1
|
Redjal N, Ziu M, Choi S, Ng PR, Nahed BV, Olson JJ. Congress of Neurological Surgeons systematic review and evidence-based guidelines for the role of surgery in the management of patients with diffuse low grade glioma: update. J Neurooncol 2025; 172:99-152. [PMID: 39806106 DOI: 10.1007/s11060-024-04871-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 10/26/2024] [Indexed: 01/16/2025]
Abstract
Target populationAdults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas)QuestionIn adults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas), does surgical resection improve overall survival compared to observation or biopsy?Updated Recommendation from the Prior Version of These Guidelines:Level III: In adults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas), surgical resection is suggested over observation or biopsy to improve overall survival.Question Q2In adults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas), does maximal surgical resection improve progression free survival (PFS) and overall survival (OS) compared to subtotal resection/biopsy?Unchanged Recommendations from the Prior Version of These GuidelinesLevel II It is recommended that GTR or STR be accomplished instead of biopsy alone when safe and feasible so as to decrease the frequency of tumor progression recognizing that the rate of progression after GTR is fairly high.Level III Greater extent of resection can improve OS in WHO grade II diffuse gliomas patients. New RecommendationsLevel III: It is suggested that extent of resection be maximized as is safely possible for IDH mutant and IDHwt WHO grade II diffuse gliomas. to improve PFS and OS. Level III: There is insufficient evidence that greater extent of resection of 1p19q codeleted oligodendrogliomas (WHO grade II diffuse gliomas) improves OS Question Q3In adults with imaging suggestive of a WHO grade II diffuse gliomas (oligodendrogliomas or astrocytomas), does the addition of intraoperative MRI and/or intraoperative ultrasound during surgery improve extent of resection?Unchanged Recommendation from the Prior Version of These GuidelinesLevel III: The use of intraoperative MRI is suggested to increase the extent of resection for adults with WHO grade II diffuse glioma.New RecommendationLevel III: The use of intraoperative ultrasound is suggested to increase the extent of resection compared to conventional surgery for adults with WHO grade II diffuse glioma.Question 4In adults with imaging suggestive of a WHO grade II diffuse glioma (oligodendrogliomas or astrocytomas) with seizures, does maximal surgical resection improve seizure control compared to observation or subtotal resection/biopsy?Updated Recommendation from the Prior Version of These GuidelinesLevel III: In adults with imaging consistent with a WHO Grade II diffuse glioma who present with seizure activity, surgical resection of greater than 90% of the lesion, when it can be accomplished safely, is suggested over observation or lesser extent of resection/biopsy to improve seizure control.New Questions and RecommendationsQuestion 5In adults with imaging suggestive of a WHO grade II diffuse glioma (oligodendrogliomas or astrocytomas), does use of intraoperative fluorescent guided surgery improve extent of resection?RecommendationLevel III: Intraoperative fluorescent guided surgery with 5-ALA is not suggested to improve the extent of resection for WHO grade II gliomas.Question 6In adults with imaging suggestive of a WHO grade II diffuse glioma (oligodendrogliomas or astrocytomas) in eloquent brain cortex, does awake craniotomy or other methods of intraoperative mapping increase extent of resection compared to conventional surgery without these techniques?RecommendationLevel III: It is suggested that awake craniotomy and other methods of intraoperative mapping can be used to increase the extent of resection for adults with WHO grade II diffuse glioma.Question 7In adults with imaging suggestive of a WHO grade II diffuse glioma (oligodendrogliomas or astrocytomas) in eloquent brain cortex, does use of advanced preoperative imaging modalities in the form of fMRI and/or DTI decrease surgical morbidity?RecommendationLevel III: The use of functional MRI and DTI related modalities are suggested to decrease surgical morbidity in adults with WHO grade II diffuse glioma.
Collapse
Affiliation(s)
- Navid Redjal
- Department of Neurosurgery, Cooper University Hospital, 1 Cooper Plaza, Camden, NJ, 08103, USA.
- Department of Neurosurgery, Capital Health Institute for Neurosciences, Pennington, NJ, USA.
| | - Mateo Ziu
- Department of Neurosurgery, Inova Neuroscience and Spine Institute, Falls Church, VA, USA
| | - Serah Choi
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center/Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | - Brain V Nahed
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
2
|
de la Fuente MI, Touat M, van den Bent MJ, Preusser M, Peters KB, Young RJ, Huang RY, Ellingson BM, Capper D, Phillips JJ, Halasz LM, Shih HA, Rudà R, Lim-Fat MJ, Blumenthal DT, Weller M, Arakawa Y, Whittle JR, Ducray F, Reardon DA, Bi WL, Minniti G, Rahman R, Hervey-Jumper S, Chang SM, Wen PY. The role of vorasidenib in the treatment of isocitrate dehydrogenase-mutant glioma. Neuro Oncol 2024:noae259. [PMID: 39723472 DOI: 10.1093/neuonc/noae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Isocitrate dehydrogenase (IDH)-mutant gliomas are the most common malignant primary brain tumors in young adults. This condition imposes a substantial burden on patients and their caregivers, marked by neurocognitive deficits and high mortality rates due to tumor progression, coupled with significant morbidity from current treatment modalities. Although surgery, radiation therapy, and chemotherapy improve survival, these treatments can adversely affect cognitive function, quality of life, finances, employment status, and overall independence. Consequently, there is an urgent need for innovative strategies that delay progression and the use of radiation therapy and chemotherapy. The recent Federal Drug Administration (FDA) approval of vorasidenib, a brain-penetrant small molecule targeting mutant IDH1/2 proteins, heralds a shift in the therapeutic landscape for IDH-mutant gliomas. In this review, we address the role of vorasidenib in the treatment of IDH-mutant gliomas, providing a roadmap for its incorporation into daily practice. We discuss ongoing clinical trials with vorasidenib and other IDH inhibitors, as single-agent or in combination with other therapies, as well as current challenges and future directions.
Collapse
Affiliation(s)
- Macarena I de la Fuente
- Department of Neurology, University of Miami, Miami, Florida, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Mehdi Touat
- Service de Neuro-oncologie, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Martin J van den Bent
- Service de Neuro-oncologie, Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Paris, France
- Department of Neurology, Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Robert J Young
- Service Neuroradiology, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - David Capper
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Partner Site Berlin, Heidelberg, Germany
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Joanna J Phillips
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Lia M Halasz
- Department of Radiation Oncology, University of Washington/Fred Hutchinson Cancer Center, Seattle, Washington, USA
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Mary Jane Lim-Fat
- Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Yoshiki Arakawa
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - James R Whittle
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Personalised Oncology Division, WEHI, Parkville, Australia
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - François Ducray
- Department of Neuro-Oncology, East Group Hospital, Hospices Civils de Lyon, Université de Lyon, Université Claude Bernard, Lyon, France
| | - David A Reardon
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Giuseppe Minniti
- IRCCS Neuromed, Pozzilli, Isernia, Italy
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy
| | - Rifaquat Rahman
- Department of Radiation Oncology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Shawn Hervey-Jumper
- Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Susan M Chang
- Division of Neuro-Oncology, Department of Neurosurgery, University of California, San Francisco, California, USA
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Guo X, Xing H, Pan H, Wang Y, Chen W, Wang H, Zhang X, Liu J, Xu N, Wang Y, Ma W. Neuronavigation Combined With Intraoperative Ultrasound and Intraoperative Magnetic Resonance Imaging Versus Neuronavigation Alone in Diffuse Glioma Surgery. World Neurosurg 2024; 192:e355-e365. [PMID: 39343380 DOI: 10.1016/j.wneu.2024.09.105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
OBJECTIVE This study aimed to integrate intraoperative ultrasound and magnetic resonance imaging (IMRI) with neuronavigation (NN) to create a multimodal surgical protocol for diffuse gliomas. Clinical outcomes were compared to the standard NN-guided protocol. METHODS Adult patients with diffuse gliomas scheduled for gross total resection (GTR) were consecutively enrolled to undergo either NN-guided surgery (80 patients, July 2019-January 2022) or multimodal-integrated surgery (80 patients, February 2022-August 2023). The primary outcomes were the extent of resection (EOR) and GTR. Additional outcomes included operative time, blood loss, length of hospital stay, and patient survival. RESULTS GTR was achieved in 69% of patients who underwent multimodal-integrated surgery, compared to 43% of those who received NN-guided surgery (P = 0.002). Residual tumor was detected by IMRI in 53 patients (66%), and further GTR was achieved in 28 of these cases. The median EOR was 100% for the multimodal group and 95% for the NN-guided group (P = 0.001), while the median operative time was 8 hours versus 5 hours (P < 0.001). Neurological deficits, blood loss, and hospital stay durations were comparable between 2 groups. Multimodal-integrated surgery resulted in greater EOR and higher GTR rates in contrast-enhancing gliomas, gliomas in eloquent regions, and large gliomas (≥50 mm). GTR in glioblastomas and other contrast-enhancing gliomas contributed to improved overall survival. CONCLUSIONS Compared to standard NN-guided surgery, multimodal-integrated surgery using NN, IMRI, and intraoperative ultrasound significantly increased the EOR and GTR rates for diffuse gliomas.
Collapse
Affiliation(s)
- Xiaopeng Guo
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; China Anti-Cancer Association Specialty Committee of Glioma, Peking Union Medical College Hospital, Beijing, China
| | - Hao Xing
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Huiru Pan
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuekun Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenlin Chen
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Zhang
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiahui Liu
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Xu
- Department of Anesthesia, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; China Anti-Cancer Association Specialty Committee of Glioma, Peking Union Medical College Hospital, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Center for Malignant Brain Tumors, and National Glioma MDT Alliance, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China; China Anti-Cancer Association Specialty Committee of Glioma, Peking Union Medical College Hospital, Beijing, China
| |
Collapse
|
4
|
Uckermann O, Ziegler J, Meinhardt M, Richter S, Schackert G, Eyüpoglu IY, Hijazi MM, Krex D, Juratli TA, Sobottka SB, Galli R. Raman and autofluorescence spectroscopy for in situ identification of neoplastic tissue during surgical treatment of brain tumors. J Neurooncol 2024; 170:543-553. [PMID: 39196481 PMCID: PMC11614956 DOI: 10.1007/s11060-024-04809-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/15/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE Raman spectroscopy (RS) is a promising method for brain tumor detection. Near-infrared autofluorescence (AF) acquired during RS provides additional useful information for tumor identification and was investigated in comparison with RS for delineating brain tumors in situ. METHODS Raman spectra were acquired together with AF in situ within the solid tumor and at the tumor border during routine brain tumor surgeries (218 spectra; glioma WHO II-III, n = 6; GBM, n = 10; metastases, n = 10; meningioma, n = 3). Tissue classification for tumor identification in situ was trained on ex vivo data (375 spectra; glioma/GBM patients, n = 20; metastases, n = 11; meningioma, n = 13; and epileptic hippocampi, n = 4). RESULTS Both in situ and ex vivo data showed that AF intensity in brain tumors was lower than that in border regions and normal brain tissue. Moreover, a positive correlation was observed between the AF intensity and the intensity of the Raman band corresponding to lipids at 1437 cm- 1, while a negative correlation was found with the intensity of the protein band at 1260 cm- 1. The classification of in situ AF and RS datasets matched the surgeon's evaluation of tissue type, with correct rates of 0.83 and 0.84, respectively. Similar correct rates were achieved in comparison to histopathology of tissue biopsies resected in selected measurement positions (AF: 0.80, RS: 0.83). CONCLUSIONS Spectroscopy was successfully integrated into existing neurosurgical workflows, and in situ spectroscopic data could be classified based on ex vivo data. RS confirmed its ability to detect brain tumors, while AF emerged as a competitive method for intraoperative tumor delineation.
Collapse
Affiliation(s)
- Ortrud Uckermann
- Division of Medical Biology, Department of Psychiatry and Psychotherapy, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Jonathan Ziegler
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Matthias Meinhardt
- Department of Pathology (Neuropathology), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Sven Richter
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Else Kröner Fresenius Center for Digital Health, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Gabriele Schackert
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Ilker Y Eyüpoglu
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Mido M Hijazi
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Dietmar Krex
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Tareq A Juratli
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Stephan B Sobottka
- Department of Neurosurgery, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Roberta Galli
- Medical Physics and Biomedical Engineering, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
5
|
Brosnan C, Henry J, McHugh P, Griffin E, Mulligan M, Brett F, MacNally S, O'Hare A, Looby S. Utility of Early Postoperative DWI to Assess the Extent of Resection of Adult-Type World Health Organization Grade 2 and 3 Diffuse Gliomas. AJNR Am J Neuroradiol 2024; 45:1769-1776. [PMID: 39326884 PMCID: PMC11543062 DOI: 10.3174/ajnr.a8397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 06/18/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND PURPOSE World Health Organization (WHO) grade 2 and 3 diffuse gliomas account for approximately 5% of primary brain tumors. They are invasive and infiltrative tumors and have considerable morbidity, causing progressive neurologic deterioration. The mean survival time is <10 years from diagnosis. Surgical debulking represents first-line management. The extent of resection is associated with progression-free and overall survival. Radiologic assessment of the extent of resection is challenging. This can be underestimated on early postoperative MRI, meaning that accurate assessment may be achieved only on delayed follow-up imaging. We hypothesized that DWI may help facilitate more reliable estimates of the extent of resection on early postoperative MRI. This study aimed to assess the utility of DWI in early postoperative MRI to evaluate the extent of resection. MATERIALS AND METHODS A single-center observational cohort study was performed. All patients with histologically confirmed WHO grade 2 and 3 gliomas managed with surgical debulking between January 2015 and December 2020 were identified. Preoperative, early postoperative, and follow-up imaging were reviewed independently by 2 consultant neuroradiologists. The extent of resection was estimated with and without DWI sequences for each case. RESULTS Two hundred twenty-four patients with WHO grade 2 and 3 gliomas were managed with surgical debulking between 2015 and 2020. DWI was not performed on early postoperative MRI in 2 patients. With the use of DWI, the extent of resection was upgraded in 30% of cases (n = 66/222) and classified as "complete" or "supramaximal" in 58% of these patients (n = 38/66). In cases in which the extent of resection was upgraded with the use of DWI, signal abnormality was stable or reduced at follow-up in 78% (n = 49/63). In cases with worsening signal abnormality, 64% were deemed to be secondary to adjuvant radiation therapy (n = 9/14). Eight percent (n = 5/63) of patients with an increased estimated extent of resection using DWI demonstrated signal progression attributed to true disease progression at follow-up. CONCLUSIONS DWI is a helpful and reliable adjunct in differentiating residual tumor from marginal ischemia in early postoperative MRI in WHO grade 2 and 3 diffuse gliomas and increases the accuracy in assessing the extent of resection. It should be used routinely in these cases.
