1
|
Zhang MG, Sternberg PW. Both entry to and exit from diapause arrest in Caenorhabditis elegans are regulated by a steroid hormone pathway. Development 2022; 149:274989. [PMID: 35394033 PMCID: PMC9148571 DOI: 10.1242/dev.200173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 03/24/2022] [Indexed: 11/20/2022]
Abstract
Diapause arrest in animals such as Caenorhabditis elegans is tightly regulated so that animals make appropriate developmental decisions amidst environmental challenges. Fully understanding diapause requires mechanistic insight of both entry and exit from the arrested state. Although a steroid hormone pathway regulates the entry decision into C. elegans dauer diapause, its role in the exit decision is less clear. A complication to understanding steroid hormonal regulation of dauer has been the peculiar fact that steroid hormone mutants such as daf-9 form partial dauers under normal growth conditions. Here, we corroborate previous findings that daf-9 mutants remain capable of forming full dauers under unfavorable growth conditions and establish that the daf-9 partial dauer state is likely a partially exited dauer that has initiated but cannot complete the dauer exit process. We show that the steroid hormone pathway is both necessary for and promotes complete dauer exit, and that the spatiotemporal dynamics of steroid hormone regulation during dauer exit resembles that of dauer entry. Overall, dauer entry and dauer exit are distinct developmental decisions that are both controlled by steroid hormone signaling. Summary: In animals such as Caenorhabditis elegans, a steroid hormone pathway controls both the entry and exit decisions into and out of the developmentally arrested dauer state in response to environmental signaling.
Collapse
Affiliation(s)
- Mark G. Zhang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul W. Sternberg
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
2
|
Harry CJ, Messar SM, Ragsdale EJ. Comparative reconstruction of the predatory feeding structures of the polyphenic nematode Pristionchus pacificus. Evol Dev 2022; 24:16-36. [PMID: 35239990 PMCID: PMC9286642 DOI: 10.1111/ede.12397] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/06/2022] [Accepted: 02/01/2022] [Indexed: 12/25/2022]
Abstract
Pristionchus pacificus is a nematode model for the developmental genetics of morphological polyphenism, especially at the level of individual cells. Morphological polyphenism in this species includes an evolutionary novelty, moveable teeth, which have enabled predatory feeding in this species and others in its family (Diplogastridae). From transmission electron micrographs of serial thin sections through an adult hermaphrodite of P. pacificus, we three‐dimensionally reconstructed all epithelial and myoepithelial cells and syncytia, corresponding to 74 nuclei, of its face, mouth, and pharynx. We found that the epithelia that produce the predatory morphology of P. pacificus are identical to Caenorhabditis elegans in the number of cell classes and nuclei. However, differences in cell form, spatial relationships, and nucleus position correlate with gross morphological differences from C. elegans and outgroups. Moreover, we identified fine‐structural features, especially in the anteriormost pharyngeal muscles, that underlie the conspicuous, left‐right asymmetry that characterizes the P. pacificus feeding apparatus. Our reconstruction provides an anatomical map for studying the genetics of polyphenism, feeding behavior, and the development of novel form in a satellite model to C. elegans. All cells making the dimorphic, novel form of an animal with cell constancy were identified. Although the number of cells is fully conserved, divergence in form and connectivity—including fixed asymmetries—sheds light on the origins of this trait.
Collapse
Affiliation(s)
- Clayton J Harry
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Sonia M Messar
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| | - Erik J Ragsdale
- Department of Biology, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
3
|
Lambert J, Lloret-Fernández C, Laplane L, Poole RJ, Jarriault S. On the origins and conceptual frameworks of natural plasticity-Lessons from single-cell models in C. elegans. Curr Top Dev Biol 2021; 144:111-159. [PMID: 33992151 DOI: 10.1016/bs.ctdb.2021.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
How flexible are cell identities? This problem has fascinated developmental biologists for several centuries and can be traced back to Abraham Trembley's pioneering manipulations of Hydra to test its regeneration abilities in the 1700s. Since the cell theory in the mid-19th century, developmental biology has been dominated by a single framework in which embryonic cells are committed to specific cell fates, progressively and irreversibly acquiring their differentiated identities. This hierarchical, unidirectional and irreversible view of cell identity has been challenged in the past decades through accumulative evidence that many cell types are more plastic than previously thought, even in intact organisms. The paradigm shift introduced by such plasticity calls into question several other key traditional concepts, such as how to define a differentiated cell or more generally cellular identity, and has brought new concepts, such as distinct cellular states. In this review, we want to contribute to this representation by attempting to clarify the conceptual and theoretical frameworks of cell plasticity and identity. In the context of these new frameworks we describe here an atlas of natural plasticity of cell identity in C. elegans, including our current understanding of the cellular and molecular mechanisms at play. The worm further provides interesting cases at the borderlines of cellular plasticity that highlight the conceptual challenges still ahead. We then discuss a set of future questions and perspectives arising from the studies of natural plasticity in the worm that are shared with other reprogramming and plasticity events across phyla.
Collapse
Affiliation(s)
- Julien Lambert
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France
| | - Carla Lloret-Fernández
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Lucie Laplane
- CNRS UMR 8590, University Paris I Panthéon-Sorbonne, IHPST, Paris, France
| | - Richard J Poole
- Department of Cell and Developmental Biology, University College London, London, United Kingdom.
| | - Sophie Jarriault
- IGBMC, Development and Stem Cells Department, CNRS UMR7104, INSERM U1258, Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
4
|
Baugh LR, Hu PJ. Starvation Responses Throughout the Caenorhabditiselegans Life Cycle. Genetics 2020; 216:837-878. [PMID: 33268389 PMCID: PMC7768255 DOI: 10.1534/genetics.120.303565] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/17/2020] [Indexed: 02/07/2023] Open
Abstract
Caenorhabditis elegans survives on ephemeral food sources in the wild, and the species has a variety of adaptive responses to starvation. These features of its life history make the worm a powerful model for studying developmental, behavioral, and metabolic starvation responses. Starvation resistance is fundamental to life in the wild, and it is relevant to aging and common diseases such as cancer and diabetes. Worms respond to acute starvation at different times in the life cycle by arresting development and altering gene expression and metabolism. They also anticipate starvation during early larval development, engaging an alternative developmental program resulting in dauer diapause. By arresting development, these responses postpone growth and reproduction until feeding resumes. A common set of signaling pathways mediates systemic regulation of development in each context but with important distinctions. Several aspects of behavior, including feeding, foraging, taxis, egg laying, sleep, and associative learning, are also affected by starvation. A variety of conserved signaling, gene regulatory, and metabolic mechanisms support adaptation to starvation. Early life starvation can have persistent effects on adults and their descendants. With its short generation time, C. elegans is an ideal model for studying maternal provisioning, transgenerational epigenetic inheritance, and developmental origins of adult health and disease in humans. This review provides a comprehensive overview of starvation responses throughout the C. elegans life cycle.
Collapse
Affiliation(s)
- L Ryan Baugh
- Department of Biology, Center for Genomic and Computational Biology, Duke University, Durham, North Carolina 27708 and
| | - Patrick J Hu
- Departments of Medicine and Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232
| |
Collapse
|
5
|
Tissue-Specific Transcription Footprinting Using RNA PoI DamID (RAPID) in Caenorhabditis elegans. Genetics 2020; 216:931-945. [PMID: 33037050 PMCID: PMC7768263 DOI: 10.1534/genetics.120.303774] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/09/2020] [Indexed: 11/23/2022] Open
Abstract
Differential gene expression across cell types underlies development and cell physiology in multicellular organisms. Caenorhabditis elegans is a powerful, extensively used model to address these biological questions. A remaining bottleneck relates to the difficulty to obtain comprehensive tissue-specific gene transcription data, since available methods are still challenging to execute and/or require large worm populations. Here, we introduce the RNA Polymerase DamID (RAPID) approach, in which the Dam methyltransferase is fused to a ubiquitous RNA polymerase subunit to create transcriptional footprints via methyl marks on the DNA of transcribed genes. To validate the method, we determined the polymerase footprints in whole animals, in sorted embryonic blastomeres and in different tissues from intact young adults by driving tissue-specific Dam fusion expression. We obtained meaningful transcriptional footprints in line with RNA-sequencing (RNA-seq) studies in whole animals or specific tissues. To challenge the sensitivity of RAPID and demonstrate its utility to determine novel tissue-specific transcriptional profiles, we determined the transcriptional footprints of the pair of XXX neuroendocrine cells, representing 0.2% of the somatic cell content of the animals. We identified 3901 candidate genes with putatively active transcription in XXX cells, including the few previously known markers for these cells. Using transcriptional reporters for a subset of new hits, we confirmed that the majority of them were expressed in XXX cells and identified novel XXX-specific markers. Taken together, our work establishes RAPID as a valid method for the determination of RNA polymerase footprints in specific tissues of C. elegans without the need for cell sorting or RNA tagging.
