1
|
Lee F, Cheng SP, Chen MJ, Huang WC, Liu YM, Chang SC, Chang YC. Zinc Finger Protein 639 Expression Is a Novel Prognostic Determinant in Breast Cancer. J Breast Cancer 2025; 28:86-98. [PMID: 40133986 PMCID: PMC12046354 DOI: 10.4048/jbc.2024.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/29/2024] [Accepted: 02/16/2025] [Indexed: 03/27/2025] Open
Abstract
PURPOSE Zinc finger protein 639 (ZNF639) is often found within the overlapping amplicon of PIK3CA, and previous studies suggest its involvement in the pathogenesis of esophageal and oral squamous cell carcinomas. However, its expression and significance in breast cancer remain uncharacterized. METHODS Immunohistochemical analysis of ZNF639 was performed using tissue microarrays. Functional studies, including colony formation, Transwell cell migration, and in vivo metastasis, were conducted on breast tumor cells with ZNF639 knockdown via small interfering RNA transfection. RESULTS Reduced ZNF639 immunoreactivity was observed in 82% of the breast cancer samples, independent of hormone receptor and human epidermal growth factor receptor 2 status. In multivariate Cox regression analyses, ZNF639 expression was associated with favorable survival outcomes, including recurrence-free survival (hazard ratio, 0.35; 95% confidence interval [CI], 0.14-0.89) and overall survival (hazard ratio, 0.41; 95% CI, 0.16-1.05). ZNF639 knockdown increased clonogenicity, cell motility, and lung metastasis in NOD/SCID mice. Following the ZNF639 knockdown, the expression of Snail1, vimentin, and C-C chemokine ligand 20 (CCL20) was upregulated, and the changes in cell phenotype mediated by ZNF639 were reversed by the subsequent knockdown of CCL20. CONCLUSION Low ZNF639 expression is a novel prognostic factor for recurrence-free survival in patients with breast cancer.
Collapse
Affiliation(s)
- Fang Lee
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Wen-Chien Huang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Institute of Biomedical Sciences, MacKay Medical College, New Taipei City, Taiwan
| | - Yi-Min Liu
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shao-Chiang Chang
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Medicine, School of Medicine, MacKay Medical College, New Taipei City, Taiwan.
| |
Collapse
|
2
|
Bezu L, Forget P, Hollmann MW, Parat MO, Piegeler T. Potential influence of different peri-operative analgesic regimens on tumour biology and outcome after oncologic surgery: A narrative review. Eur J Anaesthesiol 2025; 42:233-243. [PMID: 39743967 DOI: 10.1097/eja.0000000000002118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The management of peri-operative pain is one of the pillars of anaesthesia and is of particular importance in patients undergoing surgery for solid malignant tumours. Amongst several options, the most commonly employed analgesic regimens involve opioids, NSAIDs and regional anaesthesia techniques with different local anaesthetics. In recent years, several research reports have tried to establish a connection between peri-operative anaesthesia care and outcome after cancer surgery. Experimental studies have indicated that certain pain management substances may influence cancer progression, mainly by modifying the tumour's response to surgical stress and peri-operative inflammation. However, these promising in-vitro and in-vivo data have yet to be confirmed by randomised clinical trials. The reason for this might lie with the nature of tumour biology itself, and in the diversity of patient and tumour phenotypes. In a translational approach, future research should therefore concentrate on patient and tumour-related factors or biomarkers, which might either influence the tumour and its microenvironment or predict potential responses to interventions, including the choice of the analgesic. This might not only be relevant for the daily practice of clinical anaesthesia, but would also be of great importance for patients undergoing cancer surgery, who might be able to receive an individualised anaesthetic regimen based on their phenotypic profile.
Collapse
Affiliation(s)
- Lucillia Bezu
- From the Département d'Anesthésie, Chirurgie et Interventionnel (LB), U1138 Metabolism, Cancer and Immunity, Gustave Roussy, Villejuif, France (LB), Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, California, USA (LB), Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), Institute of Applied Health Sciences, School of Medicine, Medical Sciences and Nutrition (PF), Anaesthesia department, NHS Grampian, Aberdeen, UK (PF), IMAGINE UR UM 103, Montpellier University, Anesthesia Critical Care, Emergency and Pain Medicine Division, Nîmes University Hospital, Nîmes, France (PF), Pain and Opioids after Surgery (PANDOS) European Society of Anaesthesiology and Intensive Care (ID ESAIC_RG_PAND) Research Group, Brussels, Belgium (PF), Department of Anaesthesiology, Amsterdam UMC, Amsterdam, The Netherlands (MWH), School of Pharmacy, The University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba Qld, Australia (M-OP), Department of Anaesthesiology and Intensive Care, University of Leipzig Medical Center, Leipzig, Germany (TP), EuroPeriscope, ESAIC Onco-Anaesthesiology Research Group, Brussels, Belgium (TP, LB, PF, MWH)
| | | | | | | | | |
Collapse
|
3
|
Choi H, Hwang W. Anesthetic Approaches and Their Impact on Cancer Recurrence and Metastasis: A Comprehensive Review. Cancers (Basel) 2024; 16:4269. [PMID: 39766169 PMCID: PMC11674873 DOI: 10.3390/cancers16244269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/10/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer recurrence and metastasis remain critical challenges following surgical resection, influenced by complex perioperative mechanisms. This review explores how surgical stress triggers systemic changes, such as neuroendocrine responses, immune suppression, and inflammation, which promote the dissemination of residual cancer cells and circulating tumor cells. Key mechanisms, such as epithelial-mesenchymal transition and angiogenesis, further enhance metastasis, while hypoxia-inducible factors and inflammatory responses create a microenvironment conducive to tumor progression. Anesthetic agents and techniques modulate these mechanisms in distinct ways. Inhaled anesthetics, such as sevoflurane, may suppress immune function by increasing catecholamines and cytokines, thereby promoting cancer progression. In contrast, propofol-based total intravenous anesthesia mitigates stress responses and preserves natural killer cell activity, supporting immune function. Opioids suppress immune surveillance and promote angiogenesis through the activation of the mu-opioid receptor. Opioid-sparing strategies using NSAIDs show potential in preserving immune function and reducing recurrence risk. Regional anesthesia offers benefits by reducing systemic stress and immune suppression, though the clinical outcomes remain inconsistent. Additionally, dexmedetomidine and ketamine exhibit dual effects, both enhancing and inhibiting tumor progression depending on the dosage and context. This review emphasizes the importance of individualized anesthetic strategies to optimize long-term cancer outcomes. While retrospective studies suggest potential benefits of propofol-based total intravenous anesthesia and regional anesthesia, further large-scale trials are essential to establish the definitive role of anesthetic management in cancer recurrence and survival.
Collapse
Affiliation(s)
| | - Wonjung Hwang
- Department of Anesthesiology and Pain Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea;
| |
Collapse
|
4
|
Yaniv D, Mattson B, Talbot S, Gleber-Netto FO, Amit M. Targeting the peripheral neural-tumour microenvironment for cancer therapy. Nat Rev Drug Discov 2024; 23:780-796. [PMID: 39242781 PMCID: PMC12123372 DOI: 10.1038/s41573-024-01017-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 09/09/2024]
Abstract
As the field of cancer neuroscience expands, the strategic targeting of interactions between neurons, cancer cells and other elements in the tumour microenvironment represents a potential paradigm shift in cancer treatment, comparable to the advent of our current understanding of tumour immunology. Cancer cells actively release growth factors that stimulate tumour neo-neurogenesis, and accumulating evidence indicates that tumour neo-innervation propels tumour progression, inhibits tumour-related pro-inflammatory cytokines, promotes neovascularization, facilitates metastasis and regulates immune exhaustion and evasion. In this Review, we give an up-to-date overview of the dynamics of the tumour microenvironment with an emphasis on tumour innervation by the peripheral nervous system, as well as current preclinical and clinical evidence of the benefits of targeting the nervous system in cancer, laying a scientific foundation for further clinical trials. Combining empirical data with a biomarker-driven approach to identify and hone neuronal targets implicated in cancer and its spread can pave the way for swift clinical integration.
Collapse
Affiliation(s)
- Dan Yaniv
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandi Mattson
- The Neurodegeneration Consortium, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sebastien Talbot
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Frederico O Gleber-Netto
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- UTHealth Houston Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
5
|
Huang X, Yi P, Gou W, Zhang R, Wu C, Liu L, He Y, Jiang X, Feng J. Neddylation signaling inactivation by tetracaine hydrochloride suppresses cell proliferation and alleviates vemurafenib-resistance of melanoma. Cell Biol Toxicol 2024; 40:81. [PMID: 39297891 PMCID: PMC11413085 DOI: 10.1007/s10565-024-09916-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/04/2024] [Indexed: 09/21/2024]
Abstract
Tetracaine, a local anesthetic, exhibits potent cytotoxic effects on multiple cancer; however, the precise underlying mechanisms of its anti-cancer activity remain uncertain. The anti-cancer activity of tetracaine was found to be the most effective among commonly used local anesthetics in this study. After tetracaine treatment, the differentially expressed genes in melanoma cells were identified by the RNAseq technique and enriched in the lysosome signaling pathway, cullin family protein binding, and proteasome signaling pathway through Kyoto Encyclopedia of Genes and Genomes. Additionally, the ubiquitin-like neddylation signaling pathway, which is hyperactivated in melanoma, could be abrogated due to decreased NAE2 expression after tetracaine treatment. The neddylation of the pro-oncogenic Survivin, which enhances its stability, was significantly reduced following treatment with tetracaine. The activation of neddylation signaling by NEDD8 overexpression could reduce the antitumor efficacy of tetracaine in vivo and in vitro. Furthermore, vemurafenib-resistant melanoma cells showed higher level of neddylation, and potential substrate proteins undergoing neddylation modification were identified through immunoprecipitation and mass spectrometry. The tetracaine treatment could reduce drug resistance via neddylation signaling pathway inactivation in melanoma cells. These findings demonstrate that tetracaine effectively inhibits cell proliferation and alleviates vemurafenib resistance in melanoma by suppressing the neddylation signaling pathway, providing a promising avenue for controlling cancer progression.
Collapse
Affiliation(s)
- Xiang Huang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Anesthesiology, Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou Province, China
| | - Peng Yi
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Wanrong Gou
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Ran Zhang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Chunlin Wu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Li Liu
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Yijing He
- Laboratory of Nervous System Disease and Brain Functions, Clinical Research Institute, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan Province, China
| | - Xian Jiang
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China
- Department of Anesthesiology, Luzhou People's Hospital, Luzhou, 646000, Sichuan Province, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
- Anesthesiology and Critical Care Medicine Key Laboratory of Luzhou, The Affiliated Hospital, Southwest Medical University, Luzhou, 646000, Sichuan Province, China.
| |
Collapse
|
6
|
Bezu L, Akçal Öksüz D, Bell M, Buggy D, Diaz-Cambronero O, Enlund M, Forget P, Gupta A, Hollmann MW, Ionescu D, Kirac I, Ma D, Mokini Z, Piegeler T, Pranzitelli G, Smith L, The EuroPeriscope Group. Perioperative Immunosuppressive Factors during Cancer Surgery: An Updated Review. Cancers (Basel) 2024; 16:2304. [PMID: 39001366 PMCID: PMC11240822 DOI: 10.3390/cancers16132304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/16/2024] Open
Abstract
Surgical excision of the primary tumor represents the most frequent and curative procedure for solid malignancies. Compelling evidence suggests that, despite its beneficial effects, surgery may impair immunosurveillance by triggering an immunosuppressive inflammatory stress response and favor recurrence by stimulating minimal residual disease. In addition, many factors interfere with the immune effectors before and after cancer procedures, such as malnutrition, anemia, or subsequent transfusion. Thus, the perioperative period plays a key role in determining oncological outcomes and represents a short phase to circumvent anesthetic and surgical deleterious factors by supporting the immune system through the use of synergistic pharmacological and non-pharmacological approaches. In line with this, accumulating studies indicate that anesthetic agents could drive both protumor or antitumor signaling pathways during or after cancer surgery. While preclinical investigations focusing on anesthetics' impact on the behavior of cancer cells are quite convincing, limited clinical trials studying the consequences on survival and recurrences remain inconclusive. Herein, we highlight the main factors occurring during the perioperative period of cancer surgery and their potential impact on immunomodulation and cancer progression. We also discuss patient management prior to and during surgery, taking into consideration the latest advances in the literature.
