1
|
Völkl M, Burgers LD, Zech TJ, Ciurus S, Dorovska S, Liu H, Zahler S, Fürst R. Homoharringtonine (omacetaxine mepesuccinate) limits the angiogenic capacity of endothelial cells and reorganises filamentous actin. Biomed Pharmacother 2025; 186:118025. [PMID: 40184838 DOI: 10.1016/j.biopha.2025.118025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025] Open
Abstract
Homoharringtonine (HHT), an alkaloid from the plant genus Cephalotaxus, disrupts the first elongation phase of protein synthesis by interacting with the 60S ribosomal subunit, making it effective in treating diseases such as myeloid leukaemia. Semi-synthetically produced as omacetaxine mepesuccinate, HHT has been approved in Europe and in the US for patients resistant to two or more tyrosine kinase inhibitors. Although recent studies assume an anti-angiogenic capacity, the actions of HHT have not yet been characterised in primary endothelial cells, the major cell type driving angiogenesis. Therefore, this study addresses this issue by investigating the anti-angiogenic effect of HHT ex vivo and in vitro. A concentration-dependent decrease in sprouting was observed in a mouse aortic ring assay and in spheroids generated from human umbilical vein endothelial cells (HUVECs). Other angiogenic key features such as migration, proliferation and tube formation were similarly decreased by HHT. Interestingly, we observed an accumulation of F-actin. Inhibition of the ROCK pathway restored the angiogenic effects. A specific inhibition of typical upstream or downstream proteins of the ROCK pathway like Rho, MLC-2 or LIMK only marginally restored the angiogenic capability. Further analyses revealed that the alteration of the actin network might relate to the p38 MAPK/HSP27 axis: A significant prolongation of p38 phosphorylation induced by HHT treatment resulted in a partial restoration of endothelial spheroid sprouting. This study demonstrates the anti-angiogenic capabilities of HHT in endothelial cells and opens a promising further research field for an already approved drug.
Collapse
Affiliation(s)
- Matthias Völkl
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Luisa D Burgers
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Thomas Josef Zech
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Sarah Ciurus
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Senta Dorovska
- Institute of Pharmaceutical Biology, Faculty of Biochemistry, Chemistry and Pharmacy, Goethe University, Frankfurt, Germany
| | - Hong Liu
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Stefan Zahler
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Robert Fürst
- Pharmaceutical Biology, Department of Pharmacy - Center for Drug Research, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
2
|
Wang J, Niu Q, Yu Y, Liu J, Zhang S, Zong W, Tian S, Wang Z, Li B. Modular-Based Synergetic Mechanisms of Jasminoidin and Ursodeoxycholic Acid in Cerebral Ischemia Therapy. Biomedicines 2025; 13:938. [PMID: 40299522 PMCID: PMC12025273 DOI: 10.3390/biomedicines13040938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
Objectives: Jasminoidin (JA) and ursodeoxycholic acid (UA) have been shown to exert synergistic effects on cerebral ischemia (CI) therapy, but the underlying mechanisms remain to be elucidated. Objective: To elucidate the synergistic mechanisms involved in the combined use of JA and UA (JU) for CI therapy using a driver-induced modular screening (DiMS) strategy. Methods: Network proximity and topology-based approaches were used to identify synergistic modules and driver genes from an anti-ischemic microarray dataset (ArrayExpress, E-TABM-662). A middle cerebral artery occlusion/reperfusion (MCAO/R) model was established in 30 Sprague Dawley rats, divided into sham, vehicle, JA (25 mg/mL), UA (7 mg/mL), and JU (JA:UA = 1:1) groups. After 90 minutes of ischemia, infarct volume and neurological deficit scores were evaluated. Western blotting was performed 24 h after administration to validate key protein changes. Results: Six, eleven, and four drug-responsive On_modules were identified for JA, UA, and JU, respectively. Three synergistic modules (Sy-modules, JU-Mod-7, 8, and 10) and 12 driver genes (e.g., NRF1, FN1, CUL3) were identified, mainly involving the PI3K-Akt and MAPK pathways and regulation of the actin cytoskeleton. JA and UA synergistically reduced infarct volume and neurological deficit score (2.5, p < 0.05) in MCAO/R rats. In vivo studies demonstrated that JU suppressed the expression of CUL3, FN1, and ITGA4, while it increased that of NRF1. Conclusions: JU acts synergistically on CI-reperfusion injury by regulating FN1, CUL3, ITGA4, and NRF1 and inducing the PI3K-Akt, MAPK, and actin cytoskeleton pathways. DiMS provides a new approach to uncover mechanisms of combination therapies.
Collapse
Affiliation(s)
- Jingai Wang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Qikai Niu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Yanan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Siqi Zhang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Siwei Tian
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing 100700, China; (Y.Y.); (J.L.)
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China; (J.W.); (S.Z.); (W.Z.)
| |
Collapse
|
3
|
Ya J, Bayraktutan U. Donor Variability Alters the Characteristics of Human Brain Microvascular Endothelial Cells. Curr Issues Mol Biol 2025; 47:73. [PMID: 39996794 PMCID: PMC11853807 DOI: 10.3390/cimb47020073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Primary brain microvascular endothelial cells (BMECs) are widely used in a large number of in vitro studies each year to better mimic their physiological characteristics in vivo. However, potential changes in primary endothelial cells stemming from donor variability or culture conditions may affect the reliability and reproducibility of the experiments. While working on a project regarding BMEC senescence, we noticed behavioral differences between two different batches of cells. Comparative analyses of cellular characteristics revealed that while one batch of BMECs developed a typical cobblestone morphology, the other batch displayed a spindle-shape morphology. Despite showing similar tubulogenic and barrier-forming capacities, the spindle-shaped BMECs displayed greater proliferation rates, stronger staining for CD34, a marker of stemness and higher resistance to oxidative stress-induced senescence and replicative senescence. Conversely, the spindle-shaped cells demonstrated a much weaker staining for the endothelial marker CD31. Taken together, these findings indicate that it is important to scrutinize endothelial characteristics to ensure experimental accuracy when cellular responses markedly vary between the so-called endothelial cells.
