1
|
Chauhan R, Dande S, Hood DB, Chirwa SS, Langston MA, Grady SK, Dojcsak L, Tabatabai M, Wilus D, Valdez RB, Al-Hamdan MZ, Im W, McCallister M, Alcendor DJ, Mouton CP, Ramesh A. Particulate matter 2.5 (PM 2.5) - associated cognitive impairment and morbidity in humans and animal models: a systematic review. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2025; 28:233-263. [PMID: 39827081 DOI: 10.1080/10937404.2025.2450354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Particulate matter with an aerodynamic diameter of less than 2.5 µm (PM2.5) is one of the criteria air pollutants that (1) serve as an essential carrier of airborne toxicants arising from combustion-related events including emissions from industries, automobiles, and wildfires and (2) play an important role in transient to long-lasting cognitive dysfunction as well as several other neurological disorders. A systematic review was conducted to address differences in study design and various biochemical and molecular markers employed to elucidate neurological disorders in PM2.5 -exposed humans and animal models. Out of 340,068 scientific publications screened from 7 databases, 312 studies were identified that targeted the relationship between exposure to PM2.5 and cognitive dysfunction. Equivocal evidence was identified from pre-clinical (animal model) and human studies that PM2.5 exposure contributes to dementia, Parkinson disease, multiple sclerosis, stroke, depression, autism spectrum disorder, attention deficit hyperactivity disorder, and neurodevelopment. In addition, there was substantial evidence from human studies that PM2.5 also was associated with Alzheimer's disease, anxiety, neuropathy, and brain tumors. The role of exposome in characterizing neurobehavioral anomalies and opportunities available to leverage the neuroexposome initiative for conducting longitudinal studies is discussed. Our review also provided some areas that warrant consideration, one of which is unraveling the role of microbiome, and the other role of climate change in PM2.5 exposure-induced neurological disorders.
Collapse
Affiliation(s)
- Ritu Chauhan
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Susmitha Dande
- Department of Family and Community Medicine, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Darryl B Hood
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Sanika S Chirwa
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Michael A Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Stephen K Grady
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Levente Dojcsak
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, TN, USA
| | - Mohammad Tabatabai
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Derek Wilus
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - R Burciaga Valdez
- Agency for Healthcare Research and Quality, Department of Health and Human Services, Washington, DC, USA
| | - Mohammad Z Al-Hamdan
- National Center for Computational Hydroscience and Engineering (NCCHE) and Department of Civil Engineering and Department of Geology and Geological Engineering, School of Engineering, University of Mississippi, Oxford, MS, USA
| | - Wansoo Im
- Department of Public Health, School of Global Health, Meharry Medical College, Nashville, TN, USA
| | - Monique McCallister
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN, USA
| | - Donald J Alcendor
- Department of Microbiology, Immunology and Physiology, Center for AIDS Health Disparities Research, School of Medicine, Meharry Medical College, Nashville, TN, USA
| | - Charles P Mouton
- Department of Family Medicine, John Sealy School of Medicine, The University of Texas Medical Branch, Galveston, TX, USA
| | - Aramandla Ramesh
- Department of Biochemistry, Cancer Biology, Neuroscience & Toxicology, School of Medicine, Meharry Medical College, Nashville, TN, USA
| |
Collapse
|
2
|
Foong YC, Chan OKL, Hannaford A, Rudaks LI, Ranta A, Bridge F, Shaw C. Climate change and neurology: A survey of neurologists in Australia and New Zealand. J Neurol Sci 2025; 472:123481. [PMID: 40179623 DOI: 10.1016/j.jns.2025.123481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/04/2025] [Accepted: 03/26/2025] [Indexed: 04/05/2025]
Abstract
OBJECTIVE This study aimed to assess the perceptions of neurologists in Australia and New Zealand regarding climate change and its impact on neurological practice. METHODS Members of the Australian and New Zealand Association of Neurologists were surveyed gathering demographic information and views on climate change and its impact on clinical practice. A composite score was generated based on five key climate change-related questions. Linear regression was used to examine associations between demographic factors and the composite score. RESULTS A total of 190 neurologists among 994 ANZAN members (19.1 %) completed the survey. Of these 94.7 % agreed that climate change is happening, and 81.1 % believed it impacts their patients' health. However, only 32.1 % felt comfortable initiating conversations about climate change. The majority of respondents perceived a moderate impact of climate change on patients' mental health, ability to exercise and multiple sclerosis symptomatology, and a small to moderate impact on migraines, emerging neuroinfectious disease and ability to access transport. Female neurologists had a higher composite score, whilst age did not independently predict the composite score. CONCLUSIONS Neurologists are concerned about climate change and its impact on their patients, but the majority are uncomfortable raising this in routine clinical care. Our findings support the need for more education for neurologists on strategies to mitigate the effects of climate change for patients with neurological disease.
Collapse
Affiliation(s)
- Yi Chao Foong
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Menzies Institute of Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Royal Hobart Hospital, Hobart, Tasmania, Australia.
| | - Owen Ka Lung Chan
- Department of Neurology, St Vincent's Hospital Sydney, Sydney, Australia; University of New South Wales, Sydney, Australia
| | - Andrew Hannaford
- Brain and Nerve Research Centre, Concord Clinical School, University of Sydney, Concord Hospital, Sydney, NSW, Australia
| | - Laura Ivete Rudaks
- Neurology Department and Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney, NSW, Australia; Faculty of Health and Medicine, University of Sydney, Sydney, NSW, Australia; Clinical Genetics Unit, Royal North Shore Hospital, Sydney, NSW, Australia; Genomics and Inherited Disease Program, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Anna Ranta
- Department of Medicine, University of Otago, Wellington, New Zealand; Department of Neurology, Wellington Hospital, Wellington, New Zealand
| | - Francesca Bridge
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia; Department of Neurology, Alfred Health, Melbourne, Australia
| | - Cameron Shaw
- Deakin University, Geelong, Australia; University Hospital Geelong, Geelong, Australia
| |
Collapse
|
3
|
Kalenik S, Zaczek A, Rodacka A. Air Pollution-Induced Neurotoxicity: The Relationship Between Air Pollution, Epigenetic Changes, and Neurological Disorders. Int J Mol Sci 2025; 26:3402. [PMID: 40244238 PMCID: PMC11989335 DOI: 10.3390/ijms26073402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/18/2025] Open
Abstract
Air pollution is a major global health threat, responsible for over 8 million deaths in 2021, including 700,000 fatalities among children under the age of five. It is currently the second leading risk factor for mortality worldwide. Key pollutants, such as particulate matter (PM2.5, PM10), ozone, sulfur dioxide, nitrogen oxides, and carbon monoxide, have significant adverse effects on human health, contributing to respiratory and cardiovascular diseases, as well as neurodevelopmental and neurodegenerative disorders. Among these, particulate matter poses the most significant threat due to its highly complex mixture of organic and inorganic compounds with diverse sizes, compositions, and origins. Additionally, it can penetrate deeply into tissues and cross the blood-brain barrier, causing neurotoxicity which contributes to the development of neurodegenerative diseases. Although the link between air pollution and neurological disorders is well documented, the precise mechanisms and their sequence remain unclear. Beyond causing oxidative stress, inflammation, and excitotoxicity, studies suggest that air pollution induces epigenetic changes. These epigenetic alterations may affect the expression of genes involved in stress responses, neuroprotection, and synaptic plasticity. Understanding the relationship between neurological disorders and epigenetic changes induced by specific air pollutants could aid in the early detection and monitoring of central nervous system diseases.
Collapse
Affiliation(s)
- Sebastian Kalenik
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 21/23 Jana Matejki Street, 90-237 Lodz, Poland
| | - Agnieszka Zaczek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| | - Aleksandra Rodacka
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 141/143 Pomorska Street, 90-236 Lodz, Poland; (S.K.); (A.Z.)
| |
Collapse
|
4
|
Ting J, Schweitzer D, Lansbury N. Practise as you preach: climate stewardship in healthcare integrating top-down and bottom-up approaches with clinician as positive role models for the community. Intern Med J 2025; 55:547-549. [PMID: 40177914 DOI: 10.1111/imj.70047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/07/2025] [Indexed: 04/05/2025]
Affiliation(s)
- Joseph Ting
- School of Public Health and Social Work, Queensland University of Technology, Brisbane, Queensland, Australia
- Emergency Medicine and Neurology, Mater Hospital Brisbane, South Brisbane, Australia
| | - Daniel Schweitzer
- Emergency Medicine and Neurology, Mater Hospital Brisbane, South Brisbane, Australia
| | - Nina Lansbury
- Public Health (Planetary Health), School of Public Health, Brisbane, Queensland, Australia
- Division Head, Planetary Health and Health Protection, UQ School of Public Health, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Gulcebi MI, Leddy S, Behl K, Dijk DJ, Marder E, Maslin M, Mavrogianni A, Tipton M, Werring DJ, Sisodiya SM. Imperatives and co-benefits of research into climate change and neurological disease. Nat Rev Neurol 2025; 21:216-228. [PMID: 39833457 DOI: 10.1038/s41582-024-01055-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2024] [Indexed: 01/22/2025]
Abstract
Evidence suggests that anthropogenic climate change is accelerating and is affecting human health globally. Despite urgent calls to address health effects in the context of the additional challenges of environmental degradation, biodiversity loss and ageing populations, the effects of climate change on specific health conditions are still poorly understood. Neurological diseases contribute substantially to the global burden of disease, and the possible direct and indirect consequences of climate change for people with these conditions are a cause for concern. Unaccustomed temperature extremes can impair the systems of resilience of the brain, thereby exacerbating or increasing susceptibility to neurological disease. In this Perspective, we explore how changing weather patterns resulting from climate change affect sleep - an essential restorative human brain activity, the quality of which is important for people with neurological diseases. We also consider the pervasive and complex influences of climate change on two common neurological conditions: stroke and epilepsy. We highlight the urgent need for research into the mechanisms underlying the effects of climate change on the brain in health and disease. We also discuss how neurologists can respond constructively to the climate crisis by raising awareness and promoting mitigation measures and research - actions that will bring widespread co-benefits.
Collapse
Affiliation(s)
- Medine I Gulcebi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
- Department of Medical Pharmacology, Marmara University School of Medicine, Istanbul, Turkey
| | - Sara Leddy
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | | | - Derk-Jan Dijk
- Surrey Sleep Research Centre, University of Surrey, Guildford, UK
- Care Research and Technology Centre, UK Dementia Research Institute at Imperial College London and the University of Surrey, Guildford, UK
| | - Eve Marder
- Biology Department and Volen Center, Brandeis University, Waltham, MA, USA
| | - Mark Maslin
- Department of Geography, University College London, London, UK
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Anna Mavrogianni
- Institute for Environmental Design and Engineering, Bartlett School of Environment, Energy and Resources, Bartlett Faculty of the Built Environment, University College London, London, UK
| | - Michael Tipton
- Extreme Environments Laboratory, University of Portsmouth, Portsmouth, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK.
| |
Collapse
|
6
|
Delaney SW, Stegmuller A, Mork D, Mock L, Bell ML, Gill TM, Braun D, Zanobetti A. Extreme Heat and Hospitalization Among Older Persons With Alzheimer Disease and Related Dementias. JAMA Intern Med 2025; 185:412-421. [PMID: 39899291 PMCID: PMC11791774 DOI: 10.1001/jamainternmed.2024.7719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/22/2024] [Indexed: 02/04/2025]
Abstract
Importance As US society ages and the climate changes, extreme outdoor heat may exacerbate the health burden of Alzheimer disease and related dementias (ADRD), but where, when, and among whom extreme heat may increase hospitalizations with ADRD remains understudied. Objective To investigate the association between extreme heat and the risk of hospitalization with ADRD, and to explore how associations differ across climates and population subgroups. Design, Setting, and Participants Population-based cohort study, using a time-stratified case-crossover design, of Medicare fee-for-service (Part A) claims from 2000 to 2018 among beneficiaries aged 65 years or older in the contiguous US; time-stratified case-crossover design implemented with distributed lag nonlinear models using conditional logistic regression. Data were analyzed from October to November 2024. Exposures Daily maximum heat index converted to percentiles of climate-specific warm season heat index distributions. Main Outcomes and Measures The main outcome was each beneficiary's first hospitalization with an ADRD diagnosis code, and other measures were county-level climates (arid, continental, temperate, or tropical). Results The sample included 3 329 977 beneficiaries (2 126 290 [63.9%] female, 33 887 [1.0%] Asian, 354 771 [10.7%] Black, 61 515 [1.8%] Hispanic, 2 831 391 [85.0%] White, and 891 815 [26.8%] dual eligible for Medicaid). The odds ratio (OR) of hospitalization with ADRD comparing days in the 99th vs 50th percentile of the heat index distribution was 1.02 (95% CI, 1.01-1.02), corresponding to 0.8 (95% CI, 0.5-1.1) additional hospitalizations with ADRD per 1000 beneficiaries. Results suggest extreme heat associations persist for 3 days beyond the initial day. The cumulative OR of hospitalization with ADRD after 4 days of continuous exposure to heat indexes at the 99th vs 50th percentile was 1.04 (95% CI, 1.03-1.04), or 1.7 (95% CI, 1.3-2.0) additional hospitalizations with ADRD per 1000 beneficiaries. Extrapolating these estimates to the 6.7 million adults currently living with ADRD suggests that each day of extreme heat could contribute to at least 5360 added hospitalizations with ADRD nationwide. Effects estimates were similar in temperate and continental climates. Arid and tropical climate estimates were somewhat similar but more uncertain. OR point estimates for hospitalization from 4 days of continuous extreme heat exposure for beneficiaries identifying as Asian (OR, 1.09; 95% CI, 1.02-1.17), Black (OR, 1.07; 95% CI, 1.05-1.10), and Hispanic (OR, 1.08; 95% CI, 1.03-1.13), were 2.6 to 3.2 times larger than for White beneficiaries (OR, 1.03; 95% CI, 1.02-1.04). Conclusions and Relevance This study found that extreme heat may pose a growing threat to older adults living with ADRD. This threat may be larger among Asian, Black, and Hispanic racial and ethnic groups. Clinicians should consider counseling patients living with ADRD on extreme heat risks, and policymakers should devise risk mitigation programs.