Collapse
Affiliation(s)
- Lucillia Bezu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Département d'Anesthésie, Chirurgie et Interventionnel, Gustave Roussy, 94805 Villejuif, France
- U1138 Metabolism, Cancer and Immunity, Gustave Roussy, 94805 Villejuif, France
- Department of Anesthesiology, Perioperative and Pain Medicine, School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Dilara Akçal Öksüz
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Clinic for Anesthesiology, Intensive Care, Emergency Medicine, Pain Therapy and Palliative Medicine, Marienhaus Klinikum Hetzelstift, 67434 Neustadt an der Weinstrasse, Germany
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
| | - Max Bell
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Perioperative Medicine and Intensive Care (PMI), Karolinska University Hospital, Solna, 17176 Stockholm, Sweden
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Donal Buggy
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthesiology, Mater Misericordiae University Hospital, D07 WKW8 Dublin, Ireland
- School of Medicine, University College, D04 V1W8 Dublin, Ireland
| | - Oscar Diaz-Cambronero
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Hospital Universitario y Politécnico la Fe, 46026 Valencia, Spain
- Perioperative Medicine Research, Health Research Institute Hospital la Fe, 46026 Valencia, Spain
- Faculty of Medicine, Department of Surgery, University of Valencia, 46010 Valencia, Spain
| | - Mats Enlund
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Center for Clinical Research, Uppsala University, SE-72189 Västerås, Sweden
- Department of Anesthesia & Intensive Care, Västmanland Hospital, SE-72189 Västerås, Sweden
| | - Patrice Forget
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Aberdeen Centre for Arthritis and Musculoskeletal Health (Epidemiology Group), Institute of Applied Health Sciences, Epidemiology Group, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- Pain and Opioids after Surgery (PANDOS) ESAIC Research Group, European Society of Anaesthesiology and Intensive Care, 1000 Brussels, Belgium
- IMAGINE UR UM 103, Anesthesia Critical Care, Emergency and Pain Medicine Division, Nîmes University Hospital, Montpellier University, 30900 Nîmes, France
| | - Anil Gupta
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Physiology and Pharmacology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Markus W Hollmann
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology, Amsterdam UMC, 1100 DD Amsterdam, The Netherlands
| | - Daniela Ionescu
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesia and Intensive Care, University of Medicine and Pharmacy "Iuliu Hatieganu", 400012 Cluj-Napoca, Romania
- Outcome Research Consortium, Cleveland, OH 44195, USA
| | - Iva Kirac
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Genetic Counselling Unit, University Hospital for Tumors, Sestre Milosrdnice University Hospital Centre, 10000 Zagreb, Croatia
| | - Daqing Ma
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Division of Anaesthetics, Pain Medicine and Intensive Care, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW10 9NH, UK
- Department of Anesthesiology, Perioperative and Systems Medicine Laboratory, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou 310052, China
| | - Zhirajr Mokini
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- ESAIC Mentorship Program, BE-1000 Brussels, Belgium
- Clinique du Pays de Seine, 77590 Bois le Roi, France
| | - Tobias Piegeler
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, University of Leipzig Medical Center, 04275 Leipzig, Germany
| | - Giuseppe Pranzitelli
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anesthesiology and Intensive Care, San Timoteo Hospital, 86039 Termoli, Italy
| | - Laura Smith
- EuroPeriscope, ESA-IC Onco-Anaesthesiology Research Group, B-1000 Brussels, Belgium
- Department of Anaesthesia, NHS Grampian, University of Aberdeen, Aberdeen AB25 2ZN, UK
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZN, UK
| | | |
Collapse
|
7
|
Carnet Le Provost K, Kepp O, Kroemer G, Bezu L. Trial watch: local anesthetics in cancer therapy. Oncoimmunology 2024; 13:2308940. [PMID: 38504848 PMCID: PMC10950281 DOI: 10.1080/2162402x.2024.2308940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Preclinical evidence indicates potent antitumor properties of local anesthetics. Numerous underlying mechanisms explaining such anticancer effects have been identified, suggesting direct cytotoxic as well as indirect immunemediated effects that together reduce the proliferative, invasive and migratory potential of malignant cells. Although some retrospective and correlative studies support these findings, prospective randomized controlled trials have not yet fully confirmed the antineoplastic activity of local anesthetics, likely due to the intricate methodology required for mitigating confounding factors. This trial watch aims at compiling all published preclinical and clinical research, along with completed and ongoing trials, that explore the potential antitumor effects of local anesthetics.
Collapse
Affiliation(s)
- Killian Carnet Le Provost
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, Centre de Recherche des Cordeliers, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy, Université Paris Saclay, Villejuif, France
- Gustave Roussy, Département Anesthésie, Chirurgie et Interventionnel, Villejuif, France
| |
Collapse
|
8
|
Tang Y, Guo S, Chen Y, Liu L, Liu M, He R, Wu Q. Impact of anesthesia on postoperative breast cancer prognosis: A narrative review. Drug Discov Ther 2024; 17:389-395. [PMID: 37914272 DOI: 10.5582/ddt.2023.01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
The incidence of breast cancer has exhibited an annually increasing trend, and the disease has become the most common malignant tumour worldwide. Currently, the primary treatment for breast cancer is surgical resection. However, metastatic recurrence is the main cause of cancer-related death in this patient population. Various factors are associated with breast cancer prognosis, and anaesthesia-induced changes in the tumour microenvironment have attracted increasing attention. To date, however, it remains unclear whether anaesthetic drugs have a positive or negative impact on cancer outcomes after surgery. The present article reviews the effects of different anaesthetics on the postoperative prognosis of breast cancer surgery to guide the choice of anaesthetic technique(s) and agents for such patients.
Collapse
Affiliation(s)
- Yi Tang
- Department of Anesthesiology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- Medical Department of Shenzhen University, Shenzhen, Guangdong, China
| | - Shanshan Guo
- Department of Anesthesiology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
- Medical Department of Shenzhen University, Shenzhen, Guangdong, China
| | - Yao Chen
- Department of Anesthesiology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Li Liu
- Department of Anesthesiology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Minqiang Liu
- Department of Anesthesiology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Renliang He
- Department of Anesthesiology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| | - Qiang Wu
- Department of Anesthesiology, Shenzhen Third People's Hospital, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Qing X, Dou R, Wang P, Zhou M, Cao C, Zhang H, Qiu G, Yang Z, Zhang J, Liu H, Zhu S, Liu X. Ropivacaine-loaded hydrogels for prolonged relief of chemotherapy-induced peripheral neuropathic pain and potentiated chemotherapy. J Nanobiotechnology 2023; 21:462. [PMID: 38041074 PMCID: PMC10693114 DOI: 10.1186/s12951-023-02230-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
Chemotherapy can cause severe pain for patients, but there are currently no satisfactory methods of pain relief. Enhancing the efficacy of chemotherapy to reduce the side effects of high-dose chemotherapeutic drugs remains a major challenge. Moreover, the treatment of chemotherapy-induced peripheral neuropathic pain (CIPNP) is separate from chemotherapy in the clinical setting, causing inconvenience to cancer patients. In view of the many obstacles mentioned above, we developed a strategy to incorporate local anesthetic (LA) into a cisplatin-loaded PF127 hydrogel for painless potentiated chemotherapy. We found that multiple administrations of cisplatin-loaded PF127 hydrogels (PFC) evoked severe CIPNP, which correlated with increased pERK-positive neurons in the dorsal root ganglion (DRG). However, incorporating ropivacaine into the PFC relieved PFC-induced CIPNP for more than ten hours and decreased the number of pERK-positive neurons in the DRG. Moreover, incorporating ropivacaine into the PFC for chemotherapy is found to upregulate major histocompatibility complex class I (MHC-I) expression in tumor cells and promote the infiltration of cytotoxic T lymphocytes (CD8+ T cells) in tumors, thereby potentiating chemotherapy efficacy. This study proposes that LA can be used as an immunemodulator to enhance the effectiveness of chemotherapy, providing new ideas for painless cancer treatment.
Collapse
Affiliation(s)
- Xin Qing
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Renbin Dou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Peng Wang
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Mengni Zhou
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China
| | - Chenchen Cao
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Huiwen Zhang
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Gaolin Qiu
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Zhilai Yang
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China
| | - Jiqian Zhang
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Hu Liu
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| | - Shasha Zhu
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, The First Affiliated Hospital of Anhui Medical University, Hefei, 230032, China.
| | - Xuesheng Liu
- Key Laboratory of Anesthesia and Perioperative Medicine of Anhui Higher Education Institutes, Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
10
|
Sanchez-Sandoval AL, Hernández-Plata E, Gomora JC. Voltage-gated sodium channels: from roles and mechanisms in the metastatic cell behavior to clinical potential as therapeutic targets. Front Pharmacol 2023; 14:1206136. [PMID: 37456756 PMCID: PMC10348687 DOI: 10.3389/fphar.2023.1206136] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/21/2023] [Indexed: 07/18/2023] Open
Abstract
During the second half of the last century, the prevalent knowledge recognized the voltage-gated sodium channels (VGSCs) as the proteins responsible for the generation and propagation of action potentials in excitable cells. However, over the last 25 years, new non-canonical roles of VGSCs in cancer hallmarks have been uncovered. Their dysregulated expression and activity have been associated with aggressive features and cancer progression towards metastatic stages, suggesting the potential use of VGSCs as cancer markers and prognostic factors. Recent work has elicited essential information about the signalling pathways modulated by these channels: coupling membrane activity to transcriptional regulation pathways, intracellular and extracellular pH regulation, invadopodia maturation, and proteolytic activity. In a promising scenario, the inhibition of VGSCs with FDA-approved drugs as well as with new synthetic compounds, reduces cancer cell invasion in vitro and cancer progression in vivo. The purpose of this review is to present an update regarding recent advances and ongoing efforts to have a better understanding of molecular and cellular mechanisms on the involvement of both pore-forming α and auxiliary β subunits of VGSCs in the metastatic processes, with the aim at proposing VGSCs as new oncological markers and targets for anticancer treatments.
Collapse
Affiliation(s)
- Ana Laura Sanchez-Sandoval
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Medicina Genómica, Hospital General de México “Dr Eduardo Liceaga”, Mexico City, Mexico
| | - Everardo Hernández-Plata
- Consejo Nacional de Humanidades, Ciencias y Tecnologías and Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Juan Carlos Gomora
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
11
|
Oliveira JD, Rodrigues da Silva GH, de Moura LD, Göethel G, Papini JZB, Casadei BR, Ribeiro LNDM, Cabeça LF, Garcia SC, Martinez EF, Tofoli GR, de Paula E. DoE development of ionic gradient liposomes: A successful approach to improve encapsulation, prolong anesthesia and decrease the toxicity of etidocaine. Int J Pharm 2023; 634:122672. [PMID: 36738810 DOI: 10.1016/j.ijpharm.2023.122672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 01/19/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Etidocaine (EDC) is a long-acting local anesthetic of the aminoamide family whose use was discontinued in 2008 for alleged toxicity issues. Ionic gradient liposomes (IGL) are nanostructured carriers for which an inner/outer gradient of ions increases drug upload. This work describes IGLEDC, a formulation optimized by Design of Experiments, composed of hydrogenated soy phosphatidylcholine:cholesterol:EDC, and characterized by DLS, NTA, TEM/Cryo-TEM, DSC and 1H NMR. The optimized IGL showed significant encapsulation efficiency (41 %), good shelf stability (180 days) and evidence of EDC interaction with the lipid bilayer (as seen by DSC and 1H NMR results) that confirms its membrane permeation. In vitro (release kinetics and cytotoxicity) tests showed that the encapsulation of EDC into the IGL promoted sustained release for 24 h and decreased by 50 % the intrinsic toxicity of EDC to Schwann cells. In vivo IGLEDC decreased the toxicity of EDC to Caenorhabditis elegans by 25 % and extended its anesthetic effect by one hour, after infiltrative administration, at clinically used (0.5 %) concentration, in rats. Thus, this novel drug delivery system is a promise for the possible reintroduction of EDC in clinics, aiming at the control of operative and postoperative pain.