Collapse
|
6
|
Billard B, Vigne P, Braendle C. A Natural Mutational Event Uncovers a Life History Trade-Off via Hormonal Pleiotropy. Curr Biol 2020; 30:4142-4154.e9. [PMID: 32888477 DOI: 10.1016/j.cub.2020.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
Environmental signals often control central life history decisions, including the choice between reproduction and somatic maintenance. Such adaptive developmental plasticity occurs in the nematode Caenorhabditis elegans, where environmental cues govern whether larvae will develop directly into reproducing adults or arrest their development to become stress-resistant dauer larvae. Here, we identified a natural variant underlying enhanced sensitivity to dauer-inducing cues in C. elegans: a 92-bp deletion in the cis-regulatory region of the gene eak-3. This deletion reduces synthesis or activity of the steroid hormone dafachronic acid (DA), thereby increasing environmental sensitivity for dauer induction. Consistent with known pleiotropic roles of DA, this eak-3 variant significantly slows down reproductive growth. We experimentally show that, although the eak-3 deletion can provide a fitness advantage through facilitated dauer production in stressful environments, this allele becomes rapidly outcompeted in favorable environments. The identified eak-3 variant therefore reveals a trade-off in how hormonal responses influence both the pace of developmental timing and the way in which environmental sensitivity controls adaptive plasticity. Together, our results show how a single mutational event altering hormonal signaling can lead to the emergence of a complex life history trade-off.
Collapse
Affiliation(s)
| | - Paul Vigne
- Université Côte d'Azur, CNRS, Inserm, IBV, Nice, France
| | | |
Collapse
|
7
|
A DAF-3 co-Smad molecule functions in Haemonchus contortus development. Parasit Vectors 2019; 12:609. [PMID: 31881930 PMCID: PMC6935219 DOI: 10.1186/s13071-019-3855-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 12/16/2019] [Indexed: 11/10/2022] Open
Abstract
Background The Smad proteins function in TGF-β signalling transduction. In the model nematode Caenorhabditis elegans, the co-Smad, DAF-3 mediates R-Smads and performs a central role in DAF-7 signal transduction, regulating dauer formation and reproductive processes. Considering the divergent evolutionary patterns of the DAF-7 signalling pathway in parasitic nematodes, it is meaningful to explore the structure and function of DAF-3 in parasitic nematodes, such as Haemonchus contortus. Methods A daf-3 gene (Hc-daf-3) and its predicted product (Hc-DAF-3) were identified from H. contortus and characterised using integrated genomic and genetic approaches. In addition to immunohistochemistry employed to localise Hc-DAF-3 within adult worm sections, real-time PCR was conducted to assess the transcriptional profiles in different developmental stages of H. contortus and RNA interference (RNAi) was performed in vitro to assess the functional importance of Hc-daf-3 in the development of H. contortus. Results Hc-DAF-3 sequences predicted from Hc-daf-3 displayed typical features of the co-Smad subfamily. The native Hc-DAF-3 was localised to the gonad and cuticle of adult parasites. In addition, Hc-daf-3 was transcribed in all developmental stages studied, with a higher level in the third-stage larvae (L3) and adult females. Moreover, silencing Hc-daf-3 by RNAi retarded L4 development. Conclusion The findings of the present study demonstrated an important role of Hc-DAF-3 in the development of H. contortus larvae.
Collapse
|
8
|
Androwski RJ, Flatt KM, Schroeder NE. Phenotypic plasticity and remodeling in the stress-induced Caenorhabditis elegans dauer. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2017; 6:10.1002/wdev.278. [PMID: 28544390 PMCID: PMC5626018 DOI: 10.1002/wdev.278] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 03/23/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022]
Abstract
Organisms are often capable of modifying their development to better suit their environment. Under adverse conditions, the nematode Caenorhabditis elegans develops into a stress-resistant alternative larval stage called dauer. The dauer stage is the primary survival stage for C. elegans in nature. Large-scale tissue remodeling during dauer conveys resistance to harsh environments. The environmental and genetic regulation of the decision to enter dauer has been extensively studied. However, less is known about the mechanisms regulating tissue remodeling. Changes to the cuticle and suppression of feeding in dauers lead to an increased resistance to external stressors. Meanwhile reproductive development arrests during dauer while preserving the ability to reproduce once favorable environmental conditions return. Dramatic remodeling of neurons, glia, and muscles during dauer likely facilitate dauer-specific behaviors. Dauer-specific pulsation of the excretory duct likely mediates a response to osmotic stress. The power of C. elegans genetics has uncovered some of the molecular pathways regulating dauer tissue remodeling. In addition to genes that regulate single remodeling events, several mutants result in pleiotropic defects in dauer remodeling. This review details the individual aspects of morphological changes that occur during dauer formation and discusses molecular mechanisms regulating these processes. The dauer stage provides us with an excellent model for understanding phenotypic plasticity and remodeling from the individual cell to an entire animal. WIREs Dev Biol 2017, 6:e278. doi: 10.1002/wdev.278 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Rebecca J Androwski
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Kristen M Flatt
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Nathan E Schroeder
- Neuroscience Program and Department of Crop Sciences, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
9
|
Lažetić V, Fay DS. Molting in C. elegans. WORM 2017; 6:e1330246. [PMID: 28702275 DOI: 10.1080/21624054.2017.1330246] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/01/2017] [Accepted: 05/09/2017] [Indexed: 12/21/2022]
Abstract
Molting is an essential developmental process for the majority of animal species on Earth. During the molting process, which is a specialized form of extracellular matrix (ECM) remodeling, the old apical ECM, or cuticle, is replaced with a new one. Many of the genes and pathways identified as important for molting in nematodes are highly conserved in vertebrates and include regulators and components of vesicular trafficking, steroid-hormone signaling, developmental timers, and hedgehog-like signaling. In this review, we discuss what is known about molting, with a focus on studies in Caenorhabditis elegans. We also describe the key structural elements of the cuticle that must be released, newly synthesized, or remodeled for proper molting to occur.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
10
|
Delaney CE, Chen AT, Graniel JV, Dumas KJ, Hu PJ. A histone H4 lysine 20 methyltransferase couples environmental cues to sensory neuron control of developmental plasticity. Development 2017; 144:1273-1282. [PMID: 28209779 PMCID: PMC5399626 DOI: 10.1242/dev.145722] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 02/02/2017] [Indexed: 01/23/2023]
Abstract
Animals change developmental fates in response to external cues. In the nematode Caenorhabditis elegans, unfavorable environmental conditions induce a state of diapause known as dauer by inhibiting the conserved DAF-2 insulin-like signaling (ILS) pathway through incompletely understood mechanisms. We have previously established a role for the C. elegans dosage compensation protein DPY-21 in the control of dauer arrest and DAF-2 ILS. Here, we show that the histone H4 lysine 20 methyltransferase SET-4, which also influences dosage compensation, promotes dauer arrest in part by repressing the X-linked ins-9 gene, which encodes a new agonist insulin-like peptide (ILP) expressed specifically in the paired ASI sensory neurons that are required for dauer bypass. ins-9 repression in dauer-constitutive mutants requires DPY-21, SET-4 and the FoxO transcription factor DAF-16, which is the main target of DAF-2 ILS. By contrast, autosomal genes encoding major agonist ILPs that promote reproductive development are not repressed by DPY-21, SET-4 or DAF-16/FoxO. Our results implicate SET-4 as a sensory rheostat that reinforces developmental fates in response to environmental cues by modulating autocrine and paracrine DAF-2 ILS.
Collapse
Affiliation(s)
- Colin E Delaney
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Albert T Chen
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jacqueline V Graniel
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Kathleen J Dumas
- Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Patrick J Hu
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA .,Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA.,Institute of Gerontology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
11
|
Albarqi MMY, Stoltzfus JD, Pilgrim AA, Nolan TJ, Wang Z, Kliewer SA, Mangelsdorf DJ, Lok JB. Regulation of Life Cycle Checkpoints and Developmental Activation of Infective Larvae in Strongyloides stercoralis by Dafachronic Acid. PLoS Pathog 2016; 12:e1005358. [PMID: 26727267 PMCID: PMC4703199 DOI: 10.1371/journal.ppat.1005358] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/02/2015] [Indexed: 12/11/2022] Open
Abstract
The complex life cycle of the parasitic nematode Strongyloides stercoralis leads to either developmental arrest of infectious third-stage larvae (iL3) or growth to reproductive adults. In the free-living nematode Caenorhabditis elegans, analogous determination between dauer arrest and reproductive growth is governed by dafachronic acids (DAs), a class of steroid hormones that are ligands for the nuclear hormone receptor DAF-12. Biosynthesis of DAs requires the cytochrome P450 (CYP) DAF-9. We tested the hypothesis that DAs also regulate S. stercoralis development via DAF-12 signaling at three points. First, we found that 1 μM Δ7-DA stimulated 100% of post-parasitic first-stage larvae (L1s) to develop to free-living adults instead of iL3 at 37°C, while 69.4±12.0% (SD) of post-parasitic L1s developed to iL3 in controls. Second, we found that 1 μM Δ7-DA prevented post-free-living iL3 arrest and stimulated 85.2±16.9% of larvae to develop to free-living rhabditiform third- and fourth-stages, compared to 0% in the control. This induction required 24-48 hours of Δ7-DA exposure. Third, we found that the CYP inhibitor ketoconazole prevented iL3 feeding in host-like conditions, with only 5.6±2.9% of iL3 feeding in 40 μM ketoconazole, compared to 98.8±0.4% in the positive control. This inhibition was partially rescued by Δ7-DA, with 71.2±16.4% of iL3 feeding in 400 nM Δ7-DA and 35 μM ketoconazole, providing the first evidence of endogenous DA production in S. stercoralis. We then characterized the 26 CYP-encoding genes in S. stercoralis and identified a homolog with sequence and developmental regulation similar to DAF-9. Overall, these data demonstrate that DAF-12 signaling regulates S. stercoralis development, showing that in the post-parasitic generation, loss of DAF-12 signaling favors iL3 arrest, while increased DAF-12 signaling favors reproductive development; that in the post-free-living generation, absence of DAF-12 signaling is crucial for iL3 arrest; and that endogenous DA production regulates iL3 activation.
