1
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. Development 2024; 151:dev203111. [PMID: 39531377 PMCID: PMC11634032 DOI: 10.1242/dev.203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The Mediator complex plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising CDK8, Cyclin C (CycC), Med12 and Med13, serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes associated with mutations in CKM subunits, but the underlying mechanisms have remained unclear. Using Drosophila as a model, we generated transgenic strains to deplete individually or simultaneously the four CKM subunits in all possible combinations, uncovering unique phenotypes in the eyes and wings. Depletion of CDK8-CycC enhanced E2F1 target gene expression and promoted cell-cycle progression, whereas Med12-Med13 depletion had no significant impact on these processes. Instead, depleting Med12-Med13 altered the expression of ribosomal protein genes and fibrillarin, and reduced nascent protein synthesis, indicating a severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. These findings reveal distinct in vivo roles for CKM subunits, with Med12-Med13 disruption having a more pronounced effect on ribosome biogenesis and protein synthesis than CDK8-CycC loss.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yue Xing
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ye Niu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yanwu Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
2
|
Ciabrelli F, Atinbayeva N, Pane A, Iovino N. Epigenetic inheritance and gene expression regulation in early Drosophila embryos. EMBO Rep 2024; 25:4131-4152. [PMID: 39285248 PMCID: PMC11467379 DOI: 10.1038/s44319-024-00245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 08/21/2024] [Indexed: 10/12/2024] Open
Abstract
Precise spatiotemporal regulation of gene expression is of paramount importance for eukaryotic development. The maternal-to-zygotic transition (MZT) during early embryogenesis in Drosophila involves the gradual replacement of maternally contributed mRNAs and proteins by zygotic gene products. The zygotic genome is transcriptionally activated during the first 3 hours of development, in a process known as "zygotic genome activation" (ZGA), by the orchestrated activities of a few pioneer factors. Their decisive role during ZGA has been characterized in detail, whereas the contribution of chromatin factors to this process has been historically overlooked. In this review, we aim to summarize the current knowledge of how chromatin regulation impacts the first stages of Drosophila embryonic development. In particular, we will address the following questions: how chromatin factors affect ZGA and transcriptional silencing, and how genome architecture promotes the integration of these processes early during development. Remarkably, certain chromatin marks can be intergenerationally inherited, and their presence in the early embryo becomes critical for the regulation of gene expression at later stages. Finally, we speculate on the possible roles of these chromatin marks as carriers of epialleles during transgenerational epigenetic inheritance (TEI).
Collapse
Affiliation(s)
- Filippo Ciabrelli
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Nazerke Atinbayeva
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany
| | - Attilio Pane
- Institute of Biomedical Sciences/UFRJ, 21941902, Rio de Janeiro, Brazil
| | - Nicola Iovino
- Max Planck Institute of Immunobiology and Epigenetics, 79108, Freiburg im Breisgau, Germany.
| |
Collapse
|
3
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591924. [PMID: 38746212 PMCID: PMC11092604 DOI: 10.1101/2024.04.30.591924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Mediator complex, composed of about 30 conserved subunits, plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising Med12, Med13, CDK8, and CycC (Cyclin C), serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes of CDK8-CycC and Med12-Med13 mutations, yet the underlying mechanism has remained unknown. Here, using Drosophila as a model organism, we show that depleting CDK8-CycC enhances E2F1 target gene expression and promotes cell-cycle progression. Conversely, depletion of Med12-Med13 affects the expression of ribosomal protein genes and fibrillarin, indicating a more severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Moreover, we found that the stability of CDK8 and CycC relies on Med12 and Med13, with a mutually interdependent relationship between Med12 and Med13. Furthermore, CycC stability depends on the other three CKM subunits. These findings reveal distinct roles for CKM subunits in vivo , with Med12-Med13 disruption exerting a more pronounced impact on ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Significance The CDK8 kinase module (CKM), comprising CDK8, CycC, Med12, and Med13, is essential in the Mediator complex for RNA polymerase II-dependent transcription in eukaryotes. While expected to function jointly, CKM subunit mutations result in distinct phenotypes in Drosophila . This study investigates the mechanisms driving these differing effects. Our analysis reveals the role of Med12-Med13 pair in regulating ribosomal biogenesis and cellular growth, contrasting with the involvement of CDK8-CycC in E2F1-dependent cell-cycle progression. Additionally, an asymmetric interdependence in the stability of CDK8-CycC and Med12-Med13 was observed. CKM mutations or overexpression are associated with cancers and cardiovascular diseases. Our findings underscore the distinct impacts of CKM mutations on cellular growth and proliferation, advancing our understanding of their diverse consequences in vivo .
Collapse
|
4
|
Chen M, Gao E, Lin G, Shen J, Wang D. The transcription factor optomotor-blind restricts apterous expression through TrxG and PcG genes. Dev Biol 2023; 497:59-67. [PMID: 36907311 DOI: 10.1016/j.ydbio.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/20/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023]
Abstract
The establishment of body pattern is a fundamental process in developmental biology. In Drosophila, the wing disc is subdivided into dorsal (D) and ventral (V) compartments by the D/V boundary. The dorsal fate is adopted by expressing the selector gene apterous (ap). ap expression is regulated by three combinational cis-regulatory modules which are activated by EGFR pathway, Ap-Vg auto-regulatory and epigenetic mechanisms. Here, we found that the Tbx family transcription factor Optomotor-blind (Omb) restricted ap expression in the ventral compartment. Loss of omb induced autonomous initiation of ap expression in the middle third instar larvae in the ventral compartment. Oppositely, over-activation of omb inhibited ap in the medial pouch. All three enhancers apE, apDV and apP were upregulated in omb null mutants, indicating a combinational regulation of ap modulators. However, Omb affected ap expression neither by directly regulating EGFR signaling, nor via Vg regulation. Therefore, a genetic screen of epigenetic regulators, including the Trithorax group (TrxG) and Polycomb group (PcG) genes was performed. We found that knocking down the TrxG gene kohtalo (kto), domino (dom) or expressing the PcG gene grainy head (grh), the ectopic ap in omb mutants was repressed. The inhibition of apDV by kto knockdown and grh activation could contribute to ap repression. Moreover, Omb and the EGFR pathway are genetically parallel in ap regulation in the ventral compartment. Collectively, Omb is a repressive signal for ap expression in the ventral compartment, which requires TrxG and PcG genes.
Collapse
Affiliation(s)
- Min Chen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China; Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Erqing Gao
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangze Lin
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Jie Shen
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Dan Wang
- Department of Plant Biosecurity and MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, College of Plant Protection, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
5
|
Zaytseva O, Mitchell NC, Muckle D, Delandre C, Nie Z, Werner JK, Lis JT, Eyras E, Hannan RD, Levens DL, Marshall OJ, Quinn LM. Psi promotes Drosophila wing growth via direct transcriptional activation of cell cycle targets and repression of growth inhibitors. Development 2023; 150:286725. [PMID: 36692218 PMCID: PMC10110491 DOI: 10.1242/dev.201563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023]
Abstract
The first characterised FUSE Binding Protein family member, FUBP1, binds single-stranded DNA to activate MYC transcription. Psi, the sole FUBP protein in Drosophila, binds RNA to regulate P-element and mRNA splicing. Our previous work revealed pro-growth functions for Psi, which depend, in part, on transcriptional activation of Myc. Genome-wide functions for FUBP family proteins in transcriptional control remain obscure. Here, through the first genome-wide binding and expression profiles obtained for a FUBP family protein, we demonstrate that, in addition to being required to activate Myc to promote cell growth, Psi also directly binds and activates stg to couple growth and cell division. Thus, Psi knockdown results in reduced cell division in the wing imaginal disc. In addition to activating these pro-proliferative targets, Psi directly represses transcription of the growth inhibitor tolkin (tok, a metallopeptidase implicated in TGFβ signalling). We further demonstrate tok overexpression inhibits proliferation, while tok loss of function increases mitosis alone and suppresses impaired cell division caused by Psi knockdown. Thus, Psi orchestrates growth through concurrent transcriptional activation of the pro-proliferative genes Myc and stg, in combination with repression of the growth inhibitor tok.
Collapse
Affiliation(s)
- Olga Zaytseva
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Naomi C Mitchell
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Damien Muckle
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Caroline Delandre
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Zuqin Nie
- National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | | | - John T Lis
- Cornell University, Ithaca, NY 14850, USA
| | - Eduardo Eyras
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | - Ross D Hannan
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| | | | - Owen J Marshall
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania 7000, Australia
| | - Leonie M Quinn
- John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia
| |
Collapse
|
6
|
Regular Exercise in Drosophila Prevents Age-Related Cardiac Dysfunction Caused by High Fat and Heart-Specific Knockdown of skd. Int J Mol Sci 2023; 24:ijms24021216. [PMID: 36674733 PMCID: PMC9865808 DOI: 10.3390/ijms24021216] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/01/2023] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Skuld (skd) is a subunit of the Mediator complex subunit complex. In the heart, skd controls systemic obesity, is involved in systemic energy metabolism, and is closely linked to cardiac function and aging. However, it is unclear whether the effect of cardiac skd on cardiac energy metabolism affects cardiac function. We found that cardiac-specific knockdown of skd showed impaired cardiac function, metabolic impairment, and premature aging. Drosophila was subjected to an exercise and high-fat diet (HFD) intervention to explore the effects of exercise on cardiac skd expression and cardiac function in HFD Drosophila. We found that Hand-Gal4>skd RNAi (KC) Drosophila had impaired cardiac function, metabolic impairment, and premature aging. Regular exercise significantly improved cardiac function and metabolism and delayed aging in HFD KC Drosophila. Thus, our study found that the effect of skd on cardiac energy metabolism in the heart affected cardiac function. Exercise may counteract age-related cardiac dysfunction and metabolic disturbances caused by HFD and heart-specific knockdown of skd. Skd may be a potential therapeutic target for heart disease.
