1
|
García-García L, Gómez-Oliver F, Fernández de la Rosa R, Pozo MÁ. Dantrolene paradoxically exacerbates short-term brain glucose hypometabolism, hippocampal damage and neuroinflammation induced by status epilepticus in the rat lithium-pilocarpine model. Eur J Pharmacol 2024; 985:177073. [PMID: 39481630 DOI: 10.1016/j.ejphar.2024.177073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/28/2024] [Indexed: 11/02/2024]
Abstract
Status epilepticus (SE) is a neurologic emergency characterized by prolonged or rapidly recurring seizures. Increased intracellular calcium concentration ([Ca2+]i) occurring after SE is a key mediator of excitotoxicity that contributes to the brain damage associated with the development of epilepsy. Accumulated evidence indicates that dantrolene, a ryanodine receptor (RyR) blocker may have protective effects against the SE-induced damage. We evaluated whether dantrolene (10 mg/kg, i.p.) administered twice, 5 min and 24 h after the lithium-pilocarpine-induced SE in rats, had neuroprotective effects. Dantrolene by itself had no effects on control rats. However, it exacerbated the signs of damage in rats that underwent SE, increasing brain glucose hypometabolism as measured by PET neuroimaging 3 days after SE. Likewise, the neurohistochemical studies revealed that dantrolene aggravated signs of hippocampal neurodegeneration, neuronal death and microglia-induced neuroinflammation. Besides, the damaging effects were reflected by severe body weight loss. Overall, our results point towards a deleterious effect of dantrolene in the lithium-pilocarpine-induced SE model. Nonetheless, our results are in opposition to the reported neuroprotective effects of dantrolene. Whether the mechanisms underlying [Ca2+]i increase might significantly differ depending on the particularities of the model of epilepsy used and general experimental conditions need further studies. Besides, it is yet to be determined which isoform of RyRs significantly contributes to Ca2+-induced excitotoxicity in the lithium-pilocarpine SE rat model.
Collapse
Affiliation(s)
- Luis García-García
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain.
| | - Francisca Gómez-Oliver
- Department of Pharmacology, Pharmacognosy and Botany. Faculty of Pharmacy, Complutense University of Madrid, Madrid, Spain; Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| | - Rubén Fernández de la Rosa
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; ICTS Bioimagen Complutense (BIOIMAC), Complutense University of Madrid, Madrid, Spain
| | - Miguel Ángel Pozo
- Brain Mapping Unit, Instituto Pluridisciplinar, Complutense University of Madrid, Madrid, Spain; Department of Physiology, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain; Health Research Institute, Hospital Clínico San Carlos (IdISSC), Madrid, Spain
| |
Collapse
|
2
|
Bhuiyan P, Zhang W, Chae R, Kim K, St Louis L, Wang Y, Liang G, Wei H. Intranasal dantrolene nanoparticles inhibit inflammatory pyroptosis in 5XFAD mice brains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625293. [PMID: 39651126 PMCID: PMC11623646 DOI: 10.1101/2024.11.25.625293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background This study investigates the effects of intranasal dantrolene nanoparticles on inflammation and programmed cell death by pyroptosis in 5XFAD Alzheimer's Disease (AD) mice. Methods 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal dantrolene nanoparticles (5 mg/kg), daily, Monday to Friday, for 12 weeks continuously, starting at 9 months of age. Blood and brain were harvested at 13 months of age, one month after completion of 12 weeks intranasal dantrolene nanoparticle treatment. Blood biomarkers function of liver (Alanine transaminase, ALT), kidney (Creatinine), and thyroid (TSH: Thyroid-stimulating hormone) were measured using ELISA. The changes of whole brain tissue proteins on Ca 2+ release channels on membrane of endoplasmic reticulum (type 2 ryanodine and type 1 InsP3 receptors, RyR-2 and InsP3R-1), lipid peroxidation byproduct malondialdehyde (MDA)-modified proteins, 4-HNE, pyroptosis regulatory proteins (NLR family pyrin domain containing 3 (NLRP3), cleaved caspase-1, full length or N-terminal of Gasdermin D (GSDMD), cytotoxic (IL-1, IL-18, IL-6, TNF-a) and cytoprotective (IL-10) cytokines, astrogliosis (GFAP), microgliosis (IBA-1) and synapse proteins (PSD-95, Synapsin-1) were determined using immunoblotting. Body weights were monitored regularly. Results Intranasal dantrolene nanoparticles significantly inhibited the increase of RyR-2 and InsP3R-1 proteins, MDA-modified proteins, 4-NHE, pyroptosis regulatory proteins (NLRP3, cleaved caspase-1, N-terminal GSDMD), cytotoxic cytokine (IL-1β, IL-18, IL-6, TNF-α), biomarkers for astrogliosis (GFAP) and microgliosis (IBA-1), and the decrease of cytoprotective cytokine (IL-10) and synaptic proteins (PSD-95, synpasin-1). Intranasal dantrolene nanoparticles for 12 weeks did not affect blood biomarkers for function of liver, kidney, and thyroid, not did it change body weight significantly. Conclusion Intranasal dantrolene nanoparticles significantly inhibit the increase of RyR-2 and InsP 3 R-1 Ca 2+ channel receptor proteins, ameliorate activation of the pyroptosis pathway and pathological inflammation, and the associated loss of synapse proteins. Intranasal dantrolene nanoparticles for three months did not affect liver, kidney and thyroid functions or cause other side effects.
Collapse
|
3
|
Taha M, Cartereau A, Taillebois E, Thany SH. Flupyradifurone activates DUM neuron nicotinic acetylcholine receptors and stimulates an increase in intracellular calcium through the ryanodine receptors. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 205:106147. [PMID: 39477600 DOI: 10.1016/j.pestbp.2024.106147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/16/2024] [Accepted: 09/22/2024] [Indexed: 11/07/2024]
Abstract
Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates, and are considered to be major targets of several insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, to explore what type of nAChRs are involved in flupyradifurone's (FLU) mode of action, and to study the role of calcium release from intracellular stores in this process. Using whole-cell patch-clamp and fura-2-AM calcium imaging techniques, we found that inhibition of IP3Rs through application of 2-APB reduced FLU inward currents, but did not affect the intracellular calcium release induced by FLU. In contrast, inhibition of RyRs using ryanodine, led to reduction of intracellular calcium increase following FLU pulse application. These results suggested that FLU inward currents are likely due to a combination of the direct effects of FLU on DUM neuron nAChRs and the subsequent calcium release from RyRs.
Collapse
Affiliation(s)
- Maria Taha
- Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France
| | - Alison Cartereau
- Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France
| | - Emiliane Taillebois
- Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France
| | - Steeve H Thany
- Laboratoire Physiologie, Ecologie et Environnement (P2E), USC-INRAE 1328, Université d'Orléans, 1 rue de Chartres, 45067 Orléans, France; Institut Universitaire de France, 1 rue Descartes, 75005 Paris, France.
| |
Collapse
|
4
|
T'kind T, Vialatte PB, Roger C, Saadi L, Muller L. Management of Suspected α-Pyrrolidinoisohexanophenone (α-PiHP)-Related Hyperthermia in a Young Adult: A Case Report. Cureus 2024; 16:e70708. [PMID: 39493037 PMCID: PMC11530085 DOI: 10.7759/cureus.70708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
Synthetic cathinones, commonly known as "bath salts," have been increasingly implicated in severe health incidents. α-Pyrrolidinoisohexanophenone (α-PiHP) is one of the substances for which clinical data remain limited. In this article, we report a case of a 32-year-old male patient who ingested five grams of α-PiHP in a suicide attempt, resulting in hyperthermia and severe complications, including rhabdomyolysis and acute kidney injury. Despite the lack of confirmation for α-PiHP intoxication in toxicology screens, the patient's reported history was strongly suggestive. Considering a diagnostic uncertainty between serotonin syndrome and sympathomimetic toxidrome, and given the unavailability of cyproheptadine, dantrolene was administered to control the hyperthermia, resulting in a prompt and effective reduction in core body temperature. This case highlights the potential utility of dantrolene in treating hyperthermia induced by synthetic cathinones.
Collapse
Affiliation(s)
- Thibaud T'kind
- Intensive Care Unit, Centre Hospitalier Universitaire de Nîmes, Nîmes, FRA
| | - Pierre Baptiste Vialatte
- Department of Critical Care Medicine, Centre Hospitalier Universitaire de Nîmes, Nîmes, FRA
- Department of Critical Care Medicine, Université de Montpellier, Montpellier, FRA
| | - Claire Roger
- Department of Critical Care Medicine, Centre Hospitalier Universitaire de Nîmes, Nîmes, FRA
- Department of Critical Care Medicine, Université de Montpellier, Montpellier, FRA
| | - Laysa Saadi
- Department of Critical Care Medicine, Centre Hospitalier Universitaire de Nîmes, Nîmes, FRA
- Department of Critical Care Medicine, Université de Montpellier, Montpellier, FRA
| | - Laurent Muller
- Department of Critical Care Medicine, Centre Hospitalier Universitaire de Nîmes, Nîmes, FRA
- Department of Critical Care Medicine, Université de Montpellier, Montpellier, FRA
| |
Collapse
|
5
|
Fjaervoll HK, Fjaervoll KA, Yang M, Reiten OK, Bair J, Lee C, Utheim TP, Dartt D. Purinergic agonists increase [Ca 2+] i in rat conjunctival goblet cells through ryanodine receptor type 3. Am J Physiol Cell Physiol 2024; 327:C830-C843. [PMID: 39099424 PMCID: PMC11427011 DOI: 10.1152/ajpcell.00291.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 08/06/2024]
Abstract
ATP and benzoylbenzoyl-ATP (BzATP) increase free cytosolic Ca2+ concentration ([Ca2+]i) in conjunctival goblet cells (CGCs) resulting in mucin secretion. The purpose of this study was to investigate the source of the Ca2+i mobilized by ATP and BzATP. First-passage cultured rat CGCs were incubated with Fura-2/AM, and [Ca2+]i was measured under several conditions with ATP and BzATP stimulation. The following conditions were used: 1) preincubation with the Ca2+ chelator EGTA, 2) preincubation with the SERCA inhibitor thapsigargin (10-6 M), which depletes ER Ca2+ stores, 3) preincubation with phospholipase C (PLC) or protein kinase A (PKA) inhibitor, or 4) preincubation with the voltage-gated calcium channel antagonist nifedipine (10-5 M) and the ryanodine receptor (RyR) antagonist dantrolene (10-5 M). Immunofluorescence microscopy (IF) and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were used to investigate RyR presence in rat and human CGCs. ATP-stimulated peak [Ca2+]i was significantly lower after chelating Ca2+i with 2 mM EGTA in Ca2+-free buffer. The peak [Ca2+]i increase in CGCs preincubated with thapsigargin, the PKA inhibitor H89, nifedipine, and dantrolene, but not the PLC inhibitor, was reduced for ATP at 10-5 M and BzATP at 10-4 M. Incubating CGCs with dantrolene alone decreased [Ca2+]i and induced CGC cell death at a high concentration. RyR3 was detected in rat and human CGCs with IF and RT-qPCR. We conclude that ATP- and BzATP-induced Ca2+i increases originate from the ER and that RyR3 may be an essential regulator of CGC [Ca2+]i. This study contributes to the understanding of diseases arising from defective Ca2+ signaling in nonexcitable cells.NEW & NOTEWORTHY ATP and benzoylbenzoyl-ATP (BzATP) induce mucin secretion through an increase in free cytosolic calcium concentration ([Ca2+]i) in conjunctival goblet cells (CGCs). The mechanisms through which ATP and BzATP increase [Ca2+]i in CGCs are unclear. Ryanodine receptors (RyRs) are fundamental in [Ca2+]i regulation in excitable cells. Herein, we find that ATP and BzATP increase [Ca2+]i through the activation of protein kinase A, voltage-gated calcium channels, and RyRs, and that RyRs are crucial for nonexcitable CGCs' Ca2+i homeostasis.