Collapse
Affiliation(s)
- Conor Brosnan
- From the Department of Radiology (C.B., A.O., S.L.), Beaumont Hospital, Dublin, Ireland
| | - Jack Henry
- Department of Neurosurgery (J.H., P.M., E.G., S.M.), Beaumont Hospital, Dublin, Ireland
| | - Paul McHugh
- Department of Neurosurgery (J.H., P.M., E.G., S.M.), Beaumont Hospital, Dublin, Ireland
| | - Emma Griffin
- Department of Neurosurgery (J.H., P.M., E.G., S.M.), Beaumont Hospital, Dublin, Ireland
| | - Martin Mulligan
- Department of Pathology (M.M., F.B.), Beaumont Hospital, Dublin, Ireland
| | - Francesca Brett
- Department of Pathology (M.M., F.B.), Beaumont Hospital, Dublin, Ireland
| | - Stephen MacNally
- Department of Neurosurgery (J.H., P.M., E.G., S.M.), Beaumont Hospital, Dublin, Ireland
| | - Alan O'Hare
- From the Department of Radiology (C.B., A.O., S.L.), Beaumont Hospital, Dublin, Ireland
| | - Seamus Looby
- From the Department of Radiology (C.B., A.O., S.L.), Beaumont Hospital, Dublin, Ireland
| |
Collapse
|
6
|
Aaronson DM, Laing B, Singhal I, Boerger TF, Beck RT, Mueller WM, Krucoff MO. Survival implications of postoperative restricted diffusion in high-grade glioma and limitations of intraoperative MRI detection. J Neurooncol 2024; 170:419-428. [PMID: 39316313 DOI: 10.1007/s11060-024-04767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/03/2024] [Indexed: 09/25/2024]
Abstract
PURPOSE Here we assess whether the volume of cerebral ischemia induced during glioma surgery may negatively impact survival independently of neurological function. We also evaluate the sensitivity of intraoperative MRI (iMRI) in detecting cerebral ischemia during surgery. METHODS We retrospectively reviewed 361 cranial surgeries that used a 3 Tesla iMRI. 165 patients met all inclusion criteria and were included in the final analysis. Diffusion weighted imaging (DWI) obtained during iMRI was compared to postoperative DWI obtained within 7 days of the operation in cases where no further resection occurred after the iMRI. RESULTS 42 of 165 patients (25%) showed at least some evidence of restricted diffusion on postoperative (poMRI). 37 of these 42 (88%) cases lacked evidence of restricted diffusion on iMRI, meaning iMRI had a false-negative rate of 88% and a sensitivity of 12% in assessing the extent of ischemic brain after surgery. In high-grade gliomas, the volume of restricted diffusion on poMRI was predictive of overall survival, independent of new functional deficits acquired during surgery (p = 0.011). CONCLUSION This study presents the largest case series to date analyzing the sensitivity of iMRI in detecting surgical ischemia. In high-grade gliomas, increased volume of ischemia correlated with worsening median overall survival (OS) irrespective of postoperative neurologic deficits. Future work will focus on improving intraoperative detection of ischemia during the hyperacute phase when interventions such as blood pressure modulation or direct application of vasodilator agents may be effective.
Collapse
Affiliation(s)
- Daniel M Aaronson
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Brandon Laing
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Ishan Singhal
- Medical College of Wisconsin, 8701 W Watertown Plank Rd, Wauwatosa, WI, 53226, USA
| | - Timothy F Boerger
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Ryan T Beck
- Department of Radiology, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Wade M Mueller
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA
| | - Max O Krucoff
- Department of Neurosurgery, Medical College of Wisconsin, 9200 W Wisconsin Ave, Wauwatosa, WI, 53226, USA.
- Department of Biomedical Engineering, Medical College of Wisconsin & Marquette University, 1515 W. Wisconsin Ave, Milwaukee, WI, 53233, USA.
| |
Collapse
|
7
|
Lorincz KN, Gorodezki D, Schittenhelm J, Zipfel J, Tellermann J, Tatagiba M, Ebinger M, Schuhmann MU. Role of surgery in the treatment of pediatric low-grade glioma with various degrees of brain stem involvement. Childs Nerv Syst 2024; 40:3037-3050. [PMID: 39145885 PMCID: PMC11511697 DOI: 10.1007/s00381-024-06561-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 08/16/2024]
Abstract
OBJECTIVE Posterior fossa pediatric low-grade glioma involving the brainstem and cerebellar peduncles (BS-pLGG) are a subgroup with higher risks at surgery. We retrospectively analyzed the role of surgery in the interdisciplinary armamentarium of treatment options in our institutional series of BS-pLGG with various degrees of brainstem involvement. MATERIAL AND METHODS We analyzed data of 52 children with BS-pLGG after surgical intervention for clinical/molecular characteristics, neurological outcome, factors influencing recurrence/progression pattern, and tumor volumetric analysis of exclusively surgically treated patients to calculate tumor growth velocity (TGV). Tumors were stratified according to primary tumor origin in four groups: (1) cerebellar peduncle, (2) 4th ventricle, (3) pons, (4) medulla oblongata. RESULTS The mean FU was 6.44 years. Overall survival was 98%. The mean PFS was 34.07 months. Two patients had biopsies only. Fifty-two percent of patients underwent remission or remained in stable disease (SD) after initial surgery. Patients with progression underwent further 23 resections, 15 chemotherapies, 4 targeted treatments, and 2 proton radiations. TGV decreased after the 2nd surgery compared to TGV after the 1st surgery (p < 0.05). The resection rates were significantly higher in Groups 1 and 2 and lowest in medulla oblongata tumors (Group 4) (p < 0.05). More extended resections were achieved in tumors with KIAA1549::BRAF fusion (p = 0.021), which mostly occurred in favorable locations (Groups 1 and 2). Thirty-one patients showed postoperatively new neurological deficits. A total of 27/31 improved within 12 months. At the end of FU, 6% had moderate deficits, 52% had mild deficits not affecting activities, and 36% had none. Fifty percent of patients were free of disease or showed remission, 38% were in SD, and 10% showed progression. CONCLUSION The first surgical intervention in BS-pLGG can control disease alone in overall 50% of cases, with rates differing greatly according to location (Groups 1 > 2 > 3 > 4), with acceptable low morbidity. The second look surgery is warranted except in medullary tumors. With multimodality treatments almost 90% of patients can obtain remission or stable disease after > 5 years of follow-up. An integrated multimodal and multidisciplinary approach aiming at minimal safe residual disease, combining surgery, chemo-, targeted therapy, and, as an exception, radiation therapy, is mandatory.
Collapse
Affiliation(s)
- Katalin Nora Lorincz
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany.
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany.
| | - David Gorodezki
- Department of Pediatric Oncology, University Children's Hospital of Tuebingen, Tuebingen, Germany
| | - Jens Schittenhelm
- Department of Neuropathology, Institute of Pathology and Neuropathology, University Hospital of Tuebingen, Tuebingen, Germany
| | - Julian Zipfel
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Jonas Tellermann
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| | - Martin Ebinger
- Department of Pediatric Oncology, University Children's Hospital of Tuebingen, Tuebingen, Germany
| | - Martin Ulrich Schuhmann
- Section of Pediatric Neurosurgery, University Hospital of Tuebingen, Tuebingen, Germany
- Department of Neurosurgery and Neurotechnology, University Hospital of Tuebingen, Hoppe-Seyler Str. 3, 72076, Tuebingen, Germany
| |
Collapse
|
8
|
Barchéus H, Peischl C, Björkman-Burtscher IM, Pettersson C, Smits A, Nilsson D, Farahmand D, Eriksson J, Skoglund T, Corell A. Observations from the first 100 cases of intraoperative MRI - experiences, trends and short-term outcomes. BMC Surg 2024; 24:268. [PMID: 39300452 DOI: 10.1186/s12893-024-02569-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND We sought to analyze, in well-defined clinical setting, the first 100 patients treated at the intraoperative MRI (iMRI) hybrid surgical theatre at our facility in a population-based setting to evaluate which pathologies are best approached with iMRI assisted surgeries, as this is not yet clearly defined. METHODS Patients undergoing surgery in the 3T iMRI hybrid surgical theatre at our neurosurgical department between December 2017 to May 2021 were included after informed consent. Demographic, clinical, surgical, histological, radiological and outcome parameters, as well as variables related to iMRI, were retrospectively collected and analyzed. Patients were subdivided into adult and pediatric cohorts. RESULTS Various neurosurgical procedures were performed; resection of tumors and epileptic foci, endoscopic skull base procedures including pituitary lesions, deep brain stimulation (DBS) and laser interstitial thermal therapy (LITT). In total, 41 patients were pediatric. An iMRI scan was carried out in 96% of cases and led to continuation of surgery in 50% of cases, mainly due to visualized remaining pathological tissue (95.2%). Median time to iMRI from intubation was 280 min and median total duration of surgery was 445 min. The majority of patients experienced no postoperative complications (70%), 13 patients suffered permanent postoperative deficits, predominantly visual. CONCLUSION Herein, we demonstrate the first 100 patients undergoing neurosurgery aided by iMRI at our facility since introduction. Indications for surgery differed between pediatric and adult patients. The iMRI was utilized for tumor surgeries, particularly adult low-grade gliomas and pediatric tumors, as well as for epilepsy surgery and DBS. In this heterogenous population, iMRI led to continuation of surgery in 50%. To establish the benefit in maximizing the extent of resection in these brain pathologies future studies are recommended. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Hanna Barchéus
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden.
| | - Christoffer Peischl
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
| | - Isabella M Björkman-Burtscher
- Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Christina Pettersson
- Department of Radiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Anja Smits
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
| | - Daniel Nilsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Dan Farahmand
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Johanna Eriksson
- Department Hybrid and Intervention Operation 5, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Thomas Skoglund
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Alba Corell
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Blå stråket 7, Gothenburg, 41346, Sweden
- Department of Neurosurgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
9
|
Karschnia P, Gerritsen JKW, Teske N, Cahill DP, Jakola AS, van den Bent M, Weller M, Schnell O, Vik-Mo EO, Thon N, Vincent AJPE, Kim MM, Reifenberger G, Chang SM, Hervey-Jumper SL, Berger MS, Tonn JC. The oncological role of resection in newly diagnosed diffuse adult-type glioma defined by the WHO 2021 classification: a Review by the RANO resect group. Lancet Oncol 2024; 25:e404-e419. [PMID: 39214112 DOI: 10.1016/s1470-2045(24)00130-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 09/04/2024]
Abstract
Glioma resection is associated with prolonged survival, but neuro-oncological trials have frequently refrained from quantifying the extent of resection. The Response Assessment in Neuro-Oncology (RANO) resect group is an international, multidisciplinary group that aims to standardise research practice by delineating the oncological role of surgery in diffuse adult-type gliomas as defined per WHO 2021 classification. Favourable survival effects of more extensive resection unfold over months to decades depending on the molecular tumour profile. In tumours with a more aggressive natural history, supramaximal resection might correlate with additional survival benefit. Weighing the expected survival benefits of resection as dictated by molecular tumour profiles against clinical factors, including the introduction of neurological deficits, we propose an algorithm to estimate the oncological effects of surgery for newly diagnosed gliomas. The algorithm serves to select patients who might benefit most from extensive resection and to emphasise the relevance of quantifying the extent of resection in clinical trials.
Collapse
Affiliation(s)
- Philipp Karschnia
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Jasper K W Gerritsen
- Department of Neurosurgery, Erasmus MC Cancer Institute, Rotterdam, Netherlands; Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Nico Teske
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Asgeir S Jakola
- Department of Neurosurgery, University of Gothenburg, Gothenburg, Sweden; Section of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg, Sweden
| | - Martin van den Bent
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland
| | - Oliver Schnell
- Department of Neurosurgery, Universitaetsklinikum Erlangen, Friedrich-Alexander-Universitaet, Erlangen-Nuernberg, Germany
| | - Einar O Vik-Mo
- Department of Neurosurgery, Oslo University Hospital and Institute for Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Niklas Thon
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | | | - Michelle M Kim
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University Medical Faculty and University Hospital Düsseldorf, Düsseldorf, Germany; German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Germany
| | - Susan M Chang
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Mitchel S Berger
- Department of Neurosurgery and Division of Neuro-Oncology, University of San Francisco, San Francisco, CA, USA
| | - Joerg-Christian Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany; German Cancer Consortium (DKTK), Partner Site Munich, Germany.
| |
Collapse
|
10
|
Li Z, Song Y, Farrukh Hameed NU, Yuan S, Wu S, Gong X, Zhuang D, Lu J, Zhu F, Qiu T, Zhang J, Aibaidula A, Geng X, Yang Z, Tang W, Chen H, Zhou L, Mao Y, Wu J. Effect of high-field iMRI guided resection in cerebral glioma surgery: A randomized clinical trial. Eur J Cancer 2024; 199:113528. [PMID: 38218157 DOI: 10.1016/j.ejca.2024.113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 12/26/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Extent of resection (EOR) in glioma contributes to longer survival. The purpose of NCT01479686 was to prove whether intraoperative magnetic resonance imaging (iMRI) increases EOR in glioma surgery and benefit survival. METHODS Patients were randomized (1:1) to receive the iMRI (n = 161) or the conventional neuronavigation (n = 160). The primary endpoint was gross total resection (GTR); secondary outcomes reported were progression-free survival (PFS), overall survival (OS), and safety. RESULTS 188 high-grade gliomas (HGGs) and 133 low-grade gliomas (LGGs) were enrolled. GTR was 83.85% in the iMRI group vs. 50.00% in the control group (P < 0.0001). In 321 patients, the median PFS (mPFS) was 65.12 months in the iMRI group and 61.01 months in the control group (P = 0.0202). For HGGs, mPFS was improved in the iMRI group (19.32 vs. 13.34 months, P = 0.0015), and a trend of superior OS compared with control was observed (29.73 vs. 25.33 months, P = 0.1233). In the predefined eloquent area HGG subgroup, mPFS, and mOS were 20.47 months and 33.58 months in the iMRI vs. 12.21 months and 21.16 months in the control group (P = 0.0098; P = 0.0375, respectively). From the exploratory analyses of HGGs, residual tumor volume (TV) < 1.0 cm3 decreased the risk of survival (mPFS: 18.99 vs. 9.43 months, P = 0.0055; mOS: 29.77 vs. 18.10 months, P = 0.0042). LGGs with preoperative (pre-OP) TV > 43.1 cm3 and postoperative (post-OP) TV > 4.6 cm3 showed worse OS (P= 0.0117) CONCLUSIONS: It showed that iMRI significantly increased EOR and indicated survival benefits for HGGs, particularly eloquent HGGs. Residual TV in either HGGs or LGGs is a prognostic factor for survival.