Collapse
Affiliation(s)
- Scott W. Delaney
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Angela Stegmuller
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Daniel Mork
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Lauren Mock
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Michelle L. Bell
- School of the Environment, Yale University, New Haven, Connecticut
- School of Health Policy and Management, College of Health Sciences, Korea University, Seoul, Republic of Korea
| | - Thomas M. Gill
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Danielle Braun
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Department of Data Science, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Antonella Zanobetti
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
7
|
Zheng L, Su B, Cui FP, Li D, Ma Y, Xing M, Tang L, Wang J, Tian Y, Zheng X. Long-Term Exposure to PM 2.5 Constituents, Genetic Susceptibility, and Incident Dementia: A Prospective Cohort Study among 0.2 Million Older Adults. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4493-4504. [PMID: 39998422 DOI: 10.1021/acs.est.4c08188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Fine particulate matter, known as PM2.5, is recognized as a risk factor for dementia. However, the specific linkage between PM2.5 constituents and dementia is not well understood. We conducted a cohort of 217,336 participants of the UK Biobank to explore the association of long-term exposure to PM2.5 constituents with all-cause dementia, Alzheimer's disease (AD), and vascular dementia. We estimated PM2.5 constituents based on residential addresses by an evaluation model and used time-varying Cox models and Quantile g-computation models to assess the effects of individual constituents and their mixtures. Genetic susceptibility to dementia was assessed using a polygenic risk score, and its multiplicative and additive interactions with PM2.5 constituents were analyzed. Our results showed that black carbon (BC), ammonium (NH4+), organic matter (OM), and sulfate (SO42-) were positively associated with all-cause dementia, while BC and OM were linked to AD, with BC being the most influential. The combined effect of PM2.5 constituents and genetic risk was stronger than their individual effect. This study offers new insights into the association between PM2.5 constituents and dementia, especially those from fuel combustion and automobile exhaust, and highlights the need for effective prevention strategies.
Collapse
Affiliation(s)
- Lei Zheng
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Binbin Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, China
| | - Fei-Peng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Dankang Li
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Meiqi Xing
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, No. 13 Hangkong Road, Wuhan 430030, China
| | - Xiaoying Zheng
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, No. 31, Beijige-3, Dongcheng District, Beijing 100730, China
| |
Collapse
|
8
|
Castillo F, Taboun O, Farag Alla J, Yankova K, Hanneman K. Imaging Climate-Related Environmental Exposures: Impact and Opportunity. Can Assoc Radiol J 2025:8465371251322762. [PMID: 40019143 DOI: 10.1177/08465371251322762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025] Open
Abstract
Climate change is the most important challenge of this century. Global surface temperature is continuously rising to new record highs, adversely affecting the health of the planet and humans. The purpose of this article is to review the impact of climate related environmental exposures on human health, healthcare delivery, and medical imaging and explore the potential to leverage medical imaging as a non-invasive tool to advance our understanding of climate related health effects. Radiology departments and healthcare systems must focus on building resilience to the effects of climate change while ensuring that the delivery of care is environmentally sustainable. Further research is needed to refine our understanding of the effects of climate change on human health and to forecast the expected changes in the demand for healthcare and radiology services.
Collapse
Affiliation(s)
- Felipe Castillo
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, Toronto, ON, Canada
| | - Omar Taboun
- Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - John Farag Alla
- Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | | | - Kate Hanneman
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- University Medical Imaging Toronto, Joint Department of Medical Imaging, Toronto, ON, Canada
| |
Collapse
|
9
|
Jiang L, Shao M, Song C, Zhou L, Nie W, Yu H, Wang S, Liu Y, Yu L. The Role of Epigenetic Mechanisms in the Development of PM 2.5-Induced Cognitive Impairment. TOXICS 2025; 13:119. [PMID: 39997934 PMCID: PMC11861554 DOI: 10.3390/toxics13020119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/26/2025]
Abstract
PM2.5 is fine particulate matter with a diameter of less than 2.5 μm. Recent evidence has shown that exposure to PM2.5 markedly elevates the risk of neurodegenerative diseases, neurodevelopmental disorders, and cardiovascular diseases, which may culminate in cognitive impairment. Nevertheless, the precise mechanisms through which PM2.5 affects cognitive function are unclear. Recent studies have demonstrated that PM2.5-induced epigenetic alterations are associated with the development of cognitive impairment. Epigenetic alterations include modifications to DNA methylation, histone modifications, and non-coding RNAs. The underlying mechanisms of epigenetic alterations are related to inflammation, synaptic dysfunction, cardiovascular factors, and alterations in neuronal structure and function. This review reports the latest findings on the relationship between PM2.5-induced epigenetic alterations and the development of cognitive disorders, offering novel insights into the cognitive effects of air pollution.
Collapse
Affiliation(s)
- Lishan Jiang
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Mingxia Shao
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Chao Song
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Li Zhou
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Wenke Nie
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Hang Yu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Siqi Wang
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
| | - Yongping Liu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| | - Li Yu
- Neurologic Disorders and Regenerative Repair Laboratory, Shandong Second Medical University, Weifang 261053, China; (L.J.); (M.S.); (C.S.); (L.Z.); (W.N.); (H.Y.); (S.W.)
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang 261053, China
| |
Collapse
|
10
|
Lin Q, Gao Y, Liu Y, Huang S, Su Y, Luo W, Shi C, Yang Y, Lin H, Su X, Zhang Z. Heat wave exposure during pregnancy and neurodevelopmental delay in young children: A birth cohort study. ENVIRONMENTAL RESEARCH 2025; 266:120541. [PMID: 39643258 DOI: 10.1016/j.envres.2024.120541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/16/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
INTRODUCTION Gestation is a critical period for fetal brain development, and extreme heat exposure during this stage may have adverse impact on neurodevelopment in children. However, current evidence is scarce. METHODS We examined the associations between maternal exposure to heat wave during pregnancy and neurodevelopmental delay in young children in a birth cohort study of 67,453 child-mother pairs from Foshan, China. Specifically, temperature data (spatial resolution: 0.0625° × 0.0625°) were assigned to study participants based on residential addresses. Then, heat wave events were defined by combining the intensity (temperature thresholds: ≥90th, 92.5th or 95th percentile) and duration (number of consecutive days: 2, 3 or 4 days). Neurodevelopmental status was assessed using a five-domain scale by trained medical professionals. Logistic regression was used to investigate the associations between gestational heat wave exposure and neurodevelopmental delay in children. RESULTS We found that exposure to heat wave during early and late pregnancy was associated with increased risks of neurodevelopmental delay in children. By contrast, the results for mid-pregnancy heat wave exposure were mixed. The observed associations remained stable in a group of sensitivity analyses. CONCLUSIONS Our study adds some suggestive evidence that prenatal exposure to heat wave may have detrimental impact on children's neurodevelopment. More investigations are needed to verify our findings.
Collapse
Affiliation(s)
- Qingmei Lin
- Foshan Women and Children Hospital Affiliated to Guangdong Medical University, Foshan, 528315, China
| | - Yonggui Gao
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuewei Liu
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Saijun Huang
- Foshan Women and Children Hospital Affiliated to Guangdong Medical University, Foshan, 528315, China
| | - Yang Su
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Weidong Luo
- Foshan Women and Children Hospital Affiliated to Guangdong Medical University, Foshan, 528315, China
| | - Chunxiang Shi
- Meteorological Data Laboratory, National Meteorological Information Center, Beijing, 100081, China
| | - Yin Yang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xi Su
- Foshan Women and Children Hospital Affiliated to Guangdong Medical University, Foshan, 528315, China.
| | - Zilong Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou, 510080, China.
| |
Collapse
|
11
|
Guo C, Wu D, Yang J, Lu X, Chen XY, Ma J, Lin C, Lau AKH, Jin Y, Li R, He S. Ambient air pollution and Alzheimer's disease and other dementias: a global study between 1990 and 2019. BMC Public Health 2025; 25:371. [PMID: 39881284 PMCID: PMC11781054 DOI: 10.1186/s12889-025-21600-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/23/2025] [Indexed: 01/31/2025] Open
Abstract
BACKGROUND Emerging research found air pollution may be associated with incident Alzheimer's disease (AD) and other dementias. However, few studies have examined these associations at the global scale. This study aimed to assess the dynamic associations between ambient air pollution and the burden of AD and other dementias worldwide. METHODS This study synthesised 149 countries/territories between 1990 and 2019. These data include age-standardised mortality rate (ASMR) and disability-adjusted life-years (DALYs) of AD and other dementias, ambient air pollution (fine particulate matter [PM2.5], NO2 and O3 concentration) and a series of covariates were from various source. Average annual percentage changes (AAPCs) were calculated to investigate the temporal variations. Linear mixed models were adopted to assess the associations with single- and multi-pollutant separately. The associations between air pollution changes and the AD and other dementias were also examined using linear regression models. Stratified analyses by Global North-South divide and human development index were performed to explore the potential inequity in air pollution impacts. RESULTS During 1990-2019, the global ASMR, DALYs and O3 increased by 0.11%, 0.09%, and 0.17% per year, respectively. In contrast, PM2.5 and NO2 decreased by 0.33% and 0.14% per year, respectively. Each 10 µg/m3 increase in PM2.5 was associated with a 0.118 (95% confidence interval [CI]: 0.060 - 0.175) higher ASMR and 0.966 (95%CI: 0.321 - 1.611) higher DALYs after adjusting for all the covariates. The ASMR increased by 0.112 and the DALYs increased by 1.068 for each 10 µg/m3 increase in O3. The NO2-dementia associations were relatively weak. Stronger O3-dementia associations were found in the Global South than those in the Global North. CONCLUSIONS The burden of dementia is expected to increase globally, given the continuously expansion of the ageing population. Air pollution was found to be significantly associated with a higher burden of AD and dementia. As a persistent challenge in urban cities, air pollution demands strict regulatory control.