Collapse
Affiliation(s)
- Mennatallah M. Y. Albarqi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Jonathan D. Stoltzfus
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Adeiye A. Pilgrim
- Department of Biology, Hollins University, Roanoke, Virginia, United States of America
| | - Thomas J. Nolan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Zhu Wang
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - Steven A. Kliewer
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
- Department of Molecular Biology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - David J. Mangelsdorf
- Department of Pharmacology, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
- Howard Hughes Medical Institute, University of Texas Southwest Medical Center, Dallas, Texas, United States of America
| | - James B. Lok
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
12
|
Witting M, Rudloff HC, Thondamal M, Aguilaniu H, Schmitt-Kopplin P. Fast separation and quantification of steroid hormones Δ4- and Δ7-dafachronic acid in Caenorhabditis elegans. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 978-979:118-21. [PMID: 25544008 DOI: 10.1016/j.jchromb.2014.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 11/12/2014] [Accepted: 12/08/2014] [Indexed: 10/24/2022]
Abstract
Separation of isomeric molecular species, e.g. double bond position isomers, is a challenging task for liquid chromatography. The two steroid hormones Δ4- and Δ7-dafachronic acid (DA) represent such an isomeric pair. DAs are 3-ketosteroids found in the nematode Caenorhabditis elegans and generated from cholesterol. Δ4- and Δ7-DA have important biological activities and are produced by two different biological pathways in C. elegans. Here we have described a fast separation method for these two isomers using a 1.3 μm core-shell particle in less than 10 min together with a simple MeOH extraction. Using this method we were able to independently quantify Δ4- and Δ7-DA in C. elegans independently from each other and limits of detection of about 5 ng/ml for each isomer were achieved with a good day-to-day reproducibility. As proof-of-principle the method has been applied to the quantification of DAs in worms fed ad libitum or under bacterial deprivation.
Collapse
Affiliation(s)
- Michael Witting
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany.
| | - Hans-Christian Rudloff
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany
| | - Manjunatha Thondamal
- Ecole Normale Supérieure de Lyon - CNRS - Université de Lyon Claude Bernard - Molecular Biology of the Cell Laboratory/UMR5239 46, Allee d'Italie, 69364 Lyon cedex 07, France
| | - Hugo Aguilaniu
- Ecole Normale Supérieure de Lyon - CNRS - Université de Lyon Claude Bernard - Molecular Biology of the Cell Laboratory/UMR5239 46, Allee d'Italie, 69364 Lyon cedex 07, France
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Department of Environmental Sciences, Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764 Neuherberg, Germany; Chair of Analytical Food Chemistry, Technische Universität München, Alte Akademie 10, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
13
|
Chung SH, Schmalz A, Ruiz RCH, Gabel CV, Mazur E. Femtosecond laser ablation reveals antagonistic sensory and neuroendocrine signaling that underlie C. elegans behavior and development. Cell Rep 2013; 4:316-326. [PMID: 23871668 PMCID: PMC4780052 DOI: 10.1016/j.celrep.2013.06.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 02/27/2013] [Accepted: 06/22/2013] [Indexed: 11/27/2022] Open
Abstract
The specific roles of neuronal subcellular components in behavior and development remain largely unknown, even though advances in molecular biology and conventional whole-cell laser ablation have greatly accelerated the identification of contributors at the molecular and cellular levels. We systematically applied femtosecond laser ablation, which has submicrometer resolution in vivo, to dissect the cell bodies, dendrites, or axons of a sensory neuron (ASJ) in Caenorhabditis elegans to determine their roles in modulating locomotion and the developmental decisions for dauer, a facultative, stress-resistant life stage. Our results indicate that the cell body sends out axonally mediated and hormonal signals in order to mediate these functions. Furthermore, our results suggest that antagonistic sensory dendritic signals primarily drive and switch polarity between the decisions to enter and exit dauer. Thus, the improved resolution of femtosecond laser ablation reveals a rich complexity of neuronal signaling at the subcellular level, including multiple neurite and hormonally mediated pathways dependent on life stage.
Collapse
Affiliation(s)
- Samuel H Chung
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA.,Department of Physiology and Biophysics, Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.,Boston University Photonics Center, 8 Saint Mary's Street, Boston, MA 02215, USA
| | - Anja Schmalz
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA
| | - Roanna C H Ruiz
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA.,Department of Biomedical Engineering, Cornell University, 101 Weill Hall, Ithaca, NY 14853, USA
| | - Christopher V Gabel
- Department of Physiology and Biophysics, Boston University School of Medicine, 72 E. Concord Street, Boston, MA 02118, USA.,Boston University Photonics Center, 8 Saint Mary's Street, Boston, MA 02215, USA
| | - Eric Mazur
- School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA.,Department of Physics, Harvard University, 9 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Schaedel ON, Gerisch B, Antebi A, Sternberg PW. Hormonal signal amplification mediates environmental conditions during development and controls an irreversible commitment to adulthood. PLoS Biol 2012; 10:e1001306. [PMID: 22505848 PMCID: PMC3323525 DOI: 10.1371/journal.pbio.1001306] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 03/02/2012] [Indexed: 11/25/2022] Open
Abstract
A dual mechanism regulates the developmental fate choice in C. elegans in response to population density: variation of the threshold of DA hormone required to commit to a certain fate and a positive feedback loop that amplifies this hormonal signal to ensure an organism-wide developmental fate choice. Many animals can choose between different developmental fates to maximize fitness. Despite the complexity of environmental cues and life history, different developmental fates are executed in a robust fashion. The nematode Caenorhabditis elegans serves as a powerful model to examine this phenomenon because it can adopt one of two developmental fates (adulthood or diapause) depending on environmental conditions. The steroid hormone dafachronic acid (DA) directs development to adulthood by regulating the transcriptional activity of the nuclear hormone receptor DAF-12. The known role of DA suggests that it may be the molecular mediator of environmental condition effects on the developmental fate decision, although the mechanism is yet unknown. We used a combination of physiological and molecular biology techniques to demonstrate that commitment to reproductive adult development occurs when DA levels, produced in the neuroendocrine XXX cells, exceed a threshold. Furthermore, imaging and cell ablation experiments demonstrate that the XXX cells act as a source of DA, which, upon commitment to adult development, is amplified and propagated in the epidermis in a DAF-12 dependent manner. This positive feedback loop increases DA levels and drives adult programs in the gonad and epidermis, thus conferring the irreversibility of the decision. We show that the positive feedback loop canalizes development by ensuring that sufficient amounts of DA are dispersed throughout the body and serves as a robust fate-locking mechanism to enforce an organism-wide binary decision, despite noisy and complex environmental cues. These mechanisms are not only relevant to C. elegans but may be extended to other hormonal-based decision-making mechanisms in insects and mammals. During development, many animals choose between mutually exclusive fates, such as workers, soldiers, or queens in bees or ants. The choice between states is uniform throughout the animal since mixtures of these fates are not observed in the wild. The nematode Caenorhabditis elegans larvae integrate environmental conditions and have two choices: mature into reproductive adults or arrest development as dauer larvae—a latent form that can survive harsh conditions. The decision between both fates is governed by the hormone dafachronic acid (DA), however its regulation during development in response to environmental conditions has been unclear. In this study we show how two mechanisms are responsible for the integration of environmental conditions and the coordination of the decision between many tissues. We first show that a threshold mechanism integrates population density with the internal amount of DA made in the head. A normal population density has a low threshold of DA needed for worms to become adults, whereas a high population density increases this threshold and leads worms to develop into dauer larvae. We then show that the low levels of DA released from the head are amplified in the hypodermis (the main body syncytial epithelium) via a positive feedback loop, coordinating the decision over the animal. Disruption of this positive feedback yields abnormal adults. We propose that the positive feedback serves as a fate-locking mechanism enforcing an organismal binary decision—either adult or dauer—despite noisy and uncertain environmental conditions.
Collapse
Affiliation(s)
- Oren N. Schaedel
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California, United States of America
| | - Birgit Gerisch
- Max-Planck-Institute for Biology of Ageing, Koeln, Germany
| | - Adam Antebi
- Max-Planck-Institute for Biology of Ageing, Koeln, Germany
- Baylor College of Medicine, Huffington Center on Aging, Houston, Texas, United States of America
- * E-mail: (PWS); (AA)
| | - Paul W. Sternberg
- Howard Hughes Medical Institute and Division of Biology, California Institute of Technology, Pasadena, California, United States of America
- * E-mail: (PWS); (AA)
| |
Collapse
|
15
|
Abstract
FoxO transcription factors (TFs) extend lifespan in invertebrates and may participate in the control of human longevity. The role of FoxO TFs in lifespan regulation has been studied most extensively in C. elegans, where a conserved insulin/insulin-like growth factor signaling (IIS) pathway and the germline both control lifespan by regulating the subcellular localization of the FoxO transcription factor DAF-16. Although the control of FoxO activity through modulation of its subcellular localization is well established, nuclear translocation of FoxO is not sufficient for full FoxO activation, suggesting that undiscovered inputs regulate FoxO activity after its translocation to the nucleus. We have recently discovered a new conserved pathway, the EAK (enhancer-of-akt-1) pathway, which acts in parallel to the Akt/PKB family of serine-threonine kinases to regulate DAF-16/FoxO activity. Whereas mutation of Akt/PKB promotes the nuclear accumulation of DAF-16/FoxO, mutation of eak genes increases nuclear DAF-16/FoxO activity without influencing DAF-16/FoxO subcellular localization. Thus, EAK proteins regulate the activity of nuclear DAF-16/FoxO. Two EAK proteins, EAK-2/HSD-1 and EAK-7, influence C. elegans lifespan and are conserved in mammals. The discovery of the EAK pathway defines a new conserved FoxO regulatory input and may have implications relevant to aging and the pathogenesis of aging-associated diseases.
