1
|
McMillen P, Levin M. Collective intelligence: A unifying concept for integrating biology across scales and substrates. Commun Biol 2024; 7:378. [PMID: 38548821 PMCID: PMC10978875 DOI: 10.1038/s42003-024-06037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 03/11/2024] [Indexed: 04/01/2024] Open
Abstract
A defining feature of biology is the use of a multiscale architecture, ranging from molecular networks to cells, tissues, organs, whole bodies, and swarms. Crucially however, biology is not only nested structurally, but also functionally: each level is able to solve problems in distinct problem spaces, such as physiological, morphological, and behavioral state space. Percolating adaptive functionality from one level of competent subunits to a higher functional level of organization requires collective dynamics: multiple components must work together to achieve specific outcomes. Here we overview a number of biological examples at different scales which highlight the ability of cellular material to make decisions that implement cooperation toward specific homeodynamic endpoints, and implement collective intelligence by solving problems at the cell, tissue, and whole-organism levels. We explore the hypothesis that collective intelligence is not only the province of groups of animals, and that an important symmetry exists between the behavioral science of swarms and the competencies of cells and other biological systems at different scales. We then briefly outline the implications of this approach, and the possible impact of tools from the field of diverse intelligence for regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Patrick McMillen
- Department of Biology, Tufts University, Medford, MA, 02155, USA
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, 02155, USA.
- Allen Discovery Center at Tufts University, Medford, MA, 02155, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Ngubo M, Moradi F, Ito CY, Stanford WL. Tissue-Specific Tumour Suppressor and Oncogenic Activities of the Polycomb-like Protein MTF2. Genes (Basel) 2023; 14:1879. [PMID: 37895228 PMCID: PMC10606531 DOI: 10.3390/genes14101879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/22/2023] [Accepted: 09/23/2023] [Indexed: 10/29/2023] Open
Abstract
The Polycomb repressive complex 2 (PRC2) is a conserved chromatin-remodelling complex that catalyses the trimethylation of histone H3 lysine 27 (H3K27me3), a mark associated with gene silencing. PRC2 regulates chromatin structure and gene expression during organismal and tissue development and tissue homeostasis in the adult. PRC2 core subunits are associated with various accessory proteins that modulate its function and recruitment to target genes. The multimeric composition of accessory proteins results in two distinct variant complexes of PRC2, PRC2.1 and PRC2.2. Metal response element-binding transcription factor 2 (MTF2) is one of the Polycomb-like proteins (PCLs) that forms the PRC2.1 complex. MTF2 is highly conserved, and as an accessory subunit of PRC2, it has important roles in embryonic stem cell self-renewal and differentiation, development, and cancer progression. Here, we review the impact of MTF2 in PRC2 complex assembly, catalytic activity, and spatiotemporal function. The emerging paradoxical evidence suggesting that MTF2 has divergent roles as either a tumour suppressor or an oncogene in different tissues merits further investigations. Altogether, our review illuminates the context-dependent roles of MTF2 in Polycomb group (PcG) protein-mediated epigenetic regulation. Its impact on disease paves the way for a deeper understanding of epigenetic regulation and novel therapeutic strategies.