Collapse
Affiliation(s)
- Jingyuan Ya
- Stroke, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ulvi Bayraktutan
- Stroke, Mental Health and Clinical Neurosciences, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- School of Medicine, Ankara Medipol University, Hacı Bayram Mah, Talatpaşa Blv No. 4, 06050 Altindag, Türkiye
| |
Collapse
|
4
|
Moon J, Chaudhary S, Rodriguez-Martinez L, Hu Z, D'Amore PA. Endomucin regulates the endothelial cytoskeleton independently of VEGF. Exp Eye Res 2025; 250:110150. [PMID: 39542391 DOI: 10.1016/j.exer.2024.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
The endothelial glycocalyx, lining the apical surface of the endothelium, is involved in a host of vascular processes. The glycocalyx is comprised of a network of membrane-bound proteoglycans and glycoproteins along with associated plasma proteins. One such glycoprotein is endomucin (EMCN), which our lab has revealed is a modulator of VEGFR2 function. Intravitreal injection of siEMCN into the eyes of P5 mice impairs vascular development. In vitro silencing of EMCN suppresses VEGF-induced proliferation and migration. Signaling pathways that drive cell migration converge on cytoskeletal remodeling. By coupling co-immunoprecipitation with liquid chromatography/mass spectrometry, we identified interactions between EMCN and proteins associated with actin cytoskeleton organization. The aim of the study was to investigate the influence of EMCN on cytoskeleton dynamics in angiogenesis. EMCN depletion resulted in reduction of F-actin levels, whereas overexpression of EMCN induced increased membrane protrusions in cells that were rich in stress fibers. The reorganization of the actin filaments did not depend on VEGFR2 signaling, suggesting that EMCN connects the cytoskeleton and the glycocalyx.
Collapse
Affiliation(s)
- Jean Moon
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Suman Chaudhary
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Lorena Rodriguez-Martinez
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhengping Hu
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Patricia A D'Amore
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Stougiannou TM, Christodoulou KC, Karangelis D. Olfactory Receptors and Aortic Aneurysm: Review of Disease Pathways. J Clin Med 2024; 13:7778. [PMID: 39768700 PMCID: PMC11727755 DOI: 10.3390/jcm13247778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Aortic aneurysm, the pathological dilatation of the aorta at distinct locations, can be attributed to many different genetic and environmental factors. The resulting pathobiological disturbances generate a complex interplay of processes affecting cells and extracellular molecules of the tunica interna, media and externa. In short, aortic aneurysm can affect processes involving the extracellular matrix, lipid trafficking/atherosclerosis, vascular smooth muscle cells, inflammation, platelets and intraluminal thrombus formation, as well as various endothelial functions. Many of these processes are interconnected, potentiating one another. Newer discoveries, including the involvement of odorant olfactory receptors in these processes, have further shed light on disease initiation and pathology. Olfactory receptors are a varied group of G protein coupled-receptors responsible for the recognition of chemosensory information. Although they comprise many different subgroups, some of which are not well-characterized or identified in humans, odorant olfactory receptors, in particular, are most commonly associated with recognition of olfactory information. They can also be ectopically localized and thus carry out additional functions relevant to the tissue in which they are identified. It is thus the purpose of this narrative review to summarize and present pathobiological processes relevant to the initiation and propagation of aortic aneurysm, while also incorporating evidence associating these ectopically functioning odorant olfactory receptors with the overall pathology.
Collapse
Affiliation(s)
- Theodora M. Stougiannou
- Department of Cardiothoracic Surgery, University General Hospital, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (K.C.C.); (D.K.)
| | | | | |
Collapse
|
6
|
Islam R, Hong Z. YAP/TAZ as mechanobiological signaling pathway in cardiovascular physiological regulation and pathogenesis. MECHANOBIOLOGY IN MEDICINE 2024; 2:100085. [PMID: 39281415 PMCID: PMC11391866 DOI: 10.1016/j.mbm.2024.100085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Cardiovascular diseases (CVDs) persistently rank as a leading cause of premature death and illness worldwide. The Hippo signaling pathway, known for its highly conserved nature and integral role in regulating organ size, tissue homeostasis, and stem cell function, has been identified as a critical factor in the pathogenesis of CVDs. Recent findings underscore the significance of the Yes-associated protein (YAP) and the Transcriptional Coactivator with PDZ-binding motif (TAZ), collectively referred to as YAP/TAZ. These proteins play pivotal roles as downstream components of the Hippo pathway, in the regulation of cardiovascular development and homeostasis. YAP/TAZ can regulate various cellular processes such as cell proliferation, migration, differentiation, and apoptosis through their interactions with transcription factors, particularly those within the transcriptional enhancer associate domain (TEAD) family. The aim of this review is to provide a comprehensive overview of the current understanding of YAP/TAZ signaling in cardiovascular physiology and pathogenesis. We analyze the regulatory mechanisms of YAP/TAZ activation, explore their downstream effectors, and examine their association across numerous cardiovascular disorders, including myocardial hypertrophy, myocardial infarction, pulmonary hypertension, myocardial ischemia-reperfusion injury, atherosclerosis, angiogenesis, restenosis, and cardiac fibrosis. Furthermore, we investigate the potential therapeutic implications of targeting the YAP/TAZ pathway for the treatment of CVDs. Through this comprehensive review, our aim is to elucidate the current understanding of YAP/TAZ signaling in cardiovascular biology and underscore its potential implications for the diagnosis and therapeutic intervention of CVDs.