Collapse
Affiliation(s)
- Haakon K Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Ketil A Fjaervoll
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Menglu Yang
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Ole K Reiten
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Jeffrey Bair
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Changrim Lee
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| | - Tor P Utheim
- Division of Head, Neck and Reconstructive Surgery, Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
- Department of Plastic and Reconstructive Surgery, Oslo University Hospital, Oslo, Norway
| | - Darlene Dartt
- Department of Ophthalmology, Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
6
|
Hunt M, Wang N, Pupinyo N, Curman P, Torres M, Jebril W, Chatzinikolaou M, Lorent J, Silberberg G, Bansal R, Burner T, Zhou J, Kimeswenger S, Hoetzenecker W, Choate K, Bachar-Wikstrom E, Wikstrom JD. Dantrolene corrects cellular disease features of Darier disease and may be a novel treatment. EMBO Mol Med 2024; 16:1986-2001. [PMID: 39060641 PMCID: PMC11392931 DOI: 10.1038/s44321-024-00104-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/26/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024] Open
Abstract
Darier disease (DD) is a rare severe acantholytic skin disease caused by mutations in the ATP2A2 gene that encodes for the sarco/endoplasmic reticulum calcium ATPase isoform 2 (SERCA2). SERCA2 maintains endoplasmic reticulum calcium homeostasis by pumping calcium into the ER, critical for regulating cellular calcium dynamics and cellular function. To date, there is no treatment that specifically targets the disease mechanisms in DD. Dantrolene sodium (Dl) is a ryanodine receptor antagonist that inhibits calcium release from ER to increase ER calcium levels and is currently used for non-dermatological indications. In this study, we first identified dysregulated genes and molecular pathways in DD patient skin, demonstrating downregulation of cell adhesion and calcium homeostasis pathways, as well as upregulation of ER stress and apoptosis. We then show in various in vitro models of DD and SERCA2 inhibition that Dl aided in the retention of ER calcium and promoted cell adhesion. In addition, Dl treatment reduced ER stress and suppressed apoptosis. Our findings suggest that Dl specifically targets pathogenic mechanisms of DD and may be a potential treatment.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nuoqi Wang
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Naricha Pupinyo
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Philip Curman
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
- Department of Medical Epidemiology and Biostatistics (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - William Jebril
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Maria Chatzinikolaou
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Julie Lorent
- National Bioinformatics Infrastructure Sweden (NBIS), Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Gilad Silberberg
- Bioinformatics & Computational Biology Research Operations, Champions Oncology Inc, Rehovot, Israel
| | - Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Teresa Burner
- Johannes Kepler University Linz, Kepler University Hospital Linz, Department of Dermatology, Linz, Austria
| | - Jing Zhou
- Department of Dermatology, Genetics, and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Susanne Kimeswenger
- Johannes Kepler University Linz, Kepler University Hospital Linz, Department of Dermatology, Linz, Austria
| | - Wolfram Hoetzenecker
- Johannes Kepler University Linz, Kepler University Hospital Linz, Department of Dermatology, Linz, Austria
| | - Keith Choate
- Department of Dermatology, Genetics, and Pathology, Yale University School of Medicine, New Haven, CT, USA
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden.
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Chakraborty R, Tabassum H, Parvez S. Dantrolene alleviates mitochondrial dysfunction and neuroinflammation in traumatic brain injury by modulating the NF-ĸβ/Akt pathway. Biochem Pharmacol 2024; 224:116244. [PMID: 38685280 DOI: 10.1016/j.bcp.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/04/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Traumatic brain injury (TBI) triggers a bevy of changes including mitochondrial dysfunction, apoptosis, oxidative stress, neurobehavioural impairment, and neuroinflammation, among others. Dantrolene (DNT), a muscle relaxant which inhibits intracellular Ca2+ signaling from the ER, has been repurposed as a potential neuroprotective agent in various neurological diseases. However, there have been limited studies on whether it can mitigate TBI-induced deficits and restore impaired mitochondrial dynamics. This study sought to evaluate whether Dantrolene can potentially provide neuroprotection in an in vivo model of TBI. Male wistar rats subjected to TBI were treated with DNT (10 mg/kg) 1 h and 12 h post surgery. Animals were assessed 24 h post-TBI to evaluate neurobehavioural deficits and cerebral edema. We evaluated the protein expressions of apoptotic, autophagic, and neuroinflammatory markers by immunoblotting, as well as Mitochondrial Membrane Potential (MMP) and Reactive Oxygen Species (ROS) via Flow Cytometry to ascertain the effects of DNT on TBI. We further analysed immunofluorescence staining with Glial Fibrillary Acidic Protein (GFAP) and immunohistochemistry with NF-κβ to investigate neuroinflammation. H&E staining was also performed post-TBI. Our findings revealed DNT administration inhibits mitochondria-mediated apoptotis and reduces heightened oxidative stress. DNT treatment was also found to reverse neurobehavioural impairments and offer neuroprotection by preserving neuronal architechture. We also demonstrated that DNT inhibits neuronal autophagy and alleviates neuroinflammation following TBI by modulating the NF-κβ/Akt signaling pathway. Thus, our results suggest a novel application of DNT in ameliorating the multitude of deficits induced by TBI, thereby conferring neuroprotection.
Collapse
Affiliation(s)
- Rohan Chakraborty
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Heena Tabassum
- Division of Basic Medical Sciences, Indian Council of Medical Research, Government of India, V. Ramalingaswamy Bhawan, New Delhi 110029, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India.
| |
Collapse
|
8
|
Zakaria S, Elshazly AM, Alaa R, Elsebaey S. Dantrolene and coenzyme Q10 as a suggested combination therapy to statin-induced myopathy in high fat diet rats: A possible interference with ROS/ TGF-β / Smad4 signaling pathway. Toxicol Appl Pharmacol 2024; 485:116900. [PMID: 38508403 DOI: 10.1016/j.taap.2024.116900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/03/2024] [Accepted: 03/13/2024] [Indexed: 03/22/2024]
Abstract
One of the major hitches for statins' utilization is the development of myotoxicity. Versatile studies reported that the underlining molecular mechanisms including coenzyme Q10 (CoQ10)/ubiquinone depletion, as well as the disturbance in the cytoplasmic Ca2+ homeostasis. Therefore, we investigated the consequences of supplementing CoQ10 and dantrolene, a cytoplasmic Ca2+ reducing agent, in combination with simvastatin. This adjuvant therapy normalized the simvastatin-mediated elevation in serum ALT, AST, CK-MM, as well as tissue Ca2+ content, in addition to suppressing the simvastatin-mediated oxidative stress in simvastatin-treated rats, while having no effect upon statin-induced antihyperlipidemic effect. Additionally, the combination inhibited the simvastatin-induced TGF-β/ Smad4 pathway activation. Collectively, the current study emphasizes on the potential utilization of dantrolene and CoQ10 as an adjuvant therapy to statins treatment for improving their side effect profile.
Collapse
Affiliation(s)
- Sherin Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| | - Ahmed M Elshazly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Department of Pharmacology and Toxicology, Massey Cancer Center, Virginia Commonwealth University, 401 College St., Richmond, VA 23298, USA.
| | - Reem Alaa
- Department of Clinical Pharmacy, Faculty of Pharmacy, Delta University, Mansoura 15955, Egypt
| | - Samer Elsebaey
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt.
| |
Collapse
|
9
|
Yao J, Chen SRW. RyR2-dependent modulation of neuronal hyperactivity: A potential therapeutic target for treating Alzheimer's disease. J Physiol 2024; 602:1509-1518. [PMID: 36866974 DOI: 10.1113/jp283824] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/27/2023] [Indexed: 03/04/2023] Open
Abstract
Increasing evidence suggests that simply reducing β-amyloid (Aβ) plaques may not significantly affect the progression of Alzheimer's disease (AD). There is also increasing evidence indicating that AD progression is driven by a vicious cycle of soluble Aβ-induced neuronal hyperactivity. In support of this, it has recently been shown that genetically and pharmacologically limiting ryanodine receptor 2 (RyR2) open time prevents neuronal hyperactivity, memory impairment, dendritic spine loss and neuronal cell death in AD mouse models. By contrast, increased RyR2 open probability (Po) exacerbates the onset of familial AD-associated neuronal dysfunction and induces AD-like defects in the absence of AD-causing gene mutations. Thus, RyR2-dependent modulation of neuronal hyperactivity represents a promising new target for combating AD.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
10
|
Abdel-Hamid NM, Zakaria SM, Ansary AM, El-Senduny FF, El-Shishtawy MM. The expression of tuftelin 1 as a new theranostic marker in early diagnosis and as a therapeutic target in hepatocellular carcinoma. Cell Biochem Funct 2023; 41:788-800. [PMID: 37470499 DOI: 10.1002/cbf.3828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/06/2023] [Accepted: 07/08/2023] [Indexed: 07/21/2023]
Abstract
Currently, many challenges are associated with hepatocellular carcinoma (HCC) as the failure of early diagnosis, and the lack of effective therapy. This study aimed to investigate the possible role of tuftelin 1 (TUFT 1) in the early diagnosis of HCC and evaluate the potential contribution of the TUFT 1/Ca+2 /phosphinositol 3 kinase (PI3K) pathway in dantrolene sodium (Dan) therapeutic outcomes. The study was performed on two sets of rats, the staging (30 rats) and treatment sets (80 rats). HCC was induced by a single dose of diethylnitrosamine (DENA). The hepatic content of TUFT 1 protein was assayed via western blot and immunohistochemistry (IHC), while PI3K, vascular endothelial growth factor (VEGF), Cyclin D1, and matrix-metalloproteinase-9 (MMP-9) contents were assessed using enzyme-linked immunosorbent assay. Hepatic and serum calcium were measured colorimetrically. Furthermore, the nuclear proliferation marker, (Ki-67), (Kiel [Ki] where the antibody was produced in the University Department of Pathology and the original clone number is 67)-expression was assessed by IHC. TUFT 1/Ca+2 /PI3K signaling pathway was progressively activated in the 3 studied stages of HCC with subsequent upregulation of angiogenesis, cell cycle, and metastasis. More interestingly, Dan led to TUFT 1/Ca+2 /PI3K pathway disruption by diminution of the hepatic contents of TUFT 1, calcium, PI3K, VEGF, Cyclin D1, and MMP-9 in a dose-dependent pattern. TUFT 1 can serve as a theranostic biomarker in HCC. Moreover, Dan exerted an antineoplastic effect against HCC via the interruption of TUFT 1/Ca+2 /PI3K pathway.