Collapse
Affiliation(s)
- Mzwanele Ngubo
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
| | - Fereshteh Moradi
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Caryn Y. Ito
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - William L. Stanford
- The Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, Ottawa, ON K1H 8L6, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON K1H 8M5, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
3
|
Xu L, Deng S, Xiong H, Shi W, Luo S, Chen L. GATA-6 transcriptionally inhibits Shh to repress cell proliferation and migration in lung squamous cell carcinoma. Int J Biochem Cell Biol 2019; 115:105591. [PMID: 31442607 DOI: 10.1016/j.biocel.2019.105591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/19/2019] [Accepted: 08/19/2019] [Indexed: 01/20/2023]
Abstract
GATA-6 is a transcription factor that participates in cell lineage differentiation and organogenesis in many tissue types. The abnormal expression of GATA-6 is associated with the development of diverse cancers. GATA-6 acts as an oncogene or tumor suppressor based on tumor origin. Here, we investigated the effects of GATA-6 on lung squamous cell carcinoma (LSCC). We found that GATA-6 was significantly reduced in LSCC tissues compared with the paired normal tissues. The overexpression of GATA-6 inhibited LSCC cell proliferation and migration. Importantly, a luciferase reporter assay and chromatin immunoprecipitation assay demonstrated that GATA-6 negatively regulated the expression of sonic hedgehog (Shh) by directly binding to its promoter region. Furthermore, N-Shh stimulation rescued the inhibition of LSCC cell proliferation and migration upon GATA-6 overexpression. Thus, GATA-6 inhibited the proliferation and migration of LSCC cells by transcriptionally inhibiting the expression of Shh, indicating that targeting GATA-6 may be a potential approach for LSCC therapy.
Collapse
Affiliation(s)
- Linlin Xu
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi 330006, China
| | - Suyue Deng
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi 330006, China
| | - Huanting Xiong
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi 330006, China
| | - Wei Shi
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; School of Pharmacy, Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi 330006, China
| | - Shiwen Luo
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi 330006, China
| | - Limin Chen
- Center for Experimental Medicine, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; Jiangxi Key Laboratory of Molecular Diagnostics and Precision Medicine, Nanchang, Jiangxi 330006, China.
| |
Collapse
|
4
|
Liang Y, Yang Y, Guo R, Gao S, Guo X, Li D, Wang M, Koseki H, Li X. PCL2 regulates p53 stability and functions as a tumor suppressor in breast cancer. Sci Bull (Beijing) 2018; 63:629-639. [PMID: 36658883 DOI: 10.1016/j.scib.2018.03.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 01/21/2023]
Abstract
Polycomblike2 (PCL2) is a well-known component of polycomb repressive complex 2 (PRC2) and plays important roles in H3K27 methylation and homeotic gene silencing. However, the involvement of PCL2 in breast cancer development remains unclear. Here, we established PCL2 as a tumor suppressor gene in breast cancer. Expression level of PCL2 was significantly downregulated in breast cancer tissue samples observed at different TNM stages. Ectopic expression of PCL2 could significantly inhibit cell proliferation and promoted apoptosis. PCL2 also remarkably elevated levels of p53 and its targets by increasing p53 stability. Mechanistically, PCL2 protected p53 proteins from MDM2-mediated ubiquitination and degradation by sequestering MDM2 into the nucleolus. Overexpression of PCL2 also suppressed migration and invasion by inhibiting epithelial-mesenchymal transition. PCL2 expression was correlated with E-cadherin expression and was inversely correlated with vimentin expression. Furthermore, PCL2 knockdown could attenuate anti-tumor effect of MLN4924. Taken together, our findings indicated that PCL2 played a tumor suppressor role in development and progression of breast cancer and may be a prognostic and predictive marker for breast cancer.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China; Department of Breast Surgery, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Yang Yang
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Renbo Guo
- Department of Urology, Shandong Cancer Hospital Affiliated to Shandong University, Jinan 250117, China
| | - Shuang Gao
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Xinghong Guo
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Danyang Li
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Meng Wang
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Kanagawa 230-0045, Japan
| | - Xiangzhi Li
- Department of Cell Biology, Shandong University School of Basic Medical Sciences, Jinan 250012, China.