Collapse
Affiliation(s)
- Rakibul Islam
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| | - Zhongkui Hong
- Department of Mechanical Engineering, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
7
|
Steinmetz AR, Pierce M, Martini A, Tholomier C, Manyam G, Chen Y, Sood A, Duplisea JJ, Johnson BA, Czerniak BA, Lee BH, Jagannath C, Yla-Herttuala S, Parker NR, McConkey DJ, Dinney CP, Mokkapati S. Single-cell RNA sequencing analysis identifies acute changes in the tumor microenvironment induced by interferon α gene therapy in a murine bladder cancer model. Front Immunol 2024; 15:1387229. [PMID: 39559365 PMCID: PMC11570268 DOI: 10.3389/fimmu.2024.1387229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 09/23/2024] [Indexed: 11/20/2024] Open
Abstract
Introduction Nadofaragene firadenovec (Ad-IFNα/Syn3) is now approved for BCG-unresponsive bladder cancer (BLCA). IFNα is a pleiotropic cytokine that causes direct tumor cell killing via TRAIL-mediated apoptosis, angiogenesis inhibition, and activation of the innate and adaptive immune system. We established an immunocompetent murine BLCA model to study the effects of murine adenoviral IFNα (muAd-Ifnα) gene therapy on cancer cells and the tumor microenvironment using a novel murine equivalent of Nadofaragene firadenovec (muAd-Ifnα). Methods Tumors were induced by instilling MB49 cells into the bladders of mice; luciferase imaging confirmed tumor development. Mice were treated with adenovirus control (Ad-Ctrl; empty vector), or muAd-Ifnα (3x1011 VP/mL), and survival analysis was performed. For single-cell sequencing (scRNAseq) analysis (72h), bladders were harvested and treated with collagenase/hyaluronidase and TrypLE for cell dissociation. Single cells were suspended in PBS/1% FBS buffer; viability was assessed with Vicell cell counter. scRNAseq analysis was performed using 10X genomics 3' sequencing. Raw RNAseq data were pre-processed using Cell Ranger single-cell software. Seurat (R package) was used to normalize and cluster the scRNA data. Pooled differential gene expression analysis in specific cell clusters was performed with DESeq2. Results We identified 16 cell clusters based on marker expression which were grouped into epithelial (tumor), uroplakin-enriched, endothelial, T-cells, neutrophils, and macrophage clusters. Top differentially expressed genes between muAd-Ifnα and Ad-Ctrl were identified. Within the specific cell clusters, IPA analysis revealed significant differences between muAd-Ifnα and control. IFNα signaling and hypercytokinemia/chemokinemia were upregulated in all clusters. Cell death pathways were upregulated in tumor and endothelial clusters. T-cells demonstrated upregulation of the immunogenic cell death signaling pathway and a decrease in the Th2 pathway genes. Macrophages showed upregulation of PD1/PD-L1 pathways along with downregulation of macrophage activation pathways (alternate and classical). Multiplex immunofluorescence confirmed increased infiltration with macrophages in muAd-Ifnα treated tumors compared to controls. PD1/PD-L1 expression was reduced at 72h. Discussion This single-cell analysis builds upon our understanding of the impact of Ad-IFNα on tumor cells and other compartments of the microenvironment. These data will help identify mechanisms to improve patient selection and therapeutic efficacy of Nadofaragene firadenovec.
Collapse
Affiliation(s)
- Alexis R. Steinmetz
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Morgan Pierce
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Alberto Martini
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Come Tholomier
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Ganiraju Manyam
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Yan Chen
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Akshay Sood
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jonathan J. Duplisea
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Burles A. Johnson
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Bogdan A. Czerniak
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Byron H. Lee
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute, Houston, TX, United States
| | | | - Nigel R. Parker
- A.I. Virtanen Institute for Molecular Sciences, Kuopio, Finland
| | - David J. McConkey
- Johns Hopkins Greenberg Bladder Cancer Institute, Brady Urological Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Colin P. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sharada Mokkapati
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
8
|
Yin J, Maggi L, Wiesner C, Affolter M, Belting HG. Oscillatory contractile forces refine endothelial cell-cell interactions for continuous lumen formation governed by Heg1/Ccm1. Angiogenesis 2024; 27:845-860. [PMID: 39249713 PMCID: PMC11564304 DOI: 10.1007/s10456-024-09945-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
The formation and organization of complex blood vessel networks rely on various biophysical forces, yet the mechanisms governing endothelial cell-cell interactions under different mechanical inputs are not well understood. Using the dorsal longitudinal anastomotic vessel (DLAV) in zebrafish as a model, we studied the roles of multiple biophysical inputs and cerebral cavernous malformation (CCM)-related genes in angiogenesis. Our research identifies heg1 and krit1 (ccm1) as crucial for the formation of endothelial cell-cell interfaces during anastomosis. In mutants of these genes, cell-cell interfaces are entangled with fragmented apical domains. A Heg1 live reporter demonstrated that Heg1 is dynamically involved in the oscillatory constrictions along cell-cell junctions, whilst a Myosin live reporter indicated that heg1 and krit1 mutants lack actomyosin contractility along these junctions. In wild-type embryos, the oscillatory contractile forces at junctions refine endothelial cell-cell interactions by straightening junctions and eliminating excessive cell-cell interfaces. Conversely, in the absence of junctional contractility, the cell-cell interfaces become entangled and prone to collapse in both mutants, preventing the formation of a continuous luminal space. By restoring junctional contractility via optogenetic activation of RhoA, contorted junctions are straightened and disentangled. Additionally, haemodynamic forces complement actomyosin contractile forces in resolving entangled cell-cell interfaces in both wild-type and mutant embryos. Overall, our study reveals that oscillatory contractile forces governed by Heg1 and Krit1 are essential for maintaining proper endothelial cell-cell interfaces and thus for the formation of a continuous luminal space, which is essential to generate a functional vasculature.