Collapse
Affiliation(s)
- Juliana Damasceno Oliveira
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | | | - Ludmila David de Moura
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil
| | - Gabriela Göethel
- Toxicology Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Juliana Z B Papini
- São Leopoldo Mandic Institute and Research Center, Campinas-São Paulo, Brazil
| | | | | | - Luis Fernando Cabeça
- Department of Chemistry, Federal Technological University of Parana, Londrina, PR, Brazil
| | - Solange Cristina Garcia
- Toxicology Laboratory, Pharmacy Faculty, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | | | - Eneida de Paula
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (Unicamp), Campinas, SP, Brazil.
| |
Collapse
|
12
|
Morgan KJ, Dudas A, Furman WL, McCarville MB, Shulkin BL, Lu Z, Darji H, Anghelescu DL. A retrospective investigation of the relationship between neuroblastoma response to anti-GD2 monoclonal antibodies and exposure to opioids for pain management. Pediatr Blood Cancer 2023; 70:e30069. [PMID: 36308746 PMCID: PMC9790035 DOI: 10.1002/pbc.30069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Recent increased awareness and research studies reflect possible associations between opioid exposure and cancer outcomes. Children with neuroblastoma (NB) often require opioid treatment for pain. However, associations between tumor response to chemotherapy and opioid exposure have not been investigated in clinical settings. METHODS This is a single-institution retrospective review of patients with NB treated between 2013 and 2016. We evaluated opioid consumption quantified in morphine equivalent doses (mg/kg) based on nurse- or patient-controlled analgesia during antibody infusions. We also analyzed their associations with change in primary tumor volume and total tumor burden. RESULTS Of 42 patients given opioids for pain related to anti-disialoganglioside monoclonal antibodies (anti-GD2 mAb), data completion was achieved for 36, and details of statistical analyses were entered. Median total weight-based morphine equivalent (over 8 days) was 4.71 mg/kg (interquartile range 3.49-7.96). We found a statistically insignificant weak negative relationship between total weight-based morphine equivalents and tumor volume ratio (correlation coefficient -.0103, p-value .9525) and a statistically insignificant weak positive relationship between total weight-based morphine equivalent and Curie score ratio (correlation coefficient .1096, p-value .5247). CONCLUSION Our study found no statistically significant correlation between opioid consumption and natural killer (NK) cell-mediated killing of NB cells as measured by effects on tumor volume/tumor load.
Collapse
Affiliation(s)
- Kyle J Morgan
- St. Jude Children's Research Hospital, Department of Pediatric Medicine, Memphis, Tennessee, USA
| | - Andrew Dudas
- St. Jude Children's Research Hospital, Department of Pediatric Medicine, Memphis, Tennessee, USA
| | - Wayne L Furman
- St. Jude Children's Research Hospital, Department of Oncology, Memphis, Tennessee, USA
| | - M Beth McCarville
- St. Jude Children's Research Hospital, Department of Radiological Sciences, Memphis, Tennessee, USA
| | - Barry L Shulkin
- St. Jude Children's Research Hospital, Department of Radiological Sciences, Memphis, Tennessee, USA
| | - Zhaohua Lu
- St. Jude Children's Research Hospital, Department of Biostatistics, Memphis, Tennessee, USA
| | - Himani Darji
- St. Jude Children's Research Hospital, Department of Biostatistics, Memphis, Tennessee, USA
| | - Doralina L Anghelescu
- St. Jude Children's Research Hospital, Department of Pediatric Medicine, Memphis, Tennessee, USA
| |
Collapse
|
13
|
Gandhi M, Bhattacharyya C, Mazumder S, Gandhi B. A comparative study of analgesic efficacy of ultrasound-guided serratus anterior plane block versus landmark-guided thoracic paravertebral block for modified radical mastectomy under general anesthesia. INDIAN JOURNAL OF PAIN 2023. [DOI: 10.4103/ijpn.ijpn_36_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
|
14
|
Aronowitz AL, Ali SR, Glaun MDE, Amit M. Acetylcholine in Carcinogenesis and Targeting Cholinergic Receptors in Oncology. Adv Biol (Weinh) 2022; 6:e2200053. [PMID: 35858206 DOI: 10.1002/adbi.202200053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2022] [Indexed: 01/28/2023]
Abstract
Tumor cells modulate and are modulated by their microenvironments, which include the nervous system. Accumulating evidence links the overexpression and activity of nicotinic and muscarinic cholinergic receptor subtypes to tumorigenesis in breast, ovarian, prostate, gastric, pancreatic, and head and neck cancers. Nicotinic and muscarinic receptors have downstream factors are associated with angiogenesis, cell proliferation and migration, antiapoptotic signaling, and survival. Clinical trials analyzing the efficacy of various therapies targeting cholinergic signaling or downstream pathways of acetylcholine have shed promising light on novel cancer therapeutics. Although the evidence for cholinergic signaling involvement in tumor development is substantial, a more detailed understanding of the acetylcholine-induced mechanisms of tumorigenesis remains to be unlocked. Such an understanding would enable the development of clinical applications ranging from the identification of novel biomarkers to the utilization of existing drugs to modulate cholinergic signaling to the development of novel cancer therapies, as discussed in this review.
Collapse
Affiliation(s)
- Alexandra L Aronowitz
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,McGovern Medical School at UTHealth, Houston, TX, 77555, USA
| | - Shahrukh R Ali
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,The University of Texas Medical Branch, Galveston, TX, 77030, USA
| | - Mica D E Glaun
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Department of Otolaryngology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Moran Amit
- Department of Head and Neck Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
15
|
Long D, Fang X, Yuan P, Cheng L, Li H, Qu L. Lidocaine promotes apoptosis in breast cancer cells by affecting VDAC1 expression. BMC Anesthesiol 2022; 22:273. [PMID: 36042412 PMCID: PMC9426218 DOI: 10.1186/s12871-022-01818-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
OBJECTIVE To investigate the effect of lidocaine on the expression of voltage-dependent anion channel 1 (VDAC1) in breast invasive carcinoma (BRCA) and its impact on the apoptosis of breast cancer cells. METHODS We collected clinical data from patients with invasive breast cancer from 2010 to 2020 in the First affiliated hospital of Nanchang University, evaluated the prognostic value of VDAC1 gene expression in breast cancer, and detected the expression of VDAC1 protein in breast cancer tissues and paracancerous tissues by immunohistochemical staining of paraffin sections. Also, we cultured breast cancer cells (MCF-7) to observe the effect of lidocaine on the apoptosis of MCF-7 cells. RESULTS Analysis of clinical data and gene expression data of BRCA patients showed VDAC1 was a differentially expressed gene in BRCA, VDAC1 may be of great significance for the diagnosis and prognosis of BRCA patients. Administration of lidocaine 3 mM significantly decreased VDAC1 expression, the expression of protein Bcl-2 was significantly decreased (p < 0.05), and the expression of p53 increased significantly (p < 0.05). Lidocaine inhibited the proliferation of MCF-7 breast cancer cells, increased the percentage of G2 / M phase cells and apoptosis. CONCLUSION Lidocaine may inhibit the activity of breast cancer cells by inhibiting the expression of VDAC1, increasing the apoptosis in breast cancer cells.
Collapse
Affiliation(s)
- Dingde Long
- grid.412604.50000 0004 1758 4073Department of Anesthesiology, Medical Center of Anesthesiology and Pain, Jiangxi Province, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Road, Donghu district, 330000 Nanchang, P. R. China
| | - Xingjun Fang
- grid.412604.50000 0004 1758 4073Department of Anesthesiology, Medical Center of Anesthesiology and Pain, Jiangxi Province, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Road, Donghu district, 330000 Nanchang, P. R. China
| | - Peihua Yuan
- grid.412604.50000 0004 1758 4073Department of Anesthesiology, Medical Center of Anesthesiology and Pain, Jiangxi Province, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Road, Donghu district, 330000 Nanchang, P. R. China
| | - Liqin Cheng
- grid.412604.50000 0004 1758 4073Department of Anesthesiology, Medical Center of Anesthesiology and Pain, Jiangxi Province, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Road, Donghu district, 330000 Nanchang, P. R. China
| | - Hongtao Li
- grid.224260.00000 0004 0458 8737Department of Physiology and Biophysics, School of Medicine, Virginia Commonwealth University, Richmond, VA USA
| | - LiangChao Qu
- grid.412604.50000 0004 1758 4073Department of Anesthesiology, Medical Center of Anesthesiology and Pain, Jiangxi Province, the First Affiliated Hospital of Nanchang University, No. 17, Yong Wai Zheng Road, Donghu district, 330000 Nanchang, P. R. China
| |
Collapse
|
16
|
Long D, Chen Y, Qu L, Dong Y. Lidocaine inhibits the proliferation and migration of endometrial cancer cells, and promotes apoptosis by inducing autophagy. Oncol Lett 2022; 24:347. [PMID: 36072001 PMCID: PMC9434716 DOI: 10.3892/ol.2022.13467] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
As a gynecological malignancy, endometrial cancer (EC) has a high incidence and mortality rate in women. The aim of the present study was to investigate the mechanism of EC and to identify novel effective treatment methods for this disease. The viability and proliferation of the RL95-2 human endometrial cancer cell line were assessed using Cell Counting Kit-8 assays. Colony formation, wound healing, Transwell, TUNEL and immunofluorescence assays were used to assess the effects of 5, 10 and 15 mM lidocaine on the colony formation, migration, invasiveness, apoptosis and Beclin 1 protein expression of RL95-2 cells, respectively. Furthermore, western blotting was used to analyze the protein expression levels of apoptosis- and autophagy-related proteins. The results demonstrated that lidocaine inhibited the viability, proliferation and migration of EC cells, and promoted apoptosis. Furthermore, lidocaine was demonstrated to induce autophagy and Beclin 1 protein expression in EC cells. In conclusion, lidocaine inhibited the proliferation and migration of EC cells, and promoted apoptosis via autophagy induction, which indicated that lidocaine may be a potential therapeutic drug for the treatment of EC.
Collapse
Affiliation(s)
- Dingde Long
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yayu Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Liangchao Qu
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Yang Dong
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
17
|
Luan T, Li Y, Sun L, Xu S, Wang H, Wang J, Li C. Systemic immune effects of anesthetics and their intracellular targets in tumors. Front Med (Lausanne) 2022; 9:810189. [PMID: 35966857 PMCID: PMC9365985 DOI: 10.3389/fmed.2022.810189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
According to the result released by the World Health Organization (WHO), non-communicable diseases have occupied four of the top 10 current causes for death in the world. Cancer is one of the significant factors that trigger complications and deaths; more than 80% cancer patients require surgical or palliative treatment. In this case, anesthetic treatment is indispensable. Since cancer is a heterogeneous disease, various types of interventions can activate oncogenes or mutate tumor suppressor genes. More and more researchers believe that anesthetics have a certain effect on the long-term recurrence and metastasis of tumors, but it is still controversial whether they promote or inhibit the progression of cancer. On this basis, a series of retrospective or prospective randomized clinical trials have been conducted, but it seems to be difficult to reach a conclusion within 5 years or longer. This article focuses on the effects of anesthetic drugs on immune function and cancer and reviews their latest targets on the tumor cells, in order to provide a theoretical basis for optimizing the selection of anesthetic drugs, exploring therapeutic targets, and improving the prognosis of cancer patients.
Collapse
Affiliation(s)
- Ting Luan
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
| | - Yi Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Lihui Sun
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
| | - Siqi Xu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
| | - Haifeng Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
- *Correspondence: Haifeng Wang,
| | - Jiansong Wang
- Department of Urology, The Second Affiliated Hospital of Kunming Medical University, Yunnan Institute of Urology, Kunming, China
- Jiansong Wang,
| | - Chong Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Zhongke Jianlan Medical Research Institute, Beijing, China
- Chong Li,
| |
Collapse
|
18
|
Can Infusion of Lidocaine During Breast Cancer Surgery Promote Higher In-vitro Apoptosis in Comparison with Fentanyl? INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2022. [DOI: 10.5812/ijcm-121884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Although several numbers of the common anesthetic drugs are frequently used in breast cancer (BC) surgery, their possible effects on the behavior of cancer cells are still unknown. Objectives: The main objective of the present study was to examine the effect of administered lidocaine versus fentanyl during BC surgery on the apoptosis index of BC cells in-vitro. Methods: Patients with BC with the same grade of cancer and American Society of Anesthesiologists (ASA) score I–III, who underwent surgery were randomly divided into 2 groups of lidocaine and fentanyl infusion based on the analgesic drugs they received. Blood samples were drawn before and after the surgery and then cells from the BC cell line (MCF-7) were exposed to them at 24, 48, and 72 hours post-culture. Flow cytometry was performed to measure the mean percentage of apoptosis index; To investigate the cells’ viability, 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was also applied. Results: Sixty patients were enrolled. Quantitative cell death analysis revealed that the proportion of apoptotic cells in both lidocaine and fentanyl groups significantly increased when the cells were treated with post-operation sera compared to pre-operation sera exposure at various time intervals. In both groups, intra-group cell death analysis showed that there was not any statistically significant difference among the cultured cells exposed to pre-operation sera at various interval times (P < 0.001) with respect to apoptosis and cell viability. Conclusions: The study findings proposed that lidocaine infusion can reach the apoptosis index of BC cells in-vitro, as much as that fentanyl did; and both drugs had significant effects.