| |
Collapse
|
5
|
Lobikin M, Lobo D, Blackiston DJ, Martyniuk CJ, Tkachenko E, Levin M. Serotonergic regulation of melanocyte conversion: A bioelectrically regulated network for stochastic all-or-none hyperpigmentation. Sci Signal 2015; 8:ra99. [PMID: 26443706 DOI: 10.1126/scisignal.aac6609] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Experimentally induced depolarization of resting membrane potential in "instructor cells" in Xenopus laevis embryos causes hyperpigmentation in an all-or-none fashion in some tadpoles due to excess proliferation and migration of melanocytes. We showed that this stochastic process involved serotonin signaling, adenosine 3',5'-monophosphate (cAMP), and the transcription factors cAMP response element-binding protein (CREB), Sox10, and Slug. Transcriptional microarray analysis of embryos taken at stage 15 (early neurula) and stage 45 (free-swimming tadpole) revealed changes in the abundance of 45 and 517 transcripts, respectively, between control embryos and embryos exposed to the instructor cell-depolarizing agent ivermectin. Bioinformatic analysis revealed that the human homologs of some of the differentially regulated genes were associated with cancer, consistent with the induced arborization and invasive behavior of converted melanocytes. We identified a physiological circuit that uses serotonergic signaling between instructor cells, melanotrope cells of the pituitary, and melanocytes to control the proliferation, cell shape, and migration properties of the pigment cell pool. To understand the stochasticity and properties of this multiscale signaling system, we applied a computational machine-learning method that iteratively explored network models to reverse-engineer a stochastic dynamic model that recapitulated the frequency of the all-or-none hyperpigmentation phenotype produced in response to various pharmacological and molecular genetic manipulations. This computational approach may provide insight into stochastic cellular decision-making that occurs during normal development and pathological conditions, such as cancer.
Collapse
Affiliation(s)
- Maria Lobikin
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| | - Daniel Lobo
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | - Douglas J Blackiston
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences, UF Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Elizabeth Tkachenko
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Biology Department and Center for Regenerative and Developmental Biology, Tufts University, Medford, MA 02155, USA.
| |
Collapse
|
6
|
Vizán P, Beringer M, Ballaré C, Di Croce L. Role of PRC2-associated factors in stem cells and disease. FEBS J 2014; 282:1723-35. [PMID: 25271128 DOI: 10.1111/febs.13083] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/19/2014] [Accepted: 09/26/2014] [Indexed: 01/01/2023]
Abstract
The Polycomb group (PcG) of proteins form chromatin-binding complexes with histone-modifying activity. The two main PcG repressive complexes studied (PRC1 and PRC2) are generally associated with chromatin in its repressed state. PRC2 is responsible for methylation of histone H3 at lysine 27 (H3K27me3), an epigenetic mark that is linked with numerous biological processes, including development, adult homeostasis and cancer. The core canonical complex PRC2, which contains the EZH1/2, SUZ12 and EED proteins, may be extended and functionally manipulated through interactions with several other proteins. In this review, we focus on these PRC2-associated proteins. As PRC2 functions are diverse, the variability conferred by these sub-stoichiometrically associated members may help to understand specific changes in PRC2 activity, chromatin recruitment and distribution required for gene repression.
Collapse
Affiliation(s)
- Pedro Vizán
- Centre for Genomic Regulation, Barcelona, Spain; Universitat Pompeu Fabra, Barcelona, Spain
| | | | | | | |
Collapse
|
7
|
Aloia L, Di Stefano B, Di Croce L. Polycomb complexes in stem cells and embryonic development. Development 2013; 140:2525-34. [PMID: 23715546 DOI: 10.1242/dev.091553] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Polycomb group (PcG) proteins are epigenetic modifiers involved in controlling gene repression. Organized within multiprotein complexes, they regulate developmental genes in multiple cell types and tissue contexts, including embryonic and adult stem cells, and are essential for cell fate transitions and proper development. Here, we summarize recent breakthroughs that have revealed the diversity of PcG complexes acting in different cell types and genomic contexts. Intriguingly, it appears that particular PcG proteins have specific functions in embryonic development, in pluripotent stem cells and in reprogramming somatic cells into a pluripotent-like state. Finally, we highlight recent results from analyzing PcG protein functions in multipotent stem cells, such as neural, hematopoietic and epidermal stem cells.