Collapse
Affiliation(s)
- Jianmin Yin
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| | - Ludovico Maggi
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Cora Wiesner
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland
| | - Markus Affolter
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| | - Heinz-Georg Belting
- Department of Cell Biology, Biozentrum, University of Basel, Spitalstrasse 41, Basel, 4056, Switzerland.
| |
Collapse
|
9
|
Li T, Song Y, Wei L, Song X, Duan R. Disulfidptosis: a novel cell death modality induced by actin cytoskeleton collapse and a promising target for cancer therapeutics. Cell Commun Signal 2024; 22:491. [PMID: 39394612 PMCID: PMC11470700 DOI: 10.1186/s12964-024-01871-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 10/03/2024] [Indexed: 10/13/2024] Open
Abstract
Disulfidptosis is a novel discovered form of programmed cell death (PCD) that diverges from apoptosis, necroptosis, ferroptosis, and cuproptosis, stemming from disulfide stress-induced cytoskeletal collapse. In cancer cells exhibiting heightened expression of the solute carrier family 7 member 11 (SLC7A11), excessive cystine importation and reduction will deplete nicotinamide adenine dinucleotide phosphate (NADPH) under glucose deprivation, followed by an increase in intracellular disulfide stress and aberrant disulfide bond formation within actin networks, ultimately culminating in cytoskeletal collapse and disulfidptosis. Disulfidptosis involves crucial physiological processes in eukaryotic cells, such as cystine and glucose uptake, NADPH metabolism, and actin dynamics. The Rac1-WRC pathway-mediated actin polymerization is also implicated in this cell death due to its contribution to disulfide bond formation. However, the precise mechanisms underlying disulfidptosis and its role in tumors are not well understood. This is probably due to the multifaceted functionalities of SLC7A11 within cells and the complexities of the downstream pathways driving disulfidptosis. This review describes the critical roles of SLC7A11 in cells and summarizes recent research advancements in the potential pathways of disulfidptosis. Moreover, the less-studied aspects of this newly discovered cell death process are highlighted to stimulate further investigations in this field.
Collapse
Affiliation(s)
- Tianyi Li
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Ying Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Lijuan Wei
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Xiangyi Song
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China
| | - Ruifeng Duan
- Department of Gastroenterology and Digestive Endoscopy Center, The Second Hospital of Jilin University, Chang Chun, Jilin, China.
| |
Collapse
|
10
|
Stevenson AW, Cadby G, Wallace HJ, Melton PE, Martin LJ, Wood FM, Fear MW. Genetic influence on scar vascularity after burn injury in individuals of European ancestry: A prospective cohort study. Burns 2024; 50:1871-1884. [PMID: 38902133 DOI: 10.1016/j.burns.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/01/2024] [Accepted: 05/02/2024] [Indexed: 06/22/2024]
Abstract
After burn injury there is considerable variation in scar outcome, partially due to genetic factors. Scar vascularity is one characteristic that varies between individuals, and this study aimed to identify genetic variants contributing to different scar vascularity outcomes. An exome-wide array association study and gene pathway analysis was performed on a prospective cohort of 665 patients of European ancestry treated for burn injury, using their scar vascularity (SV) sub-score, part of the modified Vancouver Scar Scale (mVSS), as an outcome measure. DNA was genotyped using the Infinium HumanCoreExome-24 BeadChip, imputed to the Haplotype Reference Consortium panel. Associations between genetic variants (single nucleotide polymorphisms) and SV were estimated using an additive genetic model adjusting for sex, age, % total body surface area and number of surgical procedures, utilising linear and multinomial logistic regression. No individual genetic variants achieved the cut-off threshold for significance. Gene sets were also analysed using the Functional Mapping and Annotation (FUMA) platform, in which biological processes indirectly related to angiogenesis were significantly represented. This study suggests that SNPs in genes associated with angiogenesis may influence SV, but further studies with larger datasets are essential to validate these findings.