Collapse
Affiliation(s)
- Nabil M Abdel-Hamid
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Sherin M Zakaria
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Abeer M Ansary
- Department of Biochemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Fardous F El-Senduny
- Department of Chemistry (Biochemistry Division), Faculty of Science, Mansoura University, Mansoura, Egypt
| | | |
Collapse
|
11
|
Jiang B, Shi Y, Abou MB, Xu L, Liang G, Wei H. Effects of chronic intranasal dantrolene on nasal mucosa morphology in mice. EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2022; 26:198-203. [PMID: 35048995 PMCID: PMC9338757 DOI: 10.26355/eurrev_202201_27768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
OBJECTIVE We have previously shown that the intranasal administration of dantrolene ameliorated cognitive dysfunction in the 5XFAD mouse model of Alzheimer's disease. This study examines the morphology of the nasal mucosa after 10 months of intranasal dantrolene in 5XFAD mice. MATERIALS AND METHODS 5XFAD mice were either treated with intranasal dantrolene (5 mg/kg, 3 times/wk) from 2 months to 12 months of age or given no treatment at all. The mice were euthanatized at 12 months of age and the snouts were processed for histological examination. The morphology of the nasal mucosa was assessed and compared between the two groups. RESULTS There were no significant differences in the thickness of the olfactory epithelium or the proportion of the thickness of the glandular layer to the wall of mucosa and submucosa in the nasal passages. CONCLUSIONS Long-term intranasal administration of dantrolene did not significantly change the nasal mucosa morphology in 5XFAD mice.
Collapse
Affiliation(s)
- B Jiang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | |
Collapse
|
12
|
van den Bersselaar LR, Riazi S, Snoeck M, Jungbluth H, Voermans NC. 259th ENMC international workshop: Anaesthesia and neuromuscular disorders 11 December, 2020 and 28-29 May, 2021. Neuromuscul Disord 2021; 32:86-97. [PMID: 34916120 DOI: 10.1016/j.nmd.2021.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 02/07/2023]
Affiliation(s)
- L R van den Bersselaar
- Department of Anaesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands; Department of Neurology, Radboud University Medical Center, Reinier Postlaan 4, P.O. Box 9101, 6500 HB, Nijmegen 6525 GC, the Netherlands
| | - S Riazi
- Department of Anesthesiology and Pain Medicine, Malignant Hyperthermia Investigation Unit, University Health Network, University of Toronto, Toronto, Canada
| | - Mmj Snoeck
- Department of Anaesthesiology, Malignant Hyperthermia Investigation Unit, Canisius Wilhelmina Hospital, Nijmegen, the Netherlands
| | - H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's and St Thomas' Hospitals NHS Foundation Trust, London, United Kingdom; Randall Centre for Cell and Molecular Biophysics, Muscle Signalling Section, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - N C Voermans
- Department of Neurology, Radboud University Medical Center, Reinier Postlaan 4, P.O. Box 9101, 6500 HB, Nijmegen 6525 GC, the Netherlands.
| | | |
Collapse
|
13
|
Wei H. New Approaches to Develop Drug Treatment for Alzheimer's Disease: Targeting Calcium Dysregulation. Curr Alzheimer Res 2021; 17:311-312. [PMID: 32623998 DOI: 10.2174/156720501704200520094610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Huafeng Wei
- Department of Anesthesiology and Critical Care University of Pennsylvania Perelman School of Medicine 305 John Morgan Building 3620 Hamilton Walk Philadelphia, PA 19104, United States
| |
Collapse
|
14
|
Shi Y, Zhang L, Gao X, Zhang J, Ben Abou M, Liang G, Meng Q, Hepner A, Eckenhoff MF, Wei H. Intranasal Dantrolene as a Disease-Modifying Drug in Alzheimer 5XFAD Mice. J Alzheimers Dis 2021; 76:1375-1389. [PMID: 32623395 PMCID: PMC7505009 DOI: 10.3233/jad-200227] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Background/Objective: This study compares the effectiveness and safety of intranasal versus subcutaneous administration of dantrolene in 5XFAD Alzheimer’s disease (AD) mice. Methods: 5XFAD and wild type (WT) B6SJLF1/J mice were treated with intranasal or subcutaneous dantrolene (5 mg/kg, 3×/wk), or vehicle. The early (ETG) and late (LTG) treatment groups began treatment at 2 or 6 months of age, respectively, and both treatment groups finished at12 months of age. Behavior was assessed for olfaction (buried food test), motor function (rotarod), and cognition (fear conditioning, Morris water maze). Liver histology (H & E staining) and function, synaptic proteins, and brain amyloid immunohistochemistry were examined. Plasma and brain dantrolene concentrations were determined in a separate cohort after intranasal or subcutaneous administration. Results: Intranasal dantrolene achieved higher brain and lower plasma concentrations than subcutaneous administration. Dantrolene administration at both approaches significantly improved hippocampal-dependent and -independent memory in the ETG, whereas only intranasal dantrolene improved cognition in the LTG. Dantrolene treatment had no significant change in the amyloid burden or synaptic proteins and no significant side effects on mortality, olfaction, motor, or liver functions in 5XFAD mice. Intranasal dantrolene treatment significantly ameliorated memory loss when it was started either before or after the onset of AD symptoms in 5XFAD mice. Conclusions: The long-term intranasal administration of dantrolene had therapeutic effects on memory compared to the subcutaneous approach even started after onset of AD symptoms, suggesting use as a disease-modifying drug, without significant effects on amyloid plaques, side effects, or mortality.
Collapse
Affiliation(s)
- Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anesthesiology, Children's Hospital of Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anesthesiology, People's Hospital of Beijing Daxing District, Beijing, China
| | - Xue Gao
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Jing Zhang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Matan Ben Abou
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qingcheng Meng
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adrian Hepner
- Eagle Pharmaceuticals, Inc., Woodcliff Lake, NJ, USA
| | - Maryellen F Eckenhoff
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
15
|
Furuta Y, Pena-Ramos O, Li Z, Chiao L, Zhou Z. Calcium ions trigger the exposure of phosphatidylserine on the surface of necrotic cells. PLoS Genet 2021; 17:e1009066. [PMID: 33571185 PMCID: PMC7904182 DOI: 10.1371/journal.pgen.1009066] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 02/24/2021] [Accepted: 01/18/2021] [Indexed: 11/18/2022] Open
Abstract
Intracellular Ca2+ level is under strict regulation through calcium channels and storage pools including the endoplasmic reticulum (ER). Mutations in certain ion channel subunits, which cause mis-regulated Ca2+ influx, induce the excitotoxic necrosis of neurons. In the nematode Caenorhabditis elegans, dominant mutations in the DEG/ENaC sodium channel subunit MEC-4 induce six mechanosensory (touch) neurons to undergo excitotoxic necrosis. These necrotic neurons are subsequently engulfed and digested by neighboring hypodermal cells. We previously reported that necrotic touch neurons actively expose phosphatidylserine (PS), an “eat-me” signal, to attract engulfing cells. However, the upstream signal that triggers PS externalization remained elusive. Here we report that a robust and transient increase of cytoplasmic Ca2+ level occurs prior to the exposure of PS on necrotic touch neurons. Inhibiting the release of Ca2+ from the ER, either pharmacologically or genetically, specifically impairs PS exposure on necrotic but not apoptotic cells. On the contrary, inhibiting the reuptake of cytoplasmic Ca2+ into the ER induces ectopic necrosis and PS exposure. Remarkably, PS exposure occurs independently of other necrosis events. Furthermore, unlike in mutants of DEG/ENaC channels, in dominant mutants of deg-3 and trp-4, which encode Ca2+ channels, PS exposure on necrotic neurons does not rely on the ER Ca2+ pool. Our findings indicate that high levels of cytoplasmic Ca2+ are necessary and sufficient for PS exposure. They further reveal two Ca2+-dependent, necrosis-specific pathways that promote PS exposure, a “two-step” pathway initiated by a modest influx of Ca2+ and further boosted by the release of Ca2+ from the ER, and another, ER-independent, pathway. Moreover, we found that ANOH-1, the worm homolog of mammalian phospholipid scramblase TMEM16F, is necessary for efficient PS exposure in thapsgargin-treated worms and trp-4 mutants, like in mec-4 mutants. We propose that both the ER-mediated and ER-independent Ca2+ pathways promote PS externalization through activating ANOH-1. Necrosis is a type of cell death that exhibits distinct morphological features such as cell and organelle swelling. Necrotic cells expose phosphatidylserine (PS)–a type of phospholipid—on their outer surfaces. Receptor molecules on phagocytes detect PS on necrotic cells and subsequently initiate the engulfment process. As necrosis is associated with stroke, cancer, neurodegenerative diseases, and heart diseases, studying necrotic cell clearance has important medical relevance. In the model organism the nematode C. elegans, we previously identified membrane proteins that promote the exposure of PS on necrotic cell surfaces by studying neurons that are induced to undergo necrosis by dominant mutations in ion channels. Here, in C. elegans, we have discovered that the necrotic insults trigger an increase of the cytoplasmic calcium ion (Ca2+), which in turn promotes PS externalization on necrotic cell surfaces. Furthermore, we have identified two different mechanisms that increase cytoplasmic Ca2+ levels, one dependent on the Ca2+ contribution from the endoplasmic reticulum (ER), the other independent of the ER. The Ca2+ signal targets ANOH-1, a worm homolog of mammalian proteins capable of externalizing PS, for promoting PS exposure on necrotic cells. Our findings reveal novel upstream regulatory mechanisms that promote necrotic cell clearance in animals.