Collapse
Affiliation(s)
- Cui Guo
- Department of Urban Planning and Design, the University of Hong Kong, 8/F, Knowles Building, Pokfulam Road, Hong Kong SAR, China.
| | - Dongze Wu
- Department of Rheumatology and Immunology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China.
| | - Jun Yang
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Xingcheng Lu
- Department of Geography and Resource Management, the Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiang Yan Chen
- Division of Science, Engineering, and Health Studies, College of Professional and Continuing Education, Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Jun Ma
- Department of Urban Planning and Design, the University of Hong Kong, 8/F, Knowles Building, Pokfulam Road, Hong Kong SAR, China
| | - Changqing Lin
- Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei , China
| | - Alexis K H Lau
- Department of Civil and Environmental Engineering, the Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Yingzhao Jin
- Department of Medicine and Therapeutics, The Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Ruiyun Li
- Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 211166, Nanjing, China.
| | - Shenjing He
- Department of Urban Planning and Design, the University of Hong Kong, 8/F, Knowles Building, Pokfulam Road, Hong Kong SAR, China
| |
Collapse
|
12
|
Tong Y, Chen Y, Yu Y, Wang F, Lin L, He G, Chen L, Zhuang X, Du W, Mo Y. Study on the relationship among typhoon, weather change and acute ischemic stroke in southern Zhejiang Province of China. BMC Neurol 2025; 25:14. [PMID: 39780064 PMCID: PMC11707993 DOI: 10.1186/s12883-024-04012-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025] Open
Abstract
OBJECTIVE This study aimed to investigate the relationship between the unique weather change and acute ischemic stroke (AIS) in the southern Zhejiang Province of China and to provide evidence for better predicting and preventing stroke. METHODS We retrospectively collected 14,996 ischemic stroke patients data and weather data from January 2019 to December 2021 in the southern Zhejiang Province of China. The correlation and risk between meteorological factors and the number of AIS daily cases were calculated. Wilcoxon rank sum test was used to calculate the difference in the number of cases between typhoon-affected and non-affected periods. A prediction model obeying Poisson regression was established, and the accuracy of the correlation factors in predicting the number of cases was verified. RESULTS In southern Zhejiang Province, the number of AIS was the highest in summer and the lowest in spring. Stroke onset is associated with temperature, water vapor pressure and typhoons (P < 0.05). The presence of typhoon (RR 0.882; 95% CI 0.834 to 0.933, P < 0.001) was a protective factor, while maximum temperature (RR 1.021; 95% CI 1.008 to 1.033, P = 0.043) and the water vapor pressure (RR 1.036; 95% CI 1.006 to 1.067, P = 0.036) were risk factors. The occurrence under the influence of typhoons was lower than that without the influence of typhoons (P < 0.05). The prediction model can predict the occurrence of stroke. CONCLUSION An association was observed between the occurrence of AIS, temperature, water vapor pressure and typhoon in the southern Zhejiang Province of China. Typhoon occurrence was associated with fewer cases. The predictive model may help high-risk populations prevent diseases early and assist hospitals in allocating resources promptly.
Collapse
Affiliation(s)
- Yao Tong
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China
| | - Yating Chen
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China
| | - Yulong Yu
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Gucheng Street, Linhai, Zhejiang, China
| | - Faxing Wang
- Department of Anesthesiology, The Sixth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, China
| | - Lina Lin
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Gucheng Street, Linhai, Zhejiang, China
| | - Gangjian He
- Wenzhou Meteorological Bureau, Wenzhou, Zhejiang, China
| | - Lingyang Chen
- Department of Anesthesiology, Taizhou Hospital of Zhejiang Province, 150 Ximen Street, Gucheng Street, Linhai, Zhejiang, China
| | - Xiuxiu Zhuang
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China
| | - Wenwen Du
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China
| | - Yunchang Mo
- Department of Anesthesiology, The First Affiliated Hospital of Wenzhou Medical University, Ouhai District, Wenzhou, Zhejiang, China.
| |
Collapse
|
13
|
Sharma R, Schinasi LH, Lee BK, Weuve J, Weisskopf MG, Sheffield PE, Clougherty JE. Air Pollution and Temperature in Seizures and Epilepsy: A Scoping Review of Epidemiological Studies. Curr Environ Health Rep 2024; 12:1. [PMID: 39656387 PMCID: PMC11631820 DOI: 10.1007/s40572-024-00466-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF THE REVIEW Seizures and epilepsy can be debilitating neurological conditions and have few known causes. Emerging evidence has highlighted the potential contribution of environmental exposures to the etiology of these conditions, possibly manifesting via neuroinflammation and increased oxidative stress in the brain. We conducted a scoping review of epidemiological literature linking air pollution and temperature exposures with incidence and acute aggravation of seizures and epilepsy. We systematically searched PubMed, Embase, Web of Science, and APA PsycINFO databases for peer-reviewed journal articles published in English from inception to February 7, 2024. RECENT FINDINGS We identified a total of 34 studies: 16 examined air pollution exposure, 12 ambient temperature, and six examined both air pollution and ambient temperature. Most studies were conducted in Asia (China, Taiwan, South Korea, and Japan). Nearly all studies retrospectively derived acute (daily average), ambient, and postnatal exposure estimates from ground monitoring systems and ascertained epilepsy cases or seizure events through record linkage with medical records, health registry systems, or insurance claims data. Commonly assessed exposures were particulate matter (PM2.5, PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), carbon monoxide (CO), ozone (O3), and daily mean ambient temperature. Overall, the main findings across studies lacked consistency, with mixed results reported for the associations of air pollutants and temperature metrics with both seizure incidence and acute aggravations of epilepsy.
Collapse
Affiliation(s)
- Rachit Sharma
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA.
| | - Leah H Schinasi
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
- Urban Health Collaborative, Drexel University, Philadelphia, PA, 19104, USA
| | - Brian K Lee
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
| | - Jennifer Weuve
- Boston University School of Public Health, Boston University, Boston, MA, 02118, USA
| | - Marc G Weisskopf
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, 02115, USA
| | | | - Jane E Clougherty
- Dornsife School of Public Health, Drexel University, Philadelphia, PA, 19104, USA
- Urban Health Collaborative, Drexel University, Philadelphia, PA, 19104, USA
| |
Collapse
|
14
|
Filippini T, Costanzini S, Chiari A, Urbano T, Despini F, Tondelli M, Bedin R, Zamboni G, Teggi S, Vinceti M. Light at night exposure and risk of dementia conversion from mild cognitive impairment in a Northern Italy population. Int J Health Geogr 2024; 23:25. [PMID: 39580439 PMCID: PMC11585219 DOI: 10.1186/s12942-024-00384-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 11/19/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND A few studies have suggested that light at night (LAN) exposure, i.e. lighting during night hours, may increase dementia risk. We evaluated such association in a cohort of subjects diagnosed with mild cognitive impairment (MCI). METHODS We recruited study participants between 2008 and 2014 at the Cognitive Neurology Clinic of Modena Hospital, Northern Italy and followed them for conversion to dementia up to 2021. We collected their residential history and we assessed outdoor artificial LAN exposure at subjects' residences using satellite imagery data available from the Visible Infrared Imaging Radiometer Suite (VIIRS) for the period 2014-2022. We assessed the relation between LAN exposure and cerebrospinal fluid biomarkers. We used a Cox-proportional hazards model to compute the hazard ratio (HR) of dementia with 95% confidence interval (CI) according to increasing LAN exposure through linear, categorical, and non-linear restricted-cubic spline models, adjusting by relevant confounders. RESULTS Out of 53 recruited subjects, 34 converted to dementia of any type and 26 converted to Alzheimer's dementia. Higher levels of LAN were positively associated with biomarkers of tau pathology, as well as with lower concentrations of amyloid β1-42 assessed at baseline. LAN exposure was positively associated with dementia conversion using linear regression model (HR 1.04, 95% CI 1.01-1.07 for 1-unit increase). Using as reference the lowest tertile, subjects at both intermediate and highest tertiles of LAN exposure showed increased risk of dementia conversion (HRs 2.53, 95% CI 0.99-6.50, and 3.61, 95% CI 1.34-9.74). In spline regression analysis, the risk linearly increased for conversion to both any dementia and Alzheimer's dementia above 30 nW/cm2/sr of LAN exposure. Adding potential confounders including traffic-related particulate matter, smoking status, chronic diseases, and apolipoprotein E status to the multivariable model, or removing cases with dementia onset within the first year of follow-up did not substantially alter the results. CONCLUSION Our findings suggest that outdoor artificial LAN may increase dementia conversion, especially above 30 nW/cm2/sr, although the limited sample size suggests caution in the interpretation of the results, to be confirmed in larger investigations.
Collapse
Affiliation(s)
- Tommaso Filippini
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy.
- School of Public Health, University of California Berkeley, Berkeley, CA, USA.
| | - Sofia Costanzini
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, University Hospital of Modena, Modena, Italy
| | - Teresa Urbano
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
| | - Francesca Despini
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Tondelli
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Roberta Bedin
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Giovanna Zamboni
- Neurology Unit, University Hospital of Modena, Modena, Italy
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Sergio Teggi
- DIEF - Department of Engineering 'Enzo Ferrari', University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Vinceti
- Environmental, Genetic and Nutritional Epidemiology Research Center (CREAGEN), Department of Biomedical, Metabolic and Neural Sciences, Section of Public Health, University of Modena and Reggio Emilia, 287 Via Campi, Modena, 41125, Italy
- Department of Epidemiology, Boston University School of Public Health, Boston, MA, USA
| |
Collapse
|
15
|
Sethi Y, Agarwal P, Vora V, Gosavi S. Impact of Air Pollution on Neurological and Psychiatric Health. Arch Med Res 2024; 55:103063. [PMID: 39111273 DOI: 10.1016/j.arcmed.2024.103063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 07/24/2024] [Indexed: 11/22/2024]
Abstract
Air pollution is a critical global issue with extensive implications beyond respiratory health, significantly affecting neurological and psychiatric disorders. Emerging evidence establishes a link between exposure to fine particulate matter (PM < 2.5 µm), sulfur dioxide (SO2), and nitrogen dioxide (NO2) and heightened risks of dementia, Alzheimer's disease, schizophrenia, ADHD, stroke, Parkinson's disease, and multiple sclerosis. Mechanistic pathways include neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and blood-brain barrier disruption. Epidemiological studies indicate increased susceptibility among urban residents, particularly men, middle-aged individuals, and married persons, to the mental health impacts of air pollution. Additionally, socioeconomic factors, such as GDP per capita, access to health resources, green spaces, and sports facilities, modulate these health outcomes. Addressing this public health challenge necessitates stricter industrial emission controls, sustainable agricultural practices, promotion of cleaner energy sources, and incorporation of pollution exposure history into clinical assessments. Enhanced public awareness and interdisciplinary research are vital for mitigating the detrimental effects of air pollution on neurological and psychiatric health, ultimately striving for a cleaner and healthier environment for future generations.
Collapse
|
16
|
Caldarelli M, Rio P, Giambra V, Palucci I, Gasbarrini A, Gambassi G, Cianci R. SARS-CoV-2 and Environmental Changes: The Perfect Storm. Curr Issues Mol Biol 2024; 46:11835-11852. [PMID: 39590297 PMCID: PMC11592541 DOI: 10.3390/cimb46110703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on the global economy. It also provided insights into how the looming global climate crisis might be addressed, as there are several similarities between the challenges proposed by COVID-19 and those expected from the coming climate emergency. COVID-19 is an immediate health threat, but climate change represents a more gradual and insidious risk that will lead to long-term consequences for human health. Research shows that climate change, air pollution and the pandemics have a negative impact on health. Recent studies show that COVID-19 mortality increases with climate extremes. The goal of our review is to analyze the clinical findings of COVID-19 and how they are affected by the climate change, while also providing insight into the emergence of new variants and their ability to evade the immune system. We selected and synthesized data from primary studies, reviews, meta-analyses, and systematic reviews. Selection was based on rigorous methodological and relevance criteria. Indeed, a new variant of SARS-CoV-2, named JN.1, has emerged as the dominant, first in the United States and then worldwide; the variant has specific mutations in its spike proteins that increase its transmissibility. According to the World Health Organization (WHO), JN.1 is currently the most reported variant of interest (VOI), having been identified in 132 countries. We highlight the link between climate change and pandemics, emphasizing the need for global action, targeted medical approaches and scientific innovation.
Collapse
Affiliation(s)
- Mario Caldarelli
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Pierluigi Rio
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Vincenzo Giambra
- Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies (ISBReMIT), Fondazione IRCCS “Casa Sollievo della Sofferenza”, 71013 San Giovanni Rotondo, Italy;
| | - Ivana Palucci
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie-Sezione di Microbiologia, Catholic University of Sacred Heart, 00168 Rome, Italy
| | - Antonio Gasbarrini
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Giovanni Gambassi
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| | - Rossella Cianci
- Department of Translational Medicine and Surgery, Catholic University of Sacred Heart, 00168 Rome, Italy; (M.C.); (P.R.); (A.G.); (G.G.)