Collapse
|
7
|
Ren M, Yang Y, Heng KHY, Ng LY, Chong CYY, Ng YT, Gorur-Shandilya S, Lee RMQ, Lim KL, Zhang J, Koh TW. MED13 and glycolysis are conserved modifiers of α-synuclein-associated neurodegeneration. Cell Rep 2022; 41:111852. [PMID: 36543134 DOI: 10.1016/j.celrep.2022.111852] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/04/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
α-Synuclein (α-syn) is important in synucleinopathies such as Parkinson's disease (PD). While genome-wide association studies (GWASs) of synucleinopathies have identified many risk loci, the underlying genes have not been shown for most loci. Using Drosophila, we screened 3,471 mutant chromosomes for genetic modifiers of α-synuclein and identified 12 genes. Eleven modifiers have human orthologs associated with diseases, including MED13 and CDC27, which lie within PD GWAS loci. Drosophila Skd/Med13 and glycolytic enzymes are co-upregulated by α-syn-associated neurodegeneration. While elevated α-syn compromises mitochondrial function, co-expressing skd/Med13 RNAi and α-syn synergistically increase the ratio of oxidized-to-reduced glutathione. The resulting neurodegeneration can be suppressed by overexpressing a glycolytic enzyme or treatment with deferoxamine, suggesting that compensatory glycolysis is neuroprotective. In addition, the functional relationship between α-synuclein, MED13, and glycolytic enzymes is conserved between flies and mice. We propose that hypoxia-inducible factor and MED13 are part of a druggable pathway for PD.
Collapse
Affiliation(s)
- Mengda Ren
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Ying Yang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China
| | | | - Lu Yi Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Yan Ting Ng
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore
| | | | - Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore
| | - Kah Leong Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308207, Singapore; National Neuroscience Institute, Singapore 308433, Singapore
| | - Jing Zhang
- Department of Pathology, Zhejiang University First Affiliated Hospital and School of Medicine, Hangzhou, Zhejiang 310002, China; China National Health and Disease Human Brain Tissue Resource Center, Hangzhou, Zhejiang 310002, China
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, Singapore 117604, Singapore; Department of Biological Sciences, National University of Singapore, Singapore 117558, Singapore.
| |
Collapse
|
8
|
Ma Y, Zeng W, Ba Y, Luo Q, Ou Y, Liu R, Ma J, Tang Y, Hu J, Wang H, Tang X, Mu Y, Li Q, Chen Y, Ran Y, Xiang Z, Xu H. A single-cell transcriptomic atlas characterizes the silk-producing organ in the silkworm. Nat Commun 2022; 13:3316. [PMID: 35680954 PMCID: PMC9184679 DOI: 10.1038/s41467-022-31003-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/30/2022] [Indexed: 01/07/2023] Open
Abstract
The silk gland of the domesticated silkworm Bombyx mori, is a remarkable organ that produces vast amounts of silk with exceptional properties. Little is known about which silk gland cells execute silk protein synthesis and its precise spatiotemporal control. Here, we use single-cell RNA sequencing to build a comprehensive cell atlas of the silkworm silk gland, consisting of 14,972 high-quality cells representing 10 distinct cell types, in three early developmental stages. We annotate all 10 cell types and determine their distributions in each region of the silk gland. Additionally, we decode the developmental trajectory and gene expression status of silk gland cells. Finally, we discover marker genes involved in the regulation of silk gland development and silk protein synthesis. Altogether, this work reveals the heterogeneity of silkworm silk gland cells and their gene expression dynamics, affording a deeper understanding of silk-producing organs at the single-cell level.
Collapse
Affiliation(s)
- Yan Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Wenhui Zeng
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yongbing Ba
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Qin Luo
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yao Ou
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Rongpeng Liu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jingwen Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiyun Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Jie Hu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Haomiao Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Xuan Tang
- Shanghai OE Biotech. Co., Ltd., Shanghai, 201212, China
| | - Yuanyuan Mu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Qingjun Li
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yuqin Chen
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Yiting Ran
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China
| | - Hanfu Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
9
|
Agrawal R, Jiří F, Thakur JK. The kinase module of the Mediator complex: an important signalling processor for the development and survival of plants. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:224-240. [PMID: 32945869 DOI: 10.1093/jxb/eraa439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 09/16/2020] [Indexed: 05/06/2023]
Abstract
Mediator, a multisubunit protein complex, is a signal processor that conveys regulatory information from transcription factors to RNA polymerase II and therefore plays an important role in the regulation of gene expression. This megadalton complex comprises four modules, namely, the head, middle, tail, and kinase modules. The first three modules form the core part of the complex, whereas association of the kinase module is facultative. The kinase module is able to alter the function of Mediator and has been established as a major transcriptional regulator of numerous developmental and biochemical processes. The kinase module consists of MED12, MED13, CycC, and kinase CDK8. Upon association with Mediator, the kinase module can alter its structure and function dramatically. In the past decade, research has established that the kinase module is very important for plant growth and development, and in the fight against biotic and abiotic challenges. However, there has been no comprehensive review discussing these findings in detail and depth. In this review, we survey the regulation of kinase module subunits and highlight their many functions in plants. Coordination between the subunits to process different signals for optimum plant growth and development is also discussed.
Collapse
Affiliation(s)
- Rekha Agrawal
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Fajkus Jiří
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
10
|
Zhou W, Cai H, Li J, Xu H, Wang X, Men H, Zheng Y, Cai L. Potential roles of mediator Complex Subunit 13 in Cardiac Diseases. Int J Biol Sci 2021; 17:328-338. [PMID: 33390853 PMCID: PMC7757031 DOI: 10.7150/ijbs.52290] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/25/2020] [Indexed: 12/16/2022] Open
Abstract
Mediator complex subunit 13 (MED13, previously known as THRAP1 and TRAP240) is a subunit of the cyclin-dependent kinase 8 (CDK8) kinase module in the eukaryotic mediator complex. MED13 has been known to play critical roles in cell cycle, development, and growth. The purpose of this review is to comprehensively discuss its newly identified potential roles in myocardial energy metabolism and non-metabolic cardiovascular diseases. Evidence indicates that cardiac MED13 mainly participates in the regulation of nuclear receptor signaling, which drives the transcription of genes involved in modulating cardiac and systemic energy homeostasis. MED13 is also associated with several pathological conditions, such as metabolic syndrome and thyroid disease-associated heart failure. Therefore, MED13 constitutes a potential therapeutic target for the regulation of metabolic disorders and other cardiovascular diseases.
Collapse
Affiliation(s)
- Wenqian Zhou
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - He Cai
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Jia Li
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
- Department of Nephrology, the First Hospital of Jilin University, Changchun 130021, China
| | - He Xu
- Department of Respiratory Medicine, the First Hospital of Jilin University (Eastern Division), Changchun 130031, China
| | - Xiang Wang
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - Hongbo Men
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
| | - Yang Zheng
- The Center of Cardiovascular Diseases, the First Hospital of Jilin University, Changchun 130021, China
| | - Lu Cai
- Pediatric Research Institute, the Department of Pediatrics of University of Louisville, Louisville, KY 40202, USA
- Department of Pharmacology and Toxicology, the University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
11
|
Söderholm S, Cantù C. The WNT/β‐catenin dependent transcription: A tissue‐specific business. WIREs Mech Dis 2020; 13:e1511. [PMID: 33085215 PMCID: PMC9285942 DOI: 10.1002/wsbm.1511] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 12/11/2022]
Abstract
β‐catenin‐mediated Wnt signaling is an ancient cell‐communication pathway in which β‐catenin drives the expression of certain genes as a consequence of the trigger given by extracellular WNT molecules. The events occurring from signal to transcription are evolutionarily conserved, and their final output orchestrates countless processes during embryonic development and tissue homeostasis. Importantly, a dysfunctional Wnt/β‐catenin pathway causes developmental malformations, and its aberrant activation is the root of several types of cancer. A rich literature describes the multitude of nuclear players that cooperate with β‐catenin to generate a transcriptional program. However, a unified theory of how β‐catenin drives target gene expression is still missing. We will discuss two types of β‐catenin interactors: transcription factors that allow β‐catenin to localize at target regions on the DNA, and transcriptional co‐factors that ultimately activate gene expression. In contrast to the presumed universality of β‐catenin's action, the ensemble of available evidence suggests a view in which β‐catenin drives a complex system of responses in different cells and tissues. A malleable armamentarium of players might interact with β‐catenin in order to activate the right “canonical” targets in each tissue, developmental stage, or disease context. Discovering the mechanism by which each tissue‐specific β‐catenin response is executed will be crucial to comprehend how a seemingly universal pathway fosters a wide spectrum of processes during development and homeostasis. Perhaps more importantly, this could ultimately inform us about which are the tumor‐specific components that need to be targeted to dampen the activity of oncogenic β‐catenin. This article is categorized under:Cancer > Molecular and Cellular Physiology Cancer > Genetics/Genomics/Epigenetics Cancer > Stem Cells and Development
Collapse
Affiliation(s)
- Simon Söderholm
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| | - Claudio Cantù
- Wallenberg Centre for Molecular Medicine Linköping University Linköping Sweden
- Department of Biomedical and Clinical Sciences, Division of Molecular Medicine and Virology, Faculty of Health Science Linköping University Linköping Sweden
| |
Collapse
|
12
|
Liu Q, Bischof S, Harris CJ, Zhong Z, Zhan L, Nguyen C, Rashoff A, Barshop WD, Sun F, Feng S, Potok M, Gallego-Bartolome J, Zhai J, Wohlschlegel JA, Carey MF, Long JA, Jacobsen SE. The characterization of Mediator 12 and 13 as conditional positive gene regulators in Arabidopsis. Nat Commun 2020; 11:2798. [PMID: 32493925 PMCID: PMC7271234 DOI: 10.1038/s41467-020-16651-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/14/2020] [Indexed: 12/18/2022] Open
Abstract
Mediator 12 (MED12) and MED13 are components of the Mediator multi-protein complex, that facilitates the initial steps of gene transcription. Here, in an Arabidopsis mutant screen, we identify MED12 and MED13 as positive gene regulators, both of which contribute broadly to morc1 de-repressed gene expression. Both MED12 and MED13 are preferentially required for the expression of genes depleted in active chromatin marks, a chromatin signature shared with morc1 re-activated loci. We further discover that MED12 tends to interact with genes that are responsive to environmental stimuli, including light and radiation. We demonstrate that light-induced transient gene expression depends on MED12, and is accompanied by a concomitant increase in MED12 enrichment during induction. In contrast, the steady-state expression level of these genes show little dependence on MED12, suggesting that MED12 is primarily required to aid the expression of genes in transition from less-active to more active states. Mediator is a multiprotein complex required to activate gene transcription by RNAPII. Here, the authors report that MED12 and MED13 are conditional positive regulators that facilitate the expression of genes depleted in active chromatin marks and the induction of gene expression in response to environmental stimuli in Arabidopsis.