Collapse
Affiliation(s)
- Yoshitaka Furuta
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- School of Pharmacy, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Omar Pena-Ramos
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zao Li
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lucia Chiao
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Zheng Zhou
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Samiotis I, Papakonstantinou NA, Dedeilias P, Vasileiadis I, Papalois A, Deftereos S, Kotanidou A. Dantrolene Induces Mitigation of Myocardial Ischemia-Reperfusion Injury by Ryanodine Receptor Inhibition. Semin Thorac Cardiovasc Surg 2021; 34:123-132. [PMID: 33460764 DOI: 10.1053/j.semtcvs.2021.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 01/05/2021] [Indexed: 11/11/2022]
Abstract
The impairment of intracellular calcium homeostasis plays an essential role during ischemia-reperfusion injury. Calcium release from sarcoplasmic reticulum which is triggered by myocardial ischemia is mainly mediated by ryanodine receptors. Dantrolene sodium is a ryanodine receptor antagonist. The objective of the present study was to evaluate the in-vivo impact of dantrolene sodium on myocardial ischemia-reperfusion injury in swine models. An in vivo, experimental trial comparing 10 experimental animals which received dantrolene sodium with 9 control swine models was conducted. Their left anterior descending coronary artery was temporarily occluded for 75 minutes via a vessel tourniquet, which was then released. Myocardial reperfusion was allowed for 24 hours. Dantrolene was administered at the onset of the reperfusion period and levels of troponin, creatine phosphokinase and creatine kinase myocardial band between the two groups were compared. Additionally, various other hemodynamic parameters and left ventricular morphology and function were examined. There were significantly lower values of troponin, creatine phosphokinase and creatine kinase myocardial band in the dantrolene group indicating less ischemia-reperfusion injury. Moreover, the postischemic cardiac index was also greater in the dantrolene group, whereas viable myocardium was also better preserved. In conclusion, the in vivo cardioprotective role of dantrolene sodium against ischemia-reperfusion injury in swine models was indicated in this study. Therefore, dantrolene sodium administration could be a promising treatment against ischemia-reperfusion injury in humans. However, large randomized clinical studies should be firstly carried out to prove this hypothesis.
Collapse
Affiliation(s)
- Ilias Samiotis
- Cardiovascular and Thoracic Surgery Department, General Hospital of Athens "Evangelismos'', Greece
| | | | - Panagiotis Dedeilias
- Cardiovascular and Thoracic Surgery Department, General Hospital of Athens "Evangelismos'', Greece
| | - Ioannis Vasileiadis
- 1st Respiratory Medicine Department, Hospital for Diseases of the Chest "Sotiria", National and Kapodistrian University of Athens, Greece
| | - Apostolos Papalois
- Experimental, Educational and Research Center, ELPEN Pharmaceuticals, Athens, Greece; School of Medicine European University of Cyprus, Nicosia, Cyprus
| | - Spyridon Deftereos
- 2nd Department of Cardiology, "Attikon" Hospital, School of Medicine, National and Kapodistrian University of Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine, General Hospital of Athens "Evangelismos'', School of Medicine, National and Kapodistrian University of Athens, Greece
| |
Collapse
|
17
|
Jiang B, Liang S, Liang G, Wei H. Could dantrolene be explored as a repurposed drug to treat COVID-19 patients by restoring intracellular calcium homeostasis? EUROPEAN REVIEW FOR MEDICAL AND PHARMACOLOGICAL SCIENCES 2020; 24:10228-10238. [PMID: 33090434 DOI: 10.26355/eurrev_202010_23247] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dantrolene, an FDA approved drug to treat malignant hyperthermia and muscle spasm, has been demonstrated to inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) mediated toxicity of host cells. Ryanodine receptor overactivation and associated disruption of intracellular Ca2+ homeostasis play important roles in SARS-CoV-2 infection and replication of host cells. Dantrolene, as an inhibitor of RyRs, is expected to ameliorate these detrimental effects of SARS-CoV-2 in host cells. Additionally, dantrolene has also been shown to inhibit multiple cell or organ damage induced by hypoxia/ischemia, mitochondria damage, oxidative stresses, inflammation, impairment of autophagy and apoptosis, etc., which are often the causes of severity and mortality of COVID-19 patients. We have repurposed that dantrolene has a high potential at treating COVID-19 patients and reducing its morbidity and mortality.
Collapse
Affiliation(s)
- B Jiang
- Department of Anaesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | |
Collapse
|
18
|
Sun L, Wei H. Ryanodine Receptors: A Potential Treatment Target in Various Neurodegenerative Disease. Cell Mol Neurobiol 2020; 41:1613-1624. [PMID: 32833122 DOI: 10.1007/s10571-020-00936-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
Abstract
Progressive neuronal demise is a key contributor to the key pathogenic event implicated in many different neurodegenerative disorders (NDDs). There are several therapeutic strategies available; however, none of them are particularly effective. Targeted neuroprotective therapy is one such therapy, which seems a compelling option, yet remains challenging due to the internal heterogeneity of the mechanisms underlying various NDDs. An alternative method to treat NDDs is to exploit common modalities involving molecularly distinct subtypes and thus develop specialized drugs with broad-spectrum characteristics. There is mounting evidence which supports for the theory that dysfunctional ryanodine receptors (RyRs) disrupt intracellular Ca2+ homeostasis, contributing to NDDs significantly. This review aims to provide direct and indirect evidence on the intersection of NDDs and RyRs malfunction, and to shed light on novel strategies to treat RyRs-mediated disease, modifying pharmacological therapies such as the potential therapeutic role of dantrolene, a RyRs antagonist.
Collapse
Affiliation(s)
- Liang Sun
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA
- Department of Anesthesiology, Peking University People's Hospital, Beijing, 100044, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3610 Hamilton Walk, Philadelphia, PA, 19104, USA.
| |
Collapse
|
19
|
Cote DR, Fuentes E, Elsayes AH, Ross JJ, Quraishi SA. A "crush" course on rhabdomyolysis: risk stratification and clinical management update for the perioperative clinician. J Anesth 2020; 34:585-598. [PMID: 32424487 DOI: 10.1007/s00540-020-02792-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 05/09/2020] [Indexed: 12/14/2022]
Abstract
Rhabdomyolysis, the release of myoglobin and other cellular breakdown products from necrotic muscle tissue, is seen in patients with crush injuries, drug overdose, malignant hyperthermia, muscular dystrophy, and with increasing frequency in obese patients undergoing routine procedures. For the perioperative clinician, managing the resultant shock, hyperkalemia, acidosis, and myoglobinuric acute kidney injury can present a significant challenge. Prompt recognition, hydration, and correction of metabolic disturbances may reduce or eliminate the need for long-term renal replacement therapy. This article reviews the pathophysiology and discusses key issues in the perioperative diagnosis, risk stratification, and management of rhabdomyolysis.
Collapse
Affiliation(s)
- Devan R Cote
- Department of Anesthesiology, Critical Care and Pain Medicine, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | - Eva Fuentes
- Department of Surgery, Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, FL, USA
| | - Ali H Elsayes
- Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Boston, MA, 02111, USA
| | - Jonathan J Ross
- Department of Anesthesiology, Baystate Medical Center, Tufts University School of Medicine, Springfield, MA, USA
| | - Sadeq A Quraishi
- Department of Anesthesiology and Perioperative Medicine, Tufts Medical Center, Tufts University School of Medicine, 800 Washington Street, Boston, MA, 02111, USA.
| |
Collapse
|
20
|
Wang Y, Liang G, Liang S, Mund R, Shi Y, Wei H. Dantrolene Ameliorates Impaired Neurogenesis and Synaptogenesis in Induced Pluripotent Stem Cell Lines Derived from Patients with Alzheimer's Disease. Anesthesiology 2020; 132:1062-1079. [PMID: 32149777 PMCID: PMC7160009 DOI: 10.1097/aln.0000000000003224] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Overactivation of ryanodine receptors and the resulting impaired calcium homeostasis contribute to Alzheimer's disease-related pathophysiology. This study hypothesized that exposing neuronal progenitors derived from induced pluripotent stems cells of patients with Alzheimer's disease to dantrolene will increase survival, proliferation, neurogenesis, and synaptogenesis. METHODS Induced pluripotent stem cells obtained from skin fibroblast of healthy subjects and patients with familial and sporadic Alzheimer's disease were used. Biochemical and immunohistochemical methods were applied to determine the effects of dantrolene on the viability, proliferation, differentiation, and calcium dynamics of these cells. RESULTS Dantrolene promoted cell viability and proliferation in these two cell lines. Compared with the control, differentiation into basal forebrain cholinergic neurons significantly decreased by 10.7% (32.9 ± 3.6% vs. 22.2 ± 2.6%, N = 5, P = 0.004) and 9.2% (32.9 ± 3.6% vs. 23.7 ± 3.1%, N = 5, P = 0.017) in cell lines from sporadic and familial Alzheimer's patients, respectively, which were abolished by dantrolene. Synapse density was significantly decreased in cortical neurons generated from stem cells of sporadic Alzheimer's disease by 58.2% (237.0 ± 28.4 vs. 99.0 ± 16.6 arbitrary units, N = 4, P = 0.001) or familial Alzheimer's disease by 52.3% (237.0 ± 28.4 vs.113.0 ± 34.9 vs. arbitrary units, N = 5, P = 0.001), which was inhibited by dantrolene in the familial cell line. Compared with the control, adenosine triphosphate (30 µM) significantly increased higher peak elevation of cytosolic calcium concentrations in the cell line from sporadic Alzheimer's patients (84.1 ± 27.0% vs. 140.4 ± 40.2%, N = 5, P = 0.049), which was abolished by the pretreatment of dantrolene. Dantrolene inhibited the decrease of lysosomal vacuolar-type H-ATPase and the impairment of autophagy activity in these two cell lines from Alzheimer's disease patients. CONCLUSIONS Dantrolene ameliorated the impairment of neurogenesis and synaptogenesis, in association with restoring intracellular Ca homeostasis and physiologic autophagy, cell survival, and proliferation in induced pluripotent stem cells and their derived neurons from sporadic and familial Alzheimer's disease patients.