Collapse
|
19
|
Alexa AL, Tat TF, Ionescu D. The influence of TIVA or inhalation anesthesia with or without intravenous lidocaine on postoperative outcome in colorectal cancer surgery: a study protocol for a prospective clinical study. Trials 2022; 23:219. [PMID: 35303929 PMCID: PMC8932228 DOI: 10.1186/s13063-022-06157-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 03/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anesthetic agents are mandatory in colorectal cancer patients undergoing surgery. Studies published so far have shown that anesthetic drugs and intervention may have different impacts on patient's outcome. Among these drugs, propofol and, more recently, local anesthetics have been mostly targeted. METHODS/DESIGN This study will be a prospective randomized control trial aiming to include 400 patients scheduled for curative colorectal surgery. Patients will be randomized to have general anesthesia with propofol or with sevoflurane. Each study group will be further divided into 2 subgroups of patients, of which one will receive intravenous lidocaine perioperatively. The primary outcome is to compare the incidence of cancer recurrence and survival after propofol versus sevoflurane anesthesia added or not intravenous lidocaine. Secondary outcomes will include the severity of postoperative pain, resumption of bowel function, morphine consumption, length of hospital stay, postoperative chronic pain, and rate of postoperative complications. DISCUSSION To our knowledge, this is the first randomized control trial registered on ClinicalTrials.gov designed to compare the effects of two different anesthetic techniques added perioperative intravenous lidocaine infusion on long-term outcomes exclusively in colorectal cancer patients undergoing surgery. The study will bring more accurate data on the effect of propofol-TIVA and perioperative iv lidocaine on the incidence of recurrences after intended curative colorectal surgery. TRIAL REGISTRATION Clinical Trial Registration NCT02786329 . Registered on 1 June 2016.
Collapse
Affiliation(s)
- Alexandru L Alexa
- 1st Department of Anesthesia and Intensive Care, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.
- Department of Anesthesia and Intensive Care, The Regional Institute of Gastroenterology and Hepatology, "Prof. Dr. Octavian Fodor", Cluj-Napoca, Romania.
| | - Tiberiu F Tat
- Department of Anesthesia and Intensive Care, The Oncology Institute, "Prof Dr. I Chiricuţă", Cluj-Napoca, Romania
| | - Daniela Ionescu
- 1st Department of Anesthesia and Intensive Care, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Anesthesia and Intensive Care, The Regional Institute of Gastroenterology and Hepatology, "Prof. Dr. Octavian Fodor", Cluj-Napoca, Romania
- Outcome Research Consortium, Cleveland, USA
| |
Collapse
|
20
|
Hao J, Zhang W, Huang Z. Bupivacaine modulates the apoptosis and ferroptosis in bladder cancer via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Bioengineered 2022; 13:6794-6806. [PMID: 35246010 PMCID: PMC9278971 DOI: 10.1080/21655979.2022.2036909] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The study aimed to explore the effects of local anesthetic bupivacaine on bladder cancer cells in vivo and in vitro. The cytotoxicity was detected by MTT assay. Apoptosis was measured by Hoechst 33342 staining and TUNEL. The contents of Fe2+, Malondialdehyde (MDA), Glutathione (GSH) and reactive oxygen species (ROS) were evaluated by the corresponding kit. Mitochondrial membrane potential was assessed by JC-1 kit. HE staining, TUNEL and immunohistochemistry were used to detect the xenografted tumors. Protein expression was estimated by Western blot. Bupivacaine significantly inhibited the activity of T24 cells and 5637 cells at 0.25-16 mM. Bupivacaine promoted cell apoptosis with increased concentration. bupivacaine inhibited the expression of Bcl-2 and increased the expression of Bax and cytochrome C. Moreover, bupivacaine amplified the level of Fe2+ and ROS, and restrained the expression of cystine/glutamic acid reverse transporter (xCT) and glutathione peroxidase 4 (GPX4). Further results showed that bupivacaine decreased mitochondrial membrane potential, reduced GSH, and increased MDA levels. Besides, bupivacaine attenuated the phosphorylation of PI3K, Akt, and mTOR. In addition, bupivacaine suppressed the growth of xenografted tumors, induced apoptosis and ferroptosis, and inhibited the activity of PI3K/AKT signaling pathway in xenografted tumors. Bupivacaine could induce apoptosis and ferroptosis by inhibiting PI3K/Akt signaling pathway in bladder cancer cells.
Collapse
Affiliation(s)
- Jianli Hao
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Weiqing Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| | - Zeqing Huang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang, China
| |
Collapse
|
21
|
Kim R, Kawai A, Wakisaka M, Kin T. Current Status and Prospects of Anesthesia and Breast Cancer: Does Anesthetic Technique Affect Recurrence and Survival Rates in Breast Cancer Surgery? Front Oncol 2022; 12:795864. [PMID: 35223475 PMCID: PMC8864113 DOI: 10.3389/fonc.2022.795864] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 01/17/2022] [Indexed: 01/13/2023] Open
Abstract
The relationship between the anesthetic technique and cancer recurrence has not yet been clarified in cancer surgery. Surgical stress and inhalation anesthesia suppress cell-mediated immunity (CMI), whereas intravenous (IV) anesthesia with propofol and regional anesthesia (RA) are known to be protective for CMI. Surgical stress, general anesthesia (GA) with inhalation anesthesia and opioids contribute to perioperative immunosuppression and may increase cancer recurrence and decrease survival. Surgical stress and GA activate the hypothalamic-pituitary-adrenal axis and release neuroendocrine mediators such as cortisol, catecholamines, and prostaglandin E2, which may reduce host defense immunity and promote distant metastasis. On the other hand, IV anesthesia with propofol and RA with paravertebral block or epidural anesthesia can weaken surgical stress and GA-induced immunosuppression and protect the host defense immunity. IV anesthesia with propofol and RA or in combination with GA may reduce cancer recurrence and improve patient survival compared to GA alone. We review the current status of the relationship between anesthesia and breast cancer recurrence using retrospective and prospective studies conducted with animal models and clinical samples, and discuss the future prospects for reducing breast cancer recurrence and improving survival rates in breast cancer surgery.
Collapse
Affiliation(s)
- Ryungsa Kim
- Department of Breast Surgery, Hiroshima Mark Clinic, Hiroshima, Japan
| | - Ami Kawai
- Department of Breast Surgery, Hiroshima Mark Clinic, Hiroshima, Japan
| | - Megumi Wakisaka
- Department of Breast Surgery, Hiroshima Mark Clinic, Hiroshima, Japan
| | - Takanori Kin
- Department of Breast Surgery, Hiroshima City Hospital, Hiroshima, Japan
| |
Collapse
|
22
|
Santander Ballestín S, Lanuza Bardaji A, Marco Continente C, Luesma Bartolomé MJ. Antitumor Anesthetic Strategy in the Perioperatory Period of the Oncological Patient: A Review. Front Med (Lausanne) 2022; 9:799355. [PMID: 35252243 PMCID: PMC8894666 DOI: 10.3389/fmed.2022.799355] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
The stress response triggered by the surgical aggression and the transient immunosuppression produced by anesthetic agents stimulate the inadvertent dispersion of neoplastic cells and, paradoxically, tumor progression during the perioperative period. Anesthetic agents and techniques, in relation to metastatic development, are investigated for their impact on long-term survival. Scientific evidence indicates that inhaled anesthetics and opioids benefit immunosuppression, cell proliferation, and angiogenesis, providing the ideal microenvironment for tumor progression. The likely benefit of reducing their use, or even replacing them as much as possible with anesthetic techniques that protect patients from the metastatic process, is still being investigated. The possibility of using "immunoprotective" or "antitumor" anesthetic techniques would represent a turning point in clinical practice. Through understanding of pharmacological mechanisms of anesthetics and their effects on tumor cells, new perioperative approaches emerge with the aim of halting and controlling metastatic development. Epidural anesthesia and propofol have been shown to maintain immune activity and reduce catecholaminergic and inflammatory responses, considering the protective techniques against tumor spread. The current data generate hypotheses about the influence of anesthesia on metastatic development, although prospective trials that determinate causality are necessary to make changes in clinical practice.
Collapse
Affiliation(s)
- Sonia Santander Ballestín
- Department of Pharmacology, Physiology and Legal and Forensic Medicine, Faculty of Medicine, University of Zaragoza, Zaragoza, Spain
| | | | | | | |
Collapse
|
23
|
The Potential Effect of Lidocaine, Ropivacaine, Levobupivacaine and Morphine on Breast Cancer Pre-Clinical Models: A Systematic Review. Int J Mol Sci 2022; 23:ijms23031894. [PMID: 35163815 PMCID: PMC8836850 DOI: 10.3390/ijms23031894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/25/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Breast cancer (BC) is one of the most common types of cancer and the second leading cause of death in women. Local anaesthetics (LAs) and opioids have been shown to influence cancer progression and metastasis formation in several pre-clinical studies. However, their effects do not seem to promote consensus. A systematic review was conducted using the databases Medline (via PubMed), Scopus, and Web of Science (2010 to December 2021). Search terms included "lidocaine", "ropivacaine", "levobupivacaine", "morphine", "methadone", "breast cancer", "breast carcinoma" and "breast neoplasms" in diverse combinations. The search yielded a total of 784 abstracts for initial review, 23 of which met the inclusion criteria. Here we summarise recent studies on the effect of analgesics and LAs on BC cell lines and animal models and in combination with other treatment regimens. The results suggest that local anaesthetics have anti-tumorigenic properties, hence their clinical application holds therapeutic potential. Regarding morphine, the findings are conflicting, but this opioid appears to be a tumour-promoting agent. Methadone-related results are scarce. Additional research is clearly required to further study the mechanisms underlying the controversial effects of each analgesic or LA to establish the implications upon the outcome and prognosis of BC patients' treatment.
Collapse
|
24
|
Wu Chuang A, Kepp O, Kroemer G, Bezu L. Direct Cytotoxic and Indirect, Immune-Mediated Effects of Local Anesthetics Against Cancer. Front Oncol 2022; 11:821785. [PMID: 35096626 PMCID: PMC8796204 DOI: 10.3389/fonc.2021.821785] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/27/2021] [Indexed: 12/15/2022] Open
Abstract
Local anesthetics are frequently employed during surgery in order to control peri- and postoperative pain. Retrospective studies have revealed an unexpected correlation between increased long-term survival and the use of local anesthetics during oncological surgery. This effect of local anesthetics might rely on direct cytotoxic effects on malignant cells or on indirect, immune-mediated effects. It is tempting to speculate, yet needs to be formally proven, that the combination of local anesthetics with oncological surgery and conventional anticancer therapy would offer an opportunity to control residual cancer cells. This review summarizes findings from fundamental research together with clinical data on the use of local anesthetics as anticancer standalone drugs or their combination with conventional treatments. We suggest that a better comprehension of the anticancer effects of local anesthetics at the preclinical and clinical levels may broadly improve the surgical treatment of cancer.
Collapse
Affiliation(s)
- Alejandra Wu Chuang
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Oliver Kepp
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Guido Kroemer
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.,Pôle de Biologie, Hôpital européen Georges Pompidou, AP-HP, Paris, France
| | - Lucillia Bezu
- Equipe Labellisée Par La Ligue Contre Le Cancer, Université de Paris, Sorbonne Université, INSERM UMR1138, Centre de Recherche des Cordeliers, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France.,Service d'anesthésie, Gustave Roussy Cancer Campus, Villejuif, France
| |
Collapse
|
25
|
Yan Y, He W, Chen Y, Li Q, Pan J, Yuan Y, Zeng W, Chen D, Xing W. Comprehensive Analysis to Identify the Encoded Gens of Sodium Channels as a Prognostic Biomarker in Hepatocellular Carcinoma. Front Genet 2022; 12:802067. [PMID: 35126466 PMCID: PMC8815461 DOI: 10.3389/fgene.2021.802067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 12/30/2021] [Indexed: 12/24/2022] Open
Abstract
The SCN family as the encoded gens of sodium channels has been proven to participate in development of cancers including hepatocellular carcinoma (HCC), but the prognostic value of the SCN family is unclear. The results of the UALCAN database had showed that SCN2A/4A/5A/8A mRNA were highly expressed in tumour tissues, while SCN1A/7A/11A mRNA were expressed at low levels (p < 0.05), furthermore, the expression of SCN4A and SCN7A had the similar levels in microarray analysis result. The pan-tumour analysis showed that SCN7A expression was stably lower in tumours than SCN4A expression by TIMER. Both SCN4A and SCN7A were related to tumour grade, nodal metastatic status, histological subtype, patient race, individual cancer stages and TP53 mutation status to varying degrees. The Kaplan–Meier plotter demonstrated that high SCN4A mRNA expression was correlated with better overall survival (OS), disease-specific survival (DSS) and progression-free survival (PFS) and that high expression of SCN7A mRNA was associated with better OS; however, in Asians, higher SCN4A was correlated with better OS and DSS, and higher SCN7A was well correlated with better OS, recurrence-free survival (RFS), DSS and PFS. Analysis of data from cBioPortal showed that mutation of SCN7A was related to RFS and PFS. The protein expression of SCN4A and SCN7A had been detected by Immunohistochemistry. Univariate survival analysis revealed that high SCN7A protein expression was significantly linked to better OS (p = 0.001) and RFS (p = 0.003). Moreover, SCN7A displayed as an independent prognostic factor by multivariate analysis. In addition, a lower methylation level indicated a poor outcome. Pathway and functional enrichment analysis predicted a relationship between SCN7A and the PI3K pathway. In conclusion, there are significant and stable changes in SCN4A and SCN7A expression in HCC. SCN7A expression has better prognostic value and might participate in HCC progression.