Collapse
Affiliation(s)
- Zeyang Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China
| | - Yanyan Song
- Department of Biostatistics, Clinical research institute, Shanghai Jiaotong University School of Medicine, Shanghai 200025, China
| | - N U Farrukh Hameed
- University of Pittsburgh Medical Center and Hillman Cancer Center, Department of Neurosurgery, Pittsburgh, USA
| | - Shiwen Yuan
- Department of Psychiatry and Human Behavior, Brown University, Rhode Island Hospital, 146 West River Street, Providence, RI 02904, USA
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China
| | - Xiu Gong
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Dongxiao Zhuang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; National Neurological Diseases Center, China
| | - Junfeng Lu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China; National Neurological Diseases Center, China
| | - Fengping Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China; National Neurological Diseases Center, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China; National Neurological Diseases Center, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China; National Neurological Diseases Center, China
| | - Abudumijiti Aibaidula
- Department of Neurosurgery, University of Missouri in Columbia, One Hospital Drive, MO, 65212, Columbia
| | - Xu Geng
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Zhong Yang
- Department of Radiotherapy, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Weijun Tang
- Department of Radiotherapy, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China
| | - Liangfu Zhou
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China; National Neurological Diseases Center, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China; National Neurological Diseases Center, China; Institute of Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Wulumuqi Zhong Road 12, Shanghai 200040, China; Neurosurgical Institute of Fudan University, China; National Neurological Diseases Center, China; Institute of Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China.
| |
Collapse
|
11
|
Rammeloo E, Schouten JW, Krikour K, Bos EM, Berger MS, Nahed BV, Vincent AJPE, Gerritsen JKW. Preoperative assessment of eloquence in neurosurgery: a systematic review. J Neurooncol 2023; 165:413-430. [PMID: 38095774 DOI: 10.1007/s11060-023-04509-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/12/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND OBJECTIVES Tumor location and eloquence are two crucial preoperative factors when deciding on the optimal treatment choice in glioma management. Consensus is currently lacking regarding the preoperative assessment and definition of eloquent areas. This systematic review aims to evaluate the existing definitions and assessment methods of eloquent areas that are used in current clinical practice. METHODS A computer-aided search of Embase, Medline (OvidSP), and Google Scholar was performed to identify relevant studies. This review includes articles describing preoperative definitions of eloquence in the study's Methods section. These definitions were compared and categorized by anatomical structure. Additionally, various techniques to preoperatively assess tumor eloquence were extracted, along with their benefits, drawbacks and ease of use. RESULTS This review covers 98 articles including 12,714 participants. Evaluation of these studies indicated considerable variability in defining eloquence. Categorization of these definitions yielded a list of 32 brain regions that were considered eloquent. The most commonly used methods to preoperatively determine tumor eloquence were anatomical classification systems and structural MRI, followed by DTI-FT, functional MRI and nTMS. CONCLUSIONS There were major differences in the definitions and assessment methods of eloquence, and none of them proved to be satisfactory to express eloquence as an objective, quantifiable, preoperative factor to use in glioma decision making. Therefore, we propose the development of a novel, objective, reliable, preoperative classification system to assess eloquence. This should in the future aid neurosurgeons in their preoperative decision making to facilitate personalized treatment paradigms and to improve surgical outcomes.
Collapse
Affiliation(s)
- Emma Rammeloo
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Joost Willem Schouten
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Keghart Krikour
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Eelke Marijn Bos
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Mitchel Stuart Berger
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Vala Nahed
- Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jasper Kees Wim Gerritsen
- Department of Neurosurgery, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
12
|
Song G, Xie G, Nie Y, Majid MS, Yavari I. Noninvasive grading of glioma brain tumors using magnetic resonance imaging and deep learning methods. J Cancer Res Clin Oncol 2023; 149:16293-16309. [PMID: 37698684 DOI: 10.1007/s00432-023-05389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Abstract
PURPOSE Convolutional Neural Networks (ConvNets) have quickly become popular machine learning techniques in recent years, particularly in the classification and segmentation of medical images. One of the most prevalent types of brain cancers is glioma, and early, accurate diagnosis is essential for both treatment and survival. In this study, MRI scans were examined utilizing deep learning techniques to examine glioma diagnosis studies. METHODS In this systematic review, keywords were used to obtain English-language studies from the Arxiv, IEEE, Springer, ScienceDirect, and PubMed databases for the years 2010-2022. The material needed for review was then collected from the articles once they had been chosen based on the entry and exit criteria and in accordance with the research's goal. RESULTS Finally, 77 different academic articles were chosen. According to a study of published articles, glioma brain tumors were discovered, categorized, and segmented utilizing a coordinated approach that included image collecting, pre-processing, model design and execution, and model output evaluation. The majority of investigations have used publicly accessible photo databases and already-trained algorithms. The bulk of studies have employed Dice's classification accuracy and similarity coefficient metrics to assess model performance. CONCLUSION The results of this study indicate that glioma segmentation has received more attention from researchers than glioma detection and classification. It is advised that more research be done in the areas of glioma detection and, particularly, grading in order to be included in systems that support medical diagnosis.
Collapse
Affiliation(s)
- Guanghui Song
- School of Computer and Data Engineering, Ningbo Tech University, Ningbo, 315100, Zhejiang, China.
| | - Guanbao Xie
- School of Computer and Data Engineering, Ningbo Tech University, Ningbo, 315100, Zhejiang, China
| | - Yan Nie
- College of Science & Technology, Ningbo University, Ningbo, 315100, Zhejiang, China
| | - Mohammed Sh Majid
- Computer Techniques Engineering Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Iman Yavari
- School of Computing and Technology, Eastern Mediterranean University, Northern Cyprus, Famagusta, Cyprus.
| |
Collapse
|
13
|
Wei R, Chen H, Cai Y, Chen J. Application of intraoperative ultrasound in the resection of high-grade gliomas. Front Neurol 2023; 14:1240150. [PMID: 37965171 PMCID: PMC10640994 DOI: 10.3389/fneur.2023.1240150] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/19/2023] [Indexed: 11/16/2023] Open
Abstract
The incidence of gliomas is approximately 3-5/100,000, with high-grade gliomas accounting for approximately 30-40% of these tumors. Surgery is a confirmed positive factor in prolonging the survival of these patients, and a larger resection range means a longer survival time. Therefore, surgery for high-grade glioma patients should aim to maximize the extent of resection while preserving neurological function to achieve a better quality of life. There is consensus regarding the need to lengthen progression-free survival (PFS) and overall survival (OS) times. In glioma surgery, methods such as intraoperative computed tomography (ICT), intraoperative magnetic resonance imaging (IMRI), navigation, 5-aminolevulinic acid (5-ALA), and intraoperative ultrasound (IOUS) are used to achieve an expanded resection during the surgical procedure. IOUS has been increasingly used in the surgery of high-grade gliomas and various tumors due to its convenient intraoperative use, its flexible repeatability, and the relatively low cost of operating room construction. With the continuous upgrading of ultrasound equipment, IOUS has been able to better assist surgeons in achieving an increased extent of resection. This review aims to summarize the application of ultrasound in the surgery of high-grade gliomas in the past decade, its improvement in patient prognosis, and its prospects.
Collapse
Affiliation(s)
- RenJie Wei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - YuXiang Cai
- Department of Pathology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - JingCao Chen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Bin-Alamer O, Abou-Al-Shaar H, Gersey ZC, Huq S, Kallos JA, McCarthy DJ, Head JR, Andrews E, Zhang X, Hadjipanayis CG. Intraoperative Imaging and Optical Visualization Techniques for Brain Tumor Resection: A Narrative Review. Cancers (Basel) 2023; 15:4890. [PMID: 37835584 PMCID: PMC10571802 DOI: 10.3390/cancers15194890] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Advancements in intraoperative visualization and imaging techniques are increasingly central to the success and safety of brain tumor surgery, leading to transformative improvements in patient outcomes. This comprehensive review intricately describes the evolution of conventional and emerging technologies for intraoperative imaging, encompassing the surgical microscope, exoscope, Raman spectroscopy, confocal microscopy, fluorescence-guided surgery, intraoperative ultrasound, magnetic resonance imaging, and computed tomography. We detail how each of these imaging modalities contributes uniquely to the precision, safety, and efficacy of neurosurgical procedures. Despite their substantial benefits, these technologies share common challenges, including difficulties in image interpretation and steep learning curves. Looking forward, innovations in this field are poised to incorporate artificial intelligence, integrated multimodal imaging approaches, and augmented and virtual reality technologies. This rapidly evolving landscape represents fertile ground for future research and technological development, aiming to further elevate surgical precision, safety, and, most critically, patient outcomes in the management of brain tumors.
Collapse
Affiliation(s)
- Othman Bin-Alamer
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Hussam Abou-Al-Shaar
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Zachary C. Gersey
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Sakibul Huq
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Justiss A. Kallos
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - David J. McCarthy
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Jeffery R. Head
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Edward Andrews
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Xiaoran Zhang
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Constantinos G. Hadjipanayis
- Center for Image-Guided Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA; (O.B.-A.); (H.A.-A.-S.); (Z.C.G.); (S.H.); (J.A.K.); (D.J.M.); (J.R.H.); (E.A.); (X.Z.)
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
15
|
Chojak R, Koźba-Gosztyła M, Gaik M, Madej M, Majerska A, Soczyński O, Czapiga B. Meningitis after elective intracranial surgery: a systematic review and meta-analysis of prevalence. Eur J Med Res 2023; 28:184. [PMID: 37291583 PMCID: PMC10249328 DOI: 10.1186/s40001-023-01141-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 05/15/2023] [Indexed: 06/10/2023] Open
Abstract
Meningitis is a potential complication of elective intracranial surgery (EIS). The prevalence of meningitis after EIS varies greatly in the literature. The objective of this study was to estimate the overall pooled prevalence of meningitis following EIS. Four databases (PubMed, Scopus, Web of Science, and Embase) were searched to identify relevant studies. Meta-analyses of proportions were used to combine data. Cochran's Q and I2 statistics were used to assess and quantify heterogeneity. Additionally, several subgroup analyses were conducted to investigate the source of heterogeneity and examine differences in the prevalence based on variables such as geographical regions, income level, and meningitis type. The meta-analysis included 83 studies (30 959 patients) from 26 countries. The overall pooled prevalence of meningitis after EIS was 1.6% (95% CI 1.1-2.1), with high heterogeneity present (I2 = 88%). The pooled prevalence in low- to middle-income countries and high-income countries was 2.7% (95% CI 1.6-4.1) and 1.2% (95% CI 0.8-1.7), respectively. Studies that reported only aseptic meningitis had a pooled prevalence of 3.2% (95% CI 1.3-5.8). The pooled prevalence was 2.8% (95% CI 1.5-4.5) in studies that reported only bacterial meningitis. Similar prevalence rates of meningitis were observed in the subgroups of tumor resection, microvascular decompression, and aneurysm clipping. Meningitis is a rare but not exceptional complication following EIS, with an estimated prevalence of 1.6%.
Collapse
Affiliation(s)
- Rafał Chojak
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367, Wrocław, Poland.
| | | | - Magdalena Gaik
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367, Wrocław, Poland
| | - Marta Madej
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367, Wrocław, Poland
| | - Aleksandra Majerska
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367, Wrocław, Poland
| | - Oskar Soczyński
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367, Wrocław, Poland
| | - Bogdan Czapiga
- Department of Neurosurgery, 4th Military Hospital in Wroclaw, Wrocław, Poland
- Department of Nervous System Diseases, Faculty of Health Sciences, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
16
|
Tuleasca C, Leroy HA, Strachowski O, Derre B, Maurage CA, Peciu-Florianu I, Reyns N. Combined use of intraoperative MRI and awake tailored microsurgical resection to respect functional neural networks: preliminary experience. Swiss Med Wkly 2023; 153:40072. [PMID: 37192405 DOI: 10.57187/smw.2023.40072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023] Open
Abstract
INTRODUCTION The combined use of intraoperative MRI and awake surgery is a tailored microsurgical resection to respect functional neural networks (mainly the language and motor ones). Intraoperative MRI has been classically considered to increase the extent of resection for gliomas, thereby reducing neurological deficits. Herein, we evaluated the combined technique of awake microsurgical resection and intraoperative MRI for primary brain tumours (gliomas, metastasis) and epilepsy (cortical dysplasia, non-lesional, cavernomas). PATIENTS AND METHODS Eighteen patients were treated with the commonly used "asleep awake asleep" (AAA) approach at Lille University Hospital, France, from November 2016 until May 2020. The exact anatomical location was insular with various extensions, frontal, temporal or fronto-temporal in 8 (44.4%), parietal in 3 (16.7%), fronto-opercular in 4 (22.2%), Rolandic in two (11.1%), and the supplementary motor area (SMA) in one (5.6%). RESULTS The patients had a mean age of 38.4 years (median 37.1, range 20.8-66.9). The mean surgical duration was 4.1 hours (median 4.2, range 2.6-6.4) with a mean duration of intraoperative MRI of 28.8 minutes (median 25, range 13-55). Overall, 61% (11/18) of patients underwent further resection, while 39% had no additional resection after intraoperative MRI. The mean preoperative and postoperative tumour volumes of the primary brain tumours were 34.7 cc (median 10.7, range 0.534-130.25) and 3.5 cc (median 0.5, range 0-17.4), respectively. Moreover, the proportion of the initially resected tumour volume at the time of intraoperative MRI (expressed as 100% from preoperative volume) and the final resected tumour volume were statistically significant (p= 0.01, Mann-Whitney test). The tumour remnants were commonly found posterior (5/9) or anterior (2/9) insular and in proximity with the motor strip (1/9) or language areas (e.g. Broca, 1/9). Further resection was not required in seven patients because there were no remnants (3/7), cortical stimulation approaching eloquent areas (3/7) and non-lesional epilepsy (1/7). The mean overall follow-up period was 15.8 months (median 12, range 3-36). CONCLUSION The intraoperative MRI and awake microsurgical resection approach is feasible with extensive planning and multidisciplinary collaboration, as these methods are complementary and synergic rather than competitive to improve patient oncological outcomes and quality of life.
Collapse
Affiliation(s)
- Constantin Tuleasca
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Signal Processing Laboratory (LTS 5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Henri-Arthur Leroy
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Ondine Strachowski
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Benoit Derre
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Claude-Alain Maurage
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Iulia Peciu-Florianu
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| | - Nicolas Reyns
- Centre Hospitalier Regional Universitaire de Lille, Roger Salengro Hospital, Neurosurgery and Neurooncology Service, Lille, France
| |
Collapse
|
17
|
Zhang Y, Yu H, Li Y, Xu H, Yang L, Shan P, Du Y, Yan X, Chen X. Raman spectroscopy: A prospective intraoperative visualization technique for gliomas. Front Oncol 2023; 12:1086643. [PMID: 36686726 PMCID: PMC9849680 DOI: 10.3389/fonc.2022.1086643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
The infiltrative growth and malignant biological behavior of glioma make it one of the most challenging malignant tumors in the brain, and how to maximize the extent of resection (EOR) while minimizing the impact on normal brain tissue is the pursuit of neurosurgeons. The current intraoperative visualization assistance techniques applied in clinical practice suffer from low specificity, slow detection speed and low accuracy, while Raman spectroscopy (RS) is a novel spectroscopy technique gradually developed and applied to clinical practice in recent years, which has the advantages of being non-destructive, rapid and accurate at the same time, allowing excellent intraoperative identification of gliomas. In the present work, the latest research on Raman spectroscopy in glioma is summarized to explore the prospect of Raman spectroscopy in glioma surgery.
Collapse
|
18
|
Uribe-Cardenas R, Giantini-Larsen AM, Garton A, Juthani RG, Schwartz TH. Innovations in the Diagnosis and Surgical Management of Low-Grade Gliomas. World Neurosurg 2022; 166:321-327. [PMID: 36192864 DOI: 10.1016/j.wneu.2022.06.070] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 06/14/2022] [Indexed: 12/15/2022]
Abstract
Low-grade gliomas are a broad category of tumors that can manifest at different stages of life. As a group, their prognosis has historically been considered to be favorable, and surgery is a mainstay of treatment. Advances in the molecular characterization of individual lesions has led to newer classification systems, a better understanding of the biological behavior of different neoplasms, and the identification of previously unrecognized entities. New prospective genetic and molecular data will help delineate better treatment paradigms and will continue to change the taxonomy of central nervous system tumors in the coming years. Advances in the field of radiomics will help predict the molecular profile of a particular tumor through noninvasive testing. Similarly, more precise methods of intraoperative tumor tissue analysis will aid surgical planning. Improved surgical outcomes propelled by novel surgical techniques and intraoperative adjuncts and emerging forms of medical treatment in the field of immunotherapy have enriched the management of these lesions. We review the contemporary management and innovations in the treatment of low-grade gliomas.