Collapse
Affiliation(s)
- Travis W Williams
- Life Sciences Institute, University of Michigan, Ann Arbor, 48109, USA
| | | | | |
Collapse
|
16
|
Ohkura K, Bürglin TR. Dye-filling of the amphid sheath glia: implications for the functional relationship between sensory neurons and glia in Caenorhabditis elegans. Biochem Biophys Res Commun 2011; 406:188-93. [PMID: 21295547 DOI: 10.1016/j.bbrc.2011.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/01/2011] [Indexed: 10/18/2022]
Abstract
The nervous system is composed of cells including neurons and glia. It has been believed that the former cells play central roles in various neural functions while the latter ones have only supportive functions for neurons. However, recent findings suggest that glial cells actively participate in neural activities, and the cooperation between neurons and glia is important for nervous system functions. In Caenorhabditis elegans, amphid sensory organs in the head also consist of sensory neurons and glia-like support cells (amphid socket and amphid sheath cells). Ciliary endings of some sensory neurons exposed to the environment detect various chemicals, molecules and signals, and the cilia of some neurons can also take up fluorescent dyes such as DiI. Here, we show that the amphid sheath glia are also stained with DiI and that its uptake by the amphid sheath cells correlates with DiI-filling of sensory neurons, suggesting that the amphid sheath glia might interact with sensory neurons. Furthermore, the localization of the amphid sheath cell reporter F52E1.2SP::YFP is abnormal in che-2 mutants, which have defective cilia. These findings imply that sensory neurons might affect amphid sheath glia functions in the amphid sensory organ of C. elegans.
Collapse
Affiliation(s)
- Kiyotaka Ohkura
- Department of Biosciences and Nutrition, and Center for Biosciences, Karolinska Institutet, Hälsovägen 7, Novum, SE 141 83 Huddinge, Sweden
| | | |
Collapse
|
17
|
Jensen VL, Simonsen KT, Lee YH, Park D, Riddle DL. RNAi screen of DAF-16/FOXO target genes in C. elegans links pathogenesis and dauer formation. PLoS One 2010; 5:e15902. [PMID: 21209831 PMCID: PMC3013133 DOI: 10.1371/journal.pone.0015902] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 11/30/2010] [Indexed: 11/19/2022] Open
Abstract
The DAF-16/FOXO transcription factor is the major downstream output of the insulin/IGF1R signaling pathway controlling C. elegans dauer larva development and aging. To identify novel downstream genes affecting dauer formation, we used RNAi to screen candidate genes previously identified to be regulated by DAF-16. We used a sensitized genetic background [eri-1(mg366); sdf-9(m708)], which enhances both RNAi efficiency and constitutive dauer formation (Daf-c). Among 513 RNAi clones screened, 21 displayed a synthetic Daf-c (SynDaf) phenotype with sdf-9. One of these genes, srh-100, was previously identified to be SynDaf, but twenty have not previously been associated with dauer formation. Two of the latter genes, lys-1 and cpr-1, are known to participate in innate immunity and six more are predicted to do so, suggesting that the immune response may contribute to the dauer decision. Indeed, we show that two of these genes, lys-1 and clc-1, are required for normal resistance to Staphylococcus aureus. clc-1 is predicted to function in epithelial cohesion. Dauer formation exhibited by daf-8(m85), sdf-9(m708), and the wild-type N2 (at 27°C) were all enhanced by exposure to pathogenic bacteria, while not enhanced in a daf-22(m130) background. We conclude that knockdown of the genes required for proper pathogen resistance increases pathogenic infection, leading to increased dauer formation in our screen. We propose that dauer larva formation is a behavioral response to pathogens mediated by increased dauer pheromone production.
Collapse
Affiliation(s)
- Victor L. Jensen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Karina T. Simonsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Yu-Hui Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donha Park
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donald L. Riddle
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, British Columbia, Canada
- * E-mail:
| |
Collapse
|
18
|
Tennessen JM, Opperman KJ, Rougvie AE. The C. elegans developmental timing protein LIN-42 regulates diapause in response to environmental cues. Development 2010; 137:3501-11. [PMID: 20843862 DOI: 10.1242/dev.048850] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Environmental conditions can have a major impact on developmental progression in animals. For example, when C. elegans larvae encounter harsh conditions they can reversibly halt the passage of developmental time by forming a long-lived dauer larva at the end of the second larval stage. Here, we show that the period homolog lin-42, known to control developmental time, also acts as a component of a switch that mediates dauer entry. Loss of lin-42 function renders animals hypersensitive to dauer formation under stressful conditions, whereas misexpression of lin-42 in the pre-dauer stage inhibits dauer formation, indicating that lin-42 acts as a negative regulator of this life history decision. These phenotypes place LIN-42 in opposition to the ligand-free form of the nuclear receptor DAF-12, which indirectly senses environmental conditions and helps to integrate external cues into developmental decisions. Mutations that impair DAF-12 ligand binding are exquisitely sensitive to the absence of lin-42, whereas overexpression of LIN-42 can suppress the dauer constitutive phenotype of a ligand-insensitive daf-12 mutant, suggesting that LIN-42 and DAF-12 are intimate partners in controlling the decision to become a dauer larva. The functional outputs of Period family proteins and nuclear receptors also converge in other organisms, suggesting that the relationship between lin-42 and daf-12 represents an ancient genetic framework for responding to environmental stimuli.
Collapse
Affiliation(s)
- Jason M Tennessen
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
19
|
Branicky R, Desjardins D, Liu JL, Hekimi S. Lipid transport and signaling in Caenorhabditis elegans. Dev Dyn 2010; 239:1365-77. [PMID: 20151418 DOI: 10.1002/dvdy.22234] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The strengths of the Caenorhabditis elegans model have been recently applied to the study of the pathways of lipid storage, transport, and signaling. As the lipid storage field has recently been reviewed, in this minireview we (1) discuss some recent studies revealing important physiological roles for lipases in mobilizing lipid reserves, (2) describe various pathways of lipid transport, with a particular focus on the roles of lipoproteins, (3) debate the utility of using C. elegans as a model for human dyslipidemias that impinge on atherosclerosis, and (4) describe several systems where lipids affect signaling, highlighting the particular properties of lipids as information-carrying molecules. We conclude that the study of lipid biology in C. elegans exemplifies the advantages afforded by a whole-animal model system where interactions between tissues and organs, and functions such as nutrient absorption, distribution, and storage, as well as reproduction can all be studied simultaneously.
Collapse
Affiliation(s)
- Robyn Branicky
- Department of Biology, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
20
|
Alam H, Williams TW, Dumas KJ, Guo C, Yoshina S, Mitani S, Hu PJ. EAK-7 controls development and life span by regulating nuclear DAF-16/FoxO activity. Cell Metab 2010; 12:30-41. [PMID: 20620993 PMCID: PMC2907918 DOI: 10.1016/j.cmet.2010.05.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 02/26/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
Abstract
FoxO transcription factors control development and longevity in diverse species. Although FoxO regulation via changes in its subcellular localization is well established, little is known about how FoxO activity is regulated in the nucleus. Here, we show that the conserved C. elegans protein EAK-7 acts in parallel to the serine/threonine kinase AKT-1 to inhibit the FoxO transcription factor DAF-16. Loss of EAK-7 activity promotes diapause and longevity in a DAF-16/FoxO-dependent manner. Whereas akt-1 mutation activates DAF-16/FoxO by promoting its translocation from the cytoplasm to the nucleus, eak-7 mutation increases nuclear DAF-16/FoxO activity without influencing DAF-16/FoxO subcellular localization. Thus, EAK-7 and AKT-1 inhibit DAF-16/FoxO activity via distinct mechanisms. Our results implicate EAK-7 as a FoxO regulator and highlight the biological impact of a regulatory pathway that governs the activity of nuclear FoxO without altering its subcellular location.
Collapse
Affiliation(s)
- Hena Alam
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Setaria cervi dual specific phosphatase: characterization and its effect on eosinophil degranulation. Parasitology 2009; 136:895-904. [PMID: 19523248 DOI: 10.1017/s0031182009006271] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Setaria cervi, a bovine filarial parasite contains significant acid phosphatase (AcP) activity in its various life stages. Two forms of AcP were separated from somatic extract of adult female parasite using cation exchange, gel filtration and concavalin affinity chromatography. One form having a molecular mass of 79 kDa was characterized as dual specific protein tyrosine phosphatase (ScDSP) based on substrate specificity and inhibition studies. With various substrates tested, it showed significant activity in the order of phospho-L-tyrosine>pNPP>ADP>phospho-L-serine. Inhibition by orthovanadate, fluoride, molybdate, and zinc ions further confirms protein tyrosine phosphatase nature of the enzyme. Km and Vmax determined with various substrates were found to be 16.66 mM, 25.0 microM/ml/min with pNPP; 20.0 mM, 40.0 microM/ml/min with phospho-L-tyrosine and 27.0 mM, 25.0 microM/ml/min with phospho-L-serine. KI with pNPP and sodium orthovanadate (IC50 33.0 microM) was calculated to be 50.0 mM. Inhibition with pHMB, silver nitrate, DEPC and EDAC suggested the presence of cysteine, histidine and carboxylate residues at its active site. Cross-reactivity with W. bancrofti-infected sera was demonstrated by Western blotting. ScDSP showed elevated levels of IgE in chronic filarial sera using ELISA. Under in vitro conditions, ScDSP resulted in increased effector function of human eosinophils when stimulated by IgG, which showed a further decrease with increasing enzyme concentration. Results presented here suggest that S. cervi DSP should be further studied to determine its role in pathogenesis and the persistence of filarial parasite.