Collapse
Affiliation(s)
- Andrew W Stevenson
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia.
| | - Gemma Cadby
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Hilary J Wallace
- School of Population and Global Health, The University of Western Australia, Perth, Australia
| | - Phillip E Melton
- School of Population and Global Health, The University of Western Australia, Perth, Australia; Menzies Research Institute, University of Tasmania, Hobart, Tasmania, Australia
| | - Lisa J Martin
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia; Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia; Burns Service of Western Australia, Princess Margaret Hospital for Children and Fiona Stanley Hospital, Perth, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, Faculty of Health and Medical Sciences, The University of Western Australia, Crawley, Australia
| |
Collapse
|
11
|
Luo Y, Zheng Y, Chen Z, Mo M, Xie J, Zhou X, Wu Y, Yang Q, Zheng M, Hu X, Chen L, Lan Z. Proangiogenic effect and underlying mechanism of holmium oxide nanoparticles: a new biomaterial for tissue engineering. J Nanobiotechnology 2024; 22:357. [PMID: 38902755 PMCID: PMC11191282 DOI: 10.1186/s12951-024-02642-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/15/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Early angiogenesis provides nutrient supply for bone tissue repair, and insufficient angiogenesis will lead tissue engineering failure. Lanthanide metal nanoparticles (LM NPs) are the preferred materials for tissue engineering and can effectively promote angiogenesis. Holmium oxide nanoparticles (HNPs) are LM NPs with the function of bone tissue "tracking" labelling. Preliminary studies have shown that HNPs has potential of promote angiogenesis, but the specific role and mechanism remain unclear. This limits the biological application of HNPs. RESULTS In this study, we confirmed that HNPs promoted early vessel formation, especially that of H-type vessels in vivo, thereby accelerating bone tissue repair. Moreover, HNPs promoted angiogenesis by increasing cell migration, which was mediated by filopodia extension in vitro. At the molecular level, HNPs interact with the membrane protein EphrinB2 in human umbilical vein endothelial cells (HUVECs), and phosphorylated EphrinB2 can bind and activate VAV2, which is an activator of the filopodia regulatory protein CDC42. When these three molecules were inhibited separately, angiogenesis was reduced. CONCLUSION Overall, our study confirmed that HNPs increased cell migration to promote angiogenesis for the first time, which is beneficial for bone repair. The EphrinB2/VAV2/CDC42 signalling pathway regulates cell migration, which is an important target of angiogenesis. Thus, HNPs are a new candidate biomaterial for tissue engineering, providing new insights into their biological application.
Collapse
Affiliation(s)
- Yuxiao Luo
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Yifan Zheng
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China
| | - Ziwei Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Minhua Mo
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Jiling Xie
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaohe Zhou
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Yupeng Wu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Qiyuan Yang
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Manjia Zheng
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Xiaowen Hu
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China
| | - Liangjiao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction & Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou, China.
| | - Zedong Lan
- Shenzhen Stomatological Hospital, Southern Medical University, Shenzhen, 518001, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Smith MR, Naeli P, Jafarnejad SM, Costa G. The scaffolding protein AKAP12 regulates mRNA localization and translation. Proc Natl Acad Sci U S A 2024; 121:e2320609121. [PMID: 38652739 PMCID: PMC11067055 DOI: 10.1073/pnas.2320609121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Regulation of subcellular messenger (m)RNA localization is a fundamental biological mechanism, which adds a spatial dimension to the diverse layers of post-transcriptional control of gene expression. The cellular compartment in which mRNAs are located may define distinct aspects of the encoded proteins, ranging from production rate and complex formation to localized activity. Despite the detailed roles of localized mRNAs that have emerged over the past decades, the identity of factors anchoring mRNAs to subcellular domains remains ill-defined. Here, we used an unbiased method to profile the RNA-bound proteome in migrating endothelial cells (ECs) and discovered that the plasma membrane (PM)-associated scaffolding protein A-kinase anchor protein (AKAP)12 interacts with various mRNAs, including transcripts encoding kinases with Actin remodeling activity. In particular, AKAP12 targets a transcript coding for the kinase Abelson Tyrosine-Protein Kinase 2 (ABL2), which we found to be necessary for adequate filopodia formation and angiogenic sprouting. Moreover, we demonstrate that AKAP12 is necessary for anchoring ABL2 mRNA to the PM and show that in the absence of AKAP12, the translation efficiency of ABL2 mRNA is reduced. Altogether, our work identified a unique post-transcriptional function for AKAP12 and sheds light into mechanisms of spatial control of gene expression.