Collapse
Affiliation(s)
- Yan Yan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Department of Anesthesiology, Huizhou Municipal Central Hospital, Huizhou, China
| | - Wen He
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yonghua Chen
- Department of Anesthesiology, Peking University Shenzhen Hospital, Shenzhen, China
| | - Qiang Li
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jiahao Pan
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yunfei Yuan
- Department of Hepatobiliary Oncology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Weian Zeng
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Weian Zeng, ; Dongtai Chen, ; Wei Xing,
| | - Dongtai Chen
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Weian Zeng, ; Dongtai Chen, ; Wei Xing,
| | - Wei Xing
- Department of Anesthesiology, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- *Correspondence: Weian Zeng, ; Dongtai Chen, ; Wei Xing,
| |
Collapse
|
26
|
Teng X, Liu Y, Wang L, Wang G. Lidocaine exerts anticancer activity in bladder cancer by targeting isoprenylcysteine carboxylmethyltransferase ( ICMT). Transl Androl Urol 2022; 10:4219-4230. [PMID: 34984187 PMCID: PMC8661257 DOI: 10.21037/tau-21-893] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022] Open
Abstract
Background Bladder cancer is one of the most common malignant tumors among humans and has a high mortality. Clinically, lidocaine is the most commonly used local anesthetic, which can inhibit the proliferation of bladder cancer cells; however, its downstream specific molecular mechanisms are unclear. Methods The SwissTarget and TargetNet databases were used to analyze the target of lidocaine. The online public cancer transcriptome database UALCAN was used to analyze the up-regulated genes in The Cancer Genome Atlas Urothelial Bladder Carcinoma (TCGA-BLCA) data collection, and the intersection of the 2 was used to obtain the core target. The only target, isoprenylcysteine carboxylmethyltransferase (ICMT), was obtained by combining the correlation between the target and the clinical information of bladder cancer and the Kaplan-Meier (K-M) survival curve. Then, UMUC3 and T24 cells were selected as research vectors in vitro. Cell proliferation, cell cycle, and apoptosis were detected by cell counting kit-8, colony formation, flow cytometry, and western blotting. Results Network pharmacology analysis showed that ICMT might be one of the targets of lidocaine, and the expression level of ICMT was closely related to the clinical phenotype of bladder cancer. Lidocaine treatment (4 and 8 mM) significantly inhibited the proliferation of UMUC3 and T24 cells, promoted apoptosis, and significantly inhibited the mass and volume of xenograft tumors. In vitro experiments showed that ICMT promoted the proliferation of UMUC3 and T24 cells. Lidocaine inhibited the expression of ICMT in UMUC3 and T24 cells in a concentration and time-dependent manner, and inhibited cell proliferation by down-regulating ICMT expression. Conclusions Lidocaine exerts anti-tumor effect by down-regulating the expression of ICMT in bladder cancer.
Collapse
Affiliation(s)
- Xiaodan Teng
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yang Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Liping Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guonian Wang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
27
|
Wu CC, Liu CH, Hung CC, Liao GS, Chang CH. Experts' opinions progress and trends in the surgical management of breast cancer in Taiwan. JOURNAL OF CANCER RESEARCH AND PRACTICE 2022. [DOI: 10.4103/jcrp.jcrp_36_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
28
|
Ji D, Fleig A, Horgen FD, Feng ZP, Sun HS. Modulators of TRPM7 and its potential as a drug target for brain tumours. Cell Calcium 2021; 101:102521. [PMID: 34953296 DOI: 10.1016/j.ceca.2021.102521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/14/2022]
Abstract
TRPM7 is a non-selective divalent cation channel with an alpha-kinase domain. Corresponding with its broad expression, TRPM7 has a role in a wide range of cell functions, including proliferation, migration, and survival. Growing evidence shows that TRPM7 is also aberrantly expressed in various cancers, including brain cancers. Because ion channels have widespread tissue distribution and result in extensive physiological consequences when dysfunctional, these proteins can be compelling drug targets. In fact, ion channels comprise the third-largest drug target type, following enzymes and receptors. Literature has shown that suppression of TRPM7 results in inhibition of migration, invasion, and proliferation in several human brain tumours. Therefore, TRPM7 presents a potential target for therapeutic brain tumour interventions. This article reviews current literature on TRPM7 as a potential drug target in the context of brain tumours and provides an overview of various selective and non-selective modulators of the channel relevant to pharmacology, oncology, and ion channel function.
Collapse
Affiliation(s)
- Delphine Ji
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrea Fleig
- Center for Biomedical Research at The Queen's Medical Center and John A. Burns School of Medicine and Cancer Center at the University of Hawaii, Honolulu, Hawaii 96813, USA
| | - F David Horgen
- Department of Natural Sciences, Hawaii Pacific University, Kaneohe, Hawaii 96744, USA
| | - Zhong-Ping Feng
- Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8.
| | - Hong-Shuo Sun
- Department of Surgery, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Physiology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Department of Pharmacology, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Toronto, Ontario, Canada M5S 1A8; Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 3M2.
| |
Collapse
|
29
|
Voltage-Gated Sodium Channels as Potential Biomarkers and Therapeutic Targets for Epithelial Ovarian Cancer. Cancers (Basel) 2021; 13:cancers13215437. [PMID: 34771603 PMCID: PMC8582439 DOI: 10.3390/cancers13215437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 12/17/2022] Open
Abstract
Simple Summary Voltage-gated sodium channels are membrane proteins that change conformation in response to depolarization of the membrane potential, allowing sodium ions to flow into cells. While voltage-gated sodium channels are normally studied in terms of neuron impulses and skeletal or cardiac muscle contraction, abnormal ion channel expression is a feature of many cancer cells. The aim of our study was to assess the expression of voltage-gated sodium channels in ovarian cancer cells. We found that ovarian cancer cells generally express lower levels of voltage-gated sodium channels than normal cells and that two voltage-gated sodium channels, SCN8A and SCN1B, were prognostic biomarkers for ovarian cancer overall survival. In vitro studies suggested that drugs that block voltage-gated sodium channels, such as certain anti-epileptic drugs and local anesthetics, might sensitize ovarian cancer cells to chemotherapy. These findings suggest that voltage-gated sodium channels may be interesting targets for ovarian cancer therapy. Abstract Abnormal ion channel expression distinguishes several types of carcinoma. Here, we explore the relationship between voltage-gated sodium channels (VGSC) and epithelial ovarian cancer (EOC). We find that EOC cell lines express most VGSC, but at lower levels than fallopian tube secretory epithelial cells (the cells of origin for most EOC) or control fibroblasts. Among patient tumor samples, lower SCN8A expression was associated with improved overall survival (OS) (median 111 vs. 52 months; HR 2.04 95% CI: 1.21–3.44; p = 0.007), while lower SCN1B expression was associated with poorer OS (median 45 vs. 56 months; HR 0.69 95% CI 0.54–0.87; p = 0.002). VGSC blockade using either anti-epileptic drugs or local anesthetics (LA) decreased the proliferation of cancer cells. LA increased cell line sensitivity to platinum and taxane chemotherapies. While lidocaine had similar additive effects with chemotherapy among EOC cells and fibroblasts, bupivacaine showed a more pronounced impact on EOC than fibroblasts when combined with either carboplatin (ΔAUC −37% vs. −16%, p = 0.003) or paclitaxel (ΔAUC −37% vs. −22%, p = 0.02). Together, these data suggest VGSC are prognostic biomarkers in EOC and may inform new targets for therapy.
Collapse
|
30
|
Li D, Gao J, Yang C, Li B, Sun J, Yu M, Wang Y, Wang H, Lu Y. cRGDyK-modified procaine liposome inhibits the proliferation and motility of glioma cells via the ERK/p38MAPK pathway. Exp Ther Med 2021; 22:859. [PMID: 34178132 PMCID: PMC8220655 DOI: 10.3892/etm.2021.10291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/27/2021] [Indexed: 12/15/2022] Open
Abstract
Glioma is a common type of primary tumor in the central nervous system. Glioma has been increasing in incidence yearly and is a serious threat to human life and health. The aim of the present study was to prepare liposomes for enhanced penetration of the blood-brain barrier and targeting of glioma. A procaine-loaded liposome modified with the cyclic pentapeptide cRGDyK (Pro/cRGDyK-L) was designed and developed. The particle size, ζ potential, encapsulation efficiency, release profile, stability and hemolysis of Pro/cRGDyK-L were characterized in vitro. The targeting and antitumor effects of Pro/cRGDyK-L were also investigated in vitro and in vivo. The results suggested that the cRGDyK peptide significantly facilitated the ability of liposomes to transfer procaine across the BBB and improved the cellular uptake of procaine by C6 glioma cells. The results further demonstrated that Pro/cRGDyK-L strongly suppressed cell motility, stimulated apoptosis and induced cell cycle arrest. The findings further confirmed that Pro/cRGDyK-L exhibited superior antitumor effects by targeting the ERK/p38MAPK pathway and thereby suppressed tumor growth in mice. In conclusion, the present study indicated the potential of Pro/cRGDyK-L as a means to provide improved therapeutic effects on glioma through the ERK/p38MAPK pathway.
Collapse
Affiliation(s)
- Dedong Li
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jie Gao
- Department of Anesthesiology, Tianjin Haihe Hospital, Tianjin 300350, P.R. China
| | - Chenyi Yang
- Department of Anesthesiology, Tianjin Third Central Hospital, Tianjin 300052, P.R. China
| | - Bo Li
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Jian Sun
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Mingdong Yu
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Ying Wang
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Haiyun Wang
- Department of Anesthesiology, Tianjin Third Central Hospital, Tianjin 300052, P.R. China
| | - Yuechun Lu
- Department of Anesthesiology, Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
31
|
Raigon Ponferrada A, Guerrero Orriach JL, Molina Ruiz JC, Romero Molina S, Gómez Luque A, Cruz Mañas J. Breast Cancer and Anaesthesia: Genetic Influence. Int J Mol Sci 2021; 22:7653. [PMID: 34299272 PMCID: PMC8307639 DOI: 10.3390/ijms22147653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022] Open
Abstract
Breast cancer is the leading cause of mortality in women. It is a heterogeneous disease with a high degree of inter-subject variability even in patients with the same type of tumor, with individualized medicine having acquired significant relevance in this field. The clinical and morphological heterogeneity of the different types of breast tumors has led to a diversity of staging and classification systems. Thus, these tumors show wide variability in genetic expression and prognostic biomarkers. Surgical treatment is essential in the management of these patients. However, the perioperative period has been found to significantly influence survival and cancer recurrence. There is growing interest in the pro-tumoral effect of different anaesthetic and analgesic agents used intraoperatively and their relationship with metastatic progression. There is cumulative evidence of the influence of anaesthetic techniques on the physiopathological mechanisms of survival and growth of the residual neoplastic cells released during surgery. Prospective randomized clinical trials are needed to obtain quality evidence on the relationship between cancer and anaesthesia. This document summarizes the evidence currently available about the effects of the anaesthetic agents and techniques used in primary cancer surgery and long-term oncologic outcomes, and the biomolecular mechanisms involved in their interaction.
Collapse
Affiliation(s)
- Aida Raigon Ponferrada
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Jose Luis Guerrero Orriach
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Juan Carlos Molina Ruiz
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Salvador Romero Molina
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| | - Aurelio Gómez Luque
- Institute of Biomedical Research in Malaga (IBIMA), 29010 Malaga, Spain; (A.R.P.); (A.G.L.)