Collapse
Affiliation(s)
- Luigi Aloia
- Centre for Genomic Regulation (CRG), and UPF, Dr Aiguader 88, 08003 Barcelona,Spain
| | | | | |
Collapse
|
8
|
Medio M, Yeh E, Popelut A, Babajko S, Berdal A, Helms JA. Wnt/β-catenin signaling and Msx1 promote outgrowth of the maxillary prominences. Front Physiol 2012; 3:375. [PMID: 23055979 PMCID: PMC3457051 DOI: 10.3389/fphys.2012.00375] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 09/02/2012] [Indexed: 01/02/2023] Open
Abstract
Facial morphogenesis requires a series of precisely orchestrated molecular events to promote the growth and fusion of the facial prominences. Cleft palate (CP) results from perturbations in this process. The transcriptional repressor Msx1 is a key participant in these molecular events, as demonstrated by the palatal clefting phenotype observed in Msx1−/− embryos. Here, we exploited the high degree of conservation that exists in the gene regulatory networks that shape the faces of birds and mice, to gain a deeper understanding of Msx1 function in CP. Histomorphometric analyses indicated that facial development was disrupted as early as E12.5 in Msx1−/− embryos, long before the palatal shelves have formed. By mapping the expression domain of Msx1 in E11.5 and E12.5 embryos, we found the structures most affected by loss of Msx1 function were the maxillary prominences. Maxillary growth retardation was accompanied by perturbations in angiogenesis that preceded the CP phenotype. Experimental chick manipulations and in vitro assays showed that the regulation of Msx1 expression by the Wnt/β-catenin pathway is highly specific. Our data in mice and chicks indicate a conserved role for Msx1 in regulating the outgrowth of the maxillary prominences, and underscore how imbalances in Msx1 function can lead of growth disruptions that manifest as CP.
Collapse
Affiliation(s)
- Marie Medio
- Department of Orthodontics, Service of Odontology, Pitié-Salpêtrière Hospital, AP-HP, Paris 7 - Denis Diderot University, U.F.R. of Odontology Paris, France
| | | | | | | | | | | |
Collapse
|
9
|
Casanova M, Preissner T, Cerase A, Poot R, Yamada D, Li X, Appanah R, Bezstarosti K, Demmers J, Koseki H, Brockdorff N. Polycomblike 2 facilitates the recruitment of PRC2 Polycomb group complexes to the inactive X chromosome and to target loci in embryonic stem cells. Development 2011; 138:1471-82. [PMID: 21367819 DOI: 10.1242/dev.053652] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polycomb group (PcG) proteins play an important role in the control of developmental gene expression in higher organisms. In mammalian systems, PcG proteins participate in the control of pluripotency, cell fate, cell cycle regulation, X chromosome inactivation and parental imprinting. In this study we have analysed the function of the mouse PcG protein polycomblike 2 (Pcl2), one of three homologues of the Drosophila Polycomblike (Pcl) protein. We show that Pcl2 is expressed at high levels during early embryogenesis and in embryonic stem (ES) cells. At the biochemical level, Pcl2 interacts with core components of the histone H3K27 methyltransferase complex Polycomb repressive complex 2 (PRC2), to form a distinct substoichiometric biochemical complex, Pcl2-PRC2. Functional analysis using RNAi knockdown demonstrates that Pcl2-PRC2 facilitates both PRC2 recruitment to the inactive X chromosome in differentiating XX ES cells and PRC2 recruitment to target genes in undifferentiated ES cells. The role of Pcl2 in PRC2 targeting in ES cells is critically dependent on a conserved PHD finger domain, suggesting that Pcl2 might function through the recognition of a specific chromatin configuration.