Collapse
Affiliation(s)
- Qikun Liu
- School of Advanced Agricultural Sciences, Peking University, 100871, Beijing, China. .,Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| | - Sylvain Bischof
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, 8008, Zurich, Switzerland
| | - C Jake Harris
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Zhenhui Zhong
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA.,Basic Forestry and Proteomics Center, Fujian Agriculture and Forestry University, 350002, Fuzhou, China
| | - Lingyu Zhan
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Calvin Nguyen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Andrew Rashoff
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - William D Barshop
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Fei Sun
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Suhua Feng
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Magdalena Potok
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Javier Gallego-Bartolome
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jixian Zhai
- Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - James A Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Michael F Carey
- Department of Biological Chemistry, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Jeffrey A Long
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Steven E Jacobsen
- Department of Molecular, Cell and Developmental Biology, University of California at Los Angeles, Los Angeles, CA, 90095, USA. .,Howard Hughes Medical Institute, University of California at Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Dannappel MV, Sooraj D, Loh JJ, Firestein R. Molecular and in vivo Functions of the CDK8 and CDK19 Kinase Modules. Front Cell Dev Biol 2019; 6:171. [PMID: 30693281 PMCID: PMC6340071 DOI: 10.3389/fcell.2018.00171] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/06/2018] [Indexed: 12/21/2022] Open
Abstract
CDK8 and its paralog, CDK19, collectively termed ‘Mediator Kinase,’ are cyclin-dependent kinases that have been implicated as key rheostats in cellular homeostasis and developmental programming. CDK8 and CDK19 are incorporated, in a mutually exclusive manner, as part of a 4-protein complex called the Mediator kinase module. This module reversibly associates with the Mediator, a 26 subunit protein complex that regulates RNA Polymerase II mediated gene expression. As part of this complex, the Mediator kinases have been implicated in diverse process such as developmental signaling, metabolic homeostasis and in innate immunity. In recent years, dysregulation of Mediator kinase module proteins, including CDK8/19, has been implicated in the development of different human diseases, and in particular cancer. This has led to intense efforts to understand how CDK8/19 regulate diverse biological outputs and develop Mediator kinase inhibitors that can be exploited therapeutically. Herein, we review both context and function of the Mediator kinases at a molecular, cellular and animal level. In so doing, we illuminate emerging concepts underpinning Mediator kinase biology and highlight certain aspects that remain unsolved.
Collapse
Affiliation(s)
- Marius Volker Dannappel
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Dhanya Sooraj
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Jia Jian Loh
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Faculty of Science, School of Biological Sciences, Monash University, Clayton, VIC, Australia
| | - Ron Firestein
- Hudson Institute of Medical Research, Clayton, VIC, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
14
|
Heigwer F, Scheeder C, Miersch T, Schmitt B, Blass C, Pour Jamnani MV, Boutros M. Time-resolved mapping of genetic interactions to model rewiring of signaling pathways. eLife 2018; 7:40174. [PMID: 30592458 PMCID: PMC6319608 DOI: 10.7554/elife.40174] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Context-dependent changes in genetic interactions are an important feature of cellular pathways and their varying responses under different environmental conditions. However, methodological frameworks to investigate the plasticity of genetic interaction networks over time or in response to external stresses are largely lacking. To analyze the plasticity of genetic interactions, we performed a combinatorial RNAi screen in Drosophila cells at multiple time points and after pharmacological inhibition of Ras signaling activity. Using an image-based morphology assay to capture a broad range of phenotypes, we assessed the effect of 12768 pairwise RNAi perturbations in six different conditions. We found that genetic interactions form in different trajectories and developed an algorithm, termed MODIFI, to analyze how genetic interactions rewire over time. Using this framework, we identified more statistically significant interactions compared to end-point assays and further observed several examples of context-dependent crosstalk between signaling pathways such as an interaction between Ras and Rel which is dependent on MEK activity. Editorial note This article has been through an editorial process in which the authors decide how to respond to the issues raised during peer review. The Reviewing Editor's assessment is that all the issues have been addressed (see decision letter).
Collapse
Affiliation(s)
- Florian Heigwer
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Christian Scheeder
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany.,HBIGS Graduate School, Heidelberg University, Heidelberg, Germany
| | - Thilo Miersch
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Barbara Schmitt
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Claudia Blass
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Mischan Vali Pour Jamnani
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center, Heidelberg, Germany.,Department of Cell and Molecular Biology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Segert J, Schneider I, Berger IM, Rottbauer W, Just S. Mediator complex subunit Med12 regulates cardiac jelly development and AV valve formation in zebrafish. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2018; 138:20-31. [PMID: 30036562 DOI: 10.1016/j.pbiomolbio.2018.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 05/30/2018] [Accepted: 07/17/2018] [Indexed: 11/25/2022]
Abstract
The molecular mechanism essential for the formation of heart valves involves complex interactions of signaling molecules and transcription factors. The Mediator Complex (MC) functions as multi-subunit machinery to orchestrate gene transcription, especially for tissue-specific fine-tuning of transcriptional processes during development, also in the heart. Here, we analyzed the role of the MC subunit Med12 during atrioventricular canal (AVC) development and endocardial cushion formation, using the Med12-deficient zebrafish mutant trapped (tpd). Whereas primary heart formation was only slightly affected in tpd, we identified defects in AVC development and cardiac jelly formation. We found that although misexpression of bmp4 and versican in tpd hearts can be restored by overexpression of a modified version of the Sox9b transcription factor (harboring VP16 transactivation domain) that functions independent of its co-activator Med12, endocardial cushion development in tpd was not reconstituted. Interestingly, expression of tbx2b and its target hyaluronan synthase 2 (has2) - the synthase of hyaluronan (HA) in the heart - was absent in both uninjected and Sox9b-VP16 overexpressing tpd hearts. HA is a major ECM component of the cardiac jelly and required for endocardial cushion formation. Furthermore, we found secreted phosphoprotein 1 (spp1), an endocardial marker of activated AV endocardial cells, completely absent in tpd hearts, suggesting that crucial steps of the transformation of AV endocardial cells into endocardial cushions is blocked. We demonstrate that Med12 controls cardiac jelly formation Sox9-independently by regulating tbx2b and has2 expression and therefore the production of the glycosaminoglycan HA at the AVC to guarantee proper endocardial cushion development.
Collapse
Affiliation(s)
- Julia Segert
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Isabelle Schneider
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | - Ina M Berger
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany
| | | | - Steffen Just
- Molecular Cardiology, Department of Internal Medicine II, University of Ulm, Ulm, Germany.
| |
Collapse
|
16
|
Park MJ, Shen H, Spaeth JM, Tolvanen JH, Failor C, Knudtson JF, McLaughlin J, Halder SK, Yang Q, Bulun SE, Al-Hendy A, Schenken RS, Aaltonen LA, Boyer TG. Oncogenic exon 2 mutations in Mediator subunit MED12 disrupt allosteric activation of cyclin C-CDK8/19. J Biol Chem 2018; 293:4870-4882. [PMID: 29440396 DOI: 10.1074/jbc.ra118.001725] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 01/28/2018] [Indexed: 01/26/2023] Open
Abstract
Somatic mutations in exon 2 of the RNA polymerase II transcriptional Mediator subunit MED12 occur at high frequency in uterine fibroids (UFs) and breast fibroepithelial tumors as well as recurrently, albeit less frequently, in malignant uterine leimyosarcomas, chronic lymphocytic leukemias, and colorectal cancers. Previously, we reported that UF-linked mutations in MED12 disrupt its ability to activate cyclin C (CycC)-dependent kinase 8 (CDK8) in Mediator, implicating impaired Mediator-associated CDK8 activity in the molecular pathogenesis of these clinically significant lesions. Notably, the CDK8 paralog CDK19 is also expressed in myometrium, and both CDK8 and CDK19 assemble into Mediator in a mutually exclusive manner, suggesting that CDK19 activity may also be germane to the pathogenesis of MED12 mutation-induced UFs. However, whether and how UF-linked mutations in MED12 affect CDK19 activation is unknown. Herein, we show that MED12 allosterically activates CDK19 and that UF-linked exon 2 mutations in MED12 disrupt its CDK19 stimulatory activity. Furthermore, we find that within the Mediator kinase module, MED13 directly binds to the MED12 C terminus, thereby suppressing an apparent UF mutation-induced conformational change in MED12 that otherwise disrupts its association with CycC-CDK8/19. Thus, in the presence of MED13, mutant MED12 can bind, but cannot activate, CycC-CDK8/19. These findings indicate that MED12 binding is necessary but not sufficient for CycC-CDK8/19 activation and reveal an additional step in the MED12-dependent activation process, one critically dependent on MED12 residues altered by UF-linked exon 2 mutations. These findings confirm that UF-linked mutations in MED12 disrupt composite Mediator-associated kinase activity and identify CDK8/19 as prospective therapeutic targets in UFs.