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
- Department of Pharmacology and Pediatrics, School of Medicine, University of Malaga, 29010 Malaga, Spain
| | - Jose Cruz Mañas
- Department of Anaesthesiology, Virgen de la Victoria University Hospital, 29010 Malaga, Spain; (J.C.M.R.); (S.R.M.); (J.C.M.)
| |
Collapse
|
32
|
Ferreira LEN, Abdalla HB, da Costa JP, de Freitas Domingues JS, Burga-Sánchez J, Groppo FC, Volpato MC. Effects of 2-Hydroxypropil-Β-Cyclodextrin-Lidocaine on Tumor Growth and Inflammatory Response. Curr Drug Deliv 2021; 17:588-598. [PMID: 32394838 DOI: 10.2174/1567201817666200512101448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/09/2019] [Accepted: 03/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Antiproliferative and cytotoxic effects of lidocaine have been reported in tumor cells. However, the use of these drugs is restricted due to their short action with rapid dispersion from the injected site. The complexation of local anesthetics in 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) is able to improve pharmacological features. OBJECTIVE This study evaluated the antitumor effects of lidocaine and the complex HP-β-CD-lidocaine (HP-β-CD-lido). METHODS In vitro;, human adenocarcinoma (HeLa) and keratinocytes (HaCaT) were exposed to lidocaine formulations and cell viability, proliferation and apoptosis induction were measured. In vivo;, Walker 256 carcinoma cells were subcutaneously injected into the plantar region of the rat right hind paw. The animals were treated with a local application of 5% lidocaine or 5% HP-β-CD-lido. Doxorubicin (3 mg/Kg/day, intraperitoneal) was used as a positive control. Edema sizes were measured daily and the release of cytokines (TNF-α, IL-1α and CXCL-1) and prostaglandin E2 was evaluated. Histological analysis was also performed. RESULTS HaCaT IG50 values were 846 μM and 2253 μM for lido and HP-β-CD-lido, respectively. In HeLa cells, the IG50 was 1765 μM for lido and 2044 μM for HP-β-CD-lido. Lidocaine formulations significantly reduced the paw edema on day 6 after Walker 256 cells inoculation. However, there were no differences in the release of inflammatory mediators in comparison to the control group. CONCLUSION Lidocaine formulations were able to reduce the edema in vivo;, without affecting the tumor- induced inflammatory response. The antiproliferative effects of lidocaine formulations may have contributed to tumor reduction.
Collapse
Affiliation(s)
| | | | - Jéssica Pereira da Costa
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | | | - Jonny Burga-Sánchez
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Francisco Carlos Groppo
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| | - Maria Cristina Volpato
- Department of Physiological Sciences, Piracicaba Dental School, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
33
|
Evaluation of the effect of lidocaine epidural injection on immunological indices in dogs under total intravenous anesthesia submitted to ovariohysterectomy. PLoS One 2021; 16:e0253731. [PMID: 34181674 PMCID: PMC8238226 DOI: 10.1371/journal.pone.0253731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 06/14/2021] [Indexed: 11/19/2022] Open
Abstract
This study aimed to evaluate the effects of epidural anaesthesia with lidocaine in combination with general anaesthesia with propofol on some immunologic indices in dogs undergoing ovariohysterectomy. Twelve adult dogs were anesthetized with propofol (induction: 7 mg/kg; maintenance: 0.4 mg/kg/min) and were then allocated into either groups of epidural saline (control) or epidural lidocaine (4 mg/kg; treatment). All the included animals underwent ovariohysterectomy operation. The immune responses, hematologic parameters and cortisol levels were assessed in the predetermined intervals. Evaluation of the innate immunity revealed higher significant levels in the bactericidal, lysozyme and myeloperoxidase activities at 4 hours after surgery in the treatment. In the humoral immunity, the total immunoglobulin level was significantly higher in the treatment. In the assessment of cellular immunity, higher significant values were detected in the delayed skin sensitivity to phytohemagglutinine injection after 48 and 72 hours in the treatment. Moreover, higher significant levels were observed in the number and percentage of lymphocytes as well as an increase in the percentage of monocytes in the treatment at 4 hours after the operation. Notably, the cortisol hormone in the treatment was lower than control at 4 hours of the surgery. In conclusion, epidural anaesthesia with lidocaine when added to general anaesthesia with propofol attenuated the suppression of the innate and cellular immune responses produced by anaesthesia and surgery in the dogs.
Collapse
|
34
|
Zhang C, Xie C, Lu Y. Local Anesthetic Lidocaine and Cancer: Insight Into Tumor Progression and Recurrence. Front Oncol 2021; 11:669746. [PMID: 34249706 PMCID: PMC8264592 DOI: 10.3389/fonc.2021.669746] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/03/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer is a leading contributor to deaths worldwide. Surgery is the primary treatment for resectable cancers. Nonetheless, it also results in inflammatory response, angiogenesis, and stimulated metastasis. Local anesthetic lidocaine can directly and indirectly effect different cancers. The direct mechanisms are inhibiting proliferation and inducing apoptosis via regulating PI3K/AKT/mTOR and caspase-dependent Bax/Bcl2 signaling pathways or repressing cytoskeleton formation. Repression invasion, migration, and angiogenesis through influencing the activation of TNFα-dependent, Src-induced AKT/NO/ICAM and VEGF/PI3K/AKT signaling pathways. Moreover, the indirect influences are immune regulation, anti-inflammation, and postoperative pain relief. This review summarizes the latest evidence that revealed potential clinical benefits of lidocaine in cancer treatment to explore the probable molecular mechanisms and the appropriate dose.
Collapse
Affiliation(s)
- Caihui Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Cuiyu Xie
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yao Lu
- Department of Anesthesiology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.,Ambulatory Surgery Center, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Wang Z, Zhang J, Wen Y, Wang P, Fan L. Bupivacaine inhibits the malignant biological behavior of oral squamous cell carcinoma cells by inhibiting the activation of ERK1/2 and STAT3. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:839. [PMID: 34164473 PMCID: PMC8184410 DOI: 10.21037/atm-21-1414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Background Oral squamous cell carcinoma (OSCC) is an aggressive malignant tumor. Bupivacaine (Bupi), a local anesthetic drug, has been shown to display anti-tumor activity against a variety of tumors. Methods We selected OSCC CAL-27 cells as the in vitro model. Cell toxicity, proliferation, apoptosis, and stemness were conducted, respectively. The protein levels of Ki67, PCNA, caspase-3, caspase-9, survivin, SOX2, NANOG, OCT4, STAT3, p-STAT3, ERK1/2, and p-ERK1/2 were evaluated by western blotting. Male BALB/c nude mice xenograft model was used to evaluate the effect of Bupi on tumor growth in vivo. Results Compared with the control group, Bupi (0.2, 0.5, or 1 µm) significantly decreased the cell viability and the proliferation of CAL-27 cells. Meanwhile, Bupi significantly promoted apoptosis of CAL-27 cells compared with the control group. Additionally, Bupi inhibited the stemness of CAL-27 cells which was evidenced by a sphere formation assay. Bupi decreased the phosphorylation level of STAT3 and ERK1/2 in a dose-dependent manner. The addition of interferon-γ (IFN-γ, 20 ng/mL) in the experiment verified the role of Bupi on STAT3 and ERK1/2 signaling. In vivo, Bupi (40 µmol/kg) obviously suppressed the weight and size of the xenograft tumor, the number of apoptotic cells and Ki67+ decreased. Also, Bupi treatment inhibited the expression of stem-like marker proteins. Conclusions Bupi could be used as an anticancer drug against the growth and stemness ability of OSCC. The underlying mechanism may be due to down-regulation of STAT3 and ERK1/2 signaling. This study provides a new insight for the application of Bupi.
Collapse
Affiliation(s)
- Zhongchao Wang
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, China.,Department of Periodontics & Oral Medicine, The Affiliated Hospital of Stomatology of Southwest Medical University, Luzhou, China
| | - Jie Zhang
- Medical Administration Department, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongmei Wen
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, China.,Department of Prosthodontics, The Affiliated Hospital of Stomatology of Southwest Medical University, Luzhou, China
| | - Pin Wang
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, China.,Department of Prosthodontics, The Affiliated Hospital of Stomatology of Southwest Medical University, Luzhou, China
| | - Liyuan Fan
- Oral & Maxillofacial Reconstruction and Regeneration Laboratory, Southwest Medical University, Luzhou, China.,Department of Prosthodontics, The Affiliated Hospital of Stomatology of Southwest Medical University, Luzhou, China
| |
Collapse
|
36
|
Neurotoxic Effects of Local Anesthetics on Developing Motor Neurons in a Rat Model. J Clin Med 2021; 10:jcm10050901. [PMID: 33668828 PMCID: PMC7956179 DOI: 10.3390/jcm10050901] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 11/16/2022] Open
Abstract
Neurotoxic effects of local anesthetics (LAs) on developing motor neurons have not been documented. We investigated the neurotoxic effects of LAs on developing motor neurons in terms of cell viability, cytotoxicity, reactive oxygen species (ROS), and apoptosis. Embryonic spinal cord motor neurons were isolated from Sprague-Dawley rat fetuses and exposed to one of the three LAs-lidocaine, bupivacaine, or ropivacaine-at concentrations of 1, 10, 100, or 1000 µM. The exposure duration was set to 1 or 24 h. The neurotoxic effects of LAs were determined by evaluating the following: cell viability, cytotoxicity, ROS production, and apoptosis. In the 1-h exposure group, the motor neurons exposed to lidocaine and bupivacaine had reduced cell viability and increased cytotoxicity, ROS, and apoptosis in a concentration-dependent manner. Lidocaine showed the highest toxicity, followed by bupivacaine. In the 24-h exposure group, all three LAs showed significant effects (decreased cell viability and increased cytotoxicity, ROS, and apoptosis) on the motor neurons in a concentration-dependent manner. The neurotoxic effects of lidocaine were greater than those of bupivacaine and ropivacaine. Ropivacaine appeared to have the least effect on motor neurons. This study identified the neurotoxic effects of lidocaine and bupivacaine on developing spinal cord motor neurons.
Collapse
|
37
|
Local Anesthetics and Recurrence after Cancer Surgery-What's New? A Narrative Review. J Clin Med 2021; 10:jcm10040719. [PMID: 33670434 PMCID: PMC7918400 DOI: 10.3390/jcm10040719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
The perioperative use of regional anesthesia and local anesthetics is part of almost every anesthesiologist’s daily clinical practice. Retrospective analyses and results from experimental studies pointed towards a potential beneficial effect of the local anesthetics regarding outcome—i.e., overall and/or recurrence-free survival—in patients undergoing cancer surgery. The perioperative period, where the anesthesiologist is responsible for the patients, might be crucial for the further course of the disease, as circulating tumor cells (shed from the primary tumor into the patient’s bloodstream) might form new micro-metastases independent of complete tumor removal. Due to their strong anti-inflammatory properties, local anesthetics might have a certain impact on these circulating tumor cells, either via direct or indirect measures, for example via blunting the inflammatory stress response as induced by the surgical stimulus. This narrative review highlights the foundation of these principles, features recent experimental and clinical data and provides an outlook regarding current and potential future research activities.
Collapse
|
38
|
Liu CL, Cheng SP, Chen MJ, Lin CH, Chen SN, Kuo YH, Chang YC. Quinolinate Phosphoribosyltransferase Promotes Invasiveness of Breast Cancer Through Myosin Light Chain Phosphorylation. Front Endocrinol (Lausanne) 2021; 11:621944. [PMID: 33613454 PMCID: PMC7890081 DOI: 10.3389/fendo.2020.621944] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022] Open
Abstract
Perturbed Nicotinamide adenine dinucleotide (NAD+) homeostasis is involved in cancer progression and metastasis. Quinolinate phosphoribosyltransferase (QPRT) is the rate-limiting enzyme in the kynurenine pathway participating in NAD+ generation. In this study, we demonstrated that QPRT expression was upregulated in invasive breast cancer and spontaneous mammary tumors from MMTV-PyVT transgenic mice. Knockdown of QPRT expression inhibited breast cancer cell migration and invasion. Consistently, ectopic expression of QPRT promoted cell migration and invasion in breast cancer cells. Treatment with QPRT inhibitor (phthalic acid) or P2Y11 antagonist (NF340) could reverse the QPRT-induced invasiveness and phosphorylation of myosin light chain. Similar reversibility could be observed following treatment with Rho inhibitor (Y16), ROCK inhibitor (Y27632), PLC inhibitor (U73122), or MLCK inhibitor (ML7). Altogether, these results indicate that QPRT enhanced breast cancer invasiveness probably through purinergic signaling and might be a potential prognostic indicator and therapeutic target in breast cancer.