Collapse
Affiliation(s)
- Madeleine R. Smith
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, BelfastBT9 7BL, United Kingdom
| | - Parisa Naeli
- The Patrick G Johnston Centre for Cancer Research, Queen’s University, BelfastBT9 7BL, United Kingdom
| | - Seyed M. Jafarnejad
- The Patrick G Johnston Centre for Cancer Research, Queen’s University, BelfastBT9 7BL, United Kingdom
| | - Guilherme Costa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University, BelfastBT9 7BL, United Kingdom
| |
Collapse
|
13
|
Medina-Dols A, Cañellas G, Capó T, Solé M, Mola-Caminal M, Cullell N, Jaume M, Nadal-Salas L, Llinàs J, Gómez L, Tur S, Jiménez C, Díaz RM, Carrera C, Muiño E, Gallego-Fabrega C, Soriano-Tárraga C, Ruiz-Guerra L, Pol-Fuster J, Asensio V, Muncunill J, Fleischer A, Iglesias A, Giralt-Steinhauer E, Lazcano U, Fernández-Pérez I, Jiménez-Balado J, Gabriel-Salazar M, Garcia-Gabilondo M, Lei T, Torres-Aguila NP, Cárcel-Márquez J, Lladó J, Olmos G, Rosell A, Montaner J, Planas AM, Rabionet R, Hernández-Guillamon M, Jiménez-Conde J, Fernández-Cadenas I, Vives-Bauzá C. Role of PATJ in stroke prognosis by modulating endothelial to mesenchymal transition through the Hippo/Notch/PI3K axis. Cell Death Discov 2024; 10:85. [PMID: 38368420 PMCID: PMC10874379 DOI: 10.1038/s41420-024-01857-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024] Open
Abstract
Through GWAS studies we identified PATJ associated with functional outcome after ischemic stroke (IS). The aim of this study was to determine PATJ role in brain endothelial cells (ECs) in the context of stroke outcome. PATJ expression analyses in patient's blood revealed that: (i) the risk allele of rs76221407 induces higher expression of PATJ, (ii) PATJ is downregulated 24 h after IS, and (iii) its expression is significantly lower in those patients with functional independence, measured at 3 months with the modified Rankin scale ((mRS) ≤2), compared to those patients with marked disability (mRS = 4-5). In mice brains, PATJ was also downregulated in the injured hemisphere at 48 h after ischemia. Oxygen-glucose deprivation and hypoxia-dependent of Hypoxia Inducible Factor-1α also caused PATJ depletion in ECs. To study the effects of PATJ downregulation, we generated PATJ-knockdown human microvascular ECs. Their transcriptomic profile evidenced a complex cell reprogramming involving Notch, TGF-ß, PI3K/Akt, and Hippo signaling that translates in morphological and functional changes compatible with endothelial to mesenchymal transition (EndMT). PATJ depletion caused loss of cell-cell adhesion, upregulation of metalloproteases, actin cytoskeleton remodeling, cytoplasmic accumulation of the signal transducer C-terminal transmembrane Mucin 1 (MUC1-C) and downregulation of Notch and Hippo signaling. The EndMT phenotype of PATJ-depleted cells was associated with the nuclear recruitment of MUC1-C, YAP/TAZ, β-catenin, and ZEB1. Our results suggest that PATJ downregulation 24 h after IS promotes EndMT, an initial step prior to secondary activation of a pro-angiogenic program. This effect is associated with functional independence suggesting that activation of EndMT shortly after stroke onset is beneficial for stroke recovery.
Collapse
Affiliation(s)
- Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Guillem Cañellas
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Toni Capó
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Montse Solé
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marina Mola-Caminal
- Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
- Unit of Medical Epidemiology, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Natalia Cullell
- Neurology, Hospital Universitari Mútua de Terrassa/Fundacio Docència i Recerca Mútua Terrassa, Terrassa, Spain
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Marina Jaume
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Laura Nadal-Salas
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jaume Llinàs
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Lluis Gómez
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Silvia Tur
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Carmen Jiménez
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Rosa M Díaz
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Neurology, Hospital Universitari Son Espases (HUSE), Palma, Spain
| | - Caty Carrera
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Elena Muiño
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Cristina Gallego-Fabrega
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | | | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
| | - Josep Pol-Fuster
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Víctor Asensio
- Department of Genetics (GEN-IB), HUSE, IdISBa, Palma, Spain
| | | | | | - Amanda Iglesias
- Department of Respiratory Medicine,, Hospital Universitari Son Espases-IdISBa Palma, Spain; CIBERES, Instituto de Salud Carlos III, Madrid, Spain
- CIBER of Respiratory Diseases (CIBERES), Madrid, Spain
| | | | - Uxue Lazcano
- Neurology, Hospital del Mar Medical Research Institute, Barcelona, Spain
| | | | | | - Marina Gabriel-Salazar
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Miguel Garcia-Gabilondo
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ting Lei
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria-Paz Torres-Aguila
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jara Cárcel-Márquez
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Jerònia Lladó
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Gabriel Olmos
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Anna Rosell
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joan Montaner
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
- Institute of Biomedicine of Seville, IBiS/Hospital Universitario Virgen del Rocío/CSIC/University of Seville & Department of Neurology, Hospital Universitario Virgen Macarena, Seville, Spain
| | - Anna M Planas
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB)-Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- Area of Neuroscience, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Raquel Rabionet
- Department of Genetics, Microbiology & Statistics, IBUB, University of Barcelona (UB), Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Hernández-Guillamon
- Neurovascular Research Laboratory, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Israel Fernández-Cadenas
- Stroke Pharmacogenomics and Genetics, Institut de Recerca Sant Pau (IR SANT PAU), Barcelona, Spain
| | - Cristòfol Vives-Bauzá
- Neurobiology Laboratory, Research Unit, Hospital Universitari Son Espases, Health Research Institute of Balearic Islands (IdISBa), Palma, Spain.
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.
| |
Collapse
|
14
|
Bavuso M, Miller N, Sill JM, Dobrian A, Colunga Biancatelli RML. Extracellular vesicles in acute respiratory distress syndrome: Understanding protective and harmful signaling for the development of new therapeutics. Histol Histopathol 2024; 39:131-144. [PMID: 37712224 DOI: 10.14670/hh-18-659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Acute respiratory distress syndrome (ARDS) is a severe respiratory condition characterized by increased lung permeability, hyper-inflammatory state, and fluid leak into the alveolar spaces. ARDS is a heterogeneous disease, with multiple direct and indirect causes that result in a mortality of up to 40%. Due to the ongoing Covid-19 pandemic, its incidence has increased up to ten-fold. Extracellular vesicles (EVs) are small liposome-like particles that mediate intercellular communication and play a major role in ARDS pathophysiology. Indeed, they participate in endothelial barrier dysfunction and permeability, neutrophil, and macrophage activation, and also in the development of a hypercoagulable state. A more thorough understanding of the variegated and cell-specific functions of EVs may lead to the development of safe and effective therapeutics. In this review, we have collected evidence of EVs role in ARDS, revise the main mechanisms of production and internalization and summarize the current therapeutical approaches that have shown the ability to modulate EV signaling.