Collapse
Affiliation(s)
- Min Ju Park
- Departments of Molecular Medicine, San Antonio, Texas 78229
| | - Hailian Shen
- Departments of Molecular Medicine, San Antonio, Texas 78229
| | - Jason M Spaeth
- Departments of Molecular Medicine, San Antonio, Texas 78229
| | - Jaana H Tolvanen
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Courtney Failor
- Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jennifer F Knudtson
- Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Jessica McLaughlin
- Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Sunil K Halder
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia 30912
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia 30912
| | - Serdar E Bulun
- Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, Augusta University, Augusta, Georgia 30912
| | - Robert S Schenken
- Obstetrics and Gynecology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Lauri A Aaltonen
- Genome-Scale Biology Program and Department of Medical Genetics, Haartman Institute, University of Helsinki, Biomedicum, P.O. Box 63 (Haartmaninkatu 8), Helsinki FIN-00014, Finland
| | - Thomas G Boyer
- Departments of Molecular Medicine, San Antonio, Texas 78229.
| |
Collapse
|
17
|
Dasari V, Srivastava S, Khan S, Mishra RK. Epigenetic factors Polycomb (Pc) and Suppressor of zeste (Su(z)2) negatively regulate longevity in Drosophila melanogaster. Biogerontology 2017; 19:33-45. [PMID: 29177687 DOI: 10.1007/s10522-017-9737-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 11/22/2017] [Indexed: 01/10/2023]
Abstract
The process of aging is a hallmark of the natural life span of all organisms and individuals within a population show variability in the measures of age related performance. Longevity and the rate of aging are influenced by several factors such as genetics, nutrition, stress, and environment. Many studies have focused on the genes that impact aging and there is increasing evidence that epigenetic factors regulate these genes to control life span. Polycomb (PcG) and trithorax (trxG) protein complexes maintain the expression profiles of developmentally important genes and regulate many cellular processes. Here, we report that mutations of PcG and trxG members affect the process of aging in Drosophila melanogaster, with perturbations mostly associated with retardation in aging. We find that mutations in polycomb repressive complex (PRC1) components Pc and Su(z)2 increase fly survival. Using an inducible UAS-GAL4 system, we show that this effect is tissue-specific; knockdown in fat body, but not in muscle or brain tissues, enhances life span. We hypothesize that these two proteins influence life span via pathways independent of their PRC1 functions, with distinct effects on response to oxidative stress. Our observations highlight the role of global epigenetic regulators in determining life span.
Collapse
Affiliation(s)
- Vasanthi Dasari
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Surabhi Srivastava
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Shagufta Khan
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India
| | - Rakesh K Mishra
- CSIR - Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
18
|
Raya-González J, López-Bucio JS, Prado-Rodríguez JC, Ruiz-Herrera LF, Guevara-García ÁA, López-Bucio J. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. PLANT MOLECULAR BIOLOGY 2017; 95:141-156. [PMID: 28780645 DOI: 10.1007/s11103-017-0647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/27/2017] [Indexed: 05/23/2023]
Abstract
Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José Carlos Prado-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
19
|
Yang CP, Samuels TJ, Huang Y, Yang L, Ish-Horowicz D, Davis I, Lee T. Imp and Syp RNA-binding proteins govern decommissioning of Drosophila neural stem cells. Development 2017; 144:3454-3464. [PMID: 28851709 PMCID: PMC5665480 DOI: 10.1242/dev.149500] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 08/21/2017] [Indexed: 02/03/2023]
Abstract
The termination of the proliferation of Drosophila neural stem cells, also known as neuroblasts (NBs), requires a ‘decommissioning’ phase that is controlled in a lineage-specific manner. Most NBs, with the exception of those of the mushroom body (MB), are decommissioned by the ecdysone receptor and mediator complex, causing them to shrink during metamorphosis, followed by nuclear accumulation of Prospero and cell cycle exit. Here, we demonstrate that the levels of Imp and Syp RNA-binding proteins regulate NB decommissioning. Descending Imp and ascending Syp expression have been shown to regulate neuronal temporal fate. We show that Imp levels decline slower in the MB than in other central brain NBs. MB NBs continue to express Imp into pupation, and the presence of Imp prevents decommissioning partly by inhibiting the mediator complex. Late-larval induction of transgenic Imp prevents many non-MB NBs from decommissioning in early pupae. Moreover, the presence of abundant Syp in aged NBs permits Prospero accumulation that, in turn, promotes cell cycle exit. Together, our results reveal that progeny temporal fate and progenitor decommissioning are co-regulated in protracted neuronal lineages. Highlighted Article: Temporal progression of Imp/Syp gradients determines the timing of neuroblast decommissioning and cell cycle exit in addition to progeny temporal fate, allowing proper completion of a neuronal lineage.
Collapse
Affiliation(s)
- Ching-Po Yang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Tamsin J Samuels
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Yaling Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Lu Yang
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - David Ish-Horowicz
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom.,MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Ilan Davis
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Tzumin Lee
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| |
Collapse
|
20
|
Kassis JA, Kennison JA, Tamkun JW. Polycomb and Trithorax Group Genes in Drosophila. Genetics 2017; 206:1699-1725. [PMID: 28778878 PMCID: PMC5560782 DOI: 10.1534/genetics.115.185116] [Citation(s) in RCA: 148] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 05/15/2017] [Indexed: 01/08/2023] Open
Abstract
Polycomb group (PcG) and Trithorax group (TrxG) genes encode important regulators of development and differentiation in metazoans. These two groups of genes were discovered in Drosophila by their opposing effects on homeotic gene (Hox) expression. PcG genes collectively behave as genetic repressors of Hox genes, while the TrxG genes are necessary for HOX gene expression or function. Biochemical studies showed that many PcG proteins are present in two protein complexes, Polycomb repressive complexes 1 and 2, which repress transcription via chromatin modifications. TrxG proteins activate transcription via a variety of mechanisms. Here we summarize the large body of genetic and biochemical experiments in Drosophila on these two important groups of genes.
Collapse
Affiliation(s)
- Judith A Kassis
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - James A Kennison
- Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - John W Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064
| |
Collapse
|
21
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
22
|
Zaytseva O, Quinn LM. Controlling the Master: Chromatin Dynamics at the MYC Promoter Integrate Developmental Signaling. Genes (Basel) 2017; 8:genes8040118. [PMID: 28398229 PMCID: PMC5406865 DOI: 10.3390/genes8040118] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/15/2017] [Accepted: 04/07/2017] [Indexed: 02/06/2023] Open
Abstract
The transcription factor and cell growth regulator MYC is potently oncogenic and estimated to contribute to most cancers. Decades of attempts to therapeutically target MYC directly have not resulted in feasible clinical applications, and efforts have moved toward indirectly targeting MYC expression, function and/or activity to treat MYC-driven cancer. A multitude of developmental and growth signaling pathways converge on the MYC promoter to modulate transcription through their downstream effectors. Critically, even small increases in MYC abundance (<2 fold) are sufficient to drive overproliferation; however, the details of how oncogenic/growth signaling networks regulate MYC at the level of transcription remain nebulous even during normal development. It is therefore essential to first decipher mechanisms of growth signal-stimulated MYC transcription using in vivo models, with intact signaling environments, to determine exactly how these networks are dysregulated in human cancer. This in turn will provide new modalities and approaches to treat MYC-driven malignancy. Drosophila genetic studies have shed much light on how complex networks signal to transcription factors and enhancers to orchestrate Drosophila MYC (dMYC) transcription, and thus growth and patterning of complex multicellular tissue and organs. This review will discuss the many pathways implicated in patterning MYC transcription during development and the molecular events at the MYC promoter that link signaling to expression. Attention will also be drawn to parallels between mammalian and fly regulation of MYC at the level of transcription.
Collapse
Affiliation(s)
- Olga Zaytseva
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| | - Leonie M Quinn
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2600, Australia.
- School of Biomedical Sciences, University of Melbourne, Parkville 3010, Australia.
| |
Collapse
|
23
|
Shaposhnikov AV, Lebedeva LA, Chernioglo ES, Kachaev ZM, Abdrakhmanov A, Shidlovskii YV. Preparation and analysis of nuclear protein extract from Drosophila melanogaster embryos for studying transcription factors. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2017. [DOI: 10.1134/s1068162016060108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Buendía-Monreal M, Gillmor CS. Mediator: A key regulator of plant development. Dev Biol 2016; 419:7-18. [PMID: 27287881 DOI: 10.1016/j.ydbio.2016.06.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 06/01/2016] [Accepted: 06/06/2016] [Indexed: 10/21/2022]
Abstract
Mediator is a multiprotein complex that regulates transcription at the level of RNA pol II assembly, as well as through regulation of chromatin architecture, RNA processing and recruitment of epigenetic marks. Though its modular structure is conserved in eukaryotes, its subunit composition has diverged during evolution and varies in response to environmental and tissue-specific inputs, suggesting different functions for each subunit and/or Mediator conformation. In animals, Mediator has been implicated in the control of differentiation and morphogenesis through modulation of numerous signaling pathways. In plants, studies have revealed roles for Mediator in regulation of cell division, cell fate and organogenesis, as well as developmental timing and hormone responses. We begin this review with an overview of biochemical mechanisms of yeast and animal Mediator that are likely to be conserved in all eukaryotes, as well as a brief discussion of the role of Mediator in animal development. We then present a comprehensive review of studies of the role of Mediator in plant development. Finally, we point to important questions for future research on the role of Mediator as a master coordinator of development.