- Fondazione Policlinico Universitario A. Gemelli, Istituto di Ricerca e Cura a Carattere Scientifico (IRCCS), 00168 Rome, Italy;
| |
Collapse
|
17
|
Hu JL, Wu JY, Xu S, Qian SY, Jiang C, Zheng GQ. Post-marketing safety concerns with rimegepant based on a pharmacovigilance study. J Headache Pain 2024; 25:169. [PMID: 39375581 PMCID: PMC11460227 DOI: 10.1186/s10194-024-01858-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE This study aimed to comprehensively assess the safety of rimegepant administration in real-world clinical settings. METHODS Data from the Food and Drug Administration Adverse Event Reporting System (FAERS) spanning the second quarter of 2020 through the first quarter of 2023 were retrospectively analyzed in this pharmacovigilance investigation. This study focuses on employing subgroup analysis to monitor rimegepant drug safety. Descriptive analysis was employed to examine clinical characteristics and concomitant medication of adverse event reports associated with rimegepant, including report season, reporter country, sex, age, weight, dose, and frequency, onset time, et al. Correlation analysis, including techniques such as violin plots, was utilized to explore relationships between clinical characteristics in greater detail. Additionally, four disproportionality analysis methods were applied to assess adverse event signals associated with rimegepant. RESULTS A total of 5,416,969 adverse event reports extracted from the FAERS database, 10, 194 adverse events were identified as the "primary suspect" (PS) drug attributed to rimegepant. Rimegepant-associated adverse events involved 27 System Organ Classes (SOCs), and the significant SOC meeting all four detection criteria was "general disorders and administration site conditions" (SOC: 10018065). Additionally, new significant adverse events were discovered, including "vomiting projectile" (PT: 10047708), "eructation" (PT: 10015137), "motion sickness" (PT: 10027990), "feeling drunk" (PT: 10016330), "reaction to food additive" (PT: 10037977), etc. Descriptive analysis indicated that the majority of reporters were consumers (88.1%), with most reports involving female patients. Significant differences were observed between female and male patients across age categories, and the concomitant use of rimegepant with other medications was complex. CONCLUSION This study has preliminarily identified potential new adverse events associated with rimegepant, such as those involving the gastrointestinal system, nervous system, and immune system, which warrant further research to determine their exact mechanisms and risk factors. Additionally, significant differences in rimegepant-related adverse events were observed across different age groups and sexes, and the complexity of concomitant medication use should be given special attention in clinical practice.
Collapse
Affiliation(s)
- Jia-Ling Hu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Jing-Ying Wu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shan Xu
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Shi-Yan Qian
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Cheng Jiang
- Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Guo-Qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Mehta MM, Johnson AE, Ratnakaran B, Seritan I, Seritan AL. Climate Change and Aging: Implications for Psychiatric Care. Curr Psychiatry Rep 2024; 26:499-513. [PMID: 39210192 PMCID: PMC11384634 DOI: 10.1007/s11920-024-01525-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/28/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE OF REVIEW We reviewed recent evidence regarding the impact of climate change (specifically, high ambient temperatures, heatwaves, weather-related disasters, and air pollution) on older adults' mental health. We also summarized evidence regarding other medical problems that can occur in aging adults in connection with climate change, resulting in psychiatric manifestations or influencing psychopharmacological management. RECENT FINDINGS Older adults can experience anxiety, depressive, and/or posttraumatic stress symptoms, as well as sleep disturbances in the aftermath of climate disasters. Cognitive deficits may occur with exposure to air pollutants, heatwaves, or post-disaster. Individuals with major neurocognitive disorders and/or preexisting psychiatric illness have a higher risk of psychiatric hospitalizations after exposure to high temperatures and air pollution. There is a growing body of research regarding psychiatric clinical presentations associated with climate change in older adults. However, there is a paucity of evidence on management strategies. Future research should investigate culturally appropriate, cost-effective psychosocial and pharmacological interventions.
Collapse
Affiliation(s)
- Michelle M Mehta
- White Earth Tribal Behavioral Health, P.O. Box 300, White Earth, MN, 56591, USA
| | - Anne E Johnson
- Department of Psychiatry, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd. #9070, Dallas, TX, 75930, USA
| | - Badr Ratnakaran
- Department of Psychiatry and Behavioral Medicine, Carilion Clinic-Virginia Tech Carilion School of Medicine, 2017 S. Jefferson St., Roanoke, VA, 24014, USA
| | - Ioana Seritan
- American Birding Association, Colorado Springs, CO, 80934, USA
| | - Andreea L Seritan
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, 675 18th St., San Francisco, CA, 94107, USA.
- UCSF Weill Institute for the Neurosciences, San Francisco, USA.
| |
Collapse
|
19
|
McNicholas OC, Jiménez-Jiménez D, Oliveira JFA, Ferguson L, Bellampalli R, McLaughlin C, Chowdhury FA, Martins Custodio H, Moloney P, Mavrogianni A, Diehl B, Sisodiya SM. The influence of temperature and genomic variation on intracranial EEG measures in people with epilepsy. Brain Commun 2024; 6:fcae269. [PMID: 39258258 PMCID: PMC11383581 DOI: 10.1093/braincomms/fcae269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/26/2024] [Accepted: 08/11/2024] [Indexed: 09/12/2024] Open
Abstract
Heatwaves have serious impacts on human health and constitute a key health concern from anthropogenic climate change. People have different individual tolerance for heatwaves or unaccustomed temperatures. Those with epilepsy may be particularly affected by temperature as the electroclinical hallmarks of brain excitability in epilepsy (inter-ictal epileptiform discharges and seizures) are influenced by a range of physiological and non-physiological conditions. Heatwaves are becoming more common and may affect brain excitability. Leveraging spontaneous heatwaves during periods of intracranial EEG recording in participants with epilepsy in a non-air-conditioned telemetry unit at the National Hospital for Neurology and Neurosurgery in London from May to August 2015-22, we examined the impact of heatwaves on brain excitability. In London, a heatwave is defined as three or more consecutive days with daily maximum temperatures ≥28°C. For each participant, we counted inter-ictal epileptiform discharges using four 10-min segments within, and outside of, heatwaves during periods of intracranial EEG recording. Additionally, we counted all clinical and subclinical seizures within, and outside of, heatwaves. We searched for causal rare genetic variants and calculated the epilepsy PRS. Nine participants were included in the study (six men, three women), median age 30 years (range 24-39). During heatwaves, there was a significant increase in the number of inter-ictal epileptiform discharges in three participants. Five participants had more seizures during the heatwave period, and as a group, there were significantly more seizures during the heatwaves. Genetic data, available for eight participants, showed none had known rare, genetically-determined epilepsies, whilst all had high polygenic risk scores for epilepsy. For some people with epilepsy, and not just those with known, rare, temperature-sensitive epilepsies, there is an association between heatwaves and increased brain excitability. These preliminary data require further validation and exploration, as they raise concerns about the impact of heatwaves directly on brain health.
Collapse
Affiliation(s)
- Olivia C McNicholas
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Diego Jiménez-Jiménez
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Joana F A Oliveira
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Lauren Ferguson
- Institute for Environmental Design and Engineering, The Bartlett School of Environment, Energy and Resources, University College London, London WC1H 0NN, UK
- Department for Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Ravishankara Bellampalli
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Charlotte McLaughlin
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Fahmida Amin Chowdhury
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Helena Martins Custodio
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Patrick Moloney
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| | - Anna Mavrogianni
- Institute for Environmental Design and Engineering, The Bartlett School of Environment, Energy and Resources, University College London, London WC1H 0NN, UK
| | - Beate Diehl
- Sir Jules Thorn Telemetry Unit, National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- Chalfont Centre for Epilepsy, Buckinghamshire SL9 0RJ, UK
| |
Collapse
|
20
|
Zhang S, Li X, Zhang L, Zhang Z, Li X, Xing Y, Wenger JC, Long X, Bao Z, Qi X, Han Y, Prévôt ASH, Cao J, Chen Y. Disease types and pathogenic mechanisms induced by PM 2.5 in five human systems: An analysis using omics and human disease databases. ENVIRONMENT INTERNATIONAL 2024; 190:108863. [PMID: 38959566 DOI: 10.1016/j.envint.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/05/2024]
Abstract
Atmospheric fine particulate matter (PM2.5) can harm various systems in the human body. Due to limitations in the current understanding of epidemiology and toxicology, the disease types and pathogenic mechanisms induced by PM2.5 in various human systems remain unclear. In this study, the disease types induced by PM2.5 in the respiratory, circulatory, endocrine, and female and male urogenital systems have been investigated and the pathogenic mechanisms identified at molecular level. The results reveal that PM2.5 is highly likely to induce pulmonary emphysema, reperfusion injury, malignant thyroid neoplasm, ovarian endometriosis, and nephritis in each of the above systems respectively. The most important co-existing gene, cellular component, biological process, molecular function, and pathway in the five systems targeted by PM2.5 are Fos proto-oncogene (FOS), extracellular matrix, urogenital system development, extracellular matrix structural constituent conferring tensile strength, and ferroptosis respectively. Differentially expressed genes that are significantly and uniquely targeted by PM2.5 in each system are BTG2 (respiratory), BIRC5 (circulatory), NFE2L2 (endocrine), TBK1 (female urogenital) and STAT1 (male urogenital). Important disease-related cellular components, biological processes, and molecular functions are specifically induced by PM2.5. For example, response to wounding, blood vessel morphogenesis, body morphogenesis, negative regulation of response to endoplasmic reticulum stress, and response to type I interferon are the top uniquely existing biological processes in each system respectively. PM2.5 mainly acts on key disease-related pathways such as the PD-L1 expression and PD-1 checkpoint pathway in cancer (respiratory), cell cycle (circulatory), apoptosis (endocrine), antigen processing and presentation (female urogenital), and neuroactive ligand-receptor interaction (male urogenital). This study provides a novel analysis strategy for elucidating PM2.5-related disease types and is an important supplement to epidemiological investigation. It clarifies the risks of PM2.5 exposure, elucidates the pathogenic mechanisms, and provides scientific support for promoting the precise prevention and treatment of PM2.5-related diseases.
Collapse
Affiliation(s)
- Shumin Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xiaomeng Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China; Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Liru Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Zhengliang Zhang
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Xuan Li
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China; School of Public Health, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - Yan Xing
- Department of Laboratory Medicine, North Sichuan Medical College, Nanchong 637000, Sichuan, China
| | - John C Wenger
- School of Chemistry and Environmental Research Institute, University College Cork, Cork, Ireland
| | - Xin Long
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Zhier Bao
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Xin Qi
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - Yan Han
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
| | - André S H Prévôt
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, Villigen, PSI 5232, Switzerland
| | - Junji Cao
- Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Yang Chen
- Research Center for Atmospheric Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China.
| |
Collapse
|
21
|
Feng J, Zhang P, Chen K, Huang P, Liang X, Dong J, Zhu B, Fu Z, Deng T, Zhu L, Chen C, Zhang Y. Soot nanoparticles promote ferroptosis in dopaminergic neurons via alteration of m6A RNA methylation in Parkinson's disease. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134691. [PMID: 38788584 DOI: 10.1016/j.jhazmat.2024.134691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
Abstract
Soot nanoparticles (SNPs) are black carbon prevalent in atmospheric environment with significant impacts on public health, leading to neurodegenerative diseases including development of Parkinson's disease (PD). This study investigated the effects of SNPs exposure on PD symptoms, employing both in vivo and in vitro PD models. In the in vivo experiments, animal behavior assessments showed that SNPs exposure exacerbated motor and cognitive impairments in PD mice. Molecular biology techniques further unveiled that SNPs aggravated degeneration of dopaminergic neurons. In vitro experiments revealed that SNPs exposure intensified ferroptosis of PD cells by increasing reactive oxygen species and iron ion levels, while reducing glutathione levels and mitochondrial membrane potential. Sequencing tests indicated elevated N6-methyladenosine (m6A) alteration of the ferroptosis-related protein, acyl-CoA synthetase long chain family member 4 (ACSL4). This study demonstrates that SNPs may exacerbate the onset and progression of PD by recruiting YTH domain-containing family protein 1 (YTHDF1) protein, enhancing m6A methylation in the ACSL4 5'UTR, amplifying ACSL4 protein expression, and accelerating the ferroptosis process in dopaminergic neurons. These molecular mechanisms underlying SNPs exacerbation of PD development may provide crucial insights for formulating environmental safety regulations and potential therapeutic strategies addressing PD in populations residing in regions with varied air quality.