Collapse
Affiliation(s)
- Rafael Uribe-Cardenas
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| | - Alexandra M Giantini-Larsen
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| | - Andrew Garton
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| | - Rupa Gopalan Juthani
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA.
| | - Theodore H Schwartz
- Department of Neurological Surgery, Weill Cornell Medical College, New York Presbyterian Hospital, New York, New York, USA
| |
Collapse
|
19
|
Bunyaratavej K, Siwanuwatn R, Tuchinda L, Wangsawatwong P. Impact of Intraoperative Magnetic Resonance Imaging (i-MRI) on Surgeon Decision Making and Clinical Outcomes in Cranial Tumor Surgery. Asian J Neurosurg 2022; 17:218-226. [PMID: 36120606 PMCID: PMC9473858 DOI: 10.1055/s-0042-1751008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background
Although intraoperative magnetic resonance imaging (iMRI) has an established role in guiding intraoperative extent of resection (EOR) in cranial tumor surgery, the details of how iMRI data are used by the surgeon in the real-time decision-making process is lacking.
Materials and Methods
The authors retrospectively reviewed 40 consecutive patients who underwent cranial tumor resection with the guidance of iMRI. The tumor volumes were measured by volumetric software. Intraoperative and postoperative EOR were calculated and compared. Surgeon preoperative EOR intention, intraoperative EOR assessment, and how iMRI data impacted surgeon decisions were analyzed.
Results
The pathology consisted of 29 gliomas, 8 pituitary tumors, and 3 other tumors. Preoperative surgeon intention called for gross total resection (GTR) in 28 (70%) cases. After resection and before iMRI scanning, GTR was 20 (50.0%) cases based on the surgeon's perception. After iMRI scanning, the results helped identify 19 (47.5%) cases with unexpected results consisting of 5 (12.5%) with unexpected locations of residual tumors and 14 (35%) with unexpected EOR. Additional resection was performed in 24 (60%) cases after iMRI review, including 6 (15%) cases with expected iMRI results. Among 34 cases with postoperative MRI results, iMRI helped improve EOR in 12 (35.3%) cases.
Conclusion
In cranial tumor surgery, the surgeon's preoperative and intraoperative assessment is frequently imprecise. iMRI data serve several purposes, including identifying the presence of residual tumors, providing residual tumor locations, giving spatial relation data of the tumor with nearby eloquent structures, and updating the neuro-navigation system for the final stage of tumor resection.
Collapse
Affiliation(s)
- Krishnapundha Bunyaratavej
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, Thailand
| | - Rungsak Siwanuwatn
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, Thailand
| | - Lawan Tuchinda
- Department of Anesthesiology, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, Thailand
| | - Piyanat Wangsawatwong
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Pathumwan, Bangkok, Thailand
| |
Collapse
|
20
|
Riva M, Arcidiacono UA, Gambaretti M, Gay LG, Sciortino T, Rossi M, Conti Nibali M, Bello L. Intraoperative AIRO mobile computer tomography in frameless stereotactic procedures. Br J Neurosurg 2022; 36:527-531. [PMID: 35379051 DOI: 10.1080/02688697.2022.2057430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
BACKGROUND Multiple factors can affect the accuracy of neuronavigation, that is a relevant issue, particularly for frameless stereotactic procedures, where precision and optimal image-guidance is crucial for the surgical performance, workflow, and outcome. OBJECTIVE To investigate the impact of AIRO Mobile Computer Tomography in frameless stereotactic approaches. METHODS A retrospective study on 12 patients was performed. All the procedures were deployed using a frameless stereotactic technique, both for the collection of biopsy pathological specimens for diagnosis and insertion of drainage in the treatment of intracranial cystic lesions. RESULTS Twelve patients (eight males, four females) underwent the frameless stereotactic procedure. Mean age at surgery was 55 (±5 SE). The mean volume of the lesion was 23.85 cm3 (±3.13). Six diagnostic biopsies and six cyst drainages were performed. The mean trajectory length was 75.9 ± 11.8 mm. Three posterior fossa lesions (27%) were approached through a retro-sigmoidal burr-hole. A craniotomy for draining a haematoma was performed after detection with AIRO-CT. No permanent neurological dysfunction, in-hospital or 30-day mortality were recorded. CONCLUSION The AIRO-CT resulted feasible with a potential utility for stereotactic procedures. We showed how it could grant the efficacy of the stereotactic procedures reducing some technical and physical sources of inaccuracy, also enhancing safety and allowing prompt detection and management of intraoperative complications.
Collapse
Affiliation(s)
- Marco Riva
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Milan, Italy.,IRCCS Humanitas Research Hospital, Milan, Italy
| | - Umberto A Arcidiacono
- IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Matteo Gambaretti
- IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo G Gay
- IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Tommaso Sciortino
- IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Rossi
- IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Marco Conti Nibali
- IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Bello
- IRCCS Humanitas Research Hospital, Milan, Italy.,Department of Oncology and Hemato-oncology, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
21
|
Coburger J, Onken J, Rueckriegel S, von der Brelie C, Nadji-Ohl M, Forster MT, Gerlach R, Unteroberdörster M, Roder C, Kniese K, Schommer S, Rothenbacher D, Nagel G, Wirtz CR, Ernestus RI, Nabavi A, Tatagiba M, Czabanka M, Ganslandt O, Rohde V, Löhr M, Vajkoczy P, Pala A. Eloquent Lower Grade Gliomas, a Highly Vulnerable Cohort: Assessment of Patients' Functional Outcome After Surgery Based on the LoG-Glio Registry. Front Oncol 2022; 12:845992. [PMID: 35311092 PMCID: PMC8927728 DOI: 10.3389/fonc.2022.845992] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/31/2022] [Indexed: 11/28/2022] Open
Abstract
Majority of lower grade glioma (LGG) are located eloquently rendering surgical resection challenging. Aim of our study was to assess rate of permanent deficits and its predisposing risk factors. We retrieved 83 patients harboring an eloquently located LGGs from the prospective LoG-Glio Database. Patients without surgery or incomplete postoperative data were excluded. Sign rank test, explorative correlations by Spearman ρ and multivariable regression for new postoperative deficits were calculated. Eloquent region involved predominantly motor (45%) and language (40%). At first follow up after 3 months permanent neuro-logical deficits (NDs) were noted in 39%. Mild deficits remained in 29% and severe deficits in 10%. Complete tumor removal (CTR) was successfully in 62% of intended cases. Postoperative and 3-month follow up National Institute of Health Stroke Score (NIHSS) showed significantly lower values than preoperatively (p<0.001). 38% cases showed a decreased NIHSS at 3-month, while occurrence was only 14% at 9-12-month follow up. 6/7 patients with mild aphasia recovered after 9-12 months, while motor deficits present at 3-month follow up were persistent in majority of patients. Eastern oncology group functional status (ECOG) significantly decreased by surgery (p < 0.001) in 31% of cases. Between 3-month and 9-12-months follow up no significant improvement was seen. In the multivariable model CTR (p=0.019, OR 31.9), and ECOG>0 (p=0.021, OR 8.5) were independent predictors for permanent postoperative deficit according to NIHSS at 3-month according to multivariable regression model. Patients harboring eloquently located LGG are highly vulnerable for permanent deficits. Almost one third of patients have a permanent reduction of their functional status based on ECOG. Risk of an extended resection has to be balanced with the respective oncological benefit. Especially, patients with impaired pre-operative status are at risk for new permanent deficits. There is a relevant improvement of neurological symptoms in the first year after surgery, especially for patients with slight aphasia.
Collapse
Affiliation(s)
- Jan Coburger
- Department of Neurosurgery, University of Ulm, Günzburg, Germany
| | - Julia Onken
- Department of Neurosurgery, Charité - University of Berlin, Berlin, Germany
| | | | | | - Minou Nadji-Ohl
- Department of Neurosurgery, Katharinenhospital Stuttgart, Stuttgart, Germany
| | | | - Rüdiger Gerlach
- Department of Neurosurgery, Helios Hospital Erfurt, Erfurt, Germany
| | | | - Constantin Roder
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Katja Kniese
- Department of Neurosurgery, KRH Klinikum Region Hannover, Hannover, Germany
| | - Stefan Schommer
- Department of Neurosurgery, Katharinenhospital Stuttgart, Stuttgart, Germany
| | | | - Gabriele Nagel
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | | | | | - Arya Nabavi
- Department of Neurosurgery, KRH Klinikum Region Hannover, Hannover, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Marcus Czabanka
- Department of Neurosurgery, University of Frankfurt, Frankfurt am Main, Germany
| | - Oliver Ganslandt
- Department of Neurosurgery, Katharinenhospital Stuttgart, Stuttgart, Germany
| | - Veit Rohde
- Department of Neurosurgery, University of Göttingen, Göttingen, Germany
| | - Mario Löhr
- Department of Neurosurgery, University of Würzburg, Würzburg, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - University of Berlin, Berlin, Germany
| | - Andrej Pala
- Department of Neurosurgery, University of Ulm, Günzburg, Germany
| |
Collapse
|
22
|
The Benefit of Intraoperative Magnetic Resonance Imaging in Endoscopic and Microscopic Transsphenoidal Resection of Recurrent Pituitary Adenomas. Curr Oncol 2022; 29:392-401. [PMID: 35049709 PMCID: PMC8774543 DOI: 10.3390/curroncol29010035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 11/18/2022] Open
Abstract
The surgical treatment of recurrent adenomas can be challenging. Intraoperative magnetic resonance imaging (iMRI) can improve the orientation and increase the safe extent of resection. We conducted a quantitative and qualitative retrospective analysis of recurrent adenomas treated by endoscopic or microscopic iMRI-assisted transsphenoidal surgery. A total number of 59 resections were selected. Detailed volumetric measurements, tumor characteristics, and MRI features of intraoperative remnants were evaluated. Intraoperative MRI increased the gross total resection (GTR) rate from 33.9% to 49.2%. Common locations of tumor remnants after iMRI were the clivus, the wall of the cavernous sinus or the perforation of the diaphragm. Increasing tumor volume and the microscopic technique were significantly associated with further resection after iMRI in the univariate analysis (p = 0.004, OR 1.6; p = 0.009, OR 4.4). Only the increasing tumor volume was an independent predictor for further resection (p = 0.007, OR 1.5). A significantly higher proportion of GTRs was achieved with the endoscopic technique (p = 0.001). Patients with a large recurrent pituitary adenoma who underwent microscopic transsphenoidal resection were the most likely to benefit from iMRI regarding the extent of resection. Occult invasions of the cavernous sinus and/or the clivus were the most common findings leading to further resection of tumor remnants after iMRI.
Collapse
|
23
|
Malhotra AK, Karthikeyan V, Zabih V, Landry A, Bennett J, Bartels U, Nathan PC, Tabori U, Hawkins C, Das S, Gupta S. Adolescent and young adult glioma: systematic review of demographic, disease, and treatment influences on survival. Neurooncol Adv 2022; 4:vdac168. [PMID: 36479061 PMCID: PMC9721387 DOI: 10.1093/noajnl/vdac168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/03/2023] Open
Abstract
BACKGROUND Prognostic factors in adolescent and young adult (AYA) glioma are not well understood. Though clinical and molecular differences between pediatric and adult glioma have been characterized, their application to AYA populations is less clear. There is a major need to develop more robust evidence-based practices for managing AYA glioma patients. METHODS A systematic review using PRISMA methodology was conducted using multiple databases with the objective of identifying demographic, clinical, molecular and treatment factors influencing AYA glioma outcomes. RESULTS 40 Studies met inclusion criteria. Overall survival was highly variable across studies depending on glioma grade, anatomic compartment and cohort characteristics. Thirty-five studies suffered from high risk of bias in at least one domain. Several studies included older adults within their cohorts; few captured purely AYA groups. Despite study heterogeneity, identified favorable prognosticators included younger age, higher functional status at diagnosis, low-grade pathology, oligodendroglioma histology and increased extent of surgical resection. Though isocitrate dehydrogenase (IDH) mutant status was associated with favorable prognosis, validity of this finding within AYA was compromised though may studies including older adults. The prognostic influence of chemotherapy and radiotherapy on overall survival varied across studies with conflicting evidence. CONCLUSION Existing literature is heterogenous, at high risk of bias, and rarely focused solely on AYA patients. Many included studies did not reflect updated pathological and molecular AYA glioma classification. The optimal role of chemotherapy, radiotherapy, and targeted agents cannot be determined from existing literature and should be the focus of future studies.
Collapse
Affiliation(s)
- Armaan K Malhotra
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | | | - Veda Zabih
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alexander Landry
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Julie Bennett
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Ute Bartels
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Paul C Nathan
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Uri Tabori
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Cynthia Hawkins
- Division of Paediatric Laboratory Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael’s Hospital, University of Toronto, Toronto, OntarioCanada
| | - Sumit Gupta
- Division of Hematology/Oncology, The Hospital for Sick Children, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Dmitriev AY, Dashyan VG. [Intraoperative magnetic resonance imaging in surgery of brain gliomas]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2022; 86:121-127. [PMID: 35170285 DOI: 10.17116/neiro202286011121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Intraoperative magnetic resonance imaging (iMRI) is used in surgery of supratentorial gliomas to assess resection quality, as well as in neoplasm biopsy to control the needle position. Scanners coupled with operating table ensure fast intraoperative imaging, but they require the use of non-magnetic surgical tools. Surgery outside the scanner 5G line allows working with conventional instruments, but patient transportation takes time. Portable iMRI systems do not interfere with surgical workflow but these scanners have poor resolution. Positioning of MRI scanners in adjacent rooms allows imaging simultaneously for several surgeries. Low-field MRI scanners are effective for control of contrast-enhanced glioma resection quality. However, these scanners are less useful in demarcation of residual low-grade tumors. High-field MRI scanners have no similar disadvantage. These scanners ensure fast detection of residual gliomas of all types and functional imaging. Artifacts during iMRI are usually a result of iatrogenic traumatic brain injury and contrast agent leakage. Ways of their prevention are discussed in the review.
Collapse
Affiliation(s)
- A Yu Dmitriev
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| | - V G Dashyan
- Sklifosovsky Research Institute for Emergency Care, Moscow, Russia
- Evdokimov Moscow State University of Medicine and Dentistry, Moscow, Russia
| |
Collapse
|
25
|
Nawaz M, Nazir T, Masood M, Mehmood A, Mahum R, Khan MA, Kadry S, Thinnukool O. Analysis of Brain MRI Images Using Improved CornerNet Approach. Diagnostics (Basel) 2021; 11:1856. [PMID: 34679554 PMCID: PMC8535141 DOI: 10.3390/diagnostics11101856] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 01/18/2023] Open
Abstract
The brain tumor is a deadly disease that is caused by the abnormal growth of brain cells, which affects the human blood cells and nerves. Timely and precise detection of brain tumors is an important task to avoid complex and painful treatment procedures, as it can assist doctors in surgical planning. Manual brain tumor detection is a time-consuming activity and highly dependent on the availability of area experts. Therefore, it is a need of the hour to design accurate automated systems for the detection and classification of various types of brain tumors. However, the exact localization and categorization of brain tumors is a challenging job due to extensive variations in their size, position, and structure. To deal with the challenges, we have presented a novel approach, namely, DenseNet-41-based CornerNet framework. The proposed solution comprises three steps. Initially, we develop annotations to locate the exact region of interest. In the second step, a custom CornerNet with DenseNet-41 as a base network is introduced to extract the deep features from the suspected samples. In the last step, the one-stage detector CornerNet is employed to locate and classify several brain tumors. To evaluate the proposed method, we have utilized two databases, namely, the Figshare and Brain MRI datasets, and attained an average accuracy of 98.8% and 98.5%, respectively. Both qualitative and quantitative analysis show that our approach is more proficient and consistent with detecting and classifying various types of brain tumors than other latest techniques.