Collapse
Affiliation(s)
- Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico
| | - C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, CINVESTAV-IPN, Irapuato, Guanajuato, Mexico.
| |
Collapse
|
25
|
Guo L, Zaysteva O, Nie Z, Mitchell NC, Amanda Lee JE, Ware T, Parsons L, Luwor R, Poortinga G, Hannan RD, Levens DL, Quinn LM. Defining the essential function of FBP/KSRP proteins: Drosophila Psi interacts with the mediator complex to modulate MYC transcription and tissue growth. Nucleic Acids Res 2016; 44:7646-58. [PMID: 27207882 PMCID: PMC5027480 DOI: 10.1093/nar/gkw461] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/17/2016] [Indexed: 12/21/2022] Open
Abstract
Despite two decades of research, the major function of FBP-family KH domain proteins during animal development remains controversial. The literature is divided between RNA processing and transcriptional functions for these single stranded nucleic acid binding proteins. Using Drosophila, where the three mammalian FBP proteins (FBP1-3) are represented by one ortholog, Psi, we demonstrate the primary developmental role is control of cell and tissue growth. Co-IP-mass spectrometry positioned Psi in an interactome predominantly comprised of RNA Polymerase II (RNA Pol II) transcriptional machinery and we demonstrate Psi is a potent transcriptional activator. The most striking interaction was between Psi and the transcriptional mediator (MED) complex, a known sensor of signaling inputs. Moreover, genetic manipulation of MED activity modified Psi-dependent growth, which suggests Psi interacts with MED to integrate developmental growth signals. Our data suggest the key target of the Psi/MED network in controlling developmentally regulated tissue growth is the transcription factor MYC. As FBP1 has been implicated in controlling expression of the MYC oncogene, we predict interaction between MED and FBP1 might also have implications for cancer initiation and progression.
Collapse
Affiliation(s)
- Linna Guo
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Olga Zaysteva
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Zuqin Nie
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Naomi C Mitchell
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Jue Er Amanda Lee
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Ware
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3010, Australia
| | - Linda Parsons
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Rodney Luwor
- Department of Surgery, University of Melbourne, Royal Melbourne Hospital, Parkville, VIC 3010, Australia
| | - Gretchen Poortinga
- Peter MacCallum Cancer Centre, St. Andrews Place, East Melbourne, VIC 3002, Australia
| | - Ross D Hannan
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Parkville, VIC 3010, Australia Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra City, ACT 2600, Australia
| | - David L Levens
- Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Leonie M Quinn
- School of Biomedical Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
26
|
Abstract
The study of Drosophila imaginal discs has contributed to a number of discoveries in developmental and cellular biology. In addition to the elucidation of the role of tissue compartments and organ-specific master regulator genes during development, imaginal discs have also become well established as models for studying cellular interactions and complex genetic pathways. Here, we review key discoveries resulting from investigations of these epithelial precursor organs, ranging from cell fate determination and transdetermination to tissue patterning. Furthermore, the design of increasingly sophisticated genetic tools over the last decades has added value to the use of imaginal discs as model systems. As a result of tissue-specific genetic screens, several components of developmentally regulated signaling pathways were identified and epistasis revealed the levels at which they function. Discs have been widely used to assess cellular interactions in their natural tissue context, contributing to a better understanding of growth regulation, tissue regeneration, and cancer. With the continuous implementation of novel tools, imaginal discs retain significant potential as model systems to address emerging questions in biology and medicine.
Collapse
|
27
|
Nagulapalli M, Maji S, Dwivedi N, Dahiya P, Thakur JK. Evolution of disorder in Mediator complex and its functional relevance. Nucleic Acids Res 2015; 44:1591-612. [PMID: 26590257 PMCID: PMC4770211 DOI: 10.1093/nar/gkv1135] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 10/18/2015] [Indexed: 12/27/2022] Open
Abstract
Mediator, an important component of eukaryotic transcriptional machinery, is a huge multisubunit complex. Though the complex is known to be conserved across all the eukaryotic kingdoms, the evolutionary topology of its subunits has never been studied. In this study, we profiled disorder in the Mediator subunits of 146 eukaryotes belonging to three kingdoms viz., metazoans, plants and fungi, and attempted to find correlation between the evolution of Mediator complex and its disorder. Our analysis suggests that disorder in Mediator complex have played a crucial role in the evolutionary diversification of complexity of eukaryotic organisms. Conserved intrinsic disordered regions (IDRs) were identified in only six subunits in the three kingdoms whereas unique patterns of IDRs were identified in other Mediator subunits. Acquisition of novel molecular recognition features (MoRFs) through evolution of new subunits or through elongation of the existing subunits was evident in metazoans and plants. A new concept of ‘junction-MoRF’ has been introduced. Evolutionary link between CBP and Med15 has been provided which explain the evolution of extended-IDR in CBP from Med15 KIX-IDR junction-MoRF suggesting role of junction-MoRF in evolution and modulation of protein–protein interaction repertoire. This study can be informative and helpful in understanding the conserved and flexible nature of Mediator complex across eukaryotic kingdoms.
Collapse
Affiliation(s)
- Malini Nagulapalli
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sourobh Maji
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Nidhi Dwivedi
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Pradeep Dahiya
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Jitendra K Thakur
- Plant Mediator Lab, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
28
|
Clark AD, Oldenbroek M, Boyer TG. Mediator kinase module and human tumorigenesis. Crit Rev Biochem Mol Biol 2015; 50:393-426. [PMID: 26182352 DOI: 10.3109/10409238.2015.1064854] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mediator is a conserved multi-subunit signal processor through which regulatory informatiosn conveyed by gene-specific transcription factors is transduced to RNA Polymerase II (Pol II). In humans, MED13, MED12, CDK8 and Cyclin C (CycC) comprise a four-subunit "kinase" module that exists in variable association with a 26-subunit Mediator core. Genetic and biochemical studies have established the Mediator kinase module as a major ingress of developmental and oncogenic signaling through Mediator, and much of its function in signal-dependent gene regulation derives from its resident CDK8 kinase activity. For example, CDK8-targeted substrate phosphorylation impacts transcription factor half-life, Pol II activity and chromatin chemistry and functional status. Recent structural and biochemical studies have revealed a precise network of physical and functional subunit interactions required for proper kinase module activity. Accordingly, pathologic change in this activity through altered expression or mutation of constituent kinase module subunits can have profound consequences for altered signaling and tumor formation. Herein, we review the structural organization, biological function and oncogenic potential of the Mediator kinase module. We focus principally on tumor-associated alterations in kinase module subunits for which mechanistic relationships as opposed to strictly correlative associations are established. These considerations point to an emerging picture of the Mediator kinase module as an oncogenic unit, one in which pathogenic activation/deactivation through component change drives tumor formation through perturbation of signal-dependent gene regulation. It follows that therapeutic strategies to combat CDK8-driven tumors will involve targeted modulation of CDK8 activity or pharmacologic manipulation of dysregulated CDK8-dependent signaling pathways.
Collapse
Affiliation(s)
- Alison D Clark
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Marieke Oldenbroek
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| | - Thomas G Boyer
- a Department of Molecular Medicine , Institute of Biotechnology, University of Texas Health Science Center at San Antonio , San Antonio , TX , USA
| |
Collapse
|
29
|
Fagotto F. Regulation of Cell Adhesion and Cell Sorting at Embryonic Boundaries. Curr Top Dev Biol 2015; 112:19-64. [DOI: 10.1016/bs.ctdb.2014.11.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
30
|
The metazoan-specific mediator subunit 26 (Med26) is essential for viability and is found at both active genes and pericentric heterochromatin in Drosophila melanogaster. Mol Cell Biol 2014; 34:2710-20. [PMID: 24820420 DOI: 10.1128/mcb.01365-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human MED26 was originally purified in the cofactor required for the Sp1 activation complex (CRSP) as a 70-kDa component named CRSP70. This polypeptide was specific to metazoans and the “small” form of the Mediator complex. We report here that a Drosophila melanogaster homologue of MED26 similarly interacts with other components of the core Drosophila Mediator complex but not with the kinase module and is recruited to genes upon activation. Using a null allele of Med26, we show that Med26 is required for organismal viability but not for cell proliferation or survival. Clones lacking Med26 in the wing disc lead to loss of the adult wing margin and reduced expression of genes involved in wing margin formation. Surprisingly, when polytene chromosomes from the salivary gland were examined using antibodies to Med26, it was apparent that a fraction of the protein was associated with the chromocenter, which contains pericentric heterochromatin. This staining colocalizes with heterochromatin protein 1 (HP1). Immunoprecipitation experiments show that Med26 interacts with HP1. The interaction is mediated through the chromoshadow domain of HP1 and through the conserved motif in the carboxy terminus of the Med26 protein. This work is the first characterization of the metazoan-specific Mediator subunit in an animal model.
Collapse
|
31
|
Homem CCF, Steinmann V, Burkard TR, Jais A, Esterbauer H, Knoblich JA. Ecdysone and mediator change energy metabolism to terminate proliferation in Drosophila neural stem cells. Cell 2014; 158:874-888. [PMID: 25126791 DOI: 10.1016/j.cell.2014.06.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/10/2014] [Accepted: 06/06/2014] [Indexed: 11/19/2022]
Abstract
Stem cells are highly abundant during early development but become a rare population in most adult organs. The molecular mechanisms causing stem cells to exit proliferation at a specific time are not well understood. Here, we show that changes in energy metabolism induced by the steroid hormone ecdysone and the Mediator initiate an irreversible cascade of events leading to cell-cycle exit in Drosophila neural stem cells. We show that the timely induction of oxidative phosphorylation and the mitochondrial respiratory chain are required in neuroblasts to uncouple the cell cycle from cell growth. This results in a progressive reduction in neuroblast cell size and ultimately in terminal differentiation. Brain tumor mutant neuroblasts fail to undergo this shrinkage process and continue to proliferate until adulthood. Our findings show that cell size control can be modified by systemic hormonal signaling and reveal a unique connection between metabolism and proliferation in stem cells.