Collapse
Affiliation(s)
- Jiezhu Feng
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Piao Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Kunlin Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Peiting Huang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Xiaomei Liang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Jiawei Dong
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Baoyu Zhu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Zhongling Fu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Tongtong Deng
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China
| | - Linyan Zhu
- Department of Pharmacology, Medical College, Jinan University, Guangzhou 510632, China.
| | - Chengyu Chen
- College of Natural Resources and Environment, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, South China Agricultural University, Guangzhou, Guangdong 510642, China.
| | - Yuhu Zhang
- School of Medicine, South China University of Technology, Guangzhou 510006, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province 510080, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou 510080, China.
| |
Collapse
|
22
|
Lehmler S, Siehl S, Kjelkenes R, Heukamp J, Westlye LT, Holz N, Nees F. Closing the loop between environment, brain and mental health: how far we might go in real-life assessments? Curr Opin Psychiatry 2024; 37:301-308. [PMID: 38770914 DOI: 10.1097/yco.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
PURPOSE OF REVIEW Environmental factors such as climate, urbanicity, and exposure to nature are becoming increasingly important influencers of mental health. Incorporating data gathered from real-life contexts holds promise to substantially enhance laboratory experiments by providing a more comprehensive understanding of everyday behaviors in natural environments. We provide an up-to-date review of current technological and methodological developments in mental health assessments, neuroimaging and environmental sensing. RECENT FINDINGS Mental health research progressed in recent years towards integrating tools, such as smartphone based mental health assessments or mobile neuroimaging, allowing just-in-time daily assessments. Moreover, they are increasingly enriched by dynamic measurements of the environment, which are already being integrated with mental health assessments. To ensure ecological validity and accuracy it is crucial to capture environmental data with a high spatio-temporal granularity. Simultaneously, as a supplement to experimentally controlled conditions, there is a need for a better understanding of cognition in daily life, particularly regarding our brain's responses in natural settings. SUMMARY The presented overview on the developments and feasibility of "real-life" approaches for mental health and brain research and their potential to identify relationships along the mental health-environment-brain axis informs strategies for real-life individual and dynamic assessments.
Collapse
Affiliation(s)
- Stephan Lehmler
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Sebastian Siehl
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Jannik Heukamp
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Lars Tjelta Westlye
- Department of Psychology, University of Oslo
- Center for Precision Psychiatry, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Nathalie Holz
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Frauke Nees
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
23
|
Palmer KN, Sokola M, Uysal SP, Cooperrider J, Leung AK, Torres-Trejo A, Li Y, Abbatemarco JR. Diagnostic Challenges of Lyme Neuroborreliosis in Inpatient Neurology: A Case Series. Neurohospitalist 2024; 14:301-307. [PMID: 38895010 PMCID: PMC11181985 DOI: 10.1177/19418744241246308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Lyme disease is a multisystem disorder transmitted through the Ixodes tick and is most commonly diagnosed in northeastern and mid-Atlantic states, Wisconsin, and Minnesota, though its disease borders are expanding in the setting of climate change. Approximately 10%-15% of untreated Lyme disease cases will develop neurologic manifestations of Lyme neuroborreliosis (LNB). Due to varying presentations, LNB presents diagnostic challenges and is associated with a delay to treatment. We discuss three cases of LNB admitted to our referral center in a traditionally low-incidence state to highlight clinical pearls in LNB diagnosis. Three patients from low-incidence areas with prior diagnostic evaluations presented in August with neurologic manifestations of radiculoneuritis, cranial neuropathies, and/or lymphocytic meningitis. MRI findings included cranial nerve, nerve root, and leptomeningeal enhancement leading to broad differential diagnoses. Lumbar puncture demonstrated lymphocytic pleocytosis (range 85-753 cells/uL) and elevated protein (87-318 mg/dL). Each patient tested positive for Lyme on two-tiered serum testing and was diagnosed with LNB. All three cases were associated with a delay to health care presentation (mean 20 days) and a delay to diagnosis and treatment (mean 54 days) due to under-recognition and ongoing evaluation. With the geographic expansion of Lyme disease, increasing awareness of LNB manifestations and acquiring detailed travel histories in low-incidence areas is crucial to prompt delivery of care. Clinicians should be aware of two-tiered serum diagnostic requirements and use adjunctive studies such as lumbar puncture and MRI to eliminate other diagnoses. Treatment with an appropriate course of antibiotics leads to robust improvement in neurological symptoms.
Collapse
Affiliation(s)
| | - Maria Sokola
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
| | - Sanem P. Uysal
- Department of Neurology, Cleveland Clinic, Cleveland, OH, USA
| | | | - Anthony K. Leung
- Department of Infectious Disease, Cleveland Clinic Akron General, Akron, OH, USA
| | - Alejandro Torres-Trejo
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yuebing Li
- Neuromuscular Center, Cleveland Clinic, Cleveland, OH, USA
| | - Justin R. Abbatemarco
- Mellen Center for Multiple Sclerosis Treatment and Research, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
24
|
Junck L, Saad A, Andrews B. Neurology and climate change. Lancet Neurol 2024; 23:552-553. [PMID: 38760086 DOI: 10.1016/s1474-4422(24)00144-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 05/19/2024]
Affiliation(s)
- Larry Junck
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.
| | - Ali Saad
- Climate & Health Program, University of Colorado, Denver, CO, USA; Centura Health Physicians Group-Neuroscience and Spine, Denver, CO, USA
| | - Bret Andrews
- Department of Neurology, Kaiser-Permanente Health, Oakland, CA, USA
| |
Collapse
|
25
|
Sisodiya SM, Gulcebi MI, Fortunato F, Mills JD, Haynes E, Bramon E, Chadwick P, Ciccarelli O, David AS, De Meyer K, Fox NC, Davan Wetton J, Koltzenburg M, Kullmann DM, Kurian MA, Manji H, Maslin MA, Matharu M, Montgomery H, Romanello M, Werring DJ, Zhang L, Friston KJ, Hanna MG. Climate change and disorders of the nervous system. Lancet Neurol 2024; 23:636-648. [PMID: 38760101 DOI: 10.1016/s1474-4422(24)00087-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 05/19/2024]
Abstract
Anthropogenic climate change is affecting people's health, including those with neurological and psychiatric diseases. Currently, making inferences about the effect of climate change on neurological and psychiatric diseases is challenging because of an overall sparsity of data, differing study methods, paucity of detail regarding disease subtypes, little consideration of the effect of individual and population genetics, and widely differing geographical locations with the potential for regional influences. However, evidence suggests that the incidence, prevalence, and severity of many nervous system conditions (eg, stroke, neurological infections, and some mental health disorders) can be affected by climate change. The data show broad and complex adverse effects, especially of temperature extremes to which people are unaccustomed and wide diurnal temperature fluctuations. Protective measures might be possible through local forecasting. Few studies project the future effects of climate change on brain health, hindering policy developments. Robust studies on the threats from changing climate for people who have, or are at risk of developing, disorders of the nervous system are urgently needed.
Collapse
Affiliation(s)
- Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK.
| | - Medine I Gulcebi
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - Francesco Fortunato
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - James D Mills
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - Ethan Haynes
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK; Chalfont Centre for Epilepsy, Chalfont-St-Peter, UK
| | - Elvira Bramon
- Division of Psychiatry, University College London, London, UK
| | - Paul Chadwick
- Centre for Behaviour Change, University College London, London, UK
| | - Olga Ciccarelli
- Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK; National Institute of Health Research University College London Hospitals Biomedical Research Centre, London, UK
| | - Anthony S David
- Division of Psychiatry, University College London, London, UK
| | - Kris De Meyer
- UCL Climate Action Unit, University College London, London, UK
| | - Nick C Fox
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of the UK Dementia Research Institute, UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - Martin Koltzenburg
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Dimitri M Kullmann
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Manju A Kurian
- Department of Developmental Neurosciences, Zayed Centre for Research into Rare Disease in Children, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Hadi Manji
- National Hospital for Neurology and Neurosurgery, London, UK
| | - Mark A Maslin
- Department of Geography, University College London, London, UK; Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Manjit Matharu
- Headache and Facial Pain Group, UCL Queen Square Institute of Neurology, UCL and the National Hospital for Neurology and Neurosurgery, London, UK
| | - Hugh Montgomery
- Department of Medicine, University College London, London, UK
| | - Marina Romanello
- Institute for Global Health, University College London, London, UK
| | - David J Werring
- Stroke Research Centre, Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lisa Zhang
- Centre for Behaviour Change, University College London, London, UK
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Michael G Hanna
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK; MRC International Centre for Genomic Medicine in Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
26
|
Bhidayasiri R. Old problems, new solutions: harnessing technology and innovation in Parkinson's disease-evidence and experiences from Thailand. J Neural Transm (Vienna) 2024; 131:721-738. [PMID: 38189972 DOI: 10.1007/s00702-023-02727-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024]
Abstract
The prevalence of Parkinson's disease (PD) is increasing rapidly worldwide, but there are notable inequalities in its distribution and in the availability of healthcare resources across different world regions. Low- and middle-income countries (LMICs), including Thailand, bear the highest burden of PD so there is an urgent need to develop effective solutions that can overcome the many regional challenges associated with delivering high-quality, and equitable care to a diverse population with limited resources. This article describes the evolution of healthcare delivery for PD in Thailand, as a case example of a LMIC. The discussions reflect the author's presentation at the Yoshikuni Mizuno Lectureship Award given during the 8th Asian and Oceanian Parkinson's Disease and Movement Disorders Congress in March 2023 for which he was the 2023 recipient. The specific challenges faced in Thailand are reviewed along with new solutions that have been implemented to improve the knowledge and skills of healthcare professionals nationally, the delivery of care, and the outcomes for PD patients. Technology and innovation have played an important role in this process with many new tools and devices being implemented in clinical practice. Without any realistic prospect of a curative therapy in the near future that could halt the current PD pandemic, it will be necessary to focus on preventative lifestyle strategies that can help reduce the risk of developing PD such as good nutrition (EAT), exercise (MOVE), good sleep hygiene (SLEEP), and minimizing environmental risks (PROTECT), which should be initiated and continued (REPEAT) as early as possible.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, 1873 Rama 4 Road, Bangkok, 10330, Thailand.
- The Academy of Science, The Royal Society of Thailand, Bangkok, 10330, Thailand.
| |
Collapse
|
27
|
Elser H, Kruse CFG, Schwartz BS, Casey JA. The Environment and Headache: a Narrative Review. Curr Environ Health Rep 2024; 11:184-203. [PMID: 38642284 DOI: 10.1007/s40572-024-00449-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/22/2024]
Abstract
PURPOSE OF REVIEW In this narrative review, we summarize the peer-reviewed literature published between 2017 and 2022 that evaluated ambient environmental risk factors for primary headache disorders, which affect more than half of the population globally. Primary headache disorders include migraine, tension-type headache (TTH), and trigeminal and autonomic cephalalgias (TAC). RECENT FINDINGS We identified 17 articles that met the inclusion criteria via PubMed or Google Scholar. Seven studies (41%) relied on data from US populations. The remaining studies were conducted in China, Taiwan, Germany, Ghana, Japan, the Netherlands, South Korea, and Turkey. Air pollution was the most frequently assessed environmental risk factor. Most studies were cross-sectional and focused on all-cause or migraine headaches; one study included TTH, and none included TAC. Short-term exposure to fine particulate matter (PM2.5) was not consistently associated with headache endpoints, but long-term exposure to PM2.5 was associated with migraine headache prevalence and severity across multiple studies. Elevated ambient temperature, changes in weather, oil and gas well exposure, and less natural greenspace, but not noise pollution, were also associated with headache. No studies considered water pollution, metal exposure, ultrafine particulate matter, or wildfire smoke exposure. There is a need for ongoing research focused on headache and the environment. Study designs with the greatest explanatory power may include longitudinal studies that capture the episodic nature of headache and case-crossover analysis, which control for time-invariant individual-level confounders by design. There is also a clear need for research that considers comorbid psychiatric illness and socioeconomic position as powerful modifiers of the effect of the environment on headache.