Collapse
Affiliation(s)
- Miguel Casanova
- Developmental Epigenetics Group, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Walker E, Manias JL, Chang WY, Stanford WL. PCL2 modulates gene regulatory networks controlling self-renewal and commitment in embryonic stem cells. Cell Cycle 2011; 10:45-51. [PMID: 21193838 DOI: 10.4161/cc.10.1.14389] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Recent reports have better elucidated the components of the Polycomb Repressive Complex 2 (PRC2) and its functional role in embryonic stem cells (ESCs) and their differentiated derivatives. The depletion of a newly described mammalian PRC2 associated protein, PCL2, leads to an increase in ESC self-renewal and a delay in differentiation, a phenotype similar to knockouts of the core PRC2 members. Genomic and cell biology data suggest that PCL2 is important in cell fate decisions and may play a role in recruitment of PRC2 to target genes and histone methylation. Importantly, depletion of PCL2 in ESCs leads to a decrease in 3meH3K27 at the proximal promoter regions of pluripotency transcription factors Tbx3, Klf4, Foxd3 and a concomitant increase in gene expression. These proteins subsequently activate expression of Oct4, Nanog and Sox2 through a feed-forward gene regulatory circuit, altering the core pluripotency network and driving cell fate decisions towards self-renewal. We propose a model whereby alteration of the epigenetic state of Tbx3, Klf4, and Foxd3 results in the enforced expression of the pluripotency network, preventing differentiation.
Collapse
Affiliation(s)
- Emily Walker
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
11
|
Yu X, Espinoza-Lewis RA, Sun C, Lin L, He F, Xiong W, Yang J, Wang A, Chen Y. Overexpression of constitutively active BMP-receptor-IB in mouse skin causes an ichthyosis-vulgaris-like disease. Cell Tissue Res 2010; 342:401-10. [PMID: 21079999 DOI: 10.1007/s00441-010-1077-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Accepted: 10/07/2010] [Indexed: 01/31/2023]
Abstract
The skin is the outer layer of protection against the environment. The development and formation of the skin is regulated by several genetic cascades including the bone morphogenetic protein (BMP) signaling pathway, which has been suggested to play an important role during embryonic organ development. Several skin defects and diseases are caused by genetic mutations or disorders. Ichthyosis is a common genetic skin disorder characterized by dry scaly skin. Loss-of-function mutations in the filaggrin (FLG) gene have been identified as the cause of the ichthyosis vulgaris (IV) phenotype; however, the direct regulation of filaggrin expression in vivo is unknown. We present evidence that BMP signaling regulates filaggrin expression in the epidermis. Mice expressing a constitutively active form of BMP-receptor-IB in the developing epidermis exhibit a phenotype resembling IV in humans, including dry flaky skin, compact hyperkeratosis, and an attenuated granular layer associated with a significantly downregulated expression of filaggrin. Regulation of filaggrin expression by BMP signaling has been further confirmed by the application of exogenous BMP2 in skin explants and by a transgenic model overexpressing Noggin in the epidermis. Our results demonstrate that aberrant BMP signaling in the epidermis causes overproliferation and hyperkeratinization, leading to an IV-like skin disease.
Collapse
Affiliation(s)
- Xueyan Yu
- Section of Oral Biology, The Ohio State University College of Dentistry, Columbus, OH 43210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Mammalian polycomb-like Pcl2/Mtf2 is a novel regulatory component of PRC2 that can differentially modulate polycomb activity both at the Hox gene cluster and at Cdkn2a genes. Mol Cell Biol 2010; 31:351-64. [PMID: 21059868 DOI: 10.1128/mcb.00259-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Polycomb group of proteins forms at least two distinct complexes designated the Polycomb repressive complex-1 (PRC1) and PRC2. These complexes cooperate to mediate transcriptional repression of their target genes, including the Hox gene cluster and the Cdkn2a genes. Mammalian Polycomb-like gene Pcl2/Mtf2 is expressed as four different isoforms, and the longest one contains a Tudor domain and two plant homeodomain (PHD) fingers. Pcl2 forms a complex with PRC2 and binds to Hox genes in a PRC2-dependent manner. We show that Pcl2 is a functional component of PRC2 and is required for PRC2-mediated Hox repression. Pcl2, however, exhibits a profound synergistic effect on PRC1-mediated Hox repression, which is not accompanied by major alterations in the local trimethylation of histone H3 at lysine 27 (H3K27me3) or PRC1 deposition. Pcl2 therefore functions in collaboration with both PRC2 and PRC1 to repress Hox gene expression during axial development. Paradoxically, in embryonic fibroblasts, Pcl2 is shown to activate the expression of Cdkn2a and promote cellular senescence, presumably by suppressing the catalytic activity of PRC2 locally. Taken together, we show that Pcl2 differentially regulates Polycomb-mediated repression of Hox and Cdkn2a genes. We therefore propose a novel role for Pcl2 to modify functional engagement of PRC2 and PRC1, which could be modulated by sensing cellular circumstances.