Collapse
Affiliation(s)
- Catarina C F Homem
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Victoria Steinmann
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Thomas R Burkard
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria
| | - Alexander Jais
- Department of Laboratory Medicine, Medical University Vienna, 1090 Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University Vienna, 1090 Vienna, Austria
| | - Juergen A Knoblich
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), 1030 Vienna, Austria.
| |
Collapse
|
32
|
Umetsu D, Dunst S, Dahmann C. An RNA interference screen for genes required to shape the anteroposterior compartment boundary in Drosophila identifies the Eph receptor. PLoS One 2014; 9:e114340. [PMID: 25473846 PMCID: PMC4256218 DOI: 10.1371/journal.pone.0114340] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 11/07/2014] [Indexed: 12/01/2022] Open
Abstract
The formation of straight compartment boundaries separating groups of cells with distinct fates and functions is an evolutionarily conserved strategy during animal development. The physical mechanisms that shape compartment boundaries have recently been further elucidated, however, the molecular mechanisms that underlie compartment boundary formation and maintenance remain poorly understood. Here, we report on the outcome of an RNA interference screen aimed at identifying novel genes involved in maintaining the straight shape of the anteroposterior compartment boundary in Drosophila wing imaginal discs. Out of screening 3114 transgenic RNA interference lines targeting a total of 2863 genes, we identified a single novel candidate that interfered with the formation of a straight anteroposterior compartment boundary. Interestingly, the targeted gene encodes for the Eph receptor tyrosine kinase, an evolutionarily conserved family of signal transducers that has previously been shown to be important for maintaining straight compartment boundaries in vertebrate embryos. Our results identify a hitherto unknown role of the Eph receptor tyrosine kinase in Drosophila and suggest that Eph receptors have important functions in shaping compartment boundaries in both vertebrate and insect development.
Collapse
Affiliation(s)
- Daiki Umetsu
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
| | - Sebastian Dunst
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
33
|
Gillmor CS, Silva-Ortega CO, Willmann MR, Buendía-Monreal M, Poethig RS. The Arabidopsis Mediator CDK8 module genes CCT (MED12) and GCT (MED13) are global regulators of developmental phase transitions. Development 2014; 141:4580-9. [PMID: 25377553 DOI: 10.1242/dev.111229] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Temporal coordination of developmental programs is necessary for normal ontogeny, but the mechanism by which this is accomplished is still poorly understood. We have previously shown that two components of the Mediator CDK8 module encoded by CENTER CITY (CCT; Arabidopsis MED12) and GRAND CENTRAL (GCT; Arabidopsis MED13) are required for timing of pattern formation during embryogenesis. A morphological, molecular and genomic analysis of the post-embryonic phenotype of gct and cct mutants demonstrated that these genes also promote at least three subsequent developmental transitions: germination, vegetative phase change, and flowering. Genetic and molecular analyses indicate that GCT and CCT operate in parallel to gibberellic acid, a phytohormone known to regulate these same three transitions. We demonstrate that the delay in vegetative phase change in gct and cct is largely due to overexpression of miR156, and that the delay in flowering is due in part to upregulation of FLC. Thus, GCT and CCT coordinate vegetative and floral transitions by repressing the repressors miR156 and FLC. Our results suggest that MED12 and MED13 act as global regulators of developmental timing by fine-tuning the expression of temporal regulatory genes.
Collapse
Affiliation(s)
- C Stewart Gillmor
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, Mexico Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Claudia O Silva-Ortega
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, Mexico
| | - Matthew R Willmann
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Manuel Buendía-Monreal
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato, 36821, Mexico
| | - R Scott Poethig
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Kingston RE, Tamkun JW. Transcriptional regulation by trithorax-group proteins. Cold Spring Harb Perspect Biol 2014; 6:a019349. [PMID: 25274705 DOI: 10.1101/cshperspect.a019349] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The trithorax group of genes (trxG) was identified in mutational screens that examined developmental phenotypes and suppression of Polycomb mutant phenotypes. The protein products of these genes are primarily involved in gene activation, although some can also have repressive effects. There is no central function for these proteins. Some move nucleosomes about on the genome in an ATP-dependent manner, some covalently modify histones such as methylating lysine 4 of histone H3, and some directly interact with the transcription machinery or are a part of that machinery. It is interesting to consider why these specific members of large families of functionally related proteins have strong developmental phenotypes.
Collapse
Affiliation(s)
- Robert E Kingston
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - John W Tamkun
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, California 95064
| |
Collapse
|
35
|
Mao F, Yang X, Fu L, Lv X, Zhang Z, Wu W, Yang S, Zhou Z, Zhang L, Zhao Y. The Kto-Skd complex can regulate ptc expression by interacting with Cubitus interruptus (Ci) in the Hedgehog signaling pathway. J Biol Chem 2014; 289:22333-41. [PMID: 24962581 DOI: 10.1074/jbc.m114.560995] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hedgehog (Hh) signaling pathway plays a very important role in metazoan development by controlling pattern formation. Drosophila imaginal discs are subdivided into anterior and posterior compartments that derive from adjacent cell populations. The anterior/posterior (A/P) boundaries, which are critical to maintaining the position of organizers, are established by a complex mechanism involving Hh signaling. Here, we uncover the regulation of ptc in the Hh signaling pathway by two subunits of mediator complex, Kto and Skd, which can also regulate boundary location. Collectively, we provide further evidence that Kto-Skd affects the A/P-axial development of the whole wing disc. Kto can interact with Cubitus interruptus (Ci), bind to the Ci-binding region on ptc promoter, which are both regulated by Hh signals to down-regulate ptc expression.
Collapse
Affiliation(s)
- Feifei Mao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiaofeng Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Lin Fu
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiangdong Lv
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhao Zhang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Wenqing Wu
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Siqi Yang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Zhaocai Zhou
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Lei Zhang
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yun Zhao
- From the State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
36
|
Heart- and muscle-derived signaling system dependent on MED13 and Wingless controls obesity in Drosophila. Proc Natl Acad Sci U S A 2014; 111:9491-6. [PMID: 24979807 DOI: 10.1073/pnas.1409427111] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Obesity develops in response to an imbalance of energy homeostasis and whole-body metabolism. Muscle plays a central role in the control of energy homeostasis through consumption of energy and signaling to adipose tissue. We reported previously that MED13, a subunit of the Mediator complex, acts in the heart to control obesity in mice. To further explore the generality and mechanistic basis of this observation, we investigated the potential influence of MED13 expression in heart and muscle on the susceptibility of Drosophila to obesity. Here, we show that heart/muscle-specific knockdown of MED13 or MED12, another Mediator subunit, increases susceptibility to obesity in adult flies. To identify possible muscle-secreted obesity regulators, we performed an RNAi-based genetic screen of 150 genes that encode secreted proteins and found that Wingless inhibition also caused obesity. Consistent with these findings, muscle-specific inhibition of Armadillo, the downstream transcriptional effector of the Wingless pathway, also evoked an obese phenotype in flies. Epistasis experiments further demonstrated that Wingless functions downstream of MED13 within a muscle-regulatory pathway. Together, these findings reveal an intertissue signaling system in which Wingless acts as an effector of MED13 in heart and muscle and suggest that Wingless-mediated cross-talk between striated muscle and adipose tissue controls obesity in Drosophila. This signaling system appears to represent an ancestral mechanism for the control of systemic energy homeostasis.
Collapse
|
37
|
Wang G, Tang X, Chen Y, Cao J, Huang Q, Ling X, Ren W, Liu S, Wu Y, Ray L, Lin X. Hyperplastic discs differentially regulates the transcriptional outputs of hedgehog signaling. Mech Dev 2014; 133:117-25. [PMID: 24854243 DOI: 10.1016/j.mod.2014.05.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 04/14/2014] [Accepted: 05/06/2014] [Indexed: 11/17/2022]
Abstract
Hedgehog (Hh) acts as a morphogen to activate the transcription of diverse target genes via its downstream effector Cubitus interruptus (Ci). Currently, it is less understood how Ci recruits co-factors to activate transcription. Here we report that hyperplastic discs (hyd), an E3 ubiquitin ligase, can differentially regulate the transcriptional outputs of Hh signaling. We show that loss of Hyd activity caused upregulation of some, but not all of Hh target genes. Importantly, Hyd does not affect the stability of Ci. Our data suggest that Hyd differentially restrains the transcriptional activity of Ci via selective association with respective promoters.
Collapse
Affiliation(s)
- Guolun Wang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Xiaofang Tang
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Yujie Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Jun Cao
- Wenzhou Medical University, Zhejiang, China
| | | | | | - Wenyan Ren
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Songqing Liu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Graduate University of Chinese Academy of Sciences, Beijing, China
| | - Yihui Wu
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Lorraine Ray
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Xinhua Lin
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China; Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| |
Collapse
|
38
|
Yin JW, Wang G. The Mediator complex: a master coordinator of transcription and cell lineage development. Development 2014; 141:977-87. [PMID: 24550107 DOI: 10.1242/dev.098392] [Citation(s) in RCA: 146] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mediator is a multiprotein complex that is required for gene transcription by RNA polymerase II. Multiple subunits of the complex show specificity in relaying information from signals and transcription factors to the RNA polymerase II machinery, thus enabling control of the expression of specific genes. Recent studies have also provided novel mechanistic insights into the roles of Mediator in epigenetic regulation, transcriptional elongation, termination, mRNA processing, noncoding RNA activation and super enhancer formation. Based on these specific roles in gene regulation, Mediator has emerged as a master coordinator of development and cell lineage determination. Here, we describe the most recent advances in understanding the mechanisms of Mediator function, with an emphasis on its role during development and disease.