Collapse
Affiliation(s)
- Holly Elser
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
| | - Caroline F G Kruse
- Department of Neurology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| | - Brian S Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joan A Casey
- Department of Environmental and Occupational Health Sciences, University of Washington School of Public Health, Seattle, WA, USA
| |
Collapse
|
28
|
Giorelli M. Inequalities in the Prevention and Treatment of Alzheimer Disease. Neurol Clin Pract 2024; 14:e200283. [PMID: 38720952 PMCID: PMC11073886 DOI: 10.1212/cpj.0000000000200283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/22/2024] [Indexed: 05/12/2024]
Abstract
Incidence of Alzheimer disease (AD) is going to rise in the next years and to become a health and social emergency. The prevention and the therapeutic management of AD still present unmet needs worldwide. The recent approval of monoclonal antibodies against amyloid β (anti-Aβ mAbs) for AD has increased the level of uncertainty regarding on how such drugs should be administered, to whom, and for how long. Concerns about cost-effectiveness ratios of anti-Aβ mAbs and the need for actual strategies of risk prevention have further dug barriers of inequalities between the national health care systems. Planning research to address questions on the real feasibility of the correct therapeutic management, improving international cooperation on surveillance of risk factors, implementing pathways for timely diagnosis, and effective medical and social support for patients with AD worldwide would be extremely valuable to fight against this upcoming pandemic.
Collapse
|
29
|
Chu L, Chen K, Yang Z, Crowley S, Dubrow R. A unified framework for assessing interaction effects among environmental exposures in epidemiologic studies: A case study on temperature, air pollution, and kidney-related conditions in New York state. ENVIRONMENTAL RESEARCH 2024; 248:118324. [PMID: 38301759 DOI: 10.1016/j.envres.2024.118324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/05/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
BACKGROUND There are various methods to assess interaction effects. However, current methods have limitations, and quantification of interaction effects is rarely performed. This study aimed to develop a unified quantitative framework for assessing interaction effects. METHODS We proposed a novel framework using log-linear models with a product term(s) across the exposures that generates parametric bi-variate association and interaction effect surfaces and allows flexible functional forms for exposures in the interaction term(s). In a case study, we assessed the interaction effects between temperature and air pollution (i.e., PM2.5, NO2, and O3) on risk for kidney-related conditions in New York State (2007-2016) using a case-crossover design with conditional logistic models. Our measures of exposure were the moving averages at lag 0-5 days for air pollution (linear) and daytime mean outdoor wet-bulb globe temperature (WBGT; using a natural cubic spline). RESULTS We derived closed-form expressions for the magnitude of multiplicative interaction effects (the joint relative risk divided by the product of the two conditional relative risks) and their uncertainties. In the case study, we found a Bonferroni-corrected significant multiplicative interaction effect (IE) between outdoor WBGT at the 99th percentile (median as the reference) and (1) PM2.5 (per 5 μg/m3 increase, IE = 1.052; 95 % confidence interval [CI]: 1.019, 1.087) for acute kidney failure and (2) O3 (per 5 ppb increase; IE = 1.022; 95 % CI: 1.008, 1.036) for urolithiasis (the latter being inconclusive based on the sensitivity analysis). CONCLUSIONS Our framework allows different functional forms of exposure variables in the interaction term, quantifies the magnitudes of entire-exposure-range (in addition to discrete exposure level) multiplicative interaction effects and their uncertainties in a categorical or continuous (linear or non-linear) manner, and harmonizes the two-way evaluation of effect modification. The case study underscores co-consideration of heat and air pollution when estimating health burden and designing heat/pollution alert systems.
Collapse
Affiliation(s)
- Lingzhi Chu
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA.
| | - Kai Chen
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA
| | - Zhuoran Yang
- Department of Statistics and Data Science, Yale University, 24 Hillhouse Avenue, New Haven, CT, 06511-6814, USA
| | - Susan Crowley
- Department of Medicine (Nephrology), Yale University School of Medicine, New Haven, CT, 06520, USA; Veterans Administration Health Care System of Connecticut, West Haven, CT, 06516, USA
| | - Robert Dubrow
- Department of Environmental Health Sciences, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA; Yale Center on Climate Change and Health, Yale School of Public Health, 60 College Street, New Haven, CT, 06520-8034, USA
| |
Collapse
|
30
|
Winter SF, Walsh D, Catsman-Berrevoets C, Feigin V, Destrebecq F, Dickson SL, Leonardi M, Hoemberg V, Tassorelli C, Ferretti MT, Dé A, Chadha AS, Lynch C, Bakhtadze S, Saylor D, Hwang S, Rostasy K, Kluger BM, Wright C, Zee PC, Dodick DW, Jaarsma J, Owolabi MO, Zaletel J, Albreht T, Dhamija RK, Helme A, Laurson-Doube J, Amos A, Baingana FK, Baker GA, Sofia F, Galvin O, Hawrot T. National plans and awareness campaigns as priorities for achieving global brain health. Lancet Glob Health 2024; 12:e697-e706. [PMID: 38485433 PMCID: PMC10951964 DOI: 10.1016/s2214-109x(23)00598-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/26/2023] [Accepted: 12/12/2023] [Indexed: 03/19/2024]
Abstract
Neurological conditions are the leading cause of death and disability combined. This public health crisis has become a global priority with the introduction of WHO's Intersectoral Global Action Plan on Epilepsy and Other Neurological Disorders 2022-2031 (IGAP). 18 months after this plan was adopted, global neurology stakeholders, including representatives of the OneNeurology Partnership (a consortium uniting global neurology organisations), take stock and advocate for urgent acceleration of IGAP implementation. Drawing on lessons from relevant global health contexts, this Health Policy identifies two priority IGAP targets to expedite national delivery of the entire 10-year plan: namely, to update national policies and plans, and to create awareness campaigns and advocacy programmes for neurological conditions and brain health. To ensure rapid attainment of the identified priority targets, six strategic drivers are proposed: universal community awareness, integrated neurology approaches, intersectoral governance, regionally coordinated IGAP domestication, lived experience-informed policy making, and neurological mainstreaming (advocating to embed brain health into broader policy agendas). Contextualised with globally emerging IGAP-directed efforts and key considerations for intersectoral policy design, this novel framework provides actionable recommendations for policy makers and IGAP implementation partners. Timely, synergistic pursuit of the six drivers might aid WHO member states in cultivating public awareness and policy structures required for successful intersectoral roll-out of IGAP by 2031, paving the way towards brain health for all.
Collapse
Affiliation(s)
- Sebastian F Winter
- OneNeurology Partnership, Brussels, Belgium; International Bureau for Epilepsy, Washington, DC, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Donna Walsh
- OneNeurology Partnership, Brussels, Belgium; International Bureau for Epilepsy, Washington, DC, USA
| | - Coriene Catsman-Berrevoets
- OneNeurology Partnership, Brussels, Belgium; European Paediatric Neurology Society, Paris, France; Erasmus MC Sophia Children's Hospital, Rotterdam, Netherlands
| | - Valery Feigin
- OneNeurology Partnership, Brussels, Belgium; World Stroke Organization, Geneva, Switzerland; National Institute for Stroke and Applied Neurosciences, Auckland University of Technology, Auckland, New Zealand
| | - Frédéric Destrebecq
- OneNeurology Partnership, Brussels, Belgium; European Brain Council, Brussels, Belgium
| | - Suzanne L Dickson
- OneNeurology Partnership, Brussels, Belgium; European Brain Council, Brussels, Belgium; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Matilde Leonardi
- OneNeurology Partnership, Brussels, Belgium; World Federation for Neurorehabilitation, North Shields, UK; Fondazione IRCCS Istituto Neurologico CarloBesta, Milan, Italy
| | - Volker Hoemberg
- OneNeurology Partnership, Brussels, Belgium; World Federation for Neurorehabilitation, North Shields, UK
| | - Cristina Tassorelli
- OneNeurology Partnership, Brussels, Belgium; International Headache Society, London, UK; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; IRCCS Mondino Foundation, Pavia, Italy
| | - Maria Teresa Ferretti
- OneNeurology Partnership, Brussels, Belgium; Center for Alzheimer Research, Karolinska Institute, Stockholm, Sweden; Women's Brain Project, Bottighofen, Switzerland
| | - Anna Dé
- OneNeurology Partnership, Brussels, Belgium; Women's Brain Project, Bottighofen, Switzerland
| | | | - Chris Lynch
- OneNeurology Partnership, Brussels, Belgium; Alzheimer's Disease International, London, UK
| | - Sophia Bakhtadze
- OneNeurology Partnership, Brussels, Belgium; European Paediatric Neurology Society, Paris, France; Department of Paediatric Neurology, Tbilisi State Medical University, Tbilisi, Georgia
| | - Deanna Saylor
- OneNeurology Partnership, Brussels, Belgium; World Neurology Foundation, New York, NY, USA; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Internal Medicine, University Teaching Hospital, Lusaka, Zambia
| | - Soonmyung Hwang
- OneNeurology Partnership, Brussels, Belgium; World Neurology Foundation, New York, NY, USA
| | - Kevin Rostasy
- OneNeurology Partnership, Brussels, Belgium; European Paediatric Neurology Society, Paris, France; Department of Paediatric Neurology, Children's Hospital Datteln, University of Witten/Herdecke, Witten, Germany
| | - Benzi M Kluger
- OneNeurology Partnership, Brussels, Belgium; International Neuropalliative Care Society, Roseville, MN, USA; Department of Neurology, University of Rochester, Rochester, NY, USA
| | - Claire Wright
- OneNeurology Partnership, Brussels, Belgium; Meningitis Research Foundation, Bristol, UK; Confederation of Meningitis Organisations, Bristol, UK
| | - Phyllis C Zee
- OneNeurology Partnership, Brussels, Belgium; World Sleep Society, Rochester, MN, USA; Department of Neurology, Center for Circadian and Sleep Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - David W Dodick
- OneNeurology Partnership, Brussels, Belgium; International Headache Society Global Patient Advocacy Coalition, London, UK; Mayo Clinic College of Medicine, Phoenix, AZ, USA; Atria Academy of Science and Medicine, New York, NY, USA; American Migraine Foundation, New York, NY, USA; American Brain Foundation, Minneapolis, MN, USA
| | - Joke Jaarsma
- OneNeurology Partnership, Brussels, Belgium; European Federation of Neurological Associations, Brussels, Belgium
| | - Mayowa O Owolabi
- OneNeurology Partnership, Brussels, Belgium; World Federation for Neurorehabilitation, North Shields, UK; Center for Genomic and Precision Medicine, and Neurology Unit, Department of Medicine, College of Medicine, University of Ibadan, Ibadan, Nigeria; African Stroke Organization, Ibadan, Nigeria; Lebanese American University of Beirut, Beirut, Lebanon; Blossom Specialist Medical Center, Ibadan, Nigeria
| | - Jelka Zaletel
- National Institute of Public Health, Ljubljana, Slovenia
| | - Tit Albreht
- National Institute of Public Health, Ljubljana, Slovenia
| | - Rajinder K Dhamija
- OneNeurology Partnership, Brussels, Belgium; World Federation for Neurorehabilitation, North Shields, UK; International Neuropalliative Care Society, Roseville, MN, USA; Institute of Human Behaviour and Allied Sciences, New Delhi, India
| | - Anne Helme
- Multiple Sclerosis International Federation, London, UK
| | | | - Action Amos
- International Bureau for Epilepsy, Washington, DC, USA; International Bureau for Epilepsy African Region, Blantyre, Malawi
| | - Florence K Baingana
- Regional Advisor, Mental Health and Substance Abuse, World Health Organization African Region, Brazzaville, Congo
| | - Gus A Baker
- OneNeurology Partnership, Brussels, Belgium; International Bureau for Epilepsy, Washington, DC, USA
| | - Francesca Sofia
- OneNeurology Partnership, Brussels, Belgium; International Bureau for Epilepsy, Washington, DC, USA
| | - Orla Galvin
- OneNeurology Partnership, Brussels, Belgium; European Federation of Neurological Associations, Brussels, Belgium
| | - Tadeusz Hawrot
- OneNeurology Partnership, Brussels, Belgium; European Federation of Neurological Associations, Brussels, Belgium
| |
Collapse
|
31
|
Liu P, Chen Z, Han S, Xia X, Wang L, Li X. The added effects of cold spells on stroke admissions: Differential effects on ischemic and hemorrhagic stroke. Int J Stroke 2024; 19:217-225. [PMID: 37697456 DOI: 10.1177/17474930231203129] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
BACKGROUND Epidemiological evidence suggests an association between low ambient temperature and stroke risk, but available data are limited particularly on associations with different stroke subtypes. AIMS The aim of this study is to estimate the relationship between cold spells and stroke admissions, including the effect of cold spells on different stroke subtypes (ischemic stroke and intracerebral hemorrhage (ICH)). METHODS A total of 144,405 stroke admissions from the Tianjin Centre for Health and Meteorology Multidisciplinary Innovation in China, covering the period from January 2016 to December 2020, were studied, as well as meteorological and air pollutant data. A generalized additive model with a distributed lag nonlinear model was employed to assess the relationship, considering 12 different definitions of a cold spell based on various temperature thresholds and durations. The analysis controlled for lagged and nonlinear effects of temperature. Analyses were performed on all strokes as well as ischemic stroke and ICH. RESULTS There was a significant increase in stroke admissions during cold spells. Generally, the increased risk during cold spells increased as the temperature threshold decreased, but was not significantly affected by the duration. The optimal model was obtained using the cold-spell definition based on an average daily temperature below the 10th percentile (0.11°C) for 2 or more consecutive days. According to this model, the effect of cold spells on ischemic stroke admissions had a significant lag effect and was long-lasting, with a single-day effect occurring on lag 7d, peaking on lag 13d (relative risk (RR) = 1.05; 95% confidence interval (CI) = 1.02 to 1.09), and lasting until lag 20d. In contrast, the effect on ICH was immediate and short-lived, with the most significant single-day effect occurring on the current day (RR = 1.17; 95% CI = 1.06 to 1.29) and limited within 3 days. 14.15% of stroke cases could be attributed to cold spells, with ICH exhibiting a higher burden than ischemic stroke except for strict temperature threshold definitions. CONCLUSION Cold spells are associated with an increased stroke risk. Different patterns of association were seen for different stroke subtypes. The effect on ischemic stroke had a lag effect and a longer duration, whereas the effect on ICH had an immediate effect and a shorter duration. These findings support the development and improvement of stroke cold-spell early warning systems and highlight the importance of public health interventions to mitigate the adverse health impacts of cold spells.