Collapse
Affiliation(s)
- Chien-Liang Liu
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Shih-Ping Cheng
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Ming-Jen Chen
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Chi-Hsin Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Bioscience Technology, Chung Yuan Christian University, Taoyuan City, Taiwan
| | - Shan-Na Chen
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yi-Hue Kuo
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Yuan-Ching Chang
- Department of Surgery, MacKay Memorial Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
39
|
Ansari MA, Thiruvengadam M, Farooqui Z, Rajakumar G, Sajid Jamal QM, Alzohairy MA, Almatroudi A, Alomary MN, Chung IM, Al-Suhaimi EA. Nanotechnology, in silico and endocrine-based strategy for delivering paclitaxel and miRNA: Prospects for the therapeutic management of breast cancer. Semin Cancer Biol 2021; 69:109-128. [PMID: 31891780 DOI: 10.1016/j.semcancer.2019.12.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/06/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023]
Abstract
Breast cancer is one of the most prevalent and reoccurring cancers and the second most common reason of death in women. Despite advancements in therapeutic strategies for breast cancer, early tumor recurrence and metastasis in patients indicate resistance to chemotherapeutic medicines, such as paclitaxel due to the abnormal expression of ER and EGF2 in breast cancer cells. Therefore, the development of alternatives to paclitaxel is urgently needed to overcome challenges involving drug resistance. An increasing number of studies has revealed miRNAs as novel natural alternative substances that play a crucial role in regulating several physiological processes and have a close, adverse association with several diseases, including breast cancer. Due to the therapeutic potential of miRNA and paclitaxel in cancer research, the current review focuses on the differential roles of various miRNAs in breast cancer development and treatment. miRNA delivery to a specific target site, the development of paclitaxel and miRNA formulations, and nanotechnological strategies for the delivery of nanopaclitaxel in the management of breast cancer are discussed. These strategies involve improving the cellular uptake and bioavailability and reducing the toxicity of free paclitaxel to achieve accumulation tumor site. Furthermore, a molecular docking study was performed to ascertain the enhanced anticancer activity of the nanoformulation of ANG1005 and Abraxane. An in silico analysis revealed that ANG1005 and Abraxane nanoformulations have superior and significantly enhanced interactions with the proteins α-tubulin and Bcl-2. Therefore, ANG1005 and Abraxane may be more suitable in the therapeutic management of breast cancer than the existing free paclitaxel. miRNAs can revert abnormal gene expression to normalcy; since miRNAs serve as tumor suppressors. Therefore, restoration of particular miRNAs levels as a replacement therapy may be an effective endocrine potential strategy for treating ER positive/ negative breast cancers.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Zeba Farooqui
- College of Pharmacy, University of Houston, Houston, TX, 77204, United States
| | - Govindaswamy Rajakumar
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Qazi Mohammad Sajid Jamal
- Department of Health Informatics, College of Public Health and Health Informatics, Qassim University, Al-Bukayriyah, Saudi Arabia
| | - Mohammad A Alzohairy
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia
| | - Mohammad N Alomary
- National Center of Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh, Saudi Arabia
| | - Ill-Min Chung
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul 05029, Republic of Korea.
| | - Ebtesam Abdullah Al-Suhaimi
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, Saudi Arabia; Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia
| |
Collapse
|
40
|
Grandhi RK, Perona B. Mechanisms of Action by Which Local Anesthetics Reduce Cancer Recurrence: A Systematic Review. PAIN MEDICINE 2021; 21:401-414. [PMID: 31282958 DOI: 10.1093/pm/pnz139] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND Surgery in concert with anesthesia is a key part of the management of advanced-stage cancers. Anesthetic agents such as opioids and volatile anesthetics have been shown to promote recurrence in preclinical models, whereas some animal models have shown that the use of lidocaine may be beneficial in reducing cancer recurrence. The purpose of this article is to review the current literature to highlight the mechanisms of action by which local anesthetics are thought to reduce cancer recurrence. METHODS A systematic review was conducted using the PubMed (1966 to 2018) electronic database. Search terms included "lidocaine," "ropivicaine," "procaine," "bupivicaine," "mepivicaine," "metastasis," "cancer recurrence," "angiogenesis," and "local anesthetics" in various combinations. The search yielded 146 total abstracts for initial review, 20 of which met criteria for inclusion. Theories for lidocaine's effect on cancer recurrence were recorded. All studies were reviewed using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses checklist. RESULTS Numerous mechanisms were proposed based on the local anesthetic used and the type of cancer. Mechanisms include those that are centered on endothelial growth factor receptor, voltage-gated sodium and calcium channels, transient receptor melanoplastin 7, hyperthermia, cell cycle, and demyelination. CONCLUSIONS In vivo models suggest that local anesthetic administration leads to reduced cancer recurrence. The etiology of this effect is likely multifactorial through both inhibition of certain pathways and direct induction of apoptosis, a decrease in tumor migration, and an association with cell cycle-mediated and DNA-mediated effects. Additional research is required to further define the clinical implications.
Collapse
Affiliation(s)
- Ravi K Grandhi
- Department of Anesthesiology, Maimonides Medical Center, Brooklyn, New York
| | - Barbara Perona
- Department of Anesthesiology, Weill Cornell Medicine, New York, New York, USA
| |
Collapse
|
41
|
Dockrell L, Buggy DJ. The role of regional anaesthesia in the emerging subspecialty of onco-anaesthesia: a state-of-the-art review. Anaesthesia 2021; 76 Suppl 1:148-159. [PMID: 33426658 DOI: 10.1111/anae.15243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2020] [Indexed: 01/07/2023]
Abstract
Cancer accounts for millions of deaths globally each year, predominantly due to recurrence and metastatic disease. The majority of patients with primary solid organ cancers require surgery, however, some degree of tumour dissemination related to surgery is inevitable. The surgical stress response and associated immunosuppression, pain, inflammation, tissue hypoxia and angiogenesis have all been implicated in promoting tumour survival, proliferation and recurrence. Regional anaesthesia was hypothesised to reduce the surgical stress response and immunosuppression, minimise the need for volatile anaesthesia and reduce pain and opioid requirements, thus mitigating pro-tumour pathways associated with the peri-operative period and improving long-term oncological outcomes. While some retrospective studies suggested an association between regional anaesthesia and reduced cancer recurrence, the first large randomised controlled trial on the effect of anaesthetic technique on cancer outcome found no significant difference between paravertebral regional anaesthesia and volatile anaesthesia with opioid analgesia in patients undergoing breast cancer surgery. Randomised controlled trials on the long-term oncological outcomes of regional anaesthesia in other tumour types are ongoing. The focus on how peri-operative interventions, especially regional anaesthesia, during cancer resection surgery, may enhance short-term recovery and perhaps influence long-term outcome has spawned the global emergence of the subspecialty of onco-anaesthesia. This review aims to discuss the most recent evidence on the use of regional anaesthesia in cancer surgery and the significance of its role in onco-anaesthesia.
Collapse
Affiliation(s)
- L Dockrell
- Division of Anaesthesiology and Peri-operative Medicine, Mater University Hospital, School of Medicine, University College Dublin, Ireland
| | - D J Buggy
- Division of Anaesthesiology and Peri-operative Medicine, Mater University Hospital, School of Medicine, University College Dublin, Ireland
| |
Collapse
|
42
|
Mirshahidi S, Shields TG, de Necochea-Campion R, Yuan X, Janjua A, Williams NL, Mirshahidi HR, Reeves ME, Duerksen-Hughes P, Zuckerman LM. Bupivacaine and Lidocaine Induce Apoptosis in Osteosarcoma Tumor Cells. Clin Orthop Relat Res 2021; 479:180-194. [PMID: 33009230 PMCID: PMC7899706 DOI: 10.1097/corr.0000000000001510] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/01/2020] [Indexed: 01/31/2023]
Abstract
BACKGROUND Osteosarcoma is the most common type of bone cancer in adolescents. There have been no significant improvements in outcomes since chemotherapy was first introduced. Bupivacaine and lidocaine have been shown to be toxic to certain malignancies. This study evaluates the effect of these medications on two osteosarcoma cell lines. QUESTIONS/PURPOSES (1) Does incubation of osteosarcoma cells with bupivacaine or lidocaine result in cell death? (2) Does this result from an apoptotic mechanism? (3) Is a specific apoptotic pathway implicated? METHODS Two cell lines were chosen to account for the inherent heterogeneity of osteosarcoma. UMR-108 is a transplantable cell line that has been used in multiple studies as a primary tumor. MNNG/HOS has a high metastatic rate in vivo. Both cell lines were exposed bupivacaine (0.27, 0.54, 1.08, 2.16, 4.33 and 8.66 mM) and lidocaine (0.66, 1.33, 5.33, 10.66, 21.32 and 42.64 mM) for 24 hours, 48 hours, and 72 hours. These concentrations were determined by preliminary experiments that found the median effective dose was 1.4 mM for bupivacaine and 7.0 mM for lidocaine in both cell lines. Microculture tetrazolium and colony formation assay determined whether cell death occurred. Apoptosis induction was evaluated by phase-contrast micrographs, flow cytometry, DNA fragmentation and reactive oxygen species (ROS). The underlying pathways were analyzed by protein electrophoresis and Western blot. All testing was performed in triplicate and compared with pH-adjusted controls. Quantitative results were analyzed without blinding. RESULTS Both medications caused cell death in a dose- and time-dependent manner. Exposure to bupivacaine for 24 hours reduced viability of UMR-108 cells by 6 ± 0.75% (95% CI 2.9 to 9.11; p = 0.01) at 1.08 mM and 89.67 ± 1.5% (95% CI 82.2 to 95.5; p < 0.001) at 2.16 mM. Under the same conditions, MNNG/HOS viability was decreased in a similar fashion. After 24 hours, the viability of UMR-108 and MNNG/HOS cells exposed to 5.33 mM of lidocaine decreased by 25.33 ± 8.3% (95% CI 2.1 to 48.49; p = 0.03) and 39.33 ± 3.19% (95% CI 30.46 to 48.21; p < 0.001), respectively, and by 90.67 ± 0.66% (95% CI 88.82 to 92.52; p < 0.001) and 81.6 ± 0.47% (95% CI 79.69 to 82.31; p < 0.001) at 10.66 mM, respectively. After 72 hours, the viability of both cell lines was further reduced. Cell death was consistent with apoptosis based on cell morphology, total number of apoptotic cells and DNA fragmentation. The percentage increase of apoptotic UMR-108 and MNNG/HOS cells confirmed by Annexin-V positivity compared with controls was 21.3 ± 2.82 (95% CI 16.25 to 26.48; p < 0.001) and 21.23 ± 3.23% (95% CI 12.2 to 30.2; p = 0.003) for bupivacaine at 1.08 mM and 25.15 ± 4.38 (95% CI 12.9 to 37.3; p = 0.004) and 9.11 ± 1.74 (95% CI 4.35 to 13.87; p = 0.006) for lidocaine at 5.33 mM. The intrinsic apoptotic pathway was involved as the expression of Bcl-2 and survivin were down-regulated, and Bax, cleaved caspase-3 and cleaved poly (ADP-ribose) polymerase-1 were increased. ROS production increased in the UMR-108 cells but was decreased in the MNNG/HOS cells. CONCLUSION These findings provide a basis for evaluating these medications in the in vivo setting. Studies should be performed in small animals to determine if clinically relevant doses have a similar effect in vivo. In humans, biopsies could be performed with standard doses of these medications to see if there is a difference in biopsy tract contamination on definitive resection. CLINICAL RELEVANCE Bupivacaine and lidocaine could potentially be used for their ability to induce and enhance apoptosis in local osteosarcoma treatment. Outcome data when these medications are used routinely during osteosarcoma treatment can be evaluated compared with controls. Further small animal studies should be performed to determine if injection into the tumor, isolated limb perfusion, or other modalities of treatment are viable.
Collapse
Affiliation(s)
- Saied Mirshahidi
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Troy G Shields
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Rosalia de Necochea-Campion
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Xiangpeng Yuan
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Ata Janjua
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Nadine L Williams
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Hamid R Mirshahidi
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Mark E Reeves
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Penelope Duerksen-Hughes
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| | - Lee M Zuckerman
- S. Mirshahidi, R. de Necochea-Campion, A. Janjua, Biospecimen Laboratory, Loma Linda University Cancer Center, Department of Medicine and Basic Sciences, Loma Linda University School of Medicine, Loma Linda, CA, USA
- T. G. Shields, N. L. Williams, Department of Orthopaedic Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA
- X. Yuan, Department of Otolaryngology-Head and Neck Surgery, Loma Linda University Medical Center, Loma Linda, CA, USA Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA, USA
- H. R. Mirshahidi Department of Medical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- M. E. Reeves Department of Surgical Oncology, Loma Linda University Medical Center, Loma Linda, CA, USA
- P. Duerksen-Hughes, Department of Biochemistry, Loma Linda University Medical Center, Loma Linda, CA, USA
- L. M. Zuckerman, Department of Surgery, Division of Orthopaedic Surgery, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
43
|
Bruse LM. CORR Insights®: Bupivacaine and Lidocaine Induce Apoptosis in Osteosarcoma Tumor Cells. Clin Orthop Relat Res 2021; 479:195-197. [PMID: 33284231 PMCID: PMC7899593 DOI: 10.1097/corr.0000000000001566] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 10/12/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Laura Marie Bruse
- L. M. Bruse, Orthopaedic Surgeon, Beautiful Bones Orthopaedics, Henderson, NV, USA
| |
Collapse
|
44
|
Woo MS, Park J, Ok SH, Park M, Sohn JT, Cho MS, Shin IW, Kim YA. The proper concentrations of dextrose and lidocaine in regenerative injection therapy: in vitro study. Korean J Pain 2021; 34:19-26. [PMID: 33380564 PMCID: PMC7783851 DOI: 10.3344/kjp.2021.34.1.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/18/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Prolotherapy is a proliferation therapy as an alternative medicine. A combination of dextrose solution and lidocaine is usually used in prolotherapy. The concentrations of dextrose and lidocaine used in the clinical field are very high (dextrose 10%-25%, lidocaine 0.075%-1%). Several studies show about 1% dextrose and more than 0.2% lidocaine induced cell death in various cell types. We investigated the effects of low concentrations of dextrose and lidocaine in fibroblasts and suggest the optimal range of concentrations of dextrose and lidocaine in prolotherapy. Methods Various concentrations of dextrose and lidocaine were treated in NIH-3T3. Viability was examined with trypan blue exclusion assay and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Migration assay was performed for measuring the motile activity. Extracellular signal-regulated kinase (Erk) activation and protein expression of collagen I and α-smooth muscle actin (α-SMA) were determined with western blot analysis. Results The cell viability was decreased in concentrations of more than 5% dextrose and 0.1% lidocaine. However, in the concentrations 1% dextrose (D1) and 0.01% lidocaine (L0.01), fibroblasts proliferated mildly. The ability of migration in fibroblast was increased in the D1, L0.01, and D1 + L0.01 groups sequentially. D1 and L0.01 increased Erk activation and the expression of collagen I and α-SMA and D1 + L0.01 further increased. The inhibition of Erk activation suppressed fibroblast proliferation and the synthesis of collagen I. Conclusions D1, L0.01, and the combination of D1 and L0.01 induced fibroblast proliferation and increased collagen I synthesis via Erk activation.