Collapse
Affiliation(s)
- Jing-wen Yin
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | |
Collapse
|
39
|
Kuuluvainen E, Hakala H, Havula E, Sahal Estimé M, Rämet M, Hietakangas V, Mäkelä TP. Cyclin-dependent kinase 8 module expression profiling reveals requirement of mediator subunits 12 and 13 for transcription of Serpent-dependent innate immunity genes in Drosophila. J Biol Chem 2014; 289:16252-61. [PMID: 24778181 DOI: 10.1074/jbc.m113.541904] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Cdk8 (cyclin-dependent kinase 8) module of Mediator integrates regulatory cues from transcription factors to RNA polymerase II. It consists of four subunits where Med12 and Med13 link Cdk8 and cyclin C (CycC) to core Mediator. Here we have investigated the contributions of the Cdk8 module subunits to transcriptional regulation using RNA interference in Drosophila cells. Genome-wide expression profiling demonstrated separation of Cdk8-CycC and Med12-Med13 profiles. However, transcriptional regulation by Cdk8-CycC was dependent on Med12-Med13. This observation also revealed that Cdk8-CycC and Med12-Med13 often have opposite transcriptional effects. Interestingly, Med12 and Med13 profiles overlapped significantly with that of the GATA factor Serpent. Accordingly, mutational analyses indicated that GATA sites are required for Med12-Med13 regulation of Serpent-dependent genes. Med12 and Med13 were also found to be required for Serpent-activated innate immunity genes in defense to bacterial infection. The results reveal a novel role for the Cdk8 module in Serpent-dependent transcription and innate immunity.
Collapse
Affiliation(s)
- Emilia Kuuluvainen
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Heini Hakala
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Essi Havula
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki, the Department of Biosciences, University of Helsinki, P. O. Box 65, 00014 Helsinki
| | - Michelle Sahal Estimé
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki
| | - Mika Rämet
- the Institute of Biomedical Technology, and BioMediTech, University of Tampere, 33014 Tampere, the Department of Pediatrics, Tampere University Hospital, 22521 Tampere, the Department of Pediatrics, Institute of Clinical Medicine, and Medical Research Center Oulu, University of Oulu, 90014 Oulu, and the Department of Children and Adolescents, Oulu University Hospital, 90029 Oulu, Finland
| | - Ville Hietakangas
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki, the Department of Biosciences, University of Helsinki, P. O. Box 65, 00014 Helsinki
| | - Tomi P Mäkelä
- From the Institute of Biotechnology, University of Helsinki, P. O. Box 56, 00014 Helsinki,
| |
Collapse
|
40
|
Yang Y, Ou B, Zhang J, Si W, Gu H, Qin G, Qu LJ. The Arabidopsis Mediator subunit MED16 regulates iron homeostasis by associating with EIN3/EIL1 through subunit MED25. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:838-51. [PMID: 24456400 DOI: 10.1111/tpj.12440] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 12/14/2013] [Accepted: 01/07/2014] [Indexed: 05/19/2023]
Abstract
Iron is an essential micronutrient for plants and animals, and plants are a major source of iron for humans. Therefore, understanding the regulation of iron homeostasis in plants is critical. We identified a T-DNA insertion mutant, yellow and sensitive to iron-deficiency 1 (yid1), that was hypersensitive to iron deficiency, containing a reduced amount of iron. YID1 encodes the Arabidopsis Mediator complex subunit MED16. We demonstrated that YID1/MED16 interacted with another subunit, MED25. MED25 played an important role in regulation of iron homeostasis by interacting with EIN3 and EIL1, two transcription factors in ethylene signaling associated with regulation of iron homeostasis. We found that the transcriptome in yid1 and med25 mutants was significantly affected by iron deficiency. In particular, the transcription levels of FIT, IRT1 and FRO2 were reduced in the yid1 and med25 mutants under iron-deficient conditions. The finding that YID1/MED16 and MED25 positively regulate iron homeostasis in Arabidopsis increases our understanding of the complex transcriptional regulation of iron homeostasis in plants.
Collapse
Affiliation(s)
- Yan Yang
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
42
|
Steimel A, Suh J, Hussainkhel A, Deheshi S, Grants JM, Zapf R, Moerman DG, Taubert S, Hutter H. The C. elegans CDK8 Mediator module regulates axon guidance decisions in the ventral nerve cord and during dorsal axon navigation. Dev Biol 2013; 377:385-98. [PMID: 23458898 DOI: 10.1016/j.ydbio.2013.02.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 01/21/2013] [Accepted: 02/14/2013] [Indexed: 11/30/2022]
Abstract
Receptors expressed on the growth cone of outgrowing axons detect cues required for proper navigation. The pathway choices available to an axon are in part defined by the set of guidance receptors present on the growth cone. Regulated expression of receptors and genes controlling the localization and activity of receptors ensures that axons respond only to guidance cues relevant for reaching their targets. In genetic screens for axon guidance mutants, we isolated an allele of let-19/mdt-13, a component of the Mediator, a large ~30 subunit protein complex essential for gene transcription by RNA polymerase II. LET-19/MDT-13 is part of the CDK8 module of the Mediator. By testing other Mediator components, we found that all subunits of the CDK8 module as well as some other Mediator components are required for specific axon navigation decisions in a subset of neurons. Expression profiling demonstrated that let-19/mdt-13 regulates the expression of a large number of genes in interneurons. A mutation in the sax-3 gene, encoding a receptor for the repulsive guidance cue SLT-1, suppresses the commissure navigation defects found in cdk-8 mutants. This suggests that the CDK8 module specifically represses the SAX-3/ROBO pathway to ensure proper commissure navigation.
Collapse
Affiliation(s)
- Andreas Steimel
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Asadollahi R, Oneda B, Sheth F, Azzarello-Burri S, Baldinger R, Joset P, Latal B, Knirsch W, Desai S, Baumer A, Houge G, Andrieux J, Rauch A. Dosage changes of MED13L further delineate its role in congenital heart defects and intellectual disability. Eur J Hum Genet 2013; 21:1100-4. [PMID: 23403903 DOI: 10.1038/ejhg.2013.17] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/09/2013] [Accepted: 01/16/2013] [Indexed: 01/20/2023] Open
Abstract
A chromosomal balanced translocation disrupting the MED13L (Mediator complex subunit13-like) gene, encoding a subunit of the Mediator complex, was previously associated with transposition of the great arteries (TGA) and intellectual disability (ID), and led to the identification of missense mutations in three patients with isolated TGA. Recently, a homozygous missense mutation in MED13L was found in two siblings with non-syndromic ID from a consanguineous family. Here, we describe for the first time, three patients with copy number changes affecting MED13L and delineate a recognizable MED13L haploinsufficiency syndrome. Using high resolution molecular karyotyping, we identified two intragenic de novo frameshift deletions, likely resulting in haploinsufficiency, in two patients with a similar phenotype of hypotonia, moderate ID, conotruncal heart defect and facial anomalies. In both, Sanger sequencing of MED13L did not reveal any pathogenic mutation and exome sequencing in one patient showed no evidence for a non-allelic second hit. A further patient with hypotonia, learning difficulties and perimembranous VSD showed a 1 Mb de novo triplication in 12q24.2, including MED13L and MAP1LC3B2. Our findings show that MED13L haploinsufficiency in contrast to the previously observed missense mutations cause a distinct syndromic phenotype. Additionally, a MED13L copy number gain results in a milder phenotype. The clinical features suggesting a neurocristopathy may be explained by animal model studies indicating involvement of the Mediator complex subunit 13 in neural crest induction.
Collapse
Affiliation(s)
- Reza Asadollahi
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen Y, Dong Y, Sandiford S, Dimopoulos G. Transcriptional mediators Kto and Skd are involved in the regulation of the IMD pathway and anti-Plasmodium defense in Anopheles gambiae. PLoS One 2012; 7:e45580. [PMID: 23049816 PMCID: PMC3458077 DOI: 10.1371/journal.pone.0045580] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/22/2012] [Indexed: 01/30/2023] Open
Abstract
The malarial parasite Plasmodium must complete a complex lifecycle in its Anopheles mosquito host, the main vector for Plasmodium. The mosquito resists infection with the human malarial parasite P. falciparum by engaging the NF-κB immune signaling pathway, IMD. Here we show that the conserved transcriptional mediators Kto and Skd are involved in the regulation of the mosquito IMD pathway. RNAi-mediated depletion of Kto and Skd in the Anopheles gambiae cell line L5-3 resulted in a decrease in the transcript abundance of Cec1, which is controlled by the IMD pathway. Silencing the two genes also resulted in an increased susceptibility of the mosquito to bacterial and Plasmodium falciparum infection, but not to infection with the rodent malaria parasite P. berghei. We also showed that Kto and Skd are not transcriptional co-activators of Rel2 or other key factors of the IMD pathway; however, they participate in the regulation of the IMD pathway, which is crucial for the mosquito’s defense against P. falciparum.