Collapse
Affiliation(s)
- Marriam Nawaz
- Department of Computer Science, University of Engineering and Technology, Taxila 47050, Pakistan; (M.N.); (T.N.); (M.M.); (A.M.); (R.M.)
| | - Tahira Nazir
- Department of Computer Science, University of Engineering and Technology, Taxila 47050, Pakistan; (M.N.); (T.N.); (M.M.); (A.M.); (R.M.)
| | - Momina Masood
- Department of Computer Science, University of Engineering and Technology, Taxila 47050, Pakistan; (M.N.); (T.N.); (M.M.); (A.M.); (R.M.)
| | - Awais Mehmood
- Department of Computer Science, University of Engineering and Technology, Taxila 47050, Pakistan; (M.N.); (T.N.); (M.M.); (A.M.); (R.M.)
| | - Rabbia Mahum
- Department of Computer Science, University of Engineering and Technology, Taxila 47050, Pakistan; (M.N.); (T.N.); (M.M.); (A.M.); (R.M.)
| | | | - Seifedine Kadry
- Department of Applied Data Science, Noroff University College, 4612 Kristiansand, Norway;
| | - Orawit Thinnukool
- Research Group of Embedded Systems and Mobile Application in Health Science, College of Arts, Media and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
26
|
Limpo H, Díez R, Albisua J, Tejada S. Intraoperative high-field resonance: How to optimize its use in our healthcare system. ACTA ACUST UNITED AC 2021; 33:261-268. [PMID: 34625382 DOI: 10.1016/j.neucie.2021.05.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/18/2021] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND AIMS Intraoperative MRI (ioMRI) consists of performing a MRI during brain or spinal surgery. Although it is a safe and useful technique, it is available in a few hospitals. This means some aspects are not perfectly defined or standardized, forcing each center to develop its own solutions. Our goal is to describe the technique, evaluate the changes made to optimize its use and thus be able to facilitate the intraoperative resonance implementation in other neurosurgery departments. METHODS A prospective analysis of patients consecutively operated using high-field ioMRI guidance was carried out, describing the type of tumor, clinical data, time and sequences of ioMR, use of intraoperative neurophysiology, preoperative tumor volume, after ioMR, and postoperative, as well as complications. RESULTS ioMR was performed in 38 patients selected from among 425 brain tumors (9%) operated on in this interval. The tumor types were: 11 glioblastomas, 8 anaplastic astrocytomas, 5 diffuse astrocytomas, 4 meningiomas, 3 oligodendrogliomas, 2 metastases, 2 epidermoid cysts, 1 astroblastoma, 1 arachnoid cyst and 1 pituitary adenoma. The mean age was 45 years. The mean preoperative tumor volume was 45.22cc, after the ioMR 5.08cc and postoperative 1.28cc. Resection was extended after ioMR in 76%. Gross total resection was achieved in 15 patients and residual tumor of less than 1cc was observed in 8. An intentional tumor tissue was left in an eloquent brain region (mean volume 7cc) in 13 patients. Bleeding and ischemia complications were detected early on ioMR in 5%. MRI length was 47 min on average. CONCLUSIONS Intraoperative MRI was a useful and safe technique, and no associated complications were registered.
Collapse
Affiliation(s)
- Hiria Limpo
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain.
| | - Ricardo Díez
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Julio Albisua
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| | - Sonia Tejada
- Departamento de Neurocirugía, Hospital Universitario Fundación Jiménez Díaz, Madrid, Spain
| |
Collapse
|
27
|
Huntoon K, Makary MS, Damante M, Giglio P, Slone W, Elder JB. Intraoperative 3 T MRI is more correlative to residual disease extent than early postoperative MRI. J Neurooncol 2021; 154:345-351. [PMID: 34417709 DOI: 10.1007/s11060-021-03833-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/18/2021] [Indexed: 11/28/2022]
Abstract
PURPOSE Extent of resection of low grade glioma (LGG) is an important prognostic variable, and may influence decisions regarding adjuvant therapy in certain patient populations. Immediate postoperative magnetic resonance image (MRI) is the mainstay for assessing residual tumor. However, previous studies have suggested that early postoperative MRI fluid-attenuated inversion recovery (FLAIR) (within 48 h) may overestimate residual tumor volume in LGG. Intraoperative magnetic resonance imaging (iMRI) without subsequent resection may more accurately assess residual tumor. Consistency in MRI techniques and utilization of higher magnet strengths may further improve both comparisons between MRI studies performed at different time points as well as the specificity of MRI findings to identify residual tumor. To evaluate the utility of 3 T iMRI in the imaging of LGG, we volumetrically analyzed intraoperative, early, and late (~ 3 months after surgery) postoperative MRIs after resection of LGG. METHODS A total of 32 patients with LGG were assessed retrospectively. Residual tumor was defined as hyperintense T2 signal on FLAIR. Volumetric assessment was performed with intraoperative, early, and late postoperative FLAIR via TeraRecon iNtuition. RESULTS Perilesional FLAIR parenchymal abnormality volumes were significantly different comparing intraoperative and early postoperative MRI (2.17 ± 0.45 cm3 vs. 5.47 ± 1.07 cm3, respectively (p = 0.0002)). A significant difference of perilesional FLAIR parenchymal abnormality volumes was also found comparing early and late postoperative MRI (5.47 ± 1.07 cm3 vs. 3.22 ± 0.64 cm3, respectively (p = 0.0001)). There was no significant difference between intraoperative and late postoperative Perilesional FLAIR parenchymal abnormality volumes. CONCLUSIONS Intraoperative 3 T MRI without further resection appears to better reflect the volume of residual tumor in LGG compared with early postoperative 3 T MRI. Early postoperative MRI may overestimate residual tumor. As such, intraoperative MRI performed after completion of tumor resection may be more useful for making decisions regarding adjuvant therapy.
Collapse
Affiliation(s)
- Kristin Huntoon
- Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA.
- Department of Neurological Surgery, MD Anderson Cancer Center, University of Texas, 1515 Holcombe, Houston, TX, 77030, USA.
| | - Mina S Makary
- Department of Radiology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Mark Damante
- Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Pierre Giglio
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Wayne Slone
- Department of Radiology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - J Bradley Elder
- Department of Neurological Surgery, Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
28
|
Yahanda AT, Chicoine MR. Intraoperative MRI for Glioma Surgery: Present Overview and Future Directions. World Neurosurg 2021; 149:267-268. [PMID: 33940675 DOI: 10.1016/j.wneu.2021.03.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Alexander T Yahanda
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA.
| | - Michael R Chicoine
- Department of Neurological Surgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
29
|
Shah AS, Sylvester PT, Yahanda AT, Vellimana AK, Dunn GP, Evans J, Rich KM, Dowling JL, Leuthardt EC, Dacey RG, Kim AH, Grubb RL, Zipfel GJ, Oswood M, Jensen RL, Sutherland GR, Cahill DP, Abram SR, Honeycutt J, Shah M, Tao Y, Chicoine MR. Intraoperative MRI for newly diagnosed supratentorial glioblastoma: a multicenter-registry comparative study to conventional surgery. J Neurosurg 2021; 135:505-514. [PMID: 33035996 DOI: 10.3171/2020.6.jns19287] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 06/04/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Intraoperative MRI (iMRI) is used in the surgical treatment of glioblastoma, with uncertain effects on outcomes. The authors evaluated the impact of iMRI on extent of resection (EOR) and overall survival (OS) while controlling for other known and suspected predictors. METHODS A multicenter retrospective cohort of 640 adult patients with newly diagnosed supratentorial glioblastoma who underwent resection was evaluated. iMRI was performed in 332/640 cases (51.9%). Reviews of MRI features and tumor volumetric analysis were performed on a subsample of cases (n = 286; 110 non-iMRI, 176 iMRI) from a single institution. RESULTS The median age was 60.0 years (mean 58.5 years, range 20.5-86.3 years). The median OS was 17.0 months (95% CI 15.6-18.4 months). Gross-total resection (GTR) was achieved in 403/640 cases (63.0%). Kaplan-Meier analysis of 286 cases with volumetric analysis for EOR (grouped into 100%, 95%-99%, 80%-94%, and 50%-79%) showed longer OS for 100% EOR compared to all other groups (p < 0.01). Additional resection after iMRI was performed in 104/122 cases (85.2%) with initial subtotal resection (STR), leading to a 6.3% mean increase in EOR and a 2.2-cm3 mean decrease in tumor volume. For iMRI cases with volumetric analysis, the GTR rate increased from 54/176 (30.7%) on iMRI to 126/176 (71.5%) postoperatively. The EOR was significantly higher in the iMRI group for intended GTR and STR groups (p = 0.02 and p < 0.01, respectively). Predictors of GTR on multivariate logistic regression included iMRI use and intended GTR. Predictors of shorter OS on multivariate Cox regression included older age, STR, isocitrate dehydrogenase 1 (IDH1) wild type, no O 6-methylguanine DNA methyltransferase (MGMT) methylation, and no Stupp therapy. iMRI was a significant predictor of OS on univariate (HR 0.82, 95% CI 0.69-0.98; p = 0.03) but not multivariate analyses. Use of iMRI was not associated with an increased rate of new permanent neurological deficits. CONCLUSIONS GTR increased OS for patients with newly diagnosed glioblastoma after adjusting for other prognostic factors. iMRI increased EOR and GTR rate and was a significant predictor of GTR on multivariate analysis; however, iMRI was not an independent predictor of OS. Additional supporting evidence is needed to determine the clinical benefit of iMRI in the management of glioblastoma.
Collapse
Affiliation(s)
- Amar S Shah
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Peter T Sylvester
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Alexander T Yahanda
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ananth K Vellimana
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gavin P Dunn
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - John Evans
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Keith M Rich
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Joshua L Dowling
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Eric C Leuthardt
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Ralph G Dacey
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Albert H Kim
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert L Grubb
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Gregory J Zipfel
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Mark Oswood
- 2Department of Radiology, University of Minnesota, Minneapolis, Minnesota
- 3Allina Health, Minneapolis, Minnesota
| | - Randy L Jensen
- 4Department of Neurosurgery, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Garnette R Sutherland
- 5Department of Clinical Sciences and Hotchkiss Brain Institute, University of Calgary, Alberta, Canada
| | - Daniel P Cahill
- 6Department of Neurosurgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Steven R Abram
- 7Department of Neurosurgery, St. Thomas Hospital, Nashville, Tennessee
| | - John Honeycutt
- 8Department of Neurosurgery, Cook Children's Hospital, Fort Worth, Texas; and
| | - Mitesh Shah
- 9Department of Neurological Surgery, Goodman Campbell and Indiana University, Indianapolis, Indiana
| | - Yu Tao
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| | - Michael R Chicoine
- 1Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
30
|
Wang SS, Selge F, Sebök M, Scheffler P, Yang Y, Brandi G, Winklhofer S, Bozinov O. The value of intraoperative MRI in recurrent intracranial tumor surgery. J Neurosurg 2021. [DOI: 10.3171/2020.6.jns20982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVE
Identifying tumor remnants in previously operated tumor lesions remains a challenge. Intraoperative MRI (ioMRI) helps the neurosurgeon to reorient and update image guidance during surgery. The purpose of this study was to analyze whether ioMRI is more efficient in detecting tumor remnants in the surgery of recurrent lesions compared with primary surgery.
METHODS
All consecutive patients undergoing elective intracranial tumor surgery between 2013 and 2018 at the authors’ institution were included in this retrospective cohort study. The cohort was divided into two groups: re-craniotomy and primary craniotomy. In contrast-enhancing tumors, tumor suspicion in ioMRI was defined as contrast enhancement in T1-weighted imaging. In non–contrast-enhancing tumors, tumor suspicion was defined as hypointensity in T1-weighted imaging and hyperintensity in T2-weighted imaging and FLAIR. In cases in which the ioMRI tumor suspicion was a false positive and not confirmed during in situ inspection by the neurosurgeon, the signal was defined as a tumor-imitating ioMRI signal (TIM). Descriptive statistics were performed.
RESULTS
A total of 214 tumor surgeries met the inclusion criteria. The re-craniotomy group included 89 surgeries, and the primary craniotomy group included 123 surgeries. Initial complete resection after ioMRI was less frequent in the re-craniotomy group than in the primary craniotomy group, but this was not a statistically significant difference. Radiological suspicion of tumor remnants in ioMRI was present in 78% of re-craniotomy surgeries and 69% of primary craniotomy surgeries. The incidence of false-positive TIMs was significantly higher in the re-craniotomy group (n = 11, 12%) compared with the primary craniotomy group (n = 5, 4%; p = 0.015), and in contrast-enhancing tumors was related to hemorrhages in situ (n = 9).
CONCLUSIONS
A history of previous surgery in contrast-enhancing tumors made correct identification of tumor remnants in ioMRI more difficult, with a higher rate of false-positive ioMRI signals in the re-craniotomy group. The majority of TIMs were associated with the inability to distinguish contrast enhancement from hyperacute hemorrhage. The addition of a specific sequence in ioMRI to further differentiate both should be investigated in future studies.
Collapse
Affiliation(s)
- Sophie S. Wang
- Department of Neurosurgery, Eberhard Karls University Tübingen, Germany
- Institute of Intensive Care Medicine, University Hospital Zurich
| | - Friederike Selge
- Institute of Intensive Care Medicine, University Hospital Zurich
| | - Martina Sebök
- Department of Neurosurgery, University Hospital Zurich, Clinical Neuroscience Center, University of Zurich
| | - Pierre Scheffler
- Department of Neurosurgery, University Hospital Zurich, Clinical Neuroscience Center, University of Zurich
| | - Yang Yang
- Department of Neurosurgery, University Hospital Zurich, Clinical Neuroscience Center, University of Zurich
- Department of Neurosurgery, Kantonsspital St. Gallen, Medical School St. Gallen, Switzerland
| | - Giovanna Brandi
- Institute of Intensive Care Medicine, University Hospital Zurich
| | - Sebastian Winklhofer
- Department of Neuroradiology, University Hospital Zurich, Clinical Neuroscience Center, Zurich; and
| | - Oliver Bozinov
- Department of Neurosurgery, University Hospital Zurich, Clinical Neuroscience Center, University of Zurich
- Department of Neurosurgery, Kantonsspital St. Gallen, Medical School St. Gallen, Switzerland
| |
Collapse
|
31
|
Dziedzic TA, Bala A, Marchel A. Anatomical aspects of the insula, opercula and peri-insular white matter for a transcortical approach to insular glioma resection. Neurosurg Rev 2021; 45:793-806. [PMID: 34292438 PMCID: PMC8827298 DOI: 10.1007/s10143-021-01602-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/16/2021] [Accepted: 06/29/2021] [Indexed: 11/01/2022]
Abstract
The insula is a lobe located deep in each hemisphere of the brain and is surrounded by eloquent cortical, white matter, and basal ganglia structures. The aim of this study was to provide an anatomical description of the insula and white matter tracts related to surgical treatment of gliomas through a transcortical approach. The study also discusses surgical implications in terms of intraoperative brain mapping. Five adult brains were prepared according to the Klingler technique. Cortical anatomy was evaluated with the naked eye, whereas white matter dissection was performed with the use of a microscope. The widest exposure of the insular surface was noted through the temporal operculum, mainly in zones III and IV according to the Berger-Sanai classification. By going through the pars triangularis in all cases, the anterior insular point and most of zone I were exposed. The narrowest and deepest operating field was observed by going through the parietal operculum. This method provided a suitable approach to zone II, where the corticospinal tract is not covered by the basal ganglia and is exposed just under the superior limiting sulcus. At the subcortical level, the identification of the inferior frontoocipital fasciculus at the level of the limen insulae is critical in terms of preserving the lenticulostriate arteries. Detailed knowledge of the anatomy of the insula and subcortical white matter that is exposed through each operculum is essential in preoperative planning as well as in the intraoperative decision-making process in terms of intraoperative brain mapping.
