47
|
Saadh MJ, Ahmed HM, Alani ZK, Al Zuhairi RAH, Almarhoon ZM, Ahmad H, Ubaid M, Alwan NH. The Role of Gut-derived Short-Chain Fatty Acids in Multiple Sclerosis. Neuromolecular Med 2024; 26:14. [PMID: 38630350 DOI: 10.1007/s12017-024-08783-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Multiple sclerosis (MS) is a chronic condition affecting the central nervous system (CNS), where the interplay of genetic and environmental factors influences its pathophysiology, triggering immune responses and instigating inflammation. Contemporary research has been notably dedicated to investigating the contributions of gut microbiota and their metabolites in modulating inflammatory reactions within the CNS. Recent recognition of the gut microbiome and dietary patterns as environmental elements impacting MS development emphasizes the potential influence of small, ubiquitous molecules from microbiota, such as short-chain fatty acids (SCFAs). These molecules may serve as vital molecular signals or metabolic substances regulating host cellular metabolism in the intricate interplay between microbiota and the host. A current emphasis lies on optimizing the health-promoting attributes of colonic bacteria to mitigate urinary tract issues through dietary management. This review aims to spotlight recent investigations on the impact of SCFAs on immune cells pivotal in MS, the involvement of gut microbiota and SCFAs in MS development, and the considerable influence of probiotics on gastrointestinal disruptions in MS. Comprehending the gut-CNS connection holds promise for the development of innovative therapeutic approaches, particularly probiotic-based supplements, for managing MS.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan
| | - Hani Moslem Ahmed
- Department of Dental Industry Techniques, Al-Noor University College, Nineveh, Iraq
| | - Zaid Khalid Alani
- College of Health and Medical Technical, Al-Bayan University, Baghdad, Iraq
| | | | - Zainab M Almarhoon
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Hijaz Ahmad
- Section of Mathematics, International Telematic University Uninettuno, Corso Vittorio Emanuele II, 39, 00186, Rome, Italy.
- Center for Applied Mathematics and Bioinformatics, Gulf University for Science and Technology, Mubarak Al-Abdullah, Kuwait.
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| | - Mohammed Ubaid
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | |
Collapse
|
48
|
Cordano C, Werneburg S, Abdelhak A, Bennett DJ, Beaudry-Richard A, Duncan GJ, Oertel FC, Boscardin WJ, Yiu HH, Jabassini N, Merritt L, Nocera S, Sin JH, Samana IP, Condor Montes SY, Ananth K, Bischof A, Nourbakhsh B, Hauser SL, Cree BAC, Emery B, Schafer DP, Chan JR, Green AJ. Synaptic injury in the inner plexiform layer of the retina is associated with progression in multiple sclerosis. Cell Rep Med 2024; 5:101490. [PMID: 38574736 PMCID: PMC11031420 DOI: 10.1016/j.xcrm.2024.101490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 02/01/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024]
Abstract
While neurodegeneration underlies the pathological basis for permanent disability in multiple sclerosis (MS), predictive biomarkers for progression are lacking. Using an animal model of chronic MS, we find that synaptic injury precedes neuronal loss and identify thinning of the inner plexiform layer (IPL) as an early feature of inflammatory demyelination-prior to symptom onset. As neuronal domains are anatomically segregated in the retina and can be monitored longitudinally, we hypothesize that thinning of the IPL could represent a biomarker for progression in MS. Leveraging our dataset with over 800 participants enrolled for more than 12 years, we find that IPL atrophy directly precedes progression and propose that synaptic loss is predictive of functional decline. Using a blood proteome-wide analysis, we demonstrate a strong correlation between demyelination, glial activation, and synapse loss independent of neuroaxonal injury. In summary, monitoring synaptic injury is a biologically relevant approach that reflects a potential driver of progression.