Collapse
Affiliation(s)
- Yang Chen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Simone Sandiford
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
45
|
Imura Y, Kobayashi Y, Yamamoto S, Furutani M, Tasaka M, Abe M, Araki T. CRYPTIC PRECOCIOUS/MED12 is a novel flowering regulator with multiple target steps in Arabidopsis. PLANT & CELL PHYSIOLOGY 2012; 53:287-303. [PMID: 22247249 PMCID: PMC3278046 DOI: 10.1093/pcp/pcs002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 01/05/2012] [Indexed: 05/22/2023]
Abstract
The proper timing of flowering is of crucial importance for reproductive success of plants. Regulation of flowering is orchestrated by inputs from both environmental and endogenous signals such as daylength, light quality, temperature and hormones, and key flowering regulators construct several parallel and interactive genetic pathways. This integrative regulatory network has been proposed to create robustness as well as plasticity of the regulation. Although knowledge of key genes and their regulation has been accumulated, there still remains much to learn about how they are organized into an integrative regulatory network. Here, we have analyzed the CRYPTIC PRECOCIOUS (CRP) gene for the Arabidopsis counterpart of the MED12 subunit of the Mediator. A novel dominant mutant, crp-1D, which causes up-regulation of SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1), FRUITFULL (FUL) and APETALA1 (AP1) expression in a FLOWERING LOCUS T (FT)-dependent manner, was identified in an enhancer screen of the early-flowering phenotype of 35S::FT. Genetic and molecular analysis of both crp-1D and crp loss-of-function alleles showed that MED12/CRP is required not only for proper regulation of SOC1, FUL and AP1, but also for up-regulation of FT, TWIN SISTER OF FT (TSF) and FD, and down-regulation of FLOWERING LOCUS C (FLC). These observations suggest that MED12/CRP is a novel flowering regulator with multiple regulatory target steps both upstream and downstream of the key flowering regulators including FT florigen. Our work, taken together with recent studies of other Mediator subunit genes, supports an emerging view that the Mediator plays multiple roles in the regulation of flowering.
Collapse
Affiliation(s)
- Yuri Imura
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
| | - Yasushi Kobayashi
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, D-72076 Tübingen, Germany
| | - Sumiko Yamamoto
- Graduate School of Science, Kyoto University, Kyoto, 606-8502 Japan
- Genome Informatics Laboratory, CIB-DDBJ, National Institute of Genetics, ROIS, Shizuoka, 411-8540 Japan
| | - Masahiko Furutani
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0101 Japan
| | - Masao Tasaka
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Nara, 630-0101 Japan
| | - Mitsutomo Abe
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033 Japan
| | - Takashi Araki
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501 Japan
- *Corresponding author: E-mail, ; Fax, +81-75-753-6470.
| |
Collapse
|
46
|
Drosophila melanogaster dHCF interacts with both PcG and TrxG epigenetic regulators. PLoS One 2011; 6:e27479. [PMID: 22174740 PMCID: PMC3234250 DOI: 10.1371/journal.pone.0027479] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 10/18/2011] [Indexed: 11/19/2022] Open
Abstract
Repression and activation of gene transcription involves multiprotein complexes that modify chromatin structure. The integration of these complexes at regulatory sites can be assisted by co-factors that link them to DNA-bound transcriptional regulators. In humans, one such co-factor is the herpes simplex virus host-cell factor 1 (HCF-1), which is implicated in both activation and repression of transcription. We show here that disruption of the gene encoding the Drosophila melanogaster homolog of HCF-1, dHCF, leads to a pleiotropic phenotype involving lethality, sterility, small size, apoptosis, and morphological defects. In Drosophila, repressed and activated transcriptional states of cell fate-determining genes are maintained throughout development by Polycomb Group (PcG) and Trithorax Group (TrxG) genes, respectively. dHCF mutant flies display morphological phenotypes typical of TrxG mutants and dHCF interacts genetically with both PcG and TrxG genes. Thus, dHCF inactivation enhances the mutant phenotypes of the Pc PcG as well as brm and mor TrxG genes, suggesting that dHCF possesses Enhancer of TrxG and PcG (ETP) properties. Additionally, dHCF interacts with the previously established ETP gene skd. These pleiotropic phenotypes are consistent with broad roles for dHCF in both activation and repression of transcription during fly development.
Collapse
|
47
|
Xu W, Ji JY. Dysregulation of CDK8 and Cyclin C in tumorigenesis. J Genet Genomics 2011; 38:439-52. [PMID: 22035865 PMCID: PMC9792140 DOI: 10.1016/j.jgg.2011.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 09/05/2011] [Accepted: 09/06/2011] [Indexed: 01/23/2023]
Abstract
Appropriately controlled gene expression is fundamental for normal growth and survival of all living organisms. In eukaryotes, the transcription of protein-coding mRNAs is dependent on RNA polymerase II (Pol II). The multi-subunit transcription cofactor Mediator complex is proposed to regulate most, if not all, of the Pol II-dependent transcription. Here we focus our discussion on two subunits of the Mediator complex, cyclin-dependent kinase 8 (CDK8) and its regulatory partner Cyclin C (CycC), because they are either mutated or amplified in a variety of human cancers. CDK8 functions as an oncoprotein in melanoma and colorectal cancers, thus there are considerable interests in developing drugs specifically targeting the CDK8 kinase activity. However, to evaluate the feasibility of targeting CDK8 for cancer therapy and to understand how their dysregulation contributes to tumorigenesis, it is essential to elucidate the in vivo function and regulation of CDK8-CycC, which are still poorly understood in multi-cellular organisms. We summarize the evidence linking their dysregulation to various cancers and present our bioinformatics and computational analyses on the structure and evolution of CDK8. We also discuss the implications of these observations in tumorigenesis. Because most of the Mediator subunits, including CDK8 and CycC, are highly conserved during eukaryotic evolution, we expect that investigations using model organisms such as Drosophila will provide important insights into the function and regulation of CDK8 and CycC in different cellular and developmental contexts.
Collapse
Affiliation(s)
- Wu Xu
- Department of Chemistry, University of Louisiana at Lafayette, P.O. Box 44370, Lafayette, LA 70504, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA
- Corresponding author: Tel: +1 979 845 6389, fax: +1 979 847 9481. (J.-Y. Ji)
| |
Collapse
|
48
|
Hentges KE. Mediator complex proteins are required for diverse developmental processes. Semin Cell Dev Biol 2011; 22:769-75. [PMID: 21854862 DOI: 10.1016/j.semcdb.2011.07.025] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/19/2011] [Accepted: 07/20/2011] [Indexed: 12/14/2022]
Abstract
The Mediator complex serves a crucial function in gene regulation, forming a link between gene-specific transcription factors and RNA polymerase II. Most protein-coding genes therefore require Mediator complex activity for transcriptional regulation. Given the essential functions performed by Mediator complex proteins in gene regulation, it is not surprising that mutations in Mediator complex genes disrupt animal and plant development. What is more intriguing is that the phenotypes of individual Mediator complex mutants are distinct from each other, demonstrating that certain developmental processes have a greater requirement for specific Mediator complex genes. Additionally, the range of developmental processes that are altered in Mediator complex mutants is broad, affecting a variety of cell types and physiological systems. Gene expression defects in Mediator complex mutants reveal distinct roles for individual Mediator proteins in transcriptional regulation, suggesting that the deletion of one Mediator complex protein does not interfere with transcription in general, but instead alters the expression of specific target genes. Mediator complex proteins may have diverse roles in different organisms as well, as mutants in the same Mediator gene in different species can display dissimilar phenotypes.
Collapse
Affiliation(s)
- Kathryn E Hentges
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, UK.
| |
Collapse
|
49
|
Mediator and human disease. Semin Cell Dev Biol 2011; 22:776-87. [PMID: 21840410 DOI: 10.1016/j.semcdb.2011.07.024] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 07/25/2011] [Accepted: 07/28/2011] [Indexed: 01/21/2023]
Abstract
Since the identification of a metazoan counterpart to yeast Mediator nearly 15 years ago, a convergent body of biochemical and molecular genetic studies have confirmed their structural and functional relationship as an integrative hub through which regulatory information conveyed by signal activated transcription factors is transduced to RNA polymerase II. Nonetheless, metazoan Mediator complexes have been shaped during evolution by substantive diversification and expansion in both the number and sequence of their constituent subunits, with important implications for the development of multicellular organisms. The appearance of unique interaction surfaces within metazoan Mediator complexes for transcription factors of diverse species-specific origins extended the role of Mediator to include an essential function in coupling developmentally coded signals with precise gene expression output sufficient to specify cell fate and function. The biological significance of Mediator in human development, suggested by genetic studies in lower metazoans, is emphatically illustrated by an expanding list of human pathologies linked to genetic variation or aberrant expression of its individual subunits. Here, we review our current body of knowledge concerning associations between individual Mediator subunits and specific pathological disorders. When established, molecular etiologies underlying genotype-phenotype correlations are addressed, and we anticipate that future progress in this critical area will help identify therapeutic targets across a range of human pathologies.
Collapse
|
50
|
Janody F, Treisman JE. Requirements for mediator complex subunits distinguish three classes of notch target genes at the Drosophila wing margin. Dev Dyn 2011; 240:2051-9. [PMID: 21793099 DOI: 10.1002/dvdy.22705] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/15/2011] [Indexed: 11/11/2022] Open
Abstract
Spatial and temporal gene regulation relies on a combinatorial code of sequence-specific transcription factors that must be integrated by the general transcriptional machinery. A key link between the two is the mediator complex, which consists of a core complex that reversibly associates with the accessory kinase module. We show here that genes activated by Notch signaling at the dorsal-ventral boundary of the Drosophila wing disc fall into three classes that are affected differently by the loss of kinase module subunits. One class requires all four kinase module subunits for activation, while the others require only Med12 and Med13, either for activation or for repression. These distinctions do not result from different requirements for the Notch coactivator Mastermind or the corepressors Hairless and Groucho. We propose that interactions with the kinase module through distinct cofactors allow the DNA-binding protein Suppressor of Hairless to carry out both its activator and repressor functions.
Collapse
Affiliation(s)
- Florence Janody
- Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, Department of Cell Biology, New York, New York, USA
| | | |
Collapse
|