Collapse
|
22
|
Lee SJ, Kenyon C. Regulation of the longevity response to temperature by thermosensory neurons in Caenorhabditis elegans. Curr Biol 2009; 19:715-22. [PMID: 19375320 DOI: 10.1016/j.cub.2009.03.041] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/16/2009] [Accepted: 03/17/2009] [Indexed: 12/16/2022]
Abstract
BACKGROUND Many ectotherms, including C. elegans, have shorter life spans at high temperature than at low temperature. High temperature is generally thought to increase the "rate of living" simply by increasing chemical reaction rates. In this study, we questioned this view and asked whether the temperature dependence of life span is subject to active regulation. RESULTS We show that thermosensory neurons play a regulatory role in the temperature dependence of life span. Surprisingly, inhibiting the function of thermosensory neurons by mutation or laser ablation causes animals to have even shorter life spans at warm temperature. Thermosensory mutations shorten life span by decreasing expression of daf-9, a gene required for the synthesis of ligands that inhibit the DAF-12, a nuclear hormone receptor. The short life span of thermosensory mutants at warm temperature is completely suppressed by a daf-12(-) mutation. CONCLUSIONS Our data suggest that thermosensory neurons affect life span at warm temperature by changing the activity of a steroid-signaling pathway that affects longevity. We propose that this thermosensory system allows C. elegans to reduce the effect that warm temperature would otherwise have on processes that affect aging, something that warm-blooded animals do by controlling temperature itself.
Collapse
Affiliation(s)
- Seung-Jae Lee
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA 94158, USA
| | | |
Collapse
|
23
|
Kleemann G, Jia L, Emmons SW. Regulation of Caenorhabditis elegans male mate searching behavior by the nuclear receptor DAF-12. Genetics 2008; 180:2111-22. [PMID: 18854588 PMCID: PMC2600945 DOI: 10.1534/genetics.108.093773] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2008] [Accepted: 10/11/2008] [Indexed: 12/19/2022] Open
Abstract
Coordination of animal behavior with reproductive status is often achieved through elaboration of hormones by the gonad. In the nematode Caenorhabditis elegans, adult males explore their environment to locate mates. Mate searching is regulated by presence of mates, nutritional status, and a signal from the gonad. Here we show that the gonadal signal acts via the nuclear receptor DAF-12, a protein known to regulate several C. elegans life-history traits. DAF-12 has both activational and organizational functions to stimulate exploratory behavior and acts downstream of the gonadal signal, outside of the gonad. DAF-12 acts upstream of sensory input from mating partners and physiological signals indicating nutritional status. Mate searching was rescued in germ-line ablated animals, but not if both germ line and somatic gonad were ablated, by a precursor of the DAF-12 ligand, dafachronic acid (DA). The results are interpreted to suggest that the germ line produces a DA precursor that is converted to DA outside of the germ line, possibly in the somatic gonad. As it does in other pathways in which it functions, in regulation of male mate searching behavior DAF-12 acts at a choice point between alternatives favoring reproduction (mate searching) vs. survival (remaining on food).
Collapse
Affiliation(s)
- Gunnar Kleemann
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | |
Collapse
|
24
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
25
|
Magner DB, Antebi A. Caenorhabditis elegans nuclear receptors: insights into life traits. Trends Endocrinol Metab 2008; 19:153-60. [PMID: 18406164 PMCID: PMC2744080 DOI: 10.1016/j.tem.2008.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 02/13/2008] [Accepted: 02/20/2008] [Indexed: 10/22/2022]
Abstract
Nuclear receptors are a class of hormone-gated transcription factors found in metazoans that regulate global changes in gene expression when bound to their cognate ligands. Despite species diversification, nuclear receptors function similarly across taxa, having fundamental roles in detecting intrinsic and environmental signals, and subsequently in coordinating transcriptional cascades that direct reproduction, development, metabolism and homeostasis. These endocrine receptors function in vivo in part as molecular switches and timers that regulate transcriptional cascades. Several Caenorhabditis elegans nuclear receptors integrate intrinsic and extrinsic signals to regulate the dauer diapause and longevity, molting, and heterochronic circuits of development, and are comparable to similar in vivo endocrine regulated processes in other animals.
Collapse
Affiliation(s)
| | - Adam Antebi
- Corresponding author: Antebi, A. (), Tel: 713-798-6661; Fax: 713-798-4161
| |
Collapse
|
26
|
Patel DS, Fang LL, Svy DK, Ruvkun G, Li W. Genetic identification of HSD-1, a conserved steroidogenic enzyme that directs larval development inCaenorhabditis elegans. Development 2008; 135:2239-49. [DOI: 10.1242/dev.016972] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
In C. elegans, steroid hormones function in conjunction with insulin/IGF-1-like signaling in promoting reproductive development over entry into the diapausal dauer stage. The NCR-1 and -2 (NPC1-related) intracellular cholesterol transporters function redundantly in preventing dauer arrest,presumably by regulating the availability of substrates for steroid hormone synthesis. We have identified hsd-1 as a new component of this cholesterol trafficking/processing pathway, using an ncr-1 enhancer screen. HSD-1 is orthologous to 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerases(3β-HSDs), which are key steroidogenic enzymes in vertebrates, and is exclusively expressed in two neuron-like XXX cells that are crucial in preventing dauer arrest, suggesting that it is involved in biosynthesis of dauer-preventing steroid hormones. The hsd-1 null mutant displays defects in inhibiting dauer arrest: it forms dauers in the deletion mutant backgrounds of ncr-1 or daf-28/insulin; as a single mutant,it is hypersensitive to dauer pheromone. We found that hsd-1 defects can be rescued by feeding mutant animals with several steroid intermediates that are either downstream of or in parallel to the 3β-HSD function in the dafachronic acid biosynthetic pathway, suggesting that HSD-1 functions as a 3β-HSD. Interestingly, sterols that rescued hsd-1 defects also bypassed the need for the NCR-1 and/or -2 functions, suggesting that HSD-1-mediated steroid hormone production is an important functional output of the NCR transporters. Finally, we found that the HSD-1-mediated signal activates insulin/IGF-I signaling in a cell non-autonomous fashion, suggesting a novel mechanism for how these two endocrine pathways intersect in directing development.
Collapse
Affiliation(s)
- Dhaval S. Patel
- Department of Biological Structure, University of Washington, Seattle, WA,USA
| | - Lily L. Fang
- Department of Biological Structure, University of Washington, Seattle, WA,USA
| | - Danika K. Svy
- Department of Biological Structure, University of Washington, Seattle, WA,USA
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA,USA
| | - Weiqing Li
- Department of Biological Structure, University of Washington, Seattle, WA,USA
| |
Collapse
|
27
|
Insulin-like signaling negatively regulates muscle arm extension through DAF-12 in Caenorhabditis elegans. Dev Biol 2008; 318:153-61. [PMID: 18436204 DOI: 10.1016/j.ydbio.2008.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2008] [Revised: 03/10/2008] [Accepted: 03/11/2008] [Indexed: 11/18/2022]
Abstract
The body wall muscles (BWMs) of nematodes are connected to motor axons by muscle membrane extensions called muscle arms. To better understand how muscle arm extension is regulated, we screened conserved receptor tyrosine kinases for muscle arm defects in Caenorhabditis elegans. We discovered that mutations in daf-2, which encodes the only insulin-like receptor tyrosine kinase, confer a supernumerary muscle arm (Sna) phenotype. The Sna phenotype of daf-2 mutants is suppressed by loss-of-function in the canonical downstream FOXO-family transcription factor DAF-16 in either the muscles or the intestine, demonstrating that insulin-like signaling can regulate muscle arm extension non-autonomously. Furthermore, supernumerary arm extension requires the B isoform of the down-stream DAF-12 nuclear hormone receptor, which lacks the DNA-binding domain, but retains the ligand-binding domain. daf-2 regulates many processes in C. elegans including entry into dauer, which is a diapause-like state that facilitates survival of harsh environmental conditions. We found that wild-type dauers are also Sna. Unlike other changes associated with dauer, however, the Sna phenotype of dauers persists in recovered adults. Finally, disruption of a TGF-beta pathway that regulates dauer formation in parallel to the insulin-like pathway also confers the Sna phenotype. We conclude that supernumerary muscle arms are a novel dauer-specific modification that may facilitate some aspect of dauer behavior.