Collapse
Affiliation(s)
- Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, the First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ge Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuqing Liang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, the First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Rachel Mund
- Undergraduate Student, College of Art and Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Children’s hospital of Fudan University, Shanghai, 201102, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Wang J, Shi Y, Yu S, Wang Y, Meng Q, Liang G, Eckenhoff MF, Wei H. Intranasal administration of dantrolene increased brain concentration and duration. PLoS One 2020; 15:e0229156. [PMID: 32160210 PMCID: PMC7065741 DOI: 10.1371/journal.pone.0229156] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
Dantrolene has been demonstrated to be neuroprotective for multiple neurodegenerative diseases. However, dantrolene's limited penetration into the CNS hampers its effectiveness as a neuroprotective agent. Here, we studied whether the intranasal administration of dantrolene provided better penetration into the brain than the commonly used oral approach. C57BL/6 mice, aged 2-4 months, received a single dose of either intranasal or oral dantrolene (5mg/kg). Inhibition of dantrolene clearance from the brain was examined by co-administration with P-gp/BCRP inhibitors, nimodipine or elacridar. The concentration of dantrolene in the brain and plasma was measured at 10, 20, 30, 50, 70, 120, 150 and 180 minutes after administration. Separate cohorts of mice were given intranasal dantrolene (5mg/kg) or vehicle, 3 times/ week, for either 3 weeks or 4 months, to examine potential adverse side effects on olfaction and motor coordination, respectively. We found that Dantrolene concentrations were sustained in the brain after intranasal administration for 180 min, while concentrations fell to zero at 120 min for oral administration. Chronic use of intranasal dantrolene did not impair olfaction or motor function in these mice. Blood brain barrier pump inhibitors did not further increase dantrolene peak concentrations in the brain. Our results suggested that Intranasal administration of dantrolene is an effective route to increase its concentration and duration in the brain compared to the oral approach, without any obvious side effects on olfaction or motor function.
Collapse
Affiliation(s)
- Jintao Wang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yun Shi
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Anesthesiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Shuchun Yu
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Anesthesiology, The Second Affiliated Hospital to Nanchang University, Nanchang, Jiangxi, China
| | - Yan Wang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
- Department of Anesthesiology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qingcheng Meng
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Ge Liang
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Maryellen F. Eckenhoff
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States of America
| |
Collapse
|
22
|
Søfteland JM, Oltean M. Intestinal Ischemia-Reperfusion Injury and Calcium Channel Blockers: Getting to the Core of the Problem. J INVEST SURG 2020; 34:808-809. [DOI: 10.1080/08941939.2020.1714823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- John Mackay Søfteland
- Department of Transplantation Surgery, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, The Transplant Institute, Gothenburg, Sweden
| | - Mihai Oltean
- Department of Transplantation Surgery, Institute for Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, The Transplant Institute, Gothenburg, Sweden
| |
Collapse
|
23
|
Todorova VK, Siegel ER, Kaufmann Y, Kumarapeli A, Owen A, Wei JY, Makhoul I, Klimberg VS. Dantrolene Attenuates Cardiotoxicity of Doxorubicin Without Reducing its Antitumor Efficacy in a Breast Cancer Model. Transl Oncol 2020; 13:471-480. [PMID: 31918212 PMCID: PMC7031101 DOI: 10.1016/j.tranon.2019.12.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 02/07/2023] Open
Abstract
Dysregulation of calcium homeostasis is a major mechanism of doxorubicin (DOX)-induced cardiotoxicity. Treatment with DOX causes activation of sarcoplasmic reticulum (SR) ryanodine receptor (RYR) and rapid release of Ca2+ in the cytoplasm resulting in depression of myocardial function. The aim of this study was to examine the effect of dantrolene (DNT) a RYR blocker on both the cardiotoxicity and antitumor activity of DOX in a rat model of breast cancer. Female F344 rats with implanted MAT B III breast cancer cells were randomized to receive intraperitoneal DOX twice per week (12 mg/kg total dose), 5 mg/kg/day oral DNT or a combination of DOX + DNT for 3 weeks. Echocardiography and blood troponin I levels were used to measure myocardial injury. Hearts and tumors were evaluated for histopathological alterations. Blood glutathione was assessed as a measure of oxidative stress. The results showed that DNT improved DOX-induced alterations in the echocardiographic parameters by 50%. Histopathologic analysis of hearts showed reduced DOX induced cardiotoxicity in the group treated with DOX + DNT as shown by reduced interstitial edema, cytoplasmic vacuolization, and myofibrillar disruption, compared with DOX-only–treated hearts. Rats treated with DNT lost less body weight, had higher blood GSH levels and lower troponin I levels than DOX-treated rats. These data indicate that DNT is able to provide protection against DOX cardiotoxicity without reducing its antitumor activity. Further studies are needed to determine the optimal dosing of DNT and DOX in a tumor-bearing host.
Collapse
Affiliation(s)
- Valentina K Todorova
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA.
| | - Eric R Siegel
- Department of Biostatistics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Yihong Kaufmann
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Asangi Kumarapeli
- Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Aaron Owen
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Jeanne Y Wei
- Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, USA
| | - Issam Makhoul
- Division of Medical Oncology, University of Arkansas for Medical Sciences, Little Rock, USA
| | - V Suzanne Klimberg
- Department of Surgery, University of Arkansas for Medical Sciences, Little Rock, USA
| |
Collapse
|
24
|
Exposure of Developing Brain to General Anesthesia: What Is the Animal Evidence? Anesthesiology 2019; 128:832-839. [PMID: 29271804 DOI: 10.1097/aln.0000000000002047] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, the U.S. Food and Drug Administration issued an official warning to all practicing physicians regarding potentially detrimental behavioral and cognitive sequelae of an early exposure to general anesthesia during in utero and in early postnatal life. The U.S. Food and Drug Administration concern is focused on children younger than three years of age who are exposed to clinically used general anesthetics and sedatives for three hours or longer. Although human evidence is limited and controversial, a large body of scientific evidence gathered from several mammalian species demonstrates that there is a potential foundation for concern. Considering this new development in public awareness, this review focuses on nonhuman primates because their brain development is the closest to humans in terms of not only timing and duration, but in terms of complexity as well. The review compares those primate findings to previously published work done with rodents.
Collapse
|
25
|
Wang X, Zheng W. Ca 2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles. FASEB J 2019; 33:6697-6712. [PMID: 30848934 DOI: 10.1096/fj.201801751r] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Emerging evidence indicates that Ca2+ is a vital factor in modulating the pathogenesis of Alzheimer's disease (AD). In healthy neurons, Ca2+ concentration is balanced to maintain a lower level in the cytosol than in the extracellular space or certain intracellular compartments such as endoplasmic reticulum (ER) and the lysosome, whereas this homeostasis is broken in AD. On the plasma membrane, the AD hallmarks amyloid-β (Aβ) and tau interact with ligand-gated or voltage-gated Ca2+-influx channels and inhibit the Ca2+-efflux ATPase or exchangers, leading to an elevated intracellular Ca2+ level and disrupted Ca2+ signal. In the ER, the disabled presenilin "Ca2+ leak" function and the direct implications of Aβ and presenilin mutants contribute to Ca2+-signal disorder. The enhanced ryanodine receptor (RyR)-mediated and inositol 1,4,5-trisphosphate receptor (IP3R)-mediated Ca2+ release from the ER aggravates cytosolic Ca2+ disorder and triggers apoptosis; the down-regulated ER Ca2+ sensor, stromal interaction molecule (STIM), alleviates store-operated Ca2+ entry in plasma membrane, leading to spine loss. The increased transfer of Ca2+ from ER to mitochondria through mitochondria-associated ER membrane (MAM) causes Ca2+ overload in the mitochondrial matrix and consequently opens the cellular damage-related channel, mitochondrial permeability transition pore (mPTP). In this review, we discuss the effects of Aβ, tau and presenilin on neuronal Ca2+ signal, focusing on the receptors and regulators in plasma membrane and ER; we briefly introduce the involvement of MAM-mediated Ca2+ transfer and mPTP opening in AD pathogenesis.-Wang, X., Zheng, W. Ca2+ homeostasis dysregulation in Alzheimer's disease: a focus on plasma membrane and cell organelles.
Collapse
Affiliation(s)
- Xingjian Wang
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| | - Wei Zheng
- Department of Histology and Embryology, College of Basic Medical Science, China Medical University, Shenyang, China
| |
Collapse
|
26
|
Shi Y, Wang Y, Wei H. Dantrolene : From Malignant Hyperthermia to Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2019; 18:668-676. [PMID: 29921212 PMCID: PMC7754833 DOI: 10.2174/1871527317666180619162649] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 05/07/2018] [Accepted: 06/13/2018] [Indexed: 12/12/2022]
Abstract
Dantrolene, a ryanodine receptor antagonist, is primarily known as the only clinically acceptable and effective treatment for Malignant Hyperthermia (MH). Inhibition of Ryanodine Receptor (RyR) by dantrolene decreases the abnormal calcium release from the Sarcoplasmic Reticulum (SR) or Endoplasmic Reticulum (ER), where RyR is located. Recently, emerging researches on dissociated cells, brains slices, live animal models and patients have demonstrated that altered RyR expression and function can also play a vital role in the pathogenesis of Alzheimer's Disease (AD). Therefore, dantrolene is now widely studied as a novel treatment for AD, targeting the blockade of RyR channels or another alternative pathway, such as the inhibitory effects of NMDA glutamate receptors and the effects of ER-mitochondria connection. However, the therapeutic effects are not consistent. In this review, we focus on the relationship between the altered RyR expression and function and the pathogenesis of AD, and the potential application of dantrolene as a novel treatment for the disease.