Collapse
Affiliation(s)
- Tomasz Andrzej Dziedzic
- Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097, Warszawa, Poland.
| | - Aleksandra Bala
- Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097, Warszawa, Poland.,Faculty of Psychology, University of Warsaw, Warsaw, Poland
| | - Andrzej Marchel
- Department of Neurosurgery, Medical University of Warsaw, Banacha 1a, 02-097, Warszawa, Poland
| |
Collapse
|
32
|
Resonancia intraoperatoria de alto campo: cómo optimizar su uso en nuestro modelo sanitario. Neurocirugia (Astur) 2021. [DOI: 10.1016/j.neucir.2021.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
33
|
Kaneko S, Suero Molina E, Sporns P, Schipmann S, Black D, Stummer W. Fluorescence real-time kinetics of protoporphyrin IX after 5-ALA administration in low-grade glioma. J Neurosurg 2021; 136:9-15. [PMID: 34144512 DOI: 10.3171/2020.10.jns202881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/30/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE 5-Aminolevulinic acid (5-ALA) induces fluorescence in high-grade glioma (HGG), which is used for resection. However, the value of 5-ALA-induced fluorescence in low-grade glioma (LGG) is unclear. Time dependency and time kinetics have not yet been investigated. The purpose of this study was to investigate real-time kinetics of protoporphyrin IX (PpIX) in LGG based on hyperspectral fluorescence-based measurements and identify factors that predict fluorescence. METHODS Patients with grade II gliomas and imaging from which HGGs could not be completely ruled out received 5-ALA at 20 mg/kg body weight 4 hours prior to surgery. Fluorescence intensity (FI) and PpIX concentration (CPpIX) were measured in tumor tissue utilizing a hyperspectral camera. Apparent diffusion coefficient (ADC)-based tumor cell density, Ki-67/MIB-1 index, chromosomal 1p/19q codeletion, and 18F-fluoroethyl-l-tyrosine (18F-FET) PET values and their role for predicting fluorescence were evaluated. RESULTS Eighty-one biopsies from 25 patients were included. Tissues with fluorescence demonstrated FI and CPpIX maxima between 7 and 8 hours after administration. When visible fluorescence was observed, peaks of FI and CPpIX were observed within this 7- to 8-hour time frame, regardless of any MRI gadolinium contrast enhancement. Gadolinium enhancement (p = 0.008), Ki-67/MIB-1 index (p < 0.001), 18F-FET PET uptake ratio (p = 0.004), and ADC-based tumor cellularity (p = 0.017) significantly differed between fluorescing and nonfluorescing tissue, but not 1p/19q codeletions. Logistic regression demonstrated that 18F-FET PET uptake and Ki-67/MIB-1 index were independently related to fluorescence. CONCLUSIONS This study reports a fluorescence-based assessment of CPpIX in human LGG tissues related to 18F-FET PET uptake and Ki-67/MIB-1. As in HGGs, fluorescence in LGGs peaked between 7 and 8 hours after 5-ALA application, which has consequences for the timing of administration.
Collapse
Affiliation(s)
- Sadahiro Kaneko
- 1Department of Neurosurgery, University Hospital of Münster, Germany.,2Department of Neurosurgery, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Eric Suero Molina
- 1Department of Neurosurgery, University Hospital of Münster, Germany
| | - Peter Sporns
- 3Department of Neuroradiology, Clinic of Radiology and Nuclear Medicine, University Hospital Basel, Switzerland.,4Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - David Black
- 5Carl Zeiss Meditec AG, Oberkochen, Germany; and.,6University of British Columbia, Vancouver, British Columbia, Canada
| | - Walter Stummer
- 1Department of Neurosurgery, University Hospital of Münster, Germany
| |
Collapse
|
34
|
Pala A, Durner G, Braun M, Schmitz B, Wirtz CR, Coburger J. The Impact of an Ultra-Early Postoperative MRI on Treatment of Lower Grade Glioma. Cancers (Basel) 2021; 13:cancers13122914. [PMID: 34200923 PMCID: PMC8230433 DOI: 10.3390/cancers13122914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
The timing of MRI imaging after surgical resection may have an important role in assessing the extent of resection (EoR) and in determining further treatment. The aim of our study was to evaluate the time dependency of T2 and FLAIR changes after surgery for LGG. The Log-Glio database of patients treated at our hospital from 2016 to 2021 was searched for patients >18a and non-enhancing intra-axial lesion with complete MR-imaging protocol. A total of 16 patients matched the inclusion criteria and were thus selected for volumetric analysis. All patients received an intraoperative scan (iMRI) after complete tumor removal, an ultra-early postoperative scan after skin closure, an early MRI within 48 h and a late follow up MRI after 3-4 mo. Detailed volumetric analysis of FLAIR and T2 abnormalities was conducted. Demographic data and basic characteristics were also analyzed. An ultra-early postoperative MRI was performed within a median time of 30 min after skin closure and showed significantly lower FLAIR (p = 0.003) and T2 (p = 0.003) abnormalities when compared to early postoperative MRI (median 23.5 h), though no significant difference was found between ultra-early and late postoperative FLAIR (p = 0.422) and T2 (p = 0.575) images. A significant difference was calculated between early and late postoperative FLAIR (p = 0.005) and T2 (p = 0.019) MRI scans. Additionally, we found no significant difference between intraoperative and ultra-early FLAIR/T2 (p = 0.919 and 0.499), but we found a significant difference between iMRI and early MRI FLAIR/T2 (p = 0.027 and p = 0.035). Therefore, a postoperative MRI performed 24 h or 48 h might lead to false positive findings. An MRI scan in the first hour after surgery (ultra-early) correlated best with residual tumor at 3 months follow up. An iMRI with open skull, at the end of resection, was similar to an ultra-early MRI with regard to residual tumor.
Collapse
Affiliation(s)
- Andrej Pala
- Department of Neurosurgery, University of Ulm, 89312 Günzburg, Germany; (G.D.); (C.R.W.); (J.C.)
- Correspondence: ; Tel.: +49-82-219-628-866
| | - Gregor Durner
- Department of Neurosurgery, University of Ulm, 89312 Günzburg, Germany; (G.D.); (C.R.W.); (J.C.)
| | - Michael Braun
- Department of Neuroradiology, University of Ulm, 89312 Günzburg, Germany; (M.B.); (B.S.)
| | - Bernd Schmitz
- Department of Neuroradiology, University of Ulm, 89312 Günzburg, Germany; (M.B.); (B.S.)
| | - Christian Rainer Wirtz
- Department of Neurosurgery, University of Ulm, 89312 Günzburg, Germany; (G.D.); (C.R.W.); (J.C.)
| | - Jan Coburger
- Department of Neurosurgery, University of Ulm, 89312 Günzburg, Germany; (G.D.); (C.R.W.); (J.C.)
| |
Collapse
|
35
|
Albuquerque LAF, Almeida JP, de Macêdo Filho LJM, Joaquim AF, Duffau H. Extent of resection in diffuse low-grade gliomas and the role of tumor molecular signature-a systematic review of the literature. Neurosurg Rev 2021; 44:1371-1389. [PMID: 32770298 DOI: 10.1007/s10143-020-01362-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 01/06/2023]
Abstract
There is a lack of class I evidence concerning the impact of surgery in the treatment of diffuse low-grade glioma; the early maximal resection with preservation of eloquent brain areas has been accepted as the first therapeutic option. We performed a systematic review of the literature using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and protocol. Inclusion criteria: only case series with at least 100 patients containing supratentorial hemispheric diffuse low-grade glioma (according to any of the WHO classification used in papers published between 2000 to 2019), with pre- and postoperative MRI study were included in the qualitative and quantitative analyses. The extent of resection should be defined based on MRI at least in two categories and correlated with patients' outcomes (with univariate or multivariate analyses) using overall survival (OS) or malignant progression-free survival (MPFS). A total of 18 series with 4386 patients, published in 20 papers, were included in this systematic review. All the series that evaluates the relation between the extent of resection (EOR) and OS showed a statistically significant improvement of OS at univariate and/or multivariate analyzes with a greater EOR. Six studies showed a statistically significant improvement of MPFS with a greater EOR. We demonstrate that when a more rigorous analysis of EOR is performed, a benefit of a more aggressive resection on OS and MPFS is observed. Our review about EOR in different molecular groups of DLGG also suggests a benefit of maximum safe resection for all different subtypes, even though "radical surgery" may be associated with better OS and MPFS in tumors with a more aggressive signature.
Collapse
Affiliation(s)
- Lucas Alverne F Albuquerque
- Department of Neurosurgery, General Hospital of Fortaleza, Fortaleza, Ceará, Brazil.
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil.
| | - João Paulo Almeida
- Department of Neurosurgery, Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| | | | - Andrei F Joaquim
- Department of Neurology, University of Campinas, Campinas, São Paulo, Brazil
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
36
|
De Witt Hamer PC, Klein M, Hervey-Jumper SL, Wefel JS, Berger MS. Functional Outcomes and Health-Related Quality of Life Following Glioma Surgery. Neurosurgery 2021; 88:720-732. [PMID: 33517431 PMCID: PMC7955971 DOI: 10.1093/neuros/nyaa365] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/25/2020] [Indexed: 12/19/2022] Open
Abstract
Functional outcome following glioma surgery is defined as how the patient functions or feels. Functional outcome is a coprimary end point of surgery in patients with diffuse glioma, together with oncological outcome. In this review, we structure the functional outcome measurements following glioma surgery as reported in the last 5 yr. We review various perspectives on functional outcome of glioma surgery with available measures, and offer suggestions for their use. From the recent neurosurgical literature, 160 publications were retrieved fulfilling the selection criteria. In these publications, neurological outcomes were reported most often, followed by activities of daily living, seizure outcomes, neurocognitive outcomes, and health-related quality of life or well-being. In more than a quarter of these publications functional outcome was not reported. A minimum essential consensus set of functional outcome measurements would benefit comparison across neurosurgical reports. The consensus set should be based on a combination of clinician- and patient-reported outcomes, assessed at a predefined time before and after surgery. The selected measurements should have psychometric properties supporting the intended use including validity-related evidence, reliability, and sensitivity to detect meaningful change with minimal burden to ensure compliance. We circulate a short survey as a start towards reporting guidelines. Many questions remain to better understand, report, and improve functional outcome following glioma surgery.
Collapse
Affiliation(s)
- Philip C De Witt Hamer
- Correspondence: Philip C. De Witt Hamer, MD, PhD, Amsterdam UMC, Vrije Universiteit, Department of Neurosurgery, Cancer Center Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, Netherlands.
| | - Martin Klein
- Amsterdam UMC, Vrije Universiteit, Department of Medical Psychology, Neuroscience Campus, Amsterdam, Netherlands
| | - Shawn L Hervey-Jumper
- University of California San Francisco, Department of Neurological Surgery, San Francisco, California
| | - Jeffrey S Wefel
- University of Texas MD Anderson Cancer Center, Department of Neuro-Oncology and Department of Radiation Oncology, Houston, Texas
| | - Mitchel S Berger
- University of California San Francisco, Department of Neurological Surgery, San Francisco, California
| |
Collapse
|
37
|
Ius T, Mazzucchi E, Tomasino B, Pauletto G, Sabatino G, Della Pepa GM, La Rocca G, Battistella C, Olivi A, Skrap M. Multimodal integrated approaches in low grade glioma surgery. Sci Rep 2021; 11:9964. [PMID: 33976246 PMCID: PMC8113473 DOI: 10.1038/s41598-021-87924-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/01/2021] [Indexed: 12/30/2022] Open
Abstract
Surgical management of Diffuse Low-Grade Gliomas (DLGGs) has radically changed in the last 20 years. Awake surgery (AS) in combination with Direct Electrical Stimulation (DES) and real-time neuropsychological testing (RTNT) permits continuous intraoperative feedback, thus allowing to increase the extent of resection (EOR). The aim of this study was to evaluate the impact of the technological advancements and integration of multidisciplinary techniques on EOR. Two hundred and eighty-eight patients affected by DLGG were enrolled. Cases were stratified according to the surgical protocol that changed over time: 1. DES; 2. DES plus functional MRI/DTI images fused on a NeuroNavigation system; 3. Protocol 2 plus RTNT. Patients belonging to Protocol 1 had a median EOR of 83% (28–100), while those belonging to Protocol 2 and 3 had a median EOR of 88% (34–100) and 98% (50–100) respectively (p = 0.0001). New transient deficits with Protocol 1, 2 and 3 were noted in 38.96%, 34.31% and 31,08% of cases, and permanent deficits in 6.49%, 3.65% and 2.7% respectively. The average follow-up period was 6.8 years. OS was influenced by molecular class (p = 0.028), EOR (p = 0.018) and preoperative tumor growing pattern (p = 0.004). Multimodal surgical approach can provide a safer and wider removal of DLGG with potential subsequent benefits on OS. Further studies are necessary to corroborate our findings.
Collapse
Affiliation(s)
- Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Piazzale Santa Maria della Misericordia, 15, 33100, Udine, Italy.
| | - Edoardo Mazzucchi
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | - Barbara Tomasino
- IRCCS "E. Medea," Polo Regionale del FVG, San Vito al Tagliamento, Pordenone, Italy
| | - Giada Pauletto
- Neurology Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Udine, Italy
| | - Giovanni Sabatino
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | | | - Giuseppe La Rocca
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy.,Department of Neurosurgery, Mater Olbia Hospital, Olbia, Italy
| | | | - Alessandro Olivi
- Institute of Neurosurgery, Fondazione Policlinico Gemelli, Catholic University, Rome, Italy
| | - Miran Skrap
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, Piazzale Santa Maria della Misericordia, 15, 33100, Udine, Italy
| |
Collapse
|
38
|
Rogers CM, Jones PS, Weinberg JS. Intraoperative MRI for Brain Tumors. J Neurooncol 2021; 151:479-490. [PMID: 33611714 DOI: 10.1007/s11060-020-03667-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The use of intraoperative imaging has been a critical tool in the neurosurgeon's armamentarium and is of particular benefit during tumor surgery. This article summarizes the history of its development, implementation, clinical experience and future directions. METHODS We reviewed the literature focusing on the development and clinical experience with intraoperative MRI. Utilizing the authors' personal experience as well as evidence from the literature, we present an overview of the utility of MRI during neurosurgery. RESULTS In the 1990s, the first description of using a low field MRI in the operating room was published describing the additional benefit provided by improved resolution of MRI as compared to ultrasound. Since then, implementation has varied in magnetic field strength and in configuration from floor mounted to ceiling mounted units as well as those that are accessible to the operating room for use during surgery and via an outpatient entrance to use for diagnostic imaging. The experience shows utility of this technique for increasing extent of resection for low and high grade tumors as well as preventing injury to important structures while incorporating techniques such as intraoperative monitoring. CONCLUSION This article reviews the history of intraoperative MRI and presents a review of the literature revealing the successful implementation of this technology and benefits noted for the patient and the surgeon.