Collapse
Affiliation(s)
- Min Seok Woo
- Department of Convergence Medical Science, Gyeongsang National University, Jinju, Korea
| | - Jiyoung Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Seong-Ho Ok
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Miyeong Park
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea
| | - Ju-Tae Sohn
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea.,Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Man Seok Cho
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Il-Woo Shin
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Hospital, Jinju, Korea.,Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| | - Yeon A Kim
- Department of Anesthesiology and Pain Medicine, Gyeongsang National University Changwon Hospital, Changwon, Korea.,Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju, Korea
| |
Collapse
|
45
|
Wang X, Li T. Ropivacaine inhibits the proliferation and migration of colorectal cancer cells through ITGB1. Bioengineered 2020; 12:44-53. [PMID: 33345684 PMCID: PMC8806321 DOI: 10.1080/21655979.2020.1857120] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
To study whether ropivacaine inhibits the proliferation and migration of colon cancer cells through ITGB1 (Integrin beta-1). First, the effect of ropivacaine on cell proliferation and migration was detected by MTT and Transwell. DAPI staining, annexin V staining and Western blot were used to detect the expression of apoptosis-related proteins to investigate the effect of ropivacaine on cell apoptosis. Using bioinformatics software to predict the potential drug targets of ropivacaine. RT-PCR, Western blot and immunofluorescence verify the distribution and expression of the drug target ITGB1, and detect its downstream-related proteins to further prove that ropivacaine affects colon cancer cells by acting on ITGB1 protein. 1. Ropivacaine significantly inhibited the proliferation of colon cancer cells and promoted their apoptosis 2. Ropivacaine could interact with ITGB1 protein, and inhibited the expression of ITGB1 protein in colon cancer cells, thereby affecting its downstream signaling pathway. Ropivacaine regulates the function of colon cancer cells by targeting the expression of ITGB1 protein and affecting the activation of its downstream signaling pathways. Abbreviation: Integrin beta-1 (ITGB1); 3-(45)-dimethylthiahiazo (-z-y1)-35-di- phenytetrazoliumromide (MTT); 4. 6-diamimo-2-phenyl indole (DAPI); Reverse transcrption PCR (RT-PCR); Colorectal cancer (CRC); Local anesthetics (LA); voltage-gated sodium channel (VGSC); dulbecco s modifed eade medium (DMEM); propidium iodide (PI); dodecyl sulf ate, sodium salt-Polyacrylamide gel electrophoresis (SDS-PAGE); Polyvinylidene Fluoride (PVDF); BCL2 associated X (Bax); Focal Adhesion Kinase (FAK); extracellular signal-regulated kmase (ERK); alpha serme threcnime-proteim kinase (AKT); Glyceraldehyde-3-phosphate dehydrogenase (GAPDH); Tris-buffered salme with 0.1% Tween 20 (TBST); Similarty ensemble approach (SEA)
Collapse
Affiliation(s)
- Xiao Wang
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University , Beijing, China
| | - Tianzuo Li
- Department of Anesthesiology, Beijing Shijitan Hospital, Capital Medical University , Beijing, China
| |
Collapse
|
46
|
Soto G, Calero F, Naranjo M. [Lidocaine in oncological surgery: the role of blocking in voltage-gated sodium channels. A narrative review]. Rev Bras Anestesiol 2020; 70:527-533. [PMID: 32951865 DOI: 10.1016/j.bjan.2020.04.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 10/23/2022] Open
Abstract
BACKGROUND The current evidence suggests that oncological surgery, which is a therapy used in the treatment of solid tumors, increases the risk of metastasis. In this regard, a wide range of tumor cells express Voltage-Gated Sodium Channels (VGSC), whose biological roles are not related to the generation of action potentials. In epithelial tumor cells, VGSC are part of cellular structures named invadopodia, involved in cell proliferation, migration, and metastasis. Recent studies showed that lidocaine could decrease cancer recurrence through its direct effects on tumor cells and immunomodulatory properties on the stress response. OBJECTIVE The aim of this narrative review is to highlight the role of VGSC in tumor cells, and to describe the potential antiproliferative effect of lidocaine during the pathogenesis of metastasis. CONTENTS A critical review of literature from April 2017 to April 2019 was performed. Articles found on PubMed (2000-2019) were considered. A free text and MeSH-lidocaine; voltage-gated sodium channels; tumor cells; invadopodia; surgical stress; cell proliferation; metastasis; cancer recurrence-for articles in English, Spanish and Portuguese language-was used. A total of 62 were selected. CONCLUSION In animal studies, lidocaine acts by blocking VGSC and other receptors, decreasing migration, invasion, and metastasis. These studies need to be replicated in humans in the context of oncological surgery.
Collapse
Affiliation(s)
- German Soto
- Universidad Nacional de Rosario, Facultad de Ciencias Médicas, Carrera de Posgrado de Especialización en Anestesiología, Rosario, Argentina; Hospital Escuela Eva Perón, Granadero Baigorria, Argentina.
| | - Fernanda Calero
- Universidad Nacional de Rosario, Facultad de Ciencias Médicas, Carrera de Posgrado de Especialización en Anestesiología, Rosario, Argentina; Hospital Escuela Eva Perón, Granadero Baigorria, Argentina
| | | |
Collapse
|
47
|
Capatina AL, Lagos D, Brackenbury WJ. Targeting Ion Channels for Cancer Treatment: Current Progress and Future Challenges. Rev Physiol Biochem Pharmacol 2020; 183:1-43. [PMID: 32865696 DOI: 10.1007/112_2020_46] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ion channels are key regulators of cancer cell pathophysiology. They contribute to a variety of processes such as maintenance of cellular osmolarity and membrane potential, motility (via interactions with the cytoskeleton), invasion, signal transduction, transcriptional activity and cell cycle progression, leading to tumour progression and metastasis. Ion channels thus represent promising targets for cancer therapy. Ion channels are attractive targets because many of them are expressed at the plasma membrane and a broad range of existing inhibitors are already in clinical use for other indications. However, many of the ion channels identified in cancer cells are also active in healthy normal cells, so there is a risk that certain blockers may have off-target effects on normal physiological function. This review describes recent research advances into ion channel inhibitors as anticancer therapeutics. A growing body of evidence suggests that a range of existing and novel Na+, K+, Ca2+ and Cl- channel inhibitors may be effective for suppressing cancer cell proliferation, migration and invasion, as well as enhancing apoptosis, leading to suppression of tumour growth and metastasis, either alone or in combination with standard-of-care therapies. The majority of evidence to date is based on preclinical in vitro and in vivo studies, although there are several examples of ion channel-targeting strategies now reaching early phase clinical trials. Given the strong links between ion channel function and regulation of tumour growth, metastasis and chemotherapy resistance, it is likely that further work in this area will facilitate the development of new therapeutic approaches which will reach the clinic in the future.
Collapse
Affiliation(s)
| | - Dimitris Lagos
- Hull York Medical School, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - William J Brackenbury
- Department of Biology, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
| |
Collapse
|
48
|
Soto G, Calero F, Naranjo M. Lidocaine in oncological surgery. BRAZILIAN JOURNAL OF ANESTHESIOLOGY (ENGLISH EDITION) 2020. [PMID: 32951865 PMCID: PMC9373205 DOI: 10.1016/j.bjane.2020.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background The current evidence suggests that oncological surgery, which is a therapy used in the treatment of solid tumors, increases the risk of metastasis. In this regard, a wide range of tumor cells express Voltage-Gated Sodium Channels (VGSC), whose biological roles are not related to the generation of action potentials. In epithelial tumor cells, VGSC are part of cellular structures named invadopodia, involved in cell proliferation, migration, and metastasis. Recent studies showed that lidocaine could decrease cancer recurrence through its direct effects on tumor cells and immunomodulatory properties on the stress response. Objective The aim of this narrative review is to highlight the role of VGSC in tumor cells, and to describe the potential antiproliferative effect of lidocaine during the pathogenesis of metastasis. Contents A critical review of literature from April 2017 to April 2019 was performed. Articles found on PubMed (2000–2019) were considered. A free text and MeSH-lidocaine; voltage-gated sodium channels; tumor cells; invadopodia; surgical stress; cell proliferation; metastasis; cancer recurrence – for articles in English, Spanish and Portuguese language – was used. A total of 62 were selected. Conclusion In animal studies, lidocaine acts by blocking VGSC and other receptors, decreasing migration, invasion, and metastasis. These studies need to be replicated in humans in the context of oncological surgery.
Collapse
|
49
|
Levobupivacaine inhibits proliferation and promotes apoptosis of breast cancer cells by suppressing the PI3K/Akt/mTOR signalling pathway. BMC Res Notes 2020; 13:386. [PMID: 32807213 PMCID: PMC7430121 DOI: 10.1186/s13104-020-05191-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 07/16/2020] [Indexed: 12/16/2022] Open
Abstract
Objective This study aimed to test the hypothesis that levobupivacaine has anti-tumour effects on breast cancer cells. Results Colony formation and transwell assay were used to determine breast cancer cells proliferation. Flow Cytometry (annexin V and PI staining) was used to investigate breast cancer cells apoptosis. The effects of levobupivacaine on cellular signalling and molecular response were studied with Quantitative Polymerase Chain Reaction and western blot. Induction of apoptosis was confirmed by cell viability, morphological changes showed cell shrinkage, rounding, and detachments from plates. The results of the western blot and Quantitative Polymerase Chain Reaction indicated activation of active caspase-3 and inhibition of FOXO1. The results of the flow Cytometry confirmed that levobupivacaine inhibited breast cancer cell proliferation and enhanced apoptosis of breast cancer cells. Quantitative Polymerase Chain Reaction and Western blot analysis showed increased p21 and decreased cyclin D. Quantitative Polymerase Chain Reaction and western blot analysis showed that levobupivacaine significantly increased Bax expression, accompanied by a significant decreased Bcl-2 expression and inhibition of PI3K/Akt/mTOR signalling pathway. These findings suggested that levobupivacaine inhibits proliferation and promotes breast cancer cells apoptosis in vitro.
Collapse
|
50
|
Liu H, Dilger JP, Lin J. Effects of local anesthetics on cancer cells. Pharmacol Ther 2020; 212:107558. [PMID: 32343985 DOI: 10.1016/j.pharmthera.2020.107558] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/15/2020] [Indexed: 02/06/2023]
Abstract
Local anesthetics are widely used during clinical cancer surgeries. Studies have suggested that the use and the type of anesthesia affect cancer outcomes. In vivo studies and clinical data show that the use of local anesthetics is potentially beneficial for cancer treatment. However, the effect of the use of local anesthetics on the survival rate of cancer patients following surgery is controversial and, so far, little is known about the direct effects of local anesthetics on cancer cells. This work reviews and summarizes the published literature regarding the preclinical research methods and findings on the influence of local anesthetics on cancer cells. We hope that a thorough understanding of this subject will help to define optimal anesthetic regimens that lead to better outcomes for clinical cancer patients.
Collapse
Affiliation(s)
- Hengrui Liu
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - James P Dilger
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA
| | - Jun Lin
- Department of Anesthesiology, Health Science Center, Stony Brook University, Stony Brook, NY 11794, USA.
| |
Collapse
|