Collapse
Affiliation(s)
- Yun Shi
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, Children’s Hospital of Fudan University, Shanghai, China
| | - Yong Wang
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
- Department of Anesthesiology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Huafeng Wei
- Department of Anesthesiology and Critical Care, Perelman School of Medicine, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Lin HP, Zheng YQ, Zhou ZP, Wang GX, Guo PF. Ryanodine receptor antagonism alleviates skeletal muscle ischemia reperfusion injury by modulating TNF-α and IL-10. Clin Hemorheol Microcirc 2018; 70:51-58. [PMID: 29660904 DOI: 10.3233/ch-170276] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Intracellular calcium overload has been implicated in various pathological conditions including ischemia reperfusion injury. This study aims to explore the effect and probable mechanism of dantrolene, a ryanodine receptor and intracellular calcium antagonist, on the skeletal muscle ischemia reperfusion injury. MATERIALS AND METHODS SD rats were randomly divided into three groups: sham group which underwent anaesthesia and exposure of femoral vein, reperfusion group that received 2 h ischemia and the amount of diluent via femoral vein before 4 h reperfusion, dantrolene group that underwent 2 h ischemia and was given 2 mg/kg dantrolene via femoral vein before 4 h reperfusion. The parameters measured at the end of reperfusion included serum maleic dialdehyde (MDA), tissue myeloperoxidase (MPO) and muscle histology, as well as serum TNF-α and IL-10. RESULTS Levels of MDA, MPO and TNF-α increased in the reperfusion group, whereas the relevant expressions in the dantrolene group decreased significantly. Histological examination demonstrated significant improvements between the same both groups. IL-10 reflected the protection observed above with a significant up-regulation of expression after dantrolene administration. CONCLUSION Ryanodine receptor antagonist dantrolene exerted a significant protective effect against the inflammatory injury of skeletal muscle ischemia reperfusion. The underlying molecular mechanism is probably related to the suppression of TNF-α levels and the increment of IL-10 expression.
Collapse
Affiliation(s)
- Hai-Peng Lin
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yan-Qing Zheng
- Department of E.N.T, Quanzhou Women's and Children's Hospital, Quanzhou, China
| | - Zhi-Ping Zhou
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Gao-Xiong Wang
- Department of General Surgery, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Ping-Fan Guo
- Department of Vascular Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
28
|
Robin G, López JR, Espinal GM, Hulsizer S, Hagerman PJ, Pessah IN. Calcium dysregulation and Cdk5-ATM pathway involved in a mouse model of fragile X-associated tremor/ataxia syndrome. Hum Mol Genet 2017; 26:2649-2666. [PMID: 28444183 PMCID: PMC5886271 DOI: 10.1093/hmg/ddx148] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/06/2017] [Accepted: 04/12/2017] [Indexed: 12/30/2022] Open
Abstract
Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurological disorder that affects premutation carriers with 55-200 CGG-expansion repeats (preCGG) in FMR1, presenting with early alterations in neuronal network formation and function that precede neurodegeneration. Whether intranuclear inclusions containing DNA damage response (DDR) proteins are causally linked to abnormal synaptic function, neuronal growth and survival are unknown. In a mouse that harbors a premutation CGG expansion (preCGG), cortical and hippocampal FMRP expression is moderately reduced from birth through adulthood, with greater FMRP reductions in the soma than in the neurite, despite several-fold elevation of Fmr1 mRNA levels. Resting cytoplasmic calcium concentration ([Ca2+]i) in cultured preCGG hippocampal neurons is chronically elevated, 3-fold compared to Wt; elevated ROS and abnormal glutamatergic responses are detected at 14 DIV. Elevated µ-calpain activity and a higher p25/p35 ratio in the cortex of preCGG young adult mice indicate abnormal Cdk5 regulation. In support, the Cdk5 substrate, ATM, is upregulated by 1.5- to 2-fold at P0 and 6 months in preCGG brain, as is p-Ser1981-ATM. Bax:Bcl-2 is 30% higher in preCGG brain, indicating a greater vulnerability to apoptotic activation. Elevated [Ca2+]i, ROS, and DDR signals are normalized with dantrolene. Chronic [Ca2+]i dysregulation amplifies Cdk5-ATM signaling, possibly linking impaired glutamatergic signaling and DDR to neurodegeneration in preCGG brain.
Collapse
Affiliation(s)
- Gaëlle Robin
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - José R. López
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - Glenda M. Espinal
- Department of Biochemistry and Molecular Medicine, UC Davis, Davis, CA 95616, USA
| | - Susan Hulsizer
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
| | - Paul J. Hagerman
- Department of Biochemistry and Molecular Medicine, UC Davis, Davis, CA 95616, USA
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| | - Isaac N. Pessah
- Department Molecular Biosciences, School of Veterinary Medicine, Davis, CA, USA
- Medical Investigations of Neurodevelopmental Disorders (MIND) Institute, Sacramento, CA 95817, USA
| |
Collapse
|
29
|
Liu Z, Ma C, Zhao W, Zhang Q, Xu R, Zhang H, Lei H, Xu S. High Glucose Enhances Isoflurane-Induced Neurotoxicity by Regulating TRPC-Dependent Calcium Influx. Neurochem Res 2017; 42:1165-1178. [DOI: 10.1007/s11064-016-2152-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 12/02/2016] [Accepted: 12/19/2016] [Indexed: 10/20/2022]
|
30
|
Anesthetic neurotoxicity: Apoptosis and autophagic cell death mediated by calcium dysregulation. Neurotoxicol Teratol 2016; 60:59-62. [PMID: 27856359 DOI: 10.1016/j.ntt.2016.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Revised: 11/02/2016] [Accepted: 11/12/2016] [Indexed: 12/13/2022]
Abstract
A number of findings suggested that general anesthetics induced neural cell death by apoptosis in various animal models. Although clinical evidence regarding the correlation between anesthetic exposures at young age and subsequent cognitive impairments remains unclear, repeated or consistent exposures to general anesthetics may be a potential harmful risk in developing human brains. The mechanisms underlying the anesthetic neurotoxicity have received extensive attention recently. We will attempt a brief review to summarize current understanding on the role of both apoptosis and autophagic cell death mediated by calcium dysregulation in anesthetic neurotoxicity.
Collapse
|
31
|
Long-term dantrolene treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer Dis Assoc Disord 2016; 29:184-191. [PMID: 25650693 DOI: 10.1097/wad.0000000000000075] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this study, we investigated the long-term treatment of dantrolene on amyloid and tau neuropathology, brain volume, and cognitive function in aged triple transgenic Alzheimer (3xTg-AD) mice. Fifteen-month old 3xTg-AD mice and wild-type controls were treated with oral dantrolene (5 mg/kg) or vehicle control twice a week for 6 months. Learning and memory were examined using the Morris Water Maze at 21 and 22 months of age. After the behavioral testing, hippocampal and cortical brain volumes were calculated with magnetic resonance imaging and motor function was evaluated using the rotorod. The amyloid burden and tau neurofibrillary tangles in the hippocampus were determined using immunohistochemistry. We found that dantrolene significantly decreased the intraneuronal amyloid accumulation by as much as 76% compared with its corresponding vehicle control, together with a trend to reduce phosphorylated tau in the hippocampus. No significant differences could be detected in hippocampal or cortical brain volume, motor function or cognition among all experimental groups, indicating that the mice were still presymptomatic for Alzheimer disease. Thus, presymptomatic and long-term dantrolene treatment significantly decreased the intraneuronal amyloid burden in aged 3xTg-AD mice before significant changes in brain volume, or cognition.
Collapse
|
32
|
Effect of ruthenium red, a ryanodine receptor antagonist in experimental diabetes induced vascular endothelial dysfunction and associated dementia in rats. Physiol Behav 2016; 164:140-50. [PMID: 27262216 DOI: 10.1016/j.physbeh.2016.05.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/29/2016] [Accepted: 05/31/2016] [Indexed: 12/14/2022]
Abstract
Diabetes mellitus is considered as a main risk factor for vascular dementia. In the past, we have reported the induction of vascular dementia by experimental diabetes. This study investigates the efficacy of a ruthenium red, a ryanodine receptor antagonist and pioglitazone in the pharmacological interdiction of pancreatectomy diabetes (PaD) induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. PaD rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with an increase in brain inflammation, oxidative stress and calcium. Administration of ruthenium red and pioglitazone has significantly attenuated PaD induced impairment of learning, memory, blood brain barrier permeability, endothelial function and biochemical parameters. It may be concluded that ruthenium red, a ryanodine receptor antagonist and pioglitazone, a PPAR-γ agonist may be considered as potent pharmacological agent for the management of PaD induced endothelial dysfunction and subsequent vascular dementia. Ryanodine receptor may be explored further for their possible benefits in vascular dementia.
Collapse
|
33
|
Ryanodine receptors contribute to the induction of ischemic tolerance. Brain Res Bull 2016; 122:45-53. [DOI: 10.1016/j.brainresbull.2016.02.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 12/14/2015] [Accepted: 02/24/2016] [Indexed: 11/21/2022]
|
34
|
Butala BN, Kang A, Guron J, Brandom BW. Long term oral Dantrolene Improved Muscular Symptoms in a Malignant Hyperthermia Susceptible Individual. J Neuromuscul Dis 2016; 3:115-119. [PMID: 27854207 DOI: 10.3233/jnd-150130] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Brian N. Butala
- Department of Anesthesiology, Allegheny Health Network, West Penn Hospital, Pittsburgh, PA, USA
| | - Audry Kang
- University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jasmeen Guron
- North American Malignant Hyperthermia Registry, UPMC Mercy Hospital, Pittsburgh, PA, USA
| | - Barbara W. Brandom
- North American Malignant Hyperthermia Registry, UPMC Mercy Hospital, Pittsburgh, PA, USA
- Department of Anesthesiology, University of Pittsburgh Pittsburgh, PA, USA
| |
Collapse
|
35
|
Plank C, Hofmann P, Gruber M, Bollwein G, Graf BM, Zink W, Metterlein T. Modification of Bupivacaine-Induced Myotoxicity with Dantrolene and Caffeine In Vitro. Anesth Analg 2016; 122:418-23. [DOI: 10.1213/ane.0000000000000988] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
36
|
Ramklass R, Hauser N, Levin AI. Anaesthesia associated developmental neurotoxicity (AADN) 2015. SOUTHERN AFRICAN JOURNAL OF ANAESTHESIA AND ANALGESIA 2016. [DOI: 10.1080/22201181.2015.1126980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
37
|
Efthymiou AG, Steiner J, Pavan WJ, Wincovitch S, Larson DM, Porter FD, Rao MS, Malik N. Rescue of an in vitro neuron phenotype identified in Niemann-Pick disease, type C1 induced pluripotent stem cell-derived neurons by modulating the WNT pathway and calcium signaling. Stem Cells Transl Med 2015; 4:230-8. [PMID: 25637190 DOI: 10.5966/sctm.2014-0127] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Niemann-Pick disease, type C1 (NPC1) is a familial disorder that has devastating consequences on postnatal development with multisystem effects, including neurodegeneration. There is no Food and Drug Administration-approved treatment option for NPC1; however, several potentially therapeutic compounds have been identified in assays using yeast, rodent models, and NPC1 human fibroblasts. Although these discoveries were made in fibroblasts from NPC1 subjects and were in some instances validated in animal models of the disease, testing these drugs on a cell type more relevant for NPC1 neurological disease would greatly facilitate both study of the disease and identification of more relevant therapeutic compounds. Toward this goal, we have generated an induced pluripotent stem cell line from a subject homozygous for the most frequent NPC1 mutation (p.I1061T) and subsequently created a stable line of neural stem cells (NSCs). These NSCs were then used to create neurons as an appropriate disease model. NPC1 neurons display a premature cell death phenotype, and gene expression analysis of these cells suggests dysfunction of important signaling pathways, including calcium and WNT. The clear readout from these cells makes them ideal candidates for high-throughput screening and will be a valuable tool to better understand the development of NPC1 in neural cells, as well as to develop better therapeutic options for NPC1.