Collapse
Affiliation(s)
- Peilin Liu
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Zhuangzhuang Chen
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Suqin Han
- Research Institute of Meteorological Science, Tianjin, China
- Tianjin Center for Health and Meteorology Multidisciplinary Innovation, Tianjin, China
| | - Xiaoshuang Xia
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Center for Health and Meteorology Multidisciplinary Innovation, Tianjin, China
| | - Lin Wang
- Tianjin Center for Health and Meteorology Multidisciplinary Innovation, Tianjin, China
- Department of Geriatrics, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin, China
- Tianjin Center for Health and Meteorology Multidisciplinary Innovation, Tianjin, China
| |
Collapse
|
32
|
Cardenas-Iniguez C, Schachner JN, Ip KI, Schertz KE, Gonzalez MR, Abad S, Herting MM. Building towards an adolescent neural urbanome: Expanding environmental measures using linked external data (LED) in the ABCD study. Dev Cogn Neurosci 2024; 65:101338. [PMID: 38195369 PMCID: PMC10837718 DOI: 10.1016/j.dcn.2023.101338] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 01/11/2024] Open
Abstract
Many recent studies have demonstrated that environmental contexts, both social and physical, have an important impact on child and adolescent neural and behavioral development. The adoption of geospatial methods, such as in the Adolescent Brain Cognitive Development (ABCD) Study, has facilitated the exploration of many environmental contexts surrounding participants' residential locations without creating additional burdens for research participants (i.e., youth and families) in neuroscience studies. However, as the number of linked databases increases, developing a framework that considers the various domains related to child and adolescent environments external to their home becomes crucial. Such a framework needs to identify structural contextual factors that may yield inequalities in children's built and natural environments; these differences may, in turn, result in downstream negative effects on children from historically minoritized groups. In this paper, we develop such a framework - which we describe as the "adolescent neural urbanome" - and use it to categorize newly geocoded information incorporated into the ABCD Study by the Linked External Data (LED) Environment & Policy Working Group. We also highlight important relationships between the linked measures and describe possible applications of the Adolescent Neural Urbanome. Finally, we provide a number of recommendations and considerations regarding the responsible use and communication of these data, highlighting the potential harm to historically minoritized groups through their misuse.
Collapse
Affiliation(s)
- Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA.
| | - Jared N Schachner
- Price School of Public Policy, University of Southern California, Los Angeles, CA, USA
| | - Ka I Ip
- Institute of Child Development, University of Minnesota, MN, USA
| | - Kathryn E Schertz
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Marybel R Gonzalez
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Shermaine Abad
- Department of Radiology, University of California, San Diego, CA, USA
| | - Megan M Herting
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
33
|
Sisodiya SM. Hot brain: practical climate change advice for neurologists. Pract Neurol 2024; 24:28-36. [PMID: 37949657 DOI: 10.1136/pn-2023-003777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
'We are called to be architects of the future, not its victims'-Buckminster Fuller People with chronic neurological conditions may be vulnerable to change and less able to manage its demands: neurological diseases are among the most burdensome. Whether climate change has particular effects on specific neurological diseases or not, the known impaired resilience to change affecting people with neurological diseases requires neurologists to have awareness of potential climate impacts and their management. Preparedness should include understanding of general national and local alerts and action systems, and the ability to advise patients about managing extreme weather events, particularly heatwaves, but also floods and cold snaps. At the same time, we need more research into the particular consequences of climate change on specific neurological diseases. Climate change is a serious healthcare issue, requiring the neurological community to respond as it would, or did, to other serious challenges, such as COVID-19. As disease experts, we all have a role to play.
Collapse
Affiliation(s)
- Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, UCL Institute of Neurology, London, UK
| |
Collapse
|
34
|
Hameed S, Karim N, Wasay M, Venketasubramanian N. Emerging Stroke Risk Factors: A Focus on Infectious and Environmental Determinants. J Cardiovasc Dev Dis 2024; 11:19. [PMID: 38248889 PMCID: PMC10816862 DOI: 10.3390/jcdd11010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
This review focuses on emerging risk factors for stroke, including air pollution and climate change, gut microbiota, high altitude, and systemic infection. Up to 14% of all stroke-associated mortality is attributed to air pollution and is more pronounced in developing countries. Fine particulate matter and other air pollutants contribute to an increased stroke risk, and this risk appears to increase with higher levels and duration of exposure. Short term air pollution exposure has also been reported to increase the stroke risk. The gut microbiota is a complex ecosystem of bacteria and other microorganisms that reside in the digestive system and affect multiple body systems. Disruptions in the gut microbiota may contribute to stroke development, possibly by promoting inflammation and atherosclerosis. High altitudes have been associated with erythrocytosis and cerebrovascular sinus thrombosis, but several studies have reported an increased risk of thrombosis and ischemic stroke at high altitudes, typically above 3000 m. Systemic infection, particularly infections caused by viruses and bacteria, can also increase the risk of stroke. The risk seems to be greatest in the days to weeks following the infection, and the pathophysiology is complex. All these emerging risk factors are modifiable, and interventions to address them could potentially reduce stroke incidence.
Collapse
Affiliation(s)
- Sajid Hameed
- Department of Neurology, University of Virginia, Charlottesville, VA 22903, USA;
| | - Nurose Karim
- Department of Neurology, East Carolina University, Greenville, NC 27834, USA;
| | - Mohammad Wasay
- Department of Neurology, Aga Khan University, Karachi 74800, Pakistan;
| | | |
Collapse
|
35
|
Jiang J, Shi K, Hettie KS, Hsu CY, Kung WM. Editorial: Translational advances in Alzheimer's, Parkinson's, and other dementia: molecular mechanisms, biomarkers, diagnosis, and therapies, volume III. Front Aging Neurosci 2024; 15:1352988. [PMID: 38259637 PMCID: PMC10800666 DOI: 10.3389/fnagi.2023.1352988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Affiliation(s)
- Jiehui Jiang
- School of Life Science, Institute of Biomedical Engineering, Shanghai University, Shanghai, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Kenneth S. Hettie
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, United States
- Department of Otolaryngology - Head and Neck Surgery, Molecular Imaging Program at Stanford (MIPS), Stanford University School of Medicine, Stanford, CA, United States
| | - Chih-Yu Hsu
- School of Transportation, Fujian University of Technology, Fuzhou, China
| | - Woon-Man Kung
- Division of Neurosurgery, Department of Surgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- Department of Exercise and Health Promotion, College of Kinesiology and Health, Chinese Culture University, Taipei, Taiwan
| |
Collapse
|
36
|
Blenkinsop S, Wardrope A, Willis J, Sisodiya SM. Climate change: Attitudes and concerns of, and learnings from, people with neurological conditions, carers, and health care professionals. Epilepsia 2024; 65:95-106. [PMID: 37945547 DOI: 10.1111/epi.17824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/12/2023]
Abstract
OBJECTIVE Concern about climate change among the general public is acknowledged by surveys. The health care sector must play its part in reducing greenhouse gas emissions and adapting to a changing climate, which will require the support of its stakeholders including those with epilepsy, who may be especially vulnerable. It is important to understand this community's attitudes and concerns about climate change and societal responses. METHODS A survey was made available to more than 100 000 people among a section of the neurological community (patients, carers, and clinicians), focused on epilepsy. We applied quantitative analysis of Likert scale responses supported by qualitative analyses of free-text questions with crossover analyses to identify consonance and dissonance between the two approaches. RESULTS A small proportion of potential respondents completed the survey; of 126 respondents, 52 had epilepsy and 56 explicitly declared no illness. The survey indicated concern about the impact of climate change on health within this neurological community focused on epilepsy. More than half of respondents considered climate change to have been bad for their health, rising to 68% in a subgroup with a neurological condition; over 80% expected climate change to harm their health in future. Most (>75%) believed that action to reduce greenhouse gas emissions will lead to improved health and well-being. The crossover analysis identified cost and accessibility as significant barriers. SIGNIFICANCE The high level of concern about climate change impacts and positive attitudes toward policies to reduce greenhouse gas emissions provide support for climate action from the epilepsy community. However, if policies are implemented without considering the needs of patients, they risk being exclusionary, worsening inequalities, and further threatening neurological health and well-being.
Collapse
Affiliation(s)
| | - Alistair Wardrope
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
- Department of Neurology, Sheffield Teaching Hospitals National Health Service Foundation Trust, Sheffield, UK
| | - Joseph Willis
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|
37
|
Sherratt S. Hearing Loss and Disorders: The Repercussions of Climate Change. Am J Audiol 2023; 32:793-811. [PMID: 37812783 DOI: 10.1044/2023_aja-23-00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023] Open
Abstract
PURPOSE Climate change is considered to be the greatest threat to human health in the 21st century, and its effects are accelerating. Extensive research has clearly demonstrated its increasing impact across the continuum of health conditions. Despite this, there has been limited attention to the ramifications of climate change on hearing loss and hearing disorders. This lack of consideration is somewhat surprising as the environment itself and its changing nature have a substantial effect on hearing. METHOD Tackling climate change could be the greatest global health opportunity of the 21st century. To address this issue, this tutorial provides a general introduction to climate change and its three major elements (pollution, infectious diseases, and extreme weather events) and their effects on health. The substantial consequences of climate change for the incidence, development, and exacerbation of hearing loss and disorders are clearly described and detailed. CONCLUSIONS The challenge of responding to this very real and escalating threat to hearing requires a combination of prevention, advocacy, and education. These three roles place audiologists in the perfect position to take action on the far-reaching effects of climate change on hearing loss and disorders. To respond to this challenge and to fulfill these roles, several strategies, ranging from the individual level to the global level, are delineated for audiologists to incorporate into their practice.
Collapse
Affiliation(s)
- Sue Sherratt
- Communication Research Australia, Newcastle, New South Wales
| |
Collapse
|
38
|
Dawson WD, Booi L, Pintado-Caipa M, Okada de Oliveira M, Kornhuber A, Spoden N, Golonka O, Shallcross L, Davidziuk A, Cominetti MR, Vergara-Manríquez M, Kochhann R, Robertson I, Eyre HA, Ibáñez A. The Brain Health Diplomat's Toolkit: supporting brain health diplomacy leaders in Latin America and the Caribbean. LANCET REGIONAL HEALTH. AMERICAS 2023; 28:100627. [PMID: 38046464 PMCID: PMC10689283 DOI: 10.1016/j.lana.2023.100627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023]
Abstract
Maintaining and improving brain health, one of the most critical global challenges of this century, necessitates innovative, interdisciplinary, and collaborative strategies to address the growing challenges in Latin America and the Caribbean. This paper introduces Brain Health Diplomacy (BHD) as a pioneering approach to bridge disciplinary and geographic boundaries and mobilize resources to promote equitable brain health outcomes in the region. Our framework provides a toolkit for emerging brain health leaders, equipping them with essential concepts and practical resources to apply in their professional work and collaborations. By providing case studies, we highlight the importance of culturally sensitive, region-specific interventions to address unique needs of vulnerable populations. By encouraging dialogue, ideation, and cross-sector discussions, we aspire to develop new research, policy, and programmatic avenues. The novel BHD approach has the potential to revolutionize brain health across the region and beyond, ultimately contributing to a more equitable global cognitive health landscape.