Collapse
|
28
|
Zhang Y, Xu J, Puscau C, Kim Y, Wang X, Alam H, Hu PJ. Caenorhabditis elegans EAK-3 inhibits dauer arrest via nonautonomous regulation of nuclear DAF-16/FoxO activity. Dev Biol 2008; 315:290-302. [PMID: 18241854 DOI: 10.1016/j.ydbio.2007.12.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 11/30/2022]
Abstract
Insulin regulates development, metabolism, and lifespan via a conserved PI3K/Akt pathway that promotes cytoplasmic sequestration of FoxO transcription factors. The regulation of nuclear FoxO is poorly understood. In the nematode Caenorhabditis elegans, insulin-like signaling functions in larvae to inhibit dauer arrest and acts during adulthood to regulate lifespan. In a screen for genes that modulate C. elegans insulin-like signaling, we identified eak-3, which encodes a novel protein that is specifically expressed in the two endocrine XXX cells. The dauer arrest phenotype of eak-3 mutants is fully suppressed by mutations in daf-16/FoxO, which encodes the major target of C. elegans insulin-like signaling, and daf-12, which encodes a nuclear receptor regulated by steroid hormones known as dafachronic acids. eak-3 mutation does not affect DAF-16/FoxO subcellular localization but enhances expression of the direct DAF-16/FoxO target sod-3 in a daf-16/FoxO- and daf-12-dependent manner. eak-3 mutants have normal lifespans, suggesting that EAK-3 decouples insulin-like regulation of development and longevity. We propose that EAK-3 activity in the XXX cells promotes the synthesis and/or secretion of a hormone that acts in parallel to AKT-1 to inhibit the expression of DAF-16/FoxO target genes. Similar hormonal pathways may regulate FoxO target gene expression in mammals.
Collapse
Affiliation(s)
- Yanmei Zhang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Maruyama R, Velarde NV, Klancer R, Gordon S, Kadandale P, Parry JM, Hang JS, Rubin J, Stewart-Michaelis A, Schweinsberg P, Grant BD, Piano F, Sugimoto A, Singson A. EGG-3 regulates cell-surface and cortex rearrangements during egg activation in Caenorhabditis elegans. Curr Biol 2007; 17:1555-60. [PMID: 17869112 DOI: 10.1016/j.cub.2007.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 01/20/2023]
Abstract
Fertilization triggers egg activation and converts the egg into a developing embryo. The events of this egg-to-embryo transition typically include the resumption of meiosis, the reorganization of the cortical actin cytoskeleton, and the remodeling of the oocyte surface. The factors that regulate sperm-dependent egg-activation events are not well understood. Caenorhabditis elegans EGG-3, a member of the protein tyrosine phosphatase-like (PTPL) family, is essential for regulating cell-surface and cortex rearrangements during egg activation in response to sperm entry. Although fertilization occurred normally in egg-3 mutants, the polarized dispersal of F-actin is altered, a chitin eggshell is not formed, and no polar bodies are produced. EGG-3 is associated with the oocyte plasma membrane in a pattern that is similar to CHS-1 and MBK-2. CHS-1 is required for eggshell deposition, whereas MBK-2 is required for the degradation of maternal proteins during the egg-to-embryo transition. The localization of CHS-1 and EGG-3 are interdependent and both genes were required for the proper localization of MBK-2 in oocytes. Therefore, EGG-3 plays a central role in egg activation by influencing polarized F-actin dynamics and the localization or activity of molecules that are directly involved in executing the egg-to-embryo transition.
Collapse
Affiliation(s)
- Rika Maruyama
- Waksman Institute, Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Jensen VL, Albert PS, Riddle DL. Caenorhabditis elegans SDF-9 enhances insulin/insulin-like signaling through interaction with DAF-2. Genetics 2007; 177:661-6. [PMID: 17660545 PMCID: PMC2013707 DOI: 10.1534/genetics.107.076703] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
SDF-9 is a modulator of Caenorhabditis elegans insulin/IGF-1 signaling that may interact directly with the DAF-2 receptor. SDF-9 is a tyrosine phosphatase-like protein that, when mutated, enhances many partial loss-of-function mutants in the dauer pathway except for the temperature-sensitive mutant daf-2(m41). We propose that SDF-9 stabilizes the active phosphorylated state of DAF-2 or acts as an adaptor protein to enhance insulin-like signaling.
Collapse
Affiliation(s)
- Victor L Jensen
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | |
Collapse
|
31
|
Gerisch B, Rottiers V, Li D, Motola DL, Cummins CL, Lehrach H, Mangelsdorf DJ, Antebi A. A bile acid-like steroid modulates Caenorhabditis elegans lifespan through nuclear receptor signaling. Proc Natl Acad Sci U S A 2007; 104:5014-9. [PMID: 17360327 PMCID: PMC1821127 DOI: 10.1073/pnas.0700847104] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Broad aspects of Caenorhabditis elegans life history, including larval developmental timing, arrest at the dauer diapause, and longevity, are regulated by the nuclear receptor DAF-12. Endogenous DAF-12 ligands are 3-keto bile acid-like steroids, called dafachronic acids, which rescue larval defects of hormone-deficient mutants, such as daf-9/cytochrome P450 and daf-36/Rieske oxygenase, and activate DAF-12. Here we examined the effect of dafachronic acid on pathways controlling lifespan. Dafachronic acid supplementation shortened the lifespan of long-lived daf-9 mutants and abolished their stress resistance, indicating that the ligand is "proaging" in response to signals from the dauer pathways. However, the ligand extended the lifespan of germ-line ablated daf-9 and daf-36 mutants, showing that it is "antiaging" in the germ-line longevity pathway. Thus, dafachronic acid regulates C. elegans lifespan according to signaling state. These studies provide key evidence that bile acid-like steroids modulate aging in animals.
Collapse
Affiliation(s)
- Birgit Gerisch
- *Max-Planck-Institut fuer Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, Germany
| | - Veerle Rottiers
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
| | - Dongling Li
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
| | - Daniel L. Motola
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Carolyn L. Cummins
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Hans Lehrach
- *Max-Planck-Institut fuer Molekulare Genetik, Ihnestrasse 73, 14195 Berlin, Germany
| | - David J. Mangelsdorf
- Department of Pharmacology, Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Room ND9.124A, 6001 Forest Park, Dallas, TX 75390
| | - Adam Antebi
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, TX 77030; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
32
|
Bumbarger DJ, Crum J, Ellisman MH, Baldwin JG. Three-dimensional reconstruction of the nose epidermal cells in the microbial feeding nematode, Acrobeles complexus (Nematoda: Rhabditida). J Morphol 2007; 267:1257-72. [PMID: 16710857 DOI: 10.1002/jmor.10456] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The epidermis of the anterior end (nose) plays an important role in the evolution, development, and functional feeding morphology in nematodes, but information on this complex organ system is limited. Here, we produce a 3D model of 13 of the cells making up this organ system reconstructed from serial transmission electron micrographs of the microbial feeding nematode, Acrobeles complexus. Nose epidermal cells were found to be broadly similar to those of the distantly related model organism Caenorhabditis elegans in the number and arrangement of nuclei in these largely syncytial cells; this similarity demonstrates striking evolutionary conservation that allows for robust statements of homology between the taxa. Examining details of cell shape, however, revealed surprisingly complex subcellular specialization, which differed markedly from C. elegans in the number and arrangement of cell processes. Anterior toroid processes of the anterior arcade, posterior arcade, and HypB syncytia form a nested complex at the base of the labial probolae. Anterior toroid processes of HypC and the inner labial socket cells are associated with the base of the cephalic probolae and radial ridge processes. Extracellular filaments (tendon organs) and radiating cytoskeletal filaments of the posterior arcade syncytium form a connection between the body wall muscle cells and the pharynx. An epidermal cell with no known homolog in other nematodes is identified. Findings provide a basis to propose hypotheses related to the development and evolutionary origin of specialized feeding appendages (probolae) in the Cephalobinae (including Acrobeles), and hypotheses of homology are revised for epidermal cells in the nose of the closely related and primarily plant parasitic group, Tylenchida.
Collapse
Affiliation(s)
- Daniel J Bumbarger
- Department of Nematology, University of California, Riverside, California 92521, USA.
| | | | | | | |
Collapse
|
33
|
Narbonne P, Roy R. Regulation of germline stem cell proliferation downstream of nutrient sensing. Cell Div 2006; 1:29. [PMID: 17150096 PMCID: PMC1716158 DOI: 10.1186/1747-1028-1-29] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 12/06/2006] [Indexed: 11/10/2022] Open
Abstract
Stem cells have recently attracted significant attention largely due to their potential therapeutic properties, but also because of their role in tumorigenesis and their resemblance, in many aspects, to cancerous cells. Understanding how stem cells are regulated, namely with respect to the control of their proliferation and differentiation within a functional organism, is thus primordial to safely profit from their therapeutic benefits. Here, we review recent advances in the understanding of germline stem cell proliferation control by factors that respond to the nutritional status and/or insulin signaling, through studies performed in C. elegans and Drosophila. Together, these data uncover some shared fundamental features that underlie the central control of cellular proliferation within a target stem cell population in an organism. These features may indeed be conserved in higher organisms and may apply to various other stem cell populations.