Collapse
Affiliation(s)
- Anastasia G Efthymiou
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Joe Steiner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - William J Pavan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen Wincovitch
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Denise M Larson
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Forbes D Porter
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Mahendra S Rao
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Nasir Malik
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NeuroTherapeutics Development Unit, National Institute for Neurological Diseases and Stroke, Genetic Disease Research Branch, National Human Genome Research Institute, Eunice Kennedy Shriver National Institute for Child Health and Human Development, and Center for Regenerative Medicine, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
General anesthetic isoflurane modulates inositol 1,4,5-trisphosphate receptor calcium channel opening. Anesthesiology 2014; 121:528-37. [PMID: 24878495 DOI: 10.1097/aln.0000000000000316] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pharmacological evidence suggests that inhalational general anesthetics induce neurodegeneration in vitro and in vivo through overactivation of inositol trisphosphate receptor (InsP3R) Ca-release channels, but it is not clear whether these effects are due to direct modulation of channel activity by the anesthetics. METHODS Using single-channel patch clamp electrophysiology, the authors examined the gating of rat recombinant type 3 InsP3R (InsP3R-3) Ca-release channels in isolated nuclei (N = 3 to 15) from chicken lymphocytes modulated by isoflurane at clinically relevant concentrations in the absence and presence of physiological levels of the agonist inositol 1,4,5-trisphosphate (InsP3). The authors also examined the effects of isoflurane on InsP3R-mediated Ca release from the endoplasmic reticulum and changes in intracellular Ca concentration ([Ca]i). RESULTS Clinically relevant concentrations (approximately 1 minimal alveolar concentration) of the commonly used general anesthetic, isoflurane, activated InsP3R-3 channels with open probability similar to channels activated by 1 µM InsP3 (Po ≈ 0.2). This isoflurane modulation of InsP3R-3 Po depended biphasically on [Ca]i. Combination of isoflurane with subsaturating levels of InsP3 in patch pipettes resulted in at least two-fold augmentations of InsP3R-3 channel Po compared with InsP3 alone. These effects were not noted in the presence of saturating [InsP3]. Application of isoflurane to DT40 cells resulted in a 30% amplification of InsP3R-mediated [Ca]i oscillations, whereas InsP3-induced increase in [Ca]i and cleaved caspase-3 activity were enhanced by approximately 2.5-fold. CONCLUSION These results suggest that the InsP3R may be a direct molecular target of isoflurane and plays a role in the mechanisms of anesthetic-mediated pharmacological or neurotoxic effects.
Collapse
|
39
|
Liu H, Dai T, Guo W. Isoflurane-induced neuronal apoptosis in developing hippocampal neurons. Neural Regen Res 2014; 8:825-32. [PMID: 25206730 PMCID: PMC4146089 DOI: 10.3969/j.issn.1673-5374.2013.09.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/19/2013] [Indexed: 11/23/2022] Open
Abstract
We hypothesized that the P2X7 receptor may be the target of isoflurane, so we investigated the roles of the P2X7 receptor and inositol triphosphate receptor in calcium overload and neuronal apoptosis induced by isoflurane in cultured embryonic rat hippocampal neurons. Results showed that isoflurane induced widespread neuronal apoptosis and significantly increased cytoplasmic Ca2+. Blockade of P2X7 receptors or removal of extracellular Ca2+ combined with blockade of inositol triphosphate receptors completely inhibited apoptosis or increase in cytoplasmic Ca2+. Removal of extracellular Ca2+ or blockade of inositol triphosphate receptor alone could partly inhibit these effects of isoflurane. Isoflurane could directly activate P2X7-gated channels and induce inward currents, but did not affect the expression of P2X7 receptor protein in neurons. These findings indicate that the mechanism by which isoflurane induced neuronal apoptosis in rat developing brain was mediated by intracellular calcium overload, which was caused by P2X7 receptor mediated calcium influx and inositol triphosphate receptor mediated calcium release.
Collapse
Affiliation(s)
- Hongliang Liu
- Department of Anesthesiology, Chongqing Cancer Institute/Cancer Hospital, Chongqing 400030, China
| | - Tijun Dai
- Department of Pharmacology, Xuzhou Medical College, Xuzhou 221002, Jiangsu Province, China
| | - Weitao Guo
- Department of Orthopedics Affiliated Hospital, Guangdong Medical College, Zhanjiang 524000, Guangdong Province, China
| |
Collapse
|
40
|
Jakob R, Beutner G, Sharma VK, Duan Y, Gross RA, Hurst S, Jhun BS, O-Uchi J, Sheu SS. Molecular and functional identification of a mitochondrial ryanodine receptor in neurons. Neurosci Lett 2014; 575:7-12. [PMID: 24861510 DOI: 10.1016/j.neulet.2014.05.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/23/2014] [Accepted: 05/13/2014] [Indexed: 11/30/2022]
Abstract
Mitochondrial Ca(2+) controls numerous cell functions, such as energy metabolism, reactive oxygen species generation, spatiotemporal dynamics of Ca(2+) signaling, cell growth and death in various cell types including neurons. Mitochondrial Ca(2+) accumulation is mainly mediated by the mitochondrial Ca(2+) uniporter (MCU), but recent reports also indicate that mitochondrial Ca(2+)-influx mechanisms are regulated not only by MCU, but also by multiple channels/transporters. We previously reported that ryanodine receptor (RyR), which is a one of the main Ca(2+)-release channels at endoplasmic/sarcoplasmic reticulum (SR/ER) in excitable cells, is expressed at the mitochondrial inner membrane (IMM) and serves as a part of the Ca(2+) uptake mechanism in cardiomyocytes. Although RyR is also expressed in neuronal cells and works as a Ca(2+)-release channel at ER, it has not been well investigated whether neuronal mitochondria possess RyR and, if so, whether this mitochondrial RyR has physiological functions in neuronal cells. Here we show that neuronal mitochondria express RyR at IMM and accumulate Ca(2+) through this channel in response to cytosolic Ca(2+) elevation, which is similar to what we observed in another excitable cell-type, cardiomyocytes. In addition, the RyR blockers dantrolene or ryanodine significantly inhibits mitochondrial Ca(2+) uptake in permeabilized striatal neurons. Taken together, we identify RyR as an additional mitochondrial Ca(2+) uptake mechanism in response to the elevation of [Ca(2+)]c in neurons, suggesting that this channel may play a critical role in mitochondrial Ca(2+)-mediated functions such as energy metabolism.
Collapse
Affiliation(s)
- Regina Jakob
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Gisela Beutner
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Virendra K Sharma
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Yuntao Duan
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Robert A Gross
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States; Department of Neurology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States
| | - Stephen Hurst
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Bong Sook Jhun
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Jin O-Uchi
- Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| | - Shey-Shing Sheu
- Department of Pharmacology and Physiology, University of Rochester, School of Medicine and Dentistry, Rochester, NY 14642, United States; Center for Translational Medicine, Department of Medicine, Jefferson Medical College, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
41
|
Wei H, Inan S. Dual effects of neuroprotection and neurotoxicity by general anesthetics: role of intracellular calcium homeostasis. Prog Neuropsychopharmacol Biol Psychiatry 2013; 47:156-61. [PMID: 23721657 PMCID: PMC3791176 DOI: 10.1016/j.pnpbp.2013.05.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/18/2013] [Accepted: 05/15/2013] [Indexed: 11/18/2022]
Abstract
Although general anesthetics have long been considered neuroprotective, there are growing concerns about neurotoxicity. Preclinical studies clearly demonstrated that commonly used general anesthetics are both neuroprotective and neurotoxic, with unclear mechanisms. Recent studies suggest that differential activation of inositol 1,4,5-trisphosphate receptors, a calcium release channel located on the membrane of endoplasmic reticulum (ER), play important role on determining the fate of neuroprotection or neurotoxicity by general anesthetics. General anesthetics at low concentrations for short duration are sublethal stress factors which induce endogenous neuroprotective mechanisms and provide neuroprotection via adequate activation of InsP3R and moderate calcium release from ER. On the other hand, general anesthetics at high concentrations for prolonged duration are lethal stress factors which induce neuronal damage by over activation of InsP3R and excessive and abnormal Ca(2+) release from ER. This review emphasizes the dual effects of both neuroprotection and neurotoxicity via differential regulation of intracellular Ca(2+) homeostasis by commonly used general anesthetics and recommends strategy to maximize neuroprotective but minimize neurotoxic effects of general anesthetics.