Collapse
Affiliation(s)
- Walter D. Dawson
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
- Layton Aging & Alzheimer's Disease Research Center, Department of Neurology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, CR131, Portland, OR, 97239, USA
- Institute on Aging, Portland State University, 1825 SW Broadway, Portland, OR, 97201, USA
| | - Laura Booi
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
- Centre for Dementia Research, School of Health, Leeds Beckett University, City Campus, Leeds, LS1 3HE, United Kingdom
| | - Maritza Pintado-Caipa
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
- Department of Neurology, Peruvian Institute of Neurosciences, Bartolomé Herrera 161, Lince, 15046, Lima, Peru
| | - Maira Okada de Oliveira
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
- Department of Psychiatry, Massachusetts General Hospital, 55 Fruit Street, Boston, MA, 02114, USA
- Cognitive Neurology and Behavioral Unit (GNCC), University of São Paulo, Butanta, São Paulo, Brazil
| | - Alex Kornhuber
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
| | - Natasha Spoden
- Layton Aging & Alzheimer's Disease Research Center, Department of Neurology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, CR131, Portland, OR, 97239, USA
| | - Ona Golonka
- Layton Aging & Alzheimer's Disease Research Center, Department of Neurology, School of Medicine, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, CR131, Portland, OR, 97239, USA
| | - Lenny Shallcross
- World Dementia Council, World Dementia Council Executive Team, Floor 2, 33 Cavendish Square, London, W1G 0PW, United Kingdom
| | - Alejandra Davidziuk
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
| | - Márcia Regina Cominetti
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Federal University of Sao Carlos, Rod. Washington Luís, Km 235, Monjolinho, São Carlos, SP, CEP 13565-905, Brazil
| | - Mayte Vergara-Manríquez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
- University of Udine, Via Monsignor Pasquale Margreth, 3, 33100, Udine UD, Italy
- Center of Social and Cognitive Neuroscience (CSCN), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
| | - Renata Kochhann
- Research Projects Office, Hospital Moinhos de Vento, Ramiro Barcelos 610, Porto Alegre, RS, 90035-000, Brazil
| | - Ian Robertson
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
| | - Harris A. Eyre
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
- Baker Center for Public Policy, Rice University, 6100 Main St, Houston, TX, 77005, USA
- Institute for Mental and Physical Health and Clinical Translation (IMPACT), Deakin University, Health and Education Research Building (HERB) at Barwon Health Deakin University School of Medicine, PO Box 281, Geelong, Victoria, 3220, Australia
- Euro-Mediterranean Economists Association, C/ de St. Antoni Maria Claret, 167, 08025, Barcelona, Spain
- Meadows Mental Health Policy Institute, 2800 Swiss Ave, Dallas, TX, 75204, USA
- Department of Psychiatry, Baylor College of Medicine, 1977 Butler Blvd Suite E4.400, Houston, TX, 77030, USA
| | - Agustin Ibáñez
- Global Brain Health Institute at University of California, San Francisco (UCSF), GBHI Memory and Aging Center, MC: 1207 1651 4th St, 3rd Floor, San Francisco, CA 94143, USA and Trinity College Dublin, Room 0.60, Lloyd Building, Dublin 2, Ireland
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, Diagonal las Torres 2640, Peñalolén, RM, 7941169, Chile
- Universidad San Andres, Vito Dumas 284, B1644BID, Victoria, Buenos Aires, Argentina
- National Scientific and Technical Research Council (CONICET), Godoy Cruz 2290 (C1425FQB), Buenos Aires, Argentina
| |
Collapse
|
39
|
Li K, Wang Y, Jiang X, Li C, Chen J, Zeng Y, Zhao S, Ho JYE, Ran J, Han L, Wei Y, Yeoh EK, Chong KC. Relationship between temperature variability and daily hospitalisations in Hong Kong over two decades. J Glob Health 2023; 13:04122. [PMID: 37824178 PMCID: PMC10569366 DOI: 10.7189/jogh.13.04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
Background Studies have highlighted the impacts of temperature variability (TV) on mortality from respiratory diseases and cardiovascular diseases, with inconsistent results specifically in subtropical urban areas than temperate ones. We aimed to fully determine TV-associated health risks over a spectrum of diseases and various subgroups in a subtropical setting. Methods Using inpatient data from all public hospitals in Hong Kong from 1999 to 2019, we examined the TV-hospitalisation associations by causes, ages, and seasons by fitting a quasi-Poisson regression. We presented the results as estimated percentage changes of hospitalisations per interquartile range (IQR) of TV. Results TVs in exposure days from 0-5 days (TV0-5) to 0-7 days (TV0-7) had detrimental effects on hospitalisation risks in Hong Kong. The overall population was significantly affected over TV0-5 to TV0-7 in endocrine, nutritional and metabolic (from 0.53% to 0.58%), respiratory system (from 0.38% to 0.53%), and circulatory systems diseases (from 0.47% to 0.56%). While we found no association with seasonal disparities, we did observe notable disparities by age, highlighting older adults' vulnerability to TVs. For example, people aged ≥65 years experienced the highest change of 0.88% (95% CI = 0.34%, 1.41%) in hospitalizations for injury and poisoning per IQR increase in TV0-4. Conclusions Our population-based study highlighted that TV-related health burden, usually regarded as minimal compared to other environmental factors, should receive more attention and be addressed in future relevant health policies, especially for vulnerable populations during the cold seasons.
Collapse
Affiliation(s)
- Kehang Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yawen Wang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaoting Jiang
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Conglu Li
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Jinjian Chen
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Yiqian Zeng
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Shi Zhao
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Janice Ying-en Ho
- Division of Landscape Architecture, Department of Architecture, Faculty of Architecture, The University of Hong Kong, Hong Kong, Hong Kong Special Administrative Region, China
| | - Jinjun Ran
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lefei Han
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Wei
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Eng Kiong Yeoh
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Ka Chun Chong
- Jockey Club School of Public Health and Primary Care, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Centre for Health Systems and Policy Research, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Clinical Trials and Biostatistics Laboratory, Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| |
Collapse
|
40
|
Portt AE, Orchard C, Chen H, Ge E, Lay C, Smith PM. Migraine and air pollution: A systematic review. Headache 2023; 63:1203-1219. [PMID: 37795754 DOI: 10.1111/head.14632] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/28/2023] [Accepted: 08/04/2023] [Indexed: 10/06/2023]
Abstract
OBJECTIVE To systematically synthesize evidence from a broad range of studies on the association between air pollution and migraine. BACKGROUND Air pollution is a ubiquitous exposure that may trigger migraine attacks. There has been no systematic review of this possible association. METHODS We searched for empirical studies assessing outdoor air pollution and any quantified migraine outcomes. We included short- and long-term studies with quantified air pollution exposures. We excluded studies of indoor air pollution, perfume, or tobacco smoke. We assessed the risk of bias with the World Health Organization's bias assessment instrument for air quality guidelines. RESULTS The final review included 12 studies with over 4,000,000 participants. Designs included case-crossover, case-control, time series, and non-randomized pre-post intervention. Outcomes included migraine-related diagnoses, diary records, medical visits, and prescriptions. Rather than pooling the wide variety of exposures and outcomes into a meta-analysis, we tabulated the results. Point estimates above 1.00 reflected associations of increased risk. In single-pollutant models, the percent of point estimates above 1.00 were carbon monoxide 5/5 (100%), nitrogen dioxide 10/13 (78%), ozone 7/8 (88%), PM2.5 13/15 (87%), PM10 2/2 (100%), black carbon 0/1 (0%), methane 4/6 (75%), sulfur dioxide 3/5 (60%), industrial toxic waste 1/1 (100%), and proximity to oil and gas wells 6/13 (46%). In two-pollutant models, 16/17 (94%) of associations with nitrogen dioxide were above 1.00; however, more than 75% of the confidence intervals included the null value. Most studies had low to moderate risks of bias. Where differences were observed, stronger quality articles generally reported weaker associations. CONCLUSIONS Balancing the generally strong methodologies with the small number of studies, point estimates were mainly above 1.00 for associations of carbon monoxide, nitrogen dioxide, ozone, and particulate matter with migraine. These results were most consistent for nitrogen dioxide.
Collapse
Affiliation(s)
- Andrea E Portt
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christa Orchard
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Hong Chen
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
- Public Health Ontario, Environmental and Occupational Health, Toronto, Ontario, Canada
- Populations & Public Health Research Program, ICES, Toronto, Ontario, Canada
| | - Erjia Ge
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Christine Lay
- Centre for Headache, Women's College Hospital, Toronto, Ontario, Canada
- Temerty Faculty of Medicine, Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Peter M Smith
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
- Institute for Work & Health, Toronto, Ontario, Canada
| |
Collapse
|
41
|
Yang M, Yoo H, Kim SY, Kwon O, Nam MW, Pan KH, Kang MY. Occupational Risk Factors for Stroke: A Comprehensive Review. J Stroke 2023; 25:327-337. [PMID: 37813670 PMCID: PMC10574301 DOI: 10.5853/jos.2023.01011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 10/11/2023] Open
Abstract
For primary prevention, it is important for public health and clinical medicine to identify and characterize modifiable risk factors of stroke. In existing literature, the impact of occupational variables on ischemic and hemorrhagic stroke has been extensively studied. This review summarizes the available data on the significance of occupational variables in stroke. The results of this review suggest that there is sufficient evidence for the relationship between increased risk of stroke and job stress, working in extreme temperatures, long working hours, and/or shift work. The association between long working hours and occupational exposure to noise and chemicals remains inconclusive although several studies have reported this finding. This review will act as a step toward future research and provide information that may serve as a baseline for developing targeted interventions to prevent stroke in the working population.
Collapse
Affiliation(s)
- Munyoung Yang
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hyoungseob Yoo
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seo-Young Kim
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Ohwi Kwon
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Min-Woo Nam
- Department of Occupational and Environmental Medicine, Kangbuk Samsung Hospital, Seoul, Korea
| | - Kwang Hyun Pan
- Department of Neurology, Anam Hospital, Korea University, Seoul, Korea
| | - Mo-Yeol Kang
- Department of Occupational and Environmental Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
42
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
43
|
Junck L, Malow BA. Climate Change and Air Pollution: Neurologists Should Educate Themselves and Get Involved. Neurology 2023; 100:454-455. [PMID: 36564208 DOI: 10.1212/wnl.0000000000206754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Affiliation(s)
- Larry Junck
- From the Department of Neurology (L.J.), University of Michigan, Ann Arbor; Department of Neurology (B.A.M.), Vanderbilt University Medical Center, Nashville, TN.
| | - Beth A Malow
- From the Department of Neurology (L.J.), University of Michigan, Ann Arbor; Department of Neurology (B.A.M.), Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
44
|
Kamel Boulos MN, Wilson JP. Geospatial techniques for monitoring and mitigating climate change and its effects on human health. Int J Health Geogr 2023; 22:2. [PMID: 36707823 PMCID: PMC9883899 DOI: 10.1186/s12942-023-00324-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2023] [Indexed: 01/28/2023] Open
Abstract
This article begins by briefly examining the multitude of ways in which climate and climate change affect human health and wellbeing. It then proceeds to present a quick overview of how geospatial data, methods and tools are playing key roles in the measurement, analysis and modelling of climate change and its effects on human health. Geospatial techniques are proving indispensable for making more accurate assessments and estimates, predicting future trends more reliably, and devising more optimised climate change adaptation and mitigation plans.
Collapse
Affiliation(s)
- Maged N. Kamel Boulos
- Co-Chair, WG III/9 Geospatial Environment and Health Analytics, ISPRS Technical Commission III, 30167 Hannover, Germany ,grid.9983.b0000 0001 2181 4263School of Medicine, University of Lisbon, 1649-028 Lisbon, Portugal
| | - John P. Wilson
- grid.42505.360000 0001 2156 6853Spatial Sciences Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA 90089-0374 USA
| |
Collapse
|