Collapse
Affiliation(s)
- Patrick Narbonne
- McGill University, Department of Biology, 1205 Dr. Penfield Ave, Montréal, Québec, H3A 1B1, Canada
| | - Richard Roy
- McGill University, Department of Biology, 1205 Dr. Penfield Ave, Montréal, Québec, H3A 1B1, Canada
| |
Collapse
|
34
|
Hall DH, Lints R, Altun Z. Nematode neurons: anatomy and anatomical methods in Caenorhabditis elegans. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2006; 69:1-35. [PMID: 16492460 DOI: 10.1016/s0074-7742(05)69001-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- David H Hall
- Center for C. elegans Anatomy, Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | |
Collapse
|
35
|
Hu PJ, Xu J, Ruvkun G. Two membrane-associated tyrosine phosphatase homologs potentiate C. elegans AKT-1/PKB signaling. PLoS Genet 2006; 2:e99. [PMID: 16839187 PMCID: PMC1487177 DOI: 10.1371/journal.pgen.0020099] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Accepted: 05/18/2006] [Indexed: 11/19/2022] Open
Abstract
Akt/protein kinase B (PKB) functions in conserved signaling cascades that regulate growth and metabolism. In humans, Akt/PKB is dysregulated in diabetes and cancer; in Caenorhabditis elegans, Akt/PKB functions in an insulin-like signaling pathway to regulate larval development. To identify molecules that modulate C. elegans Akt/PKB signaling, we performed a genetic screen for enhancers of the akt-1 mutant phenotype (eak). We report the analysis of three eak genes. eak-6 and eak-5/sdf-9 encode protein tyrosine phosphatase homologs; eak-4 encodes a novel protein with an N-myristoylation signal. All three genes are expressed primarily in the two endocrine XXX cells, and their predicted gene products localize to the plasma membrane. Genetic evidence indicates that these proteins function in parallel to AKT-1 to inhibit the FoxO transcription factor DAF-16. These results define two membrane-associated protein tyrosine phosphatase homologs that may potentiate C. elegans Akt/PKB signaling by cell autonomous and cell nonautonomous mechanisms. Similar molecules may modulate Akt/PKB signaling in human endocrine tissues. Insulin and insulin-like growth factor (IGF) signaling regulates critical physiological processes in a wide variety of multicellular organisms. In humans, dysregulation of IGF signaling underlies the pathogenesis of cancer and diabetes. In the nematode Caenorhabditis elegans, the DAF-2 insulin-like pathway regulates development, metabolism, and longevity. All known components of DAF-2 insulin-like signaling are structurally and functionally conserved in mammals, suggesting that insights gained from studying this pathway in C. elegans may shed light on pathogenetic mechanisms underlying cancer and diabetes. In this study, the authors describe a genetic screen designed to identify novel components of DAF-2 insulin-like signaling in C. elegans. They have characterized three genes that may encode parts of a novel multimolecular membrane-associated complex that potentiates DAF-2 insulin-like signaling in two neuroendocrine cells, the XXX cells. Two of these genes encode proteins similar to mammalian protein tyrosine phosphatases. These results suggest that protein tyrosine phosphatase–like molecules may transduce IGF signals in mammalian endocrine cells and highlight the role of endocrine circuits in the pathogenesis of cancer and diabetes.
Collapse
Affiliation(s)
- Patrick J Hu
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Division of Hematology/Oncology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jinling Xu
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Gary Ruvkun
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
36
|
Rottiers V, Motola DL, Gerisch B, Cummins CL, Nishiwaki K, Mangelsdorf DJ, Antebi A. Hormonal Control of C. elegans Dauer Formation and Life Span by a Rieske-like Oxygenase. Dev Cell 2006; 10:473-82. [PMID: 16563875 DOI: 10.1016/j.devcel.2006.02.008] [Citation(s) in RCA: 149] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/30/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
C. elegans diapause, gonadal outgrowth, and life span are regulated by a lipophilic hormone, which serves as a ligand to the nuclear hormone receptor DAF-12. A key step in hormone production is catalyzed by the CYP450 DAF-9, but the extent of the biosynthetic pathway is unknown. Here, we identify a conserved Rieske-like oxygenase, DAF-36, as a component in hormone metabolism. Mutants display larval developmental and adult aging phenotypes, as well as patterns of epistasis similar to that of daf-9. Larval phenotypes are potently reversed by crude lipid extracts, 7-dehydrocholesterol, and a recently identified DAF-12 sterol ligand, suggesting that DAF-36 works early in the hormone biosynthetic pathway. DAF-36 is expressed primarily within the intestine, a major organ of metabolic and endocrine control, distinct from DAF-9. These results imply that C. elegans hormone production has multiple steps and is distributed, and that it may provide one way that tissues register their current physiological state during organismal commitments.
Collapse
Affiliation(s)
- Veerle Rottiers
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Room M320, One Baylor Plaza, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Motola DL, Cummins CL, Rottiers V, Sharma KK, Li T, Li Y, Suino-Powell K, Xu HE, Auchus RJ, Antebi A, Mangelsdorf DJ. Identification of ligands for DAF-12 that govern dauer formation and reproduction in C. elegans. Cell 2006; 124:1209-23. [PMID: 16529801 DOI: 10.1016/j.cell.2006.01.037] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2005] [Revised: 01/24/2006] [Accepted: 01/31/2006] [Indexed: 11/22/2022]
Abstract
In response to environmental and dietary cues, the C. elegans orphan nuclear receptor, DAF-12, regulates dauer diapause, reproductive development, fat metabolism, and life span. Despite strong evidence for hormonal control, the identification of the DAF-12 ligand has remained elusive. In this work, we identified two distinct 3-keto-cholestenoic acid metabolites of DAF-9, a cytochrome P450 involved in hormone production, that function as ligands for DAF-12. At nanomolar concentrations, these steroidal ligands (called dafachronic acids) bind and transactivate DAF-12 and rescue the hormone deficiency of daf-9 mutants. Interestingly, DAF-9 has a biochemical activity similar to mammalian CYP27A1 catalyzing addition of a terminal acid to the side chain of sterol metabolites. Together, these results define the first steroid hormones in nematodes as ligands for an invertebrate orphan nuclear receptor and demonstrate that steroidal regulation of reproduction, from biology to molecular mechanism, is conserved from worms to humans.
Collapse
Affiliation(s)
- Daniel L Motola
- Howard Hughes Medical Institute and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Yabe T, Suzuki N, Furukawa T, Ishihara T, Katsura I. Multidrug resistance-associated protein MRP-1 regulates dauer diapause by its export activity in Caenorhabditis elegans. Development 2005; 132:3197-207. [PMID: 15983401 DOI: 10.1242/dev.01909] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Multidrug resistance-associated proteins (MRPs), when overexpressed, confer drug resistance to cancer cells by exporting anti-cancer agents through the cell membrane, but their role in animal development has not been elucidated. Here we show that an MRP homolog regulates larval development in the nematode Caenorhabditis elegans. C. elegans forms a special third-stage larva called a dauer larva under conditions inappropriate for growth. By contrast, we found that mutants in mrp-1, an MRP homolog gene, form dauer larvae even under conditions appropriate for growth, in the background of certain mutations that partially block the insulin signaling pathway. A functional mrp-1::GFP gene was shown to be expressed in many tissues, and the wild-type mrp-1 gene must be expressed in multiple tissues for a wild-type phenotype. Human MRP1 could substitute for C. elegans MRP-1 in dauer larva regulation, and an inhibitor of the human MRP1 transport activity impaired this function, showing that export activity is required for normal dauer larva regulation. Epistasis studies revealed that MRP-1 acts in neither the TGF-beta nor the cGMP signaling pathway. mrp-1 mutations enhanced the dauer-constitutive phenotype of mutants in the insulin signaling pathway more strongly than that in other pathways. Thus, MRP-1, through its export activity, supports the induction of the normal (non-dauer) life cycle by the insulin signaling pathway.
Collapse
Affiliation(s)
- Tomoko Yabe
- Structural Biology Center, National Institute of Genetics, and Department of Genetics, The Graduate University for Advanced Studies, Mishima 411-8540, Japan
| | | | | | | | | |
Collapse
|
39
|
Entchev EV, Kurzchalia TV. Requirement of sterols in the life cycle of the nematode Caenorhabditis elegans. Semin Cell Dev Biol 2005; 16:175-82. [PMID: 15797828 DOI: 10.1016/j.semcdb.2005.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nematode Caenorhabditis elegans represents an excellent model for studying many aspects of sterol function on the level of a whole organism. Recent studies show that especially two processes in the life cycle of the worm, dauer larva formation and molting, depend on sterols. In both cases, cholesterol or its derivatives seem to act as hormones rather than being structural components of the membrane. Investigations on C. elegans could provide information on the etiology of human diseases that display defects in the transport or metabolism of sterols.
Collapse
Affiliation(s)
- Eugeni V Entchev
- MPI for Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | |
Collapse
|
40
|
Kubota Y, Kuroki R, Nishiwaki K. A fibulin-1 homolog interacts with an ADAM protease that controls cell migration in C. elegans. Curr Biol 2005; 14:2011-8. [PMID: 15556863 DOI: 10.1016/j.cub.2004.10.047] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 09/22/2004] [Accepted: 09/23/2004] [Indexed: 01/05/2023]
Abstract
ADAM (a disintegrin and metalloprotease) family proteins play important roles in animal development and pathogenesis. In C. elegans, a secreted ADAM protein, MIG-17, acts from outside the gonad to control the migration of gonadal distal tip cells (DTCs) that promote gonad morphogenesis. Here, we report that dominant mutations in the fbl-1 gene encoding fibulin-1 spliced isoforms, which are calcium binding extracellular matrix proteins, bypass the requirement for MIG-17 activity in directing DTC migration. Specific amino acid substitutions in the third EGF-like motif of one of the two isoforms, FBL-1C, which corresponds to mammalian fibulin-1C, suppress mig-17 mutations. FBL-1C is synthesized in the gut cells and localizes strongly to the gonadal basement membrane in a MIG-17-dependent manner. Localization of mutant FBL-1C is weaker than that of the wild-type protein and is insensitive to MIG-17 activity, suggesting that it gains a novel function that compensates for its reduced molecular density. We propose that proteolysis by MIG-17 recruits FBL-1C to the gonadal basement membrane, where it is required for the guidance of DTCs, and that mutant FBL-1C acts in a manner that mimics the downstream events of MIG-17-mediated proteolysis.