Collapse
Affiliation(s)
- Huafeng Wei
- Department of Anesthesiology and Critical Care, University of Pennsylvania, 305 John Morgan Building, 3620 Hamilton Walk, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
42
|
Haraschak JL, Langston VC, Wang R, Riggs C, Fellman C, Ross MK, Bulla C, Lunsford K, Mackin A, Archer T. Pharmacokinetic evaluation of oral dantrolene in the dog. J Vet Pharmacol Ther 2013; 37:286-94. [PMID: 24219828 DOI: 10.1111/jvp.12089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 10/04/2013] [Indexed: 11/29/2022]
Abstract
The pharmacokinetics of dantrolene and its active metabolite, 5-hydroxydantrolene, after a single oral dose of either 5 or 10 mg/kg of dantrolene was determined. The effects of exposure to dantrolene and 5-hydroxydantrolene on activated whole-blood gene expression of the cytokines interleukin-2 (IL-2) and interferon-γ (IFN-γ) were also investigated. When dantrolene was administered at a 5 mg/kg dose, peak plasma concentration (Cmax ) was 0.43 μg/mL, terminal half-life (t1/2 ) was 1.26 h, and area under the time-concentration curve (AUC) was 3.87 μg·h/mL. For the 10 mg/kg dose, Cmax was 0.65 μg/mL, t1/2 was 1.21 h, and AUC was 5.94 μg·h/mL. For all calculated parameters, however, there were large standard deviations and wide ranges noted between and within individual dogs: t1/2 , for example, ranged from 0.43 to 6.93 h, Cmax ratios ranged from 1.05 to 3.39, and relative bioavailability (rF) values ranged from 0.02 to 1.56. While activated whole-blood expression of IL-2 and IFN-γ as measured by qRT-PCR was markedly suppressed following exposure to very high concentrations (30 and 50 μg/mL, respectively) of both dantrolene and 5-hydroxydantrolene, biologically and therapeutically relevant suppression of cytokine expression did not occur at the much lower drug concentrations achieved with oral dantrolene dosing.
Collapse
Affiliation(s)
- J L Haraschak
- Department of Clinical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Komita M, Jin H, Aoe T. The Effect of Endoplasmic Reticulum Stress on Neurotoxicity Caused by Inhaled Anesthetics. Anesth Analg 2013; 117:1197-204. [DOI: 10.1213/ane.0b013e3182a74773] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Saad H, Aladawy M. Temperature management in cardiac surgery. Glob Cardiol Sci Pract 2013; 2013:44-62. [PMID: 24689001 PMCID: PMC3963732 DOI: 10.5339/gcsp.2013.7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 03/06/2013] [Indexed: 01/06/2023] Open
|
45
|
Popugaeva E, Bezprozvanny I. Role of endoplasmic reticulum Ca2+ signaling in the pathogenesis of Alzheimer disease. Front Mol Neurosci 2013; 6:29. [PMID: 24065882 PMCID: PMC3776136 DOI: 10.3389/fnmol.2013.00029] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 08/30/2013] [Indexed: 01/24/2023] Open
Abstract
Alzheimer disease (AD) is a major threat of twenty-first century that is responsible for the majority of dementia in the elderly. Development of effective AD-preventing therapies are the top priority tasks for neuroscience research. Amyloid hypothesis of AD is a dominant idea in the field, but so far all amyloid-targeting therapies have failed in clinical trials. In addition to amyloid accumulation, there are consistent reports of abnormal calcium signaling in AD neurons. AD neurons exhibit enhanced intracellular calcium (Ca2+) liberation from the endoplasmic reticulum (ER) and reduced store-operated Ca2+ entry (SOC). These changes occur primarily as a result of ER Ca2+ overload. We argue that normalization of intracellular Ca2+ homeostasis could be a strategy for development of effective disease-modifying therapies. The current review summarizes recent data about changes in ER Ca2+ signaling in AD. Ca2+ channels that are discussed in the current review include: inositol trisphosphate receptors, ryanodine receptors, presenilins as ER Ca2+ leak channels, and neuronal SOC channels. We discuss how function of these channels is altered in AD and how important are resulting Ca2+ signaling changes for AD pathogenesis.
Collapse
Affiliation(s)
- Elena Popugaeva
- Laboratory of Molecular Neurodegeneration, Saint Petersburg State Polytechnical University Saint Petersburg, Russia
| | | |
Collapse
|
46
|
Fernandes CR, Pinto Filho WA, Cezar LC, Alves Gomes JM, Florencio da Cunha GK. Fatal Recrudescence of Malignant Hyperthermia in an Infant with Moebius Syndrome. Braz J Anesthesiol 2013; 63:296-300. [DOI: 10.1016/s0034-7094(13)70234-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2012] [Accepted: 06/12/2012] [Indexed: 10/26/2022] Open
|
47
|
Rapid human melanoma cell death induced by sanguinarine through oxidative stress. Eur J Pharmacol 2013; 705:109-18. [PMID: 23499690 DOI: 10.1016/j.ejphar.2013.02.035] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 02/06/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022]
Abstract
Sanguinarine is a natural isoquinoline alkaloid derived from the root of Sanguinaria canadensis and from other poppy fumaria species, and is known to have a broad spectrum of pharmacological properties. Here we have found that sanguinarine, at low micromolar concentrations, showed a remarkably rapid killing activity against human melanoma cells. Time-lapse videomicroscopy showed rapid morphological changes compatible with an apoptotic cell death, which was further supported by biochemical markers, including caspase activation, poly(ADP-ribose) polymerase (PARP) cleavage and DNA breakdown. Pan-caspase inhibition blocked sanguinarine-induced cell death. Sanguinarine treatment also induced an increase in intracellular calcium concentration, which was inhibited by dantrolene, and promoted cleavage of BAP-31, thus suggesting a putative role for Ca(2+) release from endoplasmic reticulum and a cross-talk between endoplasmic reticulum and mitochondria in the anti-melanoma action of sanguinarine. Sanguinarine disrupted the mitochondrial transmembrane potential (ΔΨm), released cytochrome c and Smac/DIABLO from mitochondria to cytosol, and induced oxidative stress. Overexpression of Bcl-XL by gene transfer did not prevent sanguinarine-mediated cell death, oxidative stress or release of mitochondrial apoptogenic proteins. However, preincubation with N-acetyl-l-cysteine (NAC) prevented sanguinarine-induced oxidative stress, PARP cleavage, release of apoptogenic mitochondrial proteins, and cell death. Pretreatment with glutathione (GSH) also inhibited the anti-melanoma activity of sanguinarine. Thus, pretreatment with the thiol antioxidants NAC and GSH abrogated the killing activity of sanguinarine. Taking together, our data indicate that sanguinarine is a very rapid inducer of human melanoma caspase-dependent cell death that is mediated by oxidative stress.
Collapse
|
48
|
Loss of endoplasmic reticulum Ca2+ homeostasis: contribution to neuronal cell death during cerebral ischemia. Acta Pharmacol Sin 2013; 34:49-59. [PMID: 23103622 DOI: 10.1038/aps.2012.139] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The loss of Ca(2+) homeostasis during cerebral ischemia is a hallmark of impending neuronal demise. Accordingly, considerable cellular resources are expended in maintaining low resting cytosolic levels of Ca(2+). These include contributions by a host of proteins involved in the sequestration and transport of Ca(2+), many of which are expressed within intracellular organelles, including lysosomes, mitochondria as well as the endoplasmic reticulum (ER). Ca(2+) sequestration by the ER contributes to cytosolic Ca(2+) dynamics and homeostasis. Furthermore, within the ER Ca(2+) plays a central role in regulating a host of physiological processes. Conversely, impaired ER Ca(2+) homeostasis is an important trigger of pathological processes. Here we review a growing body of evidence suggesting that ER dysfunction is an important factor contributing to neuronal injury and loss post-ischemia. Specifically, the contribution of the ER to cytosolic Ca(2+) elevations during ischemia will be considered, as will the signalling cascades recruited as a consequence of disrupting ER homeostasis and function.
Collapse
|
49
|
Abstract
Malignant hyperthermia (MH) is an uncommon, life-threatening pharmacogenetic disorder of the skeletal muscle. It presents as a hypermetabolic response in susceptible individuals to potent volatile anesthetics with/without depolarizing muscle relaxants; in rare cases, to stress from exertion or heat stress. Susceptibility to malignant hyperthermia (MHS) is inherited as an autosomally dominant trait with variable expression and incomplete penetrance. It is known that the pathophysiology of MH is related to an uncontrolled rise of myoplasmic calcium, which activates biochemical processes resulting in hypermetabolism of the skeletal muscle. In most cases, defects in the ryanodine receptor are responsible for the functional changes of calcium regulation in MH, and more than 300 mutations have been identified in the RYR1 gene, located on chromosome 19q13.1. The classic signs of MH include increase of end-tidal carbon dioxide, tachycardia, skeletal muscle rigidity, tachycardia, hyperthermia and acidosis. Up to now, muscle contracture test is regarded as the gold standard for the diagnosis of MHS though molecular genetic test is used, on a limited basis so far to diagnose MHS. The mortality of MH is dramatically decreased from 70-80% to less than 5%, due to an introduction of dantrolene sodium for treatment of MH, early detection of MH episode using capnography, and the introduction of diagnostic testing for MHS. This review summarizes the clinically essential and important knowledge of MH, and presents new developments in the field.
Collapse
Affiliation(s)
- Dong-Chan Kim
- Department of Anesthesiology and Pain Medicine, Chonbuk National University Medical School, Jeonju, Korea
| |
Collapse
|
50
|
Jevtovic-Todorovic V, Boscolo A, Sanchez V, Lunardi N. Anesthesia-induced developmental neurodegeneration: the role of neuronal organelles. Front Neurol 2012; 3:141. [PMID: 23087668 PMCID: PMC3468830 DOI: 10.3389/fneur.2012.00141] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/24/2012] [Indexed: 01/12/2023] Open
Abstract
Exposure to general anesthetics (GAs) and antiepileptics during critical stages of brain development causes significant neurotoxicity to immature neurons. Many animal, and emerging human studies have shown long-term functional sequelae manifested as behavioral deficits and cognitive impairments. Since GAs and antiepileptic drugs are a necessity, current research is focused on deciphering the mechanisms responsible for anesthesia-induced developmental neurotoxicity so that protective strategies can be devised. These agents promote massive and wide-spread neuroapoptosis that is caused by the impairment of integrity and function of neuronal organelles. Mitochondria and endoplasmic reticulum are particularly vulnerable. By promoting significant release of intracellular calcium from the endoplasmic reticulum, anesthetics cause an increase in mitochondrial calcium load resulting in the loss of their integrity, release of pro-apoptotic factors, functional impairment of ATP synthesis, and enhanced accumulation of reactive oxygen species. The possibility that GAs may have direct damaging effects on mitochondria, resulting in the impairment of their morphogenesis, also has been proposed. This review will present evidence that neuronal organelles are critical and early targets of anesthesia-induced developmental neurotoxicity.
Collapse
Affiliation(s)
- Vesna Jevtovic-Todorovic
- Department of Anesthesiology, University of Virginia Health System Charlottesville, VA, USA ; Neuroscience Graduate Program, University of Virginia Charlottesville, VA, USA
| | | | | | | |
Collapse
|