Collapse
Affiliation(s)
- Matthew Bavuso
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Noel Miller
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Joshua M Sill
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
| | - Anca Dobrian
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Ruben M L Colunga Biancatelli
- Department of Physiological Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
- Division of Pulmonary and Critical Care, Department of Internal Medicine, Eastern Virginia Medical School, Norfolk, Virginia, USA
- Frank Reidy Research Center for Bioelectrics, Old Dominion University, Norfolk, VA, USA.
| |
Collapse
|
15
|
Bai X, Wang R, Hu X, Dai Q, Guo J, Cao T, Du W, Cheng Y, Xia S, Wang D, Yang L, Teng L, Chen D, Liu Y. Two-Dimensional Biodegradable Black Phosphorus Nanosheets Promote Large Full-Thickness Wound Healing through In Situ Regeneration Therapy. ACS NANO 2024; 18:3553-3574. [PMID: 38226901 PMCID: PMC10832999 DOI: 10.1021/acsnano.3c11177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Large full-thickness skin lesions have been one of the most challenging clinical problems in plastic surgery repair and reconstruction. To achieve in situ skin regeneration and perfect clinical outcomes, we must address two significant obstacles: angiogenesis deficiency and inflammatory dysfunction. Recently, black phosphorus has shown great promise in wound healing. However, few studies have explored the bio-effects of BP to promote in situ skin regeneration based on its nanoproperties. Here, to investigate whether black phosphorus nanosheets have positive bio-effects on in situ skin repair, we verified black phosphorus nanosheets' positive effects on angiogenic and anti-inflammatory abilities in vitro. Next, the in vivo evaluation performed on the rat large full-thickness excisional wound splinting model more comprehensively showed that the positive bio-effects of black phosphorus nanosheets are multilevel in wound healing, which can effectively enhance anti-inflammatory ability, angiogenesis, collagen deposition, and skin re-epithelialization. Then, multiomics analysis was performed to explore further the mechanism of black phosphorus nanosheets' regulation of endothelial cells in depth. Molecular mechanistically, black phosphorus nanosheets activated the JAK-STAT-OAS signaling pathway to promote cellular function and mitochondrial energy metabolism in endothelial cells. This study can provide a theoretical basis for applying two-dimensional black phosphorus nanosheets as nanomedicine to achieve in situ tissue regeneration in complex human pathological microenvironments, guiding the subsequent optimization of black phosphorus.
Collapse
Affiliation(s)
- Xueshan Bai
- Cranio-Maxillo-Facial
Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Renxian Wang
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
National Center for Orthopaedics, Beijing Research Institute of Traumatology
and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
- JST
sarcopenia Research Centre, National Center for Orthopaedics, Beijing
Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan
Hospital, Capital Medical University, Beijing 100035, China
| | - Xiaohua Hu
- Department
of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Qiang Dai
- Department
of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Jianxun Guo
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
National Center for Orthopaedics, Beijing Research Institute of Traumatology
and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Tongyu Cao
- Department
of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Weili Du
- Department
of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yuning Cheng
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
National Center for Orthopaedics, Beijing Research Institute of Traumatology
and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Songxia Xia
- Cranio-Maxillo-Facial
Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Dingding Wang
- JST
sarcopenia Research Centre, National Center for Orthopaedics, Beijing
Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan
Hospital, Capital Medical University, Beijing 100035, China
| | - Liya Yang
- Cranio-Maxillo-Facial
Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Li Teng
- Cranio-Maxillo-Facial
Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Dafu Chen
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
National Center for Orthopaedics, Beijing Research Institute of Traumatology
and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yajun Liu
- JST
sarcopenia Research Centre, National Center for Orthopaedics, Beijing
Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan
Hospital, Capital Medical University, Beijing 100035, China
- Department
of Spine Surgery, Beijing Jishuitan Hospital, National Center for
Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| |
Collapse
|
16
|
Yaglova NV, Timokhina EP, Obernikhin SS, Yaglov VV. Emerging Role of Deuterium/Protium Disbalance in Cell Cycle and Apoptosis. Int J Mol Sci 2023; 24:ijms24043107. [PMID: 36834518 PMCID: PMC9963022 DOI: 10.3390/ijms24043107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/21/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Deuterium, a stable isotope of hydrogen, is a component of water and organic compounds. It is the second most abundant element in the human body after sodium. Although the concentration of deuterium in an organism is much lower than that of protium, a wide variety of morphological, biochemical, and physiological changes are known to occur in deuterium-treated cells, including changes in fundamental processes such as cell division or energy metabolism. The mode and degree of changes in cells and tissues, both with an increase and a decrease in the concentration of deuterium, depends primarily on the time of exposure, as well as on the concentration. The reviewed data show that plant and animal cells are sensitive to deuterium content. Any shifts in the D/H balance outside or inside cells promote immediate responses. The review summarizes reported data on the proliferation and apoptosis of normal and neoplastic cells in different modes of deuteration and deuterium depletion in vivo and in vitro. The authors propose their own concept of the effects of changes in deuterium content in the body on cell proliferation and death. The altered rate of proliferation and apoptosis indicate a pivotal role of the hydrogen isotope content in living organisms and suggest the presence of a D/H sensor, which is yet to be detected.