Collapse
Affiliation(s)
- Cara Marie Rogers
- Department of Neurosurgery, Virginia Tech Carilion, Roanoke, VA, USA
| | - Pamela S Jones
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jeffrey S Weinberg
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
39
|
Impact of combined use of intraoperative MRI and awake microsurgical resection on patients with gliomas: a systematic review and meta-analysis. Neurosurg Rev 2021; 44:2977-2990. [PMID: 33537890 PMCID: PMC8592967 DOI: 10.1007/s10143-021-01488-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/29/2020] [Accepted: 01/25/2021] [Indexed: 10/29/2022]
Abstract
Microsurgical resection of primary brain tumors located within or near eloquent areas is challenging. Primary aim is to preserve neurological function, while maximizing the extent of resection (EOR), to optimize long-term neurooncological outcomes and quality of life. Here, we review the combined integration of awake craniotomy and intraoperative MRI (IoMRI) for primary brain tumors, due to their multiple challenges. A systematic review of the literature was performed, in accordance with the Prisma guidelines. Were included 13 series and a total number of 527 patients, who underwent 541 surgeries. We paid particular attention to operative time, rate of intraoperative seizures, rate of initial complete resection at the time of first IoMRI, the final complete gross total resection (GTR, complete radiological resection rates), and the immediate and definitive postoperative neurological complications. The mean duration of surgery was 6.3 h (median 7.05, range 3.8-7.9). The intraoperative seizure rate was 3.7% (range 1.4-6; I^2 = 0%, P heterogeneity = 0.569, standard error = 0.012, p = 0.002). The intraoperative complete resection rate at the time of first IoMRI was 35.2% (range 25.7-44.7; I^2 = 66.73%, P heterogeneity = 0.004, standard error = 0.048, p < 0.001). The rate of patients who underwent supplementary resection after one or several IoMRI was 46% (range 39.8-52.2; I^2 = 8.49%, P heterogeneity = 0.364, standard error = 0.032, p < 0.001). The GTR rate at discharge was 56.3% (range 47.5-65.1; I^2 = 60.19%, P heterogeneity = 0.01, standard error = 0.045, p < 0.001). The rate of immediate postoperative complications was 27.4% (range 15.2-39.6; I^2 = 92.62%, P heterogeneity < 0.001, standard error = 0.062, p < 0.001). The rate of permanent postoperative complications was 4.1% (range 1.3-6.9; I^2 = 38.52%, P heterogeneity = 0.123, standard error = 0.014, p = 0.004). Combined use of awake craniotomy and IoMRI can help in maximizing brain tumor resection in selected patients. The technical obstacles to doing so are not severe and can be managed by experienced neurosurgery and anesthesiology teams. The benefits of bringing these technologies to bear on patients with brain tumors in or near language areas are obvious. The lack of equipoise on this topic by experienced practitioners will make it difficult to do a prospective, randomized, clinical trial. In the opinion of the authors, such a trial would be unnecessary and would deprive some patients of the benefits of the best available methods for their tumor resections.
Collapse
|
40
|
Coburger J. Commentary: Impact of Intraoperative Magnetic Resonance Imaging and Other Factors on Surgical Outcomes for Newly Diagnosed Grade II Astrocytomas and Oligodendrogliomas: A Multicenter Study. Neurosurgery 2020; 88:E29-E30. [PMID: 32814969 DOI: 10.1093/neuros/nyaa337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 05/31/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jan Coburger
- Department of Neurosurgery, University of Ulm, Campus Günzburg, Günzburg, Germany
| |
Collapse
|
41
|
Orillac C, Stummer W, Orringer DA. Fluorescence Guidance and Intraoperative Adjuvants to Maximize Extent of Resection. Neurosurgery 2020; 89:727-736. [PMID: 33289518 DOI: 10.1093/neuros/nyaa475] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 08/23/2020] [Indexed: 12/27/2022] Open
Abstract
Safely maximizing extent of resection has become the central goal in glioma surgery. Especially in eloquent cortex, the goal of maximal resection is balanced with neurological risk. As new technologies emerge in the field of neurosurgery, the standards for maximal safe resection have been elevated. Fluorescence-guided surgery, intraoperative magnetic resonance imaging, and microscopic imaging methods are among the most well-validated tools available to enhance the level of accuracy and safety in glioma surgery. Each technology uses a different characteristic of glioma tissue to identify and differentiate tumor tissue from normal brain and is most effective in the context of anatomic, connectomic, and neurophysiologic context. While each tool is able to enhance resection, multiple modalities are often used in conjunction to achieve maximal safe resection. This paper reviews the mechanism and utility of the major adjuncts available for use in glioma surgery, especially in tumors within eloquent areas, and puts forth the foundation for a unified approach to how leverage currently available technology to ensure maximal safe resection.
Collapse
Affiliation(s)
- Cordelia Orillac
- Department of Neurosurgery, NYU Langone Health, New York, New York
| | - Walter Stummer
- Department of Neurosurgery, University Hospital Münster, Münster, Germany
| | | |
Collapse
|
42
|
Intraoperative CT and cone-beam CT imaging for minimally invasive evacuation of spontaneous intracerebral hemorrhage. Acta Neurochir (Wien) 2020; 162:3167-3177. [PMID: 32193726 PMCID: PMC7593312 DOI: 10.1007/s00701-020-04284-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/04/2020] [Indexed: 01/25/2023]
Abstract
Background Minimally invasive surgery (MIS) for evacuation of spontaneous intracerebral hemorrhage (ICH) has shown promise but there remains a need for intraoperative performance assessment considering the wide range of evacuation effectiveness. In this feasibility study, we analyzed the benefit of intraoperative 3-dimensional imaging during navigated endoscopy-assisted ICH evacuation by mechanical clot fragmentation and aspiration. Methods 18 patients with superficial or deep supratentorial ICH underwent MIS for clot evacuation followed by intraoperative computerized tomography (iCT) or cone-beam CT (CBCT) imaging. Eligibility for MIS required (a) availability of intraoperative iCT or CBCT, (b) spontaneous lobar or deep ICH without vascular pathology, (c) a stable ICH volume (20–90 ml), (d) a reduced level of consciousness (GCS 5–14), and (e) a premorbid mRS ≤ 1. Demographic, clinical, and radiographic patient data were analyzed by two independent observers. Results Nine female and 9 male patients with a median age of 76 years (42–85) presented with an ICH score of 3 (1–4), GCS of 10 (5–14) and ICH volume of 54 ± 26 ml. Clot fragmentation and aspiration was feasible in all cases and intraoperative imaging determined an overall evacuation rate of 80 ± 19% (residual hematoma volume: 13 ± 17 ml; p < 0.0001 vs. Pre-OP). Based on the intraoperative imaging results, 1/3rd of all patients underwent an immediate re-aspiration attempt. No patient experienced hemorrhagic complications or required conversion to open craniotomy. However, routine postoperative CT imaging revealed early hematoma re-expansion with an adjusted evacuation rate of 59 ± 30% (residual hematoma volume: 26 ± 37 ml; p < 0.001 vs. Pre-OP). Conclusions Routine utilization of iCT or CBCT imaging in MIS for ICH permits direct surgical performance assessment and the chance for immediate re-aspiration, which may optimize targeting of an ideal residual hematoma volume and reduce secondary revision rates. Electronic supplementary material The online version of this article (10.1007/s00701-020-04284-y) contains supplementary material, which is available to authorized users.
Collapse
|
43
|
Kavouridis VK, Boaro A, Dorr J, Cho EY, Iorgulescu JB, Reardon DA, Arnaout O, Smith TR. Contemporary assessment of extent of resection in molecularly defined categories of diffuse low-grade glioma: a volumetric analysis. J Neurosurg 2020; 133:1291-1301. [PMID: 31653812 PMCID: PMC7348099 DOI: 10.3171/2019.6.jns19972] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 06/24/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE While the effect of increased extent of resection (EOR) on survival in diffuse infiltrating low-grade glioma (LGG) patients is well established, there is still uncertainty about the influence of the new WHO molecular subtypes. The authors designed a retrospective analysis to assess the interplay between EOR and molecular classes. METHODS The authors retrospectively reviewed the records of 326 patients treated surgically for hemispheric WHO grade II LGG at Brigham and Women's Hospital and Massachusetts General Hospital (2000-2017). EOR was calculated volumetrically and Cox proportional hazards models were built to assess for predictive factors of overall survival (OS), progression-free survival (PFS), and malignant progression-free survival (MPFS). RESULTS There were 43 deaths (13.2%; median follow-up 5.4 years) among 326 LGG patients. Median preoperative tumor volume was 31.2 cm3 (IQR 12.9-66.0), and median postoperative residual tumor volume was 5.8 cm3 (IQR 1.1-20.5). On multivariable Cox regression, increasing postoperative volume was associated with worse OS (HR 1.02 per cm3; 95% CI 1.00-1.03; p = 0.016), PFS (HR 1.01 per cm3; 95% CI 1.00-1.02; p = 0.001), and MPFS (HR 1.01 per cm3; 95% CI 1.00-1.02; p = 0.035). This result was more pronounced in the worse prognosis subtypes of IDH-mutant and IDH-wildtype astrocytoma, for which differences in survival manifested in cases with residual tumor volume of only 1 cm3. In oligodendroglioma patients, postoperative residuals impacted survival when exceeding 8 cm3. Other significant predictors of OS were age at diagnosis, IDH-mutant and IDH-wildtype astrocytoma classes, adjuvant radiotherapy, and increasing preoperative volume. CONCLUSIONS The results corroborate the role of EOR in survival and malignant transformation across all molecular subtypes of diffuse LGG. IDH-mutant and IDH-wildtype astrocytomas are affected even by minimal postoperative residuals and patients could potentially benefit from a more aggressive surgical approach.
Collapse
Affiliation(s)
- Vasileios K. Kavouridis
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Alessandro Boaro
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Jeffrey Dorr
- Harvard Medical School, Boston, Massachusetts
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Elise Y. Cho
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - J. Bryan Iorgulescu
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - David A. Reardon
- Harvard Medical School, Boston, Massachusetts
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Omar Arnaout
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Timothy R. Smith
- Computational Neuroscience Outcomes Center, Department of Neurosurgery, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| |
Collapse
|
44
|
Lombardi G, Barresi V, Castellano A, Tabouret E, Pasqualetti F, Salvalaggio A, Cerretti G, Caccese M, Padovan M, Zagonel V, Ius T. Clinical Management of Diffuse Low-Grade Gliomas. Cancers (Basel) 2020; 12:E3008. [PMID: 33081358 PMCID: PMC7603014 DOI: 10.3390/cancers12103008] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Diffuse low-grade gliomas (LGG) represent a heterogeneous group of primary brain tumors arising from supporting glial cells and usually affecting young adults. Advances in the knowledge of molecular profile of these tumors, including mutations in the isocitrate dehydrogenase genes, or 1p/19q codeletion, and in neuroradiological techniques have contributed to the diagnosis, prognostic stratification, and follow-up of these tumors. Optimal post-operative management of LGG is still controversial, though radiation therapy and chemotherapy remain the optimal treatments after surgical resection in selected patients. In this review, we report the most important and recent research on clinical and molecular features, new neuroradiological techniques, the different therapeutic modalities, and new opportunities for personalized targeted therapy and supportive care.
Collapse
Affiliation(s)
- Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Valeria Barresi
- Department of Diagnostics and Public Health, Section of Pathology, University of Verona, 37129 Verona, Italy;
| | - Antonella Castellano
- Neuroradiology Unit, IRCCS San Raffaele Scientific Institute and Vita-Salute San Raffaele University, 20132 Milan, Italy;
| | - Emeline Tabouret
- Team 8 GlioMe, CNRS, INP, Inst Neurophysiopathol, Aix-Marseille University, 13005 Marseille, France;
| | | | - Alessandro Salvalaggio
- Department of Neuroscience, University of Padova, 35128 Padova, Italy;
- Padova Neuroscience Center (PNC), University of Padova, 35128 Padova, Italy
| | - Giulia Cerretti
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Mario Caccese
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Marta Padovan
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Vittorina Zagonel
- Department of Oncology, Oncology 1, Veneto Institute of oncology-IRCCS, 35128 Padova, Italy; (G.C.); (M.C.); (M.P.); (V.Z.)
| | - Tamara Ius
- Neurosurgery Unit, Department of Neurosciences, Santa Maria della Misericordia University Hospital, 33100 Udine, Italy;
| |
Collapse
|
45
|
Wach J, Banat M, Borger V, Vatter H, Haberl H, Sarikaya-Seiwert S. Intraoperative MRI-guided Resection in Pediatric Brain Tumor Surgery: A Meta-analysis of Extent of Resection and Safety Outcomes. J Neurol Surg A Cent Eur Neurosurg 2020; 82:64-74. [PMID: 32968998 DOI: 10.1055/s-0040-1714413] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
BACKGROUND The objective of this meta-analysis was to analyze the impact of intraoperative magnetic resonance imaging (iMRI) on pediatric brain tumor surgery with regard to the frequency of histopathologic entities, additional resections secondary to iMRI, rate of gross total resections (GTR) in glioma surgery, extent of resection (EoR) in supra- and infratentorial compartment, surgical site infections (SSIs), and neurologic outcome after surgery. METHODS MEDLINE/PubMed Service was searched for the terms "intraoperative MRI," "pediatric," "brain," "tumor," "glioma," and "surgery." The review produced 126 potential publications; 11 fulfilled the inclusion criteria, including 584 patients treated with iMRI-guided resections. Studies reporting about patients <18 years, setup of iMRI, surgical workflow, and extent of resection of iMRI-guided glioma resections were included. RESULTS IMRI-guided surgery is mainly used for pediatric low-grade gliomas. The mean rate of GTR in low- and high-grade gliomas was 78.5% (207/254; 95% confidence interval [CI]: 64.6-89.7, p < 0.001). The mean rate of GTR in iMRI-assisted low-grade glioma surgery was 74.3% (35/47; 95% CI: 61.1-85.5, p = 0.759). The rate of SSI in surgery assisted by iMRI was 1.6% (6/482; 95% CI: 0.7-2.9). New onset of transient postoperative neurologic deficits were observed in 37 (33.0%) of 112 patients. CONCLUSION IMRI-guided surgery seems to improve the EoR in pediatric glioma surgery. The rate of SSI and the frequency of new neurologic deficits after IMRI-guided surgery are within the normal range of pediatric neuro-oncologic surgery.