Collapse
Affiliation(s)
- Yukihiko Kubota
- RIKEN Center for Developmental Biology, Chuo-ku, Kobe 650-0047, Japan
| | | | | |
Collapse
|
41
|
Shostak Y, Van Gilst MR, Antebi A, Yamamoto KR. Identification of C. elegans DAF-12-binding sites, response elements, and target genes. Genes Dev 2004; 18:2529-44. [PMID: 15489294 PMCID: PMC529540 DOI: 10.1101/gad.1218504] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Intracellular receptor DAF-12 regulates dauer formation and developmental age and affects Caenorhabditis elegans lifespan. Genetic analyses place DAF-12 at the convergence of several signal transduction pathways; however, the downstream effectors and the molecular basis for the receptor's multiple physiological outputs are unknown. Beginning with C. elegans genomic DNA, we devised a procedure for multiple rounds of selection and amplification that yielded fragments bearing DAF-12-binding sites. These genomic fragments mediated DAF-12-dependent transcriptional regulation both in Saccharomyces cerevisiae and in C. elegans; that is, they served as functional DAF-12 response elements. We determined that most of the genomic fragments that displayed DAF-12 response element activity in yeast were linked to genes that were regulated by DAF-12 in C. elegans; indeed, the response element-containing fragments typically resided within clusters of DAF-12-regulated genes. DAF-12 target gene regulation was developmental program and stage specific, potentially predicting a fit of these targets into regulatory networks governing aspects of C. elegans reproductive development and dauer formation.
Collapse
Affiliation(s)
- Yuriy Shostak
- Program in Biochemistry and Molecular Biology, University of California, San Francisco, California 94143-2280, USA
| | | | | | | |
Collapse
|
42
|
Li J, Brown G, Ailion M, Lee S, Thomas JH. NCR-1 and NCR-2, theC. eleganshomologs of the human Niemann-Pick type C1 disease protein, function upstream of DAF-9 in the dauer formation pathways. Development 2004; 131:5741-52. [PMID: 15509773 DOI: 10.1242/dev.01408] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mutations in the human NPC1 gene cause most cases of Niemann-Pick type C(NP-C) disease, a fatal autosomal recessive neurodegenerative disorder. NPC1 is implicated in intracellular trafficking of cholesterol and glycolipids, but its exact function remains unclear. The C. elegans genome contains two homologs of NPC1, ncr-1 and ncr-2, and an ncr-2;ncr-1 double deletion mutant forms dauer larvae constitutively (Daf-c). We have analyzed the phenotypes of ncr single and double mutants in detail, and determined the ncr gene expression patterns. We find that the ncr genes function in a hormonal branch of the dauer formation pathway upstream of daf-9 and daf-12, which encode a cytochrome P450 enzyme and a nuclear hormone receptor, respectively. ncr-1 is expressed broadly in tissues with high levels of cholesterol, whereas expression of ncr-2 is restricted to a few cells. Both Ncr genes are expressed in the XXX cells, which are implicated in regulating dauer formation via the daf-9 pathway. Only the ncr-1 mutant is hypersensitive to cholesterol deprivation and to progesterone, an inhibitor of intracellular cholesterol trafficking. Our results support the hypothesis that ncr-1 and ncr-2 are involved in intracellular cholesterol processing in C. elegans, and that a sterol-signaling defect is responsible for the Daf-c phenotype of the ncr-2; ncr-1 mutant.
Collapse
Affiliation(s)
- Jie Li
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
43
|
Ludewig AH, Kober-Eisermann C, Weitzel C, Bethke A, Neubert K, Gerisch B, Hutter H, Antebi A. A novel nuclear receptor/coregulator complex controls C. elegans lipid metabolism, larval development, and aging. Genes Dev 2004; 18:2120-33. [PMID: 15314028 PMCID: PMC515290 DOI: 10.1101/gad.312604] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Environmental cues transduced by an endocrine network converge on Caenorhabditis elegans nuclear receptor DAF-12 to mediate arrest at dauer diapause or continuous larval development. In adults, DAF-12 selects long-lived or short-lived modes. How these organismal choices are molecularly specified is unknown. Here we show that coregulator DIN-1 and DAF-12 physically and genetically interact to instruct organismal fates. Homologous to human corepressor SHARP, DIN-1 comes in long (L) and short (S) isoforms, which are nuclear localized but have distinct functions. DIN-1L has embryonic and larval developmental roles. DIN-1S, along with DAF-12, regulates lipid metabolism, larval stage-specific programs, diapause, and longevity. Epistasis experiments reveal that din-1S acts in the dauer pathways downstream of lipophilic hormone, insulin/IGF, and TGFbeta signaling, the same point as daf-12. We propose that the DIN-1S/DAF-12 complex serves as a molecular switch that implements slow life history alternatives in response to diminished hormonal signals.
Collapse
|
44
|
Mak HY, Ruvkun G. Intercellular signaling of reproductive development by theC. elegansDAF-9 cytochrome P450. Development 2004; 131:1777-86. [PMID: 15084462 DOI: 10.1242/dev.01069] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Parallel pathways control C. elegans reproductive development in response to environmental cues. Attenuation of daf-2 insulin-like or daf-7 TGFβ-like signaling pathways cause developmental arrest at the stress resistant and long-lived dauer stage. Loss-of-function mutations in the cytochrome P450 gene daf-9 also cause dauer arrest and defects in cell migration. A rescuing daf-9::GFP fusion gene driven by the daf-9 promoter is expressed in two head cells at all stages, in the hypodermis from mid-second larval stage (L2) to the fourth larval stage (L4),and in the spermatheca of the adult hermaphrodite. Although the level of daf-9::GFP expression in the head cells and spermatheca is constant,hypodermal daf-9::GFP expression is modulated by multiple inputs. In particular, daf-9::GFP expression in the hypodermis is absolutely dependent on daf-12, the nuclear receptor that is negatively regulated by daf-9 gene activity, suggesting feedback control between daf-9 and daf-12 in this tissue. daf-9 expression exclusively in the hypodermis is sufficient to restore reproductive development in daf-9 mutant animals, suggesting that daf-9functions in a cell nonautonomous manner. Furthermore, constitutive expression of daf-9 in the hypodermis suppresses dauer arrest of daf-7mutant animals and inhibits dauer remodelling of some tissues in daf-2 mutant animals. Thus, daf-9 may integrate outputs from daf-2 and daf-7 signaling pathways to relay neuroendocrine signals through synthesis of a lipophilic hormone.
Collapse
Affiliation(s)
- Ho Yi Mak
- Department of Molecular Biology, Massachusetts General Hospital and Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
45
|
Gerisch B, Antebi A. Hormonal signals produced by DAF-9/cytochrome P450 regulate C. elegans dauer diapause in response to environmental cues. Development 2004; 131:1765-76. [PMID: 15084461 DOI: 10.1242/dev.01068] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In response to the environment, the nematode C. elegans must choose between arrest at a long-lived alternate third larval stage, the dauer diapause, or reproductive development. This decision may ultimately be mediated by daf-9, a cytochrome P450 related to steroidogenic hydroxylases and its cognate nuclear receptor daf-12, implying organism-wide coordination by lipophilic hormones. Accordingly, here we show that daf-9(+) works cell non-autonomously to bypass diapause, and promote gonadal outgrowth. Among daf-9-expressing cells, the hypodermis is most visibly regulated by environmental inputs, including dietary cholesterol. On in reproductive growth, off in dauer, hypodermal daf-9 expression is strictly daf-12 dependent, suggesting feedback regulation. Expressing daf-9 constitutively in hypodermis rescues dauer phenotypes of daf-9, as well as insulin/IGF receptor and TGFbeta mutants, revealing that daf-9 is an important downstream point of control within the dauer circuits. This study illuminates how endocrine networks integrate environmental cues and transduce them into adaptive life history choices.
Collapse
Affiliation(s)
- Birgit Gerisch
- Max-Planck-Institut für Molekulare Genetik, Ihnestrasse 73, D-14195 Berlin, Germany
| | | |
Collapse
|
46
|
da Graca LS, Zimmerman KK, Mitchell MC, Kozhan-Gorodetska M, Sekiewicz K, Morales Y, Patterson GI. DAF-5 is a Ski oncoprotein homolog that functions in a neuronal TGF beta pathway to regulate C. elegans dauer development. Development 2003; 131:435-46. [PMID: 14681186 DOI: 10.1242/dev.00922] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An unconventional TGF beta superfamily pathway plays a crucial role in the decision between dauer diapause and reproductive growth. We have studied the daf-5 gene, which, along with the daf-3 Smad gene, is antagonized by upstream receptors and receptor-regulated Smads. We show that DAF-5 is a novel member of the Sno/Ski superfamily that binds to DAF-3 Smad, suggesting that DAF-5, like Sno/Ski, is a regulator of transcription in a TGF beta superfamily signaling pathway. However, we present evidence that DAF-5 is an unconventional Sno/Ski protein, because DAF-5 acts as a co-factor, rather than an antagonist, of a Smad protein. We show that expressing DAF-5 in the nervous system rescues a daf-5 mutant, whereas muscle or hypodermal expression does not. Previous work suggested that DAF-5 and DAF-3 function in pharyngeal muscle to regulate gene expression, but our analysis of regulation of a pharynx specific promoter suggests otherwise. We present a model in which DAF-5 and DAF-3 control the production or release of a hormone from the nervous system by either regulating the expression of biosynthetic genes or by altering the connectivity or the differentiated state of neurons.
Collapse
Affiliation(s)
- Li S da Graca
- Department of Biochemistry and Molecular Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | |
Collapse
|