Collapse
Affiliation(s)
- Christian Cordano
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA; Department of Neurology, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Sebastian Werneburg
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; Department of Ophthalmology & Visual Sciences, Michigan Neuroscience Institute, University of Michigan - Michigan Medicine, Ann Arbor, MI, USA
| | - Ahmed Abdelhak
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel J Bennett
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Alexandra Beaudry-Richard
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Greg J Duncan
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Frederike C Oertel
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - W John Boscardin
- Department of Biostatistics, University of California, San Francisco, San Francisco, CA, USA
| | - Hao H Yiu
- Department of Biology, University of Maryland, College Park, MD, USA
| | - Nora Jabassini
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Lauren Merritt
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Sonia Nocera
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Jung H Sin
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Isaac P Samana
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Shivany Y Condor Montes
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Kirtana Ananth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Antje Bischof
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bardia Nourbakhsh
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Stephen L Hauser
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce A C Cree
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Ben Emery
- Jungers Center for Neurosciences Research, Department of Neurology, Oregon Health & Science University, Portland, OR, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jonah R Chan
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| | - Ari J Green
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Kassoussi A, Zahaf A, Hutteau-Hamel T, Mattern C, Schumacher M, Bobé P, Traiffort E. The Smoothened agonist SAG Modulates the Male and Female Peripheral Immune Systems Differently in an Immune Model of Central Nervous System Demyelination. Cells 2024; 13:676. [PMID: 38667291 PMCID: PMC11048857 DOI: 10.3390/cells13080676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Both Hedgehog and androgen signaling pathways are known to promote myelin regeneration in the central nervous system. Remarkably, the combined administration of agonists of each pathway revealed their functional cooperation towards higher regeneration in demyelination models in males. Since multiple sclerosis, the most common demyelinating disease, predominates in women, and androgen effects were reported to diverge according to sex, it seemed essential to assess the existence of such cooperation in females. Here, we developed an intranasal formulation containing the Hedgehog signaling agonist SAG, either alone or in combination with testosterone. We show that SAG promotes myelin regeneration and presumably a pro-regenerative phenotype of microglia, thus mimicking the effects previously observed in males. However, unlike in males, the combined molecules failed to cooperate in the demyelinated females, as shown by the level of functional improvement observed. Consistent with this observation, SAG administered in the absence of testosterone amplified peripheral inflammation by presumably activating NK cells and thus counteracting a testosterone-induced reduction in Th17 cells when the molecules were combined. Altogether, the data uncover a sex-dependent effect of the Hedgehog signaling agonist SAG on the peripheral innate immune system that conditions its ability to cooperate or not with androgens in the context of demyelination.
Collapse
Affiliation(s)
| | - Amina Zahaf
- U1195 Inserm, Paris-Saclay University, 94270 Le Kremlin-Bicêtre, France
| | | | | | | | - Pierre Bobé
- UMR996 Inserm, Paris-Saclay University, 91400 Saclay, France (P.B.)
| | | |
Collapse
|
50
|
Desu HL, Sawicka KM, Wuerch E, Kitchin V, Quandt JA. A rapid review of differences in cerebrospinal neurofilament light levels in clinical subtypes of progressive multiple sclerosis. Front Neurol 2024; 15:1382468. [PMID: 38654736 PMCID: PMC11035744 DOI: 10.3389/fneur.2024.1382468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Background Multiple sclerosis (MS) is divided into three clinical phenotypes: relapsing-remitting MS (RRMS), secondary progressive MS (SPMS), and primary progressive MS (PPMS). It is unknown to what extent SPMS and PPMS pathophysiology share inflammatory or neurodegenerative pathological processes. Cerebrospinal (CSF) neurofilament light (NfL) has been broadly studied in different MS phenotypes and is a candidate biomarker for comparing MS subtypes. Research question Are CSF NfL levels different among clinical subtypes of progressive MS? Methods A search strategy identifying original research investigating fluid neurodegenerative biomarkers in progressive forms of MS between 2010 and 2022 was applied to Medline. Identified articles underwent title and abstract screen and full text review against pre-specified criteria. Data abstraction was limited to studies that measured NfL levels in the CSF. Reported statistical comparisons of NfL levels between clinical phenotypes were abstracted qualitatively. Results 18 studies that focused on investigating direct comparisons of CSF NfL from people with MS were included in the final report. We found NfL levels were typically reported to be higher in relapsing and progressive MS compared to healthy controls. Notably, higher NfL levels were not clearly associated with progressive MS subtypes when compared to relapsing MS, and there was no observed difference in NfL levels between PPMS and SPMS in articles that separately assessed these phenotypes. Conclusion CSF NfL levels distinguish individuals with MS from healthy controls but do not differentiate MS subtypes. Broad biological phenotyping is needed to overcome limitations of current clinical phenotyping and improve biomarker translatability to decision-making in the clinic.
Collapse
Affiliation(s)
- Haritha L. Desu
- Neuroimmunology Unit, Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montreal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montreal, QC, Canada
| | - Katherine M. Sawicka
- Child Health Evaluative Sciences Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medicine, Division of Neurology, University of Toronto, Toronto, ON, Canada
- Institute of Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Emily Wuerch
- Hotchkiss Brain Institute and the Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Vanessa Kitchin
- University of British Columbia Library, Vancouver, BC, Canada
| | - Jacqueline A. Quandt
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|