Collapse
Affiliation(s)
- Johannes Wach
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Mohammad Banat
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Hartmut Vatter
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Hannes Haberl
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | | |
Collapse
|
46
|
Scherer M, Ahmeti H, Roder C, Gessler F, Jungk C, Pala A, Mayer B, Senft C, Tatagiba M, Synowitz M, Wirtz CR, Unterberg AW, Coburger J. Surgery for Diffuse WHO Grade II Gliomas: Volumetric Analysis of a Multicenter Retrospective Cohort From the German Study Group for Intraoperative Magnetic Resonance Imaging. Neurosurgery 2020; 86:E64-E74. [PMID: 31574147 DOI: 10.1093/neuros/nyz397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 07/18/2019] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND In diffuse WHO grade II gliomas (LGG), the extent of resection (EOR) required to achieve significant survival benefits remains elusive. OBJECTIVE To evaluate the association of residual volume (RV) and EOR with progression-free survival (PFS) or overall survival (OS) in LGG in a retrospective, multicenter series by the German study group of intraoperative MRI (GeSGIM). METHODS Consecutive cases were retrospectively assessed from 5 centers. Tumors were volumetrically quantified before and after surgery, and clinical data were analyzed, including IDH mutations and neurologic deficits. Kaplan-Meier estimates, accelerated failure time models (AFT), and multivariate Cox regression models were calculated to identify determinants of survival. RESULTS A total of 140 cases were analyzed. Gross total resection (GTR) was associated with significantly longer PFS compared to any incomplete resection (P = .009). A significant survival disadvantage was evident even for small (>0-5 ml) residuals and increased for moderate (>5-20 ml) and large remnants (>20 ml) P = .001). Accordingly, PFS increased continuously for 20% incremental steps of EOR (P < .001). AFT models supported the notion of a continuous association of RV and EOR with PFS. Multivariate Cox regression models confirmed RV (P = .01) and EOR (P = .005) as continuous prognosticators of PFS. Univariate analysis showed significant associations of RV and EOR with OS. CONCLUSION Our data support the hypothesis of a continuous relationship of RV and EOR with survival for LGG with superiority seen for GTR. Hence, GTR should be achieved whenever safely feasible, and resections should be maximized whenever tumor has to be left behind to spare function.
Collapse
Affiliation(s)
- Moritz Scherer
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Hajrulla Ahmeti
- Department of Neurosurgery, University of Schleswig-Holstein, Kiel, Germany
| | - Constantin Roder
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Florian Gessler
- Department of Neurosurgery, University of Frankfurt, Frankfurt, Germany
| | - Christine Jungk
- Department of Neurosurgery, University of Heidelberg, Heidelberg, Germany
| | - Andrej Pala
- Department of Neurosurgery, University of Ulm, Günzburg, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Christian Senft
- Department of Neurosurgery, University of Frankfurt, Frankfurt, Germany
| | - Marcos Tatagiba
- Department of Neurosurgery, University of Tübingen, Tübingen, Germany
| | - Michael Synowitz
- Department of Neurosurgery, University of Schleswig-Holstein, Kiel, Germany
| | | | | | - Jan Coburger
- Department of Neurosurgery, University of Ulm, Günzburg, Germany
| |
Collapse
|
47
|
Paľa A, Coburger J, Scherer M, Ahmeti H, Roder C, Gessler F, Jungk C, Scheuerle A, Senft C, Tatagiba M, Synowitz M, Wirtz CR, Schmitz B, Unterberg AW. To treat or not to treat? A retrospective multicenter assessment of survival in patients with IDH-mutant low-grade glioma based on adjuvant treatment. J Neurosurg 2020; 133:273-280. [PMID: 31323633 DOI: 10.3171/2019.4.jns183395] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 04/18/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The level of evidence for adjuvant treatment of diffuse WHO grade II glioma (low-grade glioma, LGG) is low. In so-called "high-risk" patients most centers currently apply an early aggressive adjuvant treatment after surgery. The aim of this assessment was to compare progression-free survival (PFS) and overall survival (OS) in patients receiving radiation therapy (RT) alone, chemotherapy (CT) alone, or a combined/consecutive RT+CT, with patients receiving no primary adjuvant treatment after surgery. METHODS Based on a retrospective multicenter cohort of 288 patients (≥ 18 years old) with diffuse WHO grade II gliomas, a subgroup analysis of patients with a confirmed isocitrate dehydrogenase (IDH) mutation was performed. The influence of primary adjuvant treatment after surgery on PFS and OS was assessed using Kaplan-Meier estimates and multivariate Cox regression models, including age (≥ 40 years), complete tumor resection (CTR), recurrent surgery, and astrocytoma versus oligodendroglioma. RESULTS One hundred forty-four patients matched the inclusion criteria. Forty patients (27.8%) received adjuvant treatment. The median follow-up duration was 6 years (95% confidence interval 4.8-6.3 years). The median overall PFS was 3.9 years and OS 16.1 years. PFS and OS were significantly longer without adjuvant treatment (p = 0.003). A significant difference in favor of no adjuvant therapy was observed even in high-risk patients (age ≥ 40 years or residual tumor, 3.9 vs 3.1 years, p = 0.025). In the multivariate model (controlled for age, CTR, oligodendroglial diagnosis, and recurrent surgery), patients who received no adjuvant therapy showed a significantly positive influence on PFS (p = 0.030) and OS (p = 0.009) compared to any other adjuvant treatment regimen. This effect was most pronounced if RT+CT was applied (p = 0.004, hazard ratio [HR] 2.7 for PFS, and p = 0.001, HR 20.2 for OS). CTR was independently associated with longer PFS (p = 0.019). Age ≥ 40 years, histopathological diagnosis, and recurrence did not achieve statistical significance. CONCLUSIONS In this series of IDH-mutated LGGs, adjuvant treatment with RT, CT with temozolomide (TMZ), or the combination of both showed no significant advantage in terms of PFS and OS. Even in high-risk patients, the authors observed a similar significantly negative impact of adjuvant treatment on PFS and OS. These results underscore the importance of a CTR in LGG. Whether patients ≥ 40 years old should receive adjuvant treatment despite a CTR should be a matter of debate. A potential tumor dedifferentiation by administration of early TMZ, RT, or RT+CT in IDH-mutated LGG should be considered. However, these data are limited by the retrospective study design and the potentially heterogeneous indication for adjuvant treatment.
Collapse
Affiliation(s)
| | | | | | - Hajrullah Ahmeti
- 3Department of Neurosurgery, University of Schleswig-Holstein, Kiel
| | | | - Florian Gessler
- 5Department of Neurosurgery, University of Frankfurt, Germany
| | | | | | - Christian Senft
- 5Department of Neurosurgery, University of Frankfurt, Germany
| | | | - Michael Synowitz
- 3Department of Neurosurgery, University of Schleswig-Holstein, Kiel
| | | | - Bernd Schmitz
- 7Department of Radiology, Section of Neuroradiology, University of Ulm, Günzburg
| | | |
Collapse
|
48
|
Yahanda AT, Patel B, Shah AS, Cahill DP, Sutherland G, Honeycutt J, Jensen RL, Rich KM, Dowling JL, Limbrick DD, Dacey RG, Kim AH, Leuthardt EC, Dunn GP, Zipfel GJ, Leonard JR, Smyth MD, Shah MV, Abram SR, Evans J, Chicoine MR. Impact of Intraoperative Magnetic Resonance Imaging and Other Factors on Surgical Outcomes for Newly Diagnosed Grade II Astrocytomas and Oligodendrogliomas: A Multicenter Study. Neurosurgery 2020; 88:63-73. [DOI: 10.1093/neuros/nyaa320] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/24/2020] [Indexed: 11/12/2022] Open
Abstract
Abstract
BACKGROUND
Few studies use large, multi-institutional patient cohorts to examine the role of intraoperative magnetic resonance imaging (iMRI) in the resection of grade II gliomas.
OBJECTIVE
To assess the impact of iMRI and other factors on overall survival (OS) and progression-free survival (PFS) for newly diagnosed grade II astrocytomas and oligodendrogliomas.
METHODS
Retrospective analyses of a multicenter database assessed the impact of patient-, treatment-, and tumor-related factors on OS and PFS.
RESULTS
A total of 232 resections (112 astrocytomas and 120 oligodendrogliomas) were analyzed. Oligodendrogliomas had longer OS (P < .001) and PFS (P = .01) than astrocytomas. Multivariate analyses demonstrated improved OS for gross total resection (GTR) vs subtotal resection (STR; P = .006, hazard ratio [HR]: .23) and near total resection (NTR; P = .02, HR: .64). GTR vs STR (P = .02, HR: .54), GTR vs NTR (P = .04, HR: .49), and iMRI use (P = .02, HR: .54) were associated with longer PFS. Frontal (P = .048, HR: 2.11) and occipital/parietal (P = .003, HR: 3.59) locations were associated with shorter PFS (vs temporal). Kaplan-Meier analyses showed longer OS with increasing extent of surgical resection (EOR) (P = .03) and 1p/19q gene deletions (P = .02). PFS improved with increasing EOR (P = .01), GTR vs NTR (P = .02), and resections above STR (P = .04). Factors influencing adjuvant treatment (35.3% of patients) included age (P = .002, odds ratio [OR]: 1.04) and EOR (P = .003, OR: .39) but not glioma subtype or location. Additional tumor resection after iMRI was performed in 105/159 (66%) iMRI cases, yielding GTR in 54.5% of these instances.
CONCLUSION
EOR is a major determinant of OS and PFS for patients with grade II astrocytomas and oligodendrogliomas. Intraoperative MRI may improve EOR and was associated with increased PFS.
Collapse
Affiliation(s)
- Alexander T Yahanda
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Bhuvic Patel
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Amar S Shah
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Daniel P Cahill
- Department of Neurological Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Garnette Sutherland
- Department of Neurological Surgery, University of Calgary School of Medicine, Calgary, Canada
| | - John Honeycutt
- Department of Neurological Surgery, Cook Children's Medical Center, Fort Worth, Texas
| | - Randy L Jensen
- Department of Neurological Surgery, University of Utah School of Medicine, Salt Lake City, Utah
| | - Keith M Rich
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Joshua L Dowling
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - David D Limbrick
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Ralph G Dacey
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Albert H Kim
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Eric C Leuthardt
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Gavin P Dunn
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Gregory J Zipfel
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Jeffrey R Leonard
- Department of Neurological Surgery, Ohio State University College of Medicine, Columbus, Ohio
| | - Matthew D Smyth
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mitesh V Shah
- Department of Neurological Surgery, Goodman Campbell Brain and Spine, Indianapolis, Indiana
| | - Steven R Abram
- Department of Neurological Surgery, St. Thomas Hospital, Nashville, Tennessee
| | - John Evans
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Michael R Chicoine
- Department of Neurosurgery, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
49
|
Zaffino P, Moccia S, De Momi E, Spadea MF. A Review on Advances in Intra-operative Imaging for Surgery and Therapy: Imagining the Operating Room of the Future. Ann Biomed Eng 2020; 48:2171-2191. [PMID: 32601951 DOI: 10.1007/s10439-020-02553-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022]
Abstract
With the advent of Minimally Invasive Surgery (MIS), intra-operative imaging has become crucial for surgery and therapy guidance, allowing to partially compensate for the lack of information typical of MIS. This paper reviews the advancements in both classical (i.e. ultrasounds, X-ray, optical coherence tomography and magnetic resonance imaging) and more recent (i.e. multispectral, photoacoustic and Raman imaging) intra-operative imaging modalities. Each imaging modality was analyzed, focusing on benefits and disadvantages in terms of compatibility with the operating room, costs, acquisition time and image characteristics. Tables are included to summarize this information. New generation of hybrid surgical room and algorithms for real time/in room image processing were also investigated. Each imaging modality has its own (site- and procedure-specific) peculiarities in terms of spatial and temporal resolution, field of view and contrasted tissues. Besides the benefits that each technique offers for guidance, considerations about operators and patient risk, costs, and extra time required for surgical procedures have to be considered. The current trend is to equip surgical rooms with multimodal imaging systems, so as to integrate multiple information for real-time data extraction and computer-assisted processing. The future of surgery is to enhance surgeons eye to minimize intra- and after-surgery adverse events and provide surgeons with all possible support to objectify and optimize the care-delivery process.
Collapse
Affiliation(s)
- Paolo Zaffino
- Department of Experimental and Clinical Medicine, Universitá della Magna Graecia, Catanzaro, Italy
| | - Sara Moccia
- Department of Information Engineering (DII), Universitá Politecnica delle Marche, via Brecce Bianche, 12, 60131, Ancona, AN, Italy.
| | - Elena De Momi
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133, Milano, MI, Italy
| | - Maria Francesca Spadea
- Department of Experimental and Clinical Medicine, Universitá della Magna Graecia, Catanzaro, Italy
| |
Collapse
|
50
|
Zeineldin RA, Karar ME, Coburger J, Wirtz CR, Burgert O. DeepSeg: deep neural network framework for automatic brain tumor segmentation using magnetic resonance FLAIR images. Int J Comput Assist Radiol Surg 2020; 15:909-920. [PMID: 32372386 PMCID: PMC7303084 DOI: 10.1007/s11548-020-02186-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/23/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Gliomas are the most common and aggressive type of brain tumors due to their infiltrative nature and rapid progression. The process of distinguishing tumor boundaries from healthy cells is still a challenging task in the clinical routine. Fluid-attenuated inversion recovery (FLAIR) MRI modality can provide the physician with information about tumor infiltration. Therefore, this paper proposes a new generic deep learning architecture, namely DeepSeg, for fully automated detection and segmentation of the brain lesion using FLAIR MRI data. METHODS The developed DeepSeg is a modular decoupling framework. It consists of two connected core parts based on an encoding and decoding relationship. The encoder part is a convolutional neural network (CNN) responsible for spatial information extraction. The resulting semantic map is inserted into the decoder part to get the full-resolution probability map. Based on modified U-Net architecture, different CNN models such as residual neural network (ResNet), dense convolutional network (DenseNet), and NASNet have been utilized in this study. RESULTS The proposed deep learning architectures have been successfully tested and evaluated on-line based on MRI datasets of brain tumor segmentation (BraTS 2019) challenge, including s336 cases as training data and 125 cases for validation data. The dice and Hausdorff distance scores of obtained segmentation results are about 0.81 to 0.84 and 9.8 to 19.7 correspondingly. CONCLUSION This study showed successful feasibility and comparative performance of applying different deep learning models in a new DeepSeg framework for automated brain tumor segmentation in FLAIR MR images. The proposed DeepSeg is open source and freely available at https://github.com/razeineldin/DeepSeg/.
Collapse
Affiliation(s)
- Ramy A Zeineldin
- Research Group Computer Assisted Medicine (CaMed), Reutlingen University, 72762, Reutlingen, Germany.
| | - Mohamed E Karar
- Faculty of Electronic Engineering (FEE), Menoufia University, Menouf, 32952, Egypt
| | - Jan Coburger
- Department of Neurosurgery, University of Ulm, 89312, Günzburg, Germany
| | - Christian R Wirtz
- Department of Neurosurgery, University of Ulm, 89312, Günzburg, Germany
| | - Oliver Burgert
- Research Group Computer Assisted Medicine (CaMed), Reutlingen University, 72762, Reutlingen, Germany
| |
Collapse
|