Collapse
|
17
|
Rana D, Padmanaban P, Becker M, Stein F, Leijten J, Koopman B, Rouwkema J. Spatial control of self-organizing vascular networks with programmable aptamer-tethered growth factor photopatterning. Mater Today Bio 2023; 19:100551. [PMID: 36747582 PMCID: PMC9898740 DOI: 10.1016/j.mtbio.2023.100551] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/22/2023] Open
Abstract
Given the dynamic nature of engineered vascular networks within biofabricated tissue analogues, it is instrumental to have control over the constantly evolving biochemical cues within synthetic matrices throughout tissue remodeling. Incorporation of pro-angiogenic vascular endothelial growth factor (VEGF165) specific aptamers into cell-instructive polymer networks is shown to be pivotal for spatiotemporally controlling the local bioactivity of VEGF that selectively elicit specific cell responses. To harness this effect and quantitatively unravel its spatial resolution, herein, bicomponent micropatterns consisting of VEGF165 specific aptamer-functionalized gelatin methacryloyl (GelMA) (aptamer regions) overlaid with pristine GelMA regions using visible-light photoinitiators (Ru/SPS) were fabricated via two-step photopatterning approach. For the 3D co-culture study, human umbilical vein-derived endothelial cells and mesenchymal stromal cells were used as model cell types. Bicomponent micropatterns with spatially defined spacings (300/500/800 μm) displayed high aptamer retention, aptamer-fluorescent complementary sequence (CSF) molecular recognition and VEGF sequestration localized within patterned aptamer regions. Stiffness gradient at the interface of aptamer and GelMA regions was observed with high modulus in aptamer region followed by low stiffness GelMA regions. Leveraging aptamer-tethered VEGF's dynamic affinity interactions with CS that upon hybridization facilitates triggered VEGF release, co-culture studies revealed unique characteristics of aptamer-tethered VEGF to form spatially defined luminal vascular networks covered with filopodia-like structures in vitro (spatial control) and highlights their ability to control network properties including orientation over time using CS as an external trigger (temporal control). Moreover, the comparison of single and double exposed regions within micropatterns revealed differences in cell behavior among both regions. Specifically, the localized aptamer-tethered VEGF within single exposed aptamer regions exhibited higher cellular alignment within the micropatterns till d5 of culture. Taken together, this study highlights the potential of photopatterned aptamer-tethered VEGF to spatiotemporally regulate vascular morphogenesis as a tool for controlling vascular remodeling in situ.
Collapse
Affiliation(s)
- Deepti Rana
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands
| | - Prasanna Padmanaban
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands
| | - Malin Becker
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, the Netherlands
| | - Fabian Stein
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands
| | - Jeroen Leijten
- Department of Developmental BioEngineering, Faculty of Science and Technology, Technical Medical Centre, University of Twente, 7522NB Enschede, the Netherlands
| | - Bart Koopman
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, Technical Medical Centre, Faculty of Engineering Technology, University of Twente, 7522NB Enschede, the Netherlands,Corresponding author.
| |
Collapse
|
18
|
Beltrán-Partida E, Valdez-Salas B, García-López Portillo M, Gutierrez-Perez C, Castillo-Uribe S, Salvador-Carlos J, Alcocer-Cañez J, Cheng N. Atherosclerotic-Derived Endothelial Cell Response Conducted by Titanium Oxide Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2023; 16:794. [PMID: 36676534 PMCID: PMC9865858 DOI: 10.3390/ma16020794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Atherosclerosis lesions are described as the formation of an occlusive wall-vessel plaque that can exacerbate infarctions, strokes, and even death. Furthermore, atherosclerosis damages the endothelium integrity, avoiding proper regeneration after stent implantation. Therefore, we investigate the beneficial effects of TiO2 nanotubes (NTs) in promoting the initial response of detrimental human atherosclerotic-derived endothelial cells (AThEC). We synthesized and characterized NTs on Ti6Al4V by anodization. We isolated AThEC and tested the adhesion long-lasting proliferation activity, and the modulation of focal adhesions conducted on the materials. Moreover, ultrastructural cell-surface contact at the nanoscale and membrane roughness were evaluated to explain the results. Our findings depicted improved filopodia and focal adhesions stimulated by the NTs. Similarly, the NTs harbored long-lasting proliferative metabolism after 5 days, explained by overcoming cell-contact interactions at the nanoscale. Furthermore, the senescent activity detected in the AThEC could be mitigated by the modified membrane roughness and cellular stretch orchestrated by the NTs. Importantly, the NTs stimulate the initial endothelial anchorage and metabolic recovery required to regenerate the endothelial monolayer. Despite the dysfunctional status of the AThEC, our study brings new evidence for the potential application of nano-configured biomaterials for innovation in stent technologies.
Collapse
Affiliation(s)
- Ernesto Beltrán-Partida
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Benjamín Valdez-Salas
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Martha García-López Portillo
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Claudia Gutierrez-Perez
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Sandra Castillo-Uribe
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - Jorge Salvador-Carlos
- Laboratorio de Biología Molecular y Cáncer, Instituto de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Mexicali C.P. 21040, Baja California, Mexico
| | - José Alcocer-Cañez
- Coordinación Clínica de Cirugía, Hospital General de Zona No. 30, Instituto Mexicano del Seguro Social (IMSS), Av. Lerdo de Tejada s/n, Mexicali C.P. 21100, Baja California, Mexico
| | - Nelson Cheng
- Magna International Pte Ltd., 10 H Enterprise Road, Singapore 629834, Singapore
| |
Collapse
|