Collapse
|
13
|
Nordstrand LM, Svärd J, Larsen E, Nilsen A, Ougland R, Furu K, Lien GF, Rognes T, Namekawa SH, Lee JT, Klungland A. Mice lacking Alkbh1 display sex-ratio distortion and unilateral eye defects. PLoS One 2010; 5:e13827. [PMID: 21072209 PMCID: PMC2972218 DOI: 10.1371/journal.pone.0013827] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 10/14/2010] [Indexed: 11/26/2022] Open
Abstract
Background Eschericia coli AlkB is a 2-oxoglutarate- and iron-dependent dioxygenase that reverses alkylated DNA damage by oxidative demethylation. Mouse AlkB homolog 1 (Alkbh1) is one of eight members of the newly discovered family of mammalian dioxygenases. Methods and Findings In the present study we show non-Mendelian inheritance of the Alkbh1 targeted allele in mice. Both Alkbh1−/− and heterozygous Alkbh1+/− offspring are born at a greatly reduced frequency. Additionally, the sex-ratio is considerably skewed against female offspring, with one female born for every three to four males. Most mechanisms that cause segregation distortion, act in the male gametes and affect male fertility. The skewing of the sexes appears to be of paternal origin, and might be set in the pachythene stage of meiosis during spermatogenesis, in which Alkbh1 is upregulated more than 10-fold. In testes, apoptotic spermatids were revealed in 5–10% of the tubules in Alkbh1−/− adults. The deficiency of Alkbh1 also causes misexpression of Bmp2, 4 and 7 at E11.5 during embryonic development. This is consistent with the incompletely penetrant phenotypes observed, particularly recurrent unilateral eye defects and craniofacial malformations. Conclusions Genetic and phenotypic assessment suggests that Alkbh1 mediates gene regulation in spermatogenesis, and that Alkbh1 is essential for normal sex-ratio distribution and embryonic development in mice.
Collapse
Affiliation(s)
- Line M. Nordstrand
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Jessica Svärd
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Elisabeth Larsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Anja Nilsen
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Rune Ougland
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Kari Furu
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Guro F. Lien
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Informatics, University of Oslo, Oslo, Norway
| | - Satoshi H. Namekawa
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jeannie T. Lee
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Arne Klungland
- Centre for Molecular Biology and Neuroscience, Institute of Medical Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
- Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
14
|
Walker E, Chang WY, Hunkapiller J, Cagney G, Garcha K, Torchia J, Krogan NJ, Reiter JF, Stanford WL. Polycomb-like 2 associates with PRC2 and regulates transcriptional networks during mouse embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2010; 6:153-66. [PMID: 20144788 DOI: 10.1016/j.stem.2009.12.014] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 10/15/2009] [Accepted: 12/17/2009] [Indexed: 01/06/2023]
Abstract
Polycomb group (PcG) proteins are conserved epigenetic transcriptional repressors that control numerous developmental gene expression programs and have recently been implicated in modulating embryonic stem cell (ESC) fate. We identified the PcG protein PCL2 (polycomb-like 2) in a genome-wide screen for regulators of self-renewal and pluripotency and predicted that it would play an important role in mouse ESC-fate determination. Using multiple biochemical strategies, we provide evidence that PCL2 is a Polycomb Repressive Complex 2 (PRC2)-associated protein in mouse ESCs. Knockdown of Pcl2 in ESCs resulted in heightened self-renewal characteristics, defects in differentiation, and altered patterns of histone methylation. Integration of global gene expression and promoter occupancy analyses allowed us to identify PCL2 and PRC2 transcriptional targets and draft regulatory networks. We describe the role of PCL2 in both modulating transcription of ESC self-renewal genes in undifferentiated ESCs as well as developmental regulators during early commitment and differentiation.
Collapse
Affiliation(s)
- Emily Walker
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON M5S 3G9, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Arai D, Hatano A, Higashinakagawa T. oleed, a medaka Polycomb group gene, regulates ciliogenesis and leftâright patterning. Genes Cells 2009; 14:1359-67. [DOI: 10.1111/j.1365-2443.2009.01353.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Zhang Y, Levin M. Left-right asymmetry in the chick embryo requires core planar cell polarity protein Vangl2. Genesis 2009; 47:719-28. [PMID: 19621439 PMCID: PMC2790031 DOI: 10.1002/dvg.20551] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Consistent left-right patterning is a fascinating and biomedically important problem. In the chick embryo, it is not known how cells determine their position (left or right) relative to the primitive streak, which is required for subsequent asymmetric gene expression cascades. We show that the subcellular localization of Vangl2, a core planar cell polarity (PCP) protein, is consistently polarized, giving cells in the blastoderm a vector pointing toward the primitive streak. Moreover, morpholino-mediated loss-of-function of Vangl2 by electroporation into chicks at very early stages randomizes the normally left-sided expression of Sonic hedgehog. Strikingly, Vangl2 morpholinos also induce a desynchronization of asymmetric gene expression within the left and right domains of Hensen's node. These data reveal the existence of polarized planar cell polarity protein localization in gastrulating chick and demonstrate that the PCP pathway is functionally required for normal asymmetry in the chick upstream of Sonic hedgehog. These data suggest a new and widely applicable class of models for the spread and coordination of left-right patterning information in the embryonic blastoderm.
Collapse
Affiliation(s)
- Ying Zhang
- Center for Regenerative and Developmental Biology The Forsyth Institute, and Department of Developmental Biology Harvard School of Dental Medicine, 140 The Fenway Boston, MA 02115, U.S.A
| | - Michael Levin
- Center for Regenerative and Developmental Biology The Forsyth Institute, and Department of Developmental Biology Harvard School of Dental Medicine, 140 The Fenway Boston, MA 02115, U.S.A
| |
Collapse
|
17
|
Yu X, He F, Zhang T, Espinoza-Lewis RA, Lin L, Yang J, Chen Y. Cerberus functions as a BMP agonist to synergistically induce nodal expression during left-right axis determination in the chick embryo. Dev Dyn 2009; 237:3613-23. [PMID: 18985739 DOI: 10.1002/dvdy.21769] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Left-sided expression of Nodal in the lateral plate mesoderm (LPM) during early embryogenesis is a crucial step in establishing the left-right (L-R) axis in vertebrates. In the chick, it was suggested that chick Cerberus (cCer), a Cerberus/Dan family member, induces Nodal expression by antagonizing bone morphogenetic protein (BMP) activity in the left LPM. In contrast, it has also been shown that BMPs positively regulate Nodal expression in the left LPM in the chick embryo. Thus, it is still unclear how the bilaterally expressed BMPs induce Nodal expression only in the left LPM. In this study, we demonstrate that BMP signaling is necessary and sufficient for the induction of Nodal expression in the chick LPM where the type I BMP receptor-IB (BMPR-IB) likely mediates this induction. Tissue grafting experiments indicate the existence of a Nodal inductive factor in the left LPM rather than the presence of a Nodal inhibitory factor in the right LPM. We demonstrate that cCer functions as a BMP agonist instead of antagonist, being able to enhance BMP signaling in cell culture. This conclusion is further supported by the immunoprecipitation assays that provide convincing biochemical evidence for a direct interaction between cCer and BMP receptor. Because cCer is expressed restrictedly in the left LPM, BMPs and cCer appear to act synergistically to activate Nodal expression in the left LPM in the chick.
Collapse
Affiliation(s)
- Xueyan Yu
- Section of Oral Biology, The Ohio State University College of Dentistry, Columbus, Ohio 43210, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Chen JF, Wang S, Wu Q, Cao D, Nguyen T, Chen Y, Wang DZ. Myocardin marks the earliest cardiac gene expression and plays an important role in heart development. Anat Rec (Hoboken) 2008; 291:1200-11. [PMID: 18780304 DOI: 10.1002/ar.20756] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Myocardin belongs to the SAP domain family of transcription factors and is expressed specifically in cardiac and smooth muscle during embryogenesis and in adulthood. Myocardin functions as a transcriptional coactivator of SRF and is sufficient and necessary for smooth muscle gene expression. However, the in vivo function of myocardin during cardiogenesis is not completely understood. Here we clone myocardin from chick embryonic hearts and show that myocardin protein sequences are highly conserved cross species. Detailed studies of chick myocardin expression reveal that myocardin is expressed in cardiac and smooth muscle lineage during early embryogenesis, similar to that found in mouse. Interestingly, the expression of myocardin in the heart was found enriched in the outflow tract and the sinoatrial segments shortly after the formation of linear heart tube. Such expression pattern is also maintained in later developing embryos, suggesting that myocardin may play a unique role in the formation of those cardiac modules. Similar to its mouse counterpart, chick myocardin is able to activate cardiac and smooth muscle promoter reporter genes and induce smooth muscle gene expression in nonmuscle cells. Ectopic overexpression of myocardin enlarged the embryonic chick heart. Conversely, repression of the endogenous chick myocardin using antisense oligonucleotides or a dominant negative mutant form of myocardin inhibited cardiogenesis. Together, our data place myocardin as one of the earliest cardiac marker genes for cardiogenesis and support the idea that myocardin plays an essential role in cardiac gene expression and cardiogenesis.
Collapse
Affiliation(s)
- Jian-Fu Chen
- Carolina Cardiovascular Biology Center, Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill, North Carolina, 27599-7126, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Raya Á, Izpisúa Belmonte JC. Insights into the establishment of left–right asymmetries in vertebrates. ACTA ACUST UNITED AC 2008; 84:81-94. [DOI: 10.1002/bdrc.20122] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
20
|
Control of endothelial cell proliferation and migration by VEGF signaling to histone deacetylase 7. Proc Natl Acad Sci U S A 2008; 105:7738-43. [PMID: 18509061 DOI: 10.1073/pnas.0802857105] [Citation(s) in RCA: 193] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
VEGF has been shown to regulate endothelial cell (EC) proliferation and migration. However, the nuclear mediators of the actions of VEGF in ECs have not been fully defined. We show that VEGF induces the phosphorylation of three conserved serine residues in histone deacetylase 7 (HDAC7) via protein kinase D, which promotes nuclear export of HDAC7 and activation of VEGF-responsive genes in ECs. Expression of a signal-resistant HDAC7 mutant protein in ECs inhibits proliferation and migration in response to VEGF. These results demonstrate that phosphorylation of HDAC7 serves as a molecular switch to mediate VEGF signaling and endothelial function.
Collapse
|
21
|
Ezh2 requires PHF1 to efficiently catalyze H3 lysine 27 trimethylation in vivo. Mol Cell Biol 2008; 28:2718-31. [PMID: 18285464 DOI: 10.1128/mcb.02017-07] [Citation(s) in RCA: 215] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mammalian Polycomblike protein PHF1 was previously shown to interact with the Polycomb group (PcG) protein Ezh2, a histone methyltransferase whose activity is pivotal in sustaining gene repression during development and in adulthood. As Ezh2 is active only when part of the Polycomb Repressive Complexes (PRC2-PRC4), we examined the functional role of its interaction with PHF1. Chromatin immunoprecipitation experiments revealed that PHF1 resides along with Ezh2 at Ezh2-regulated genes such as the HoxA loci and the non-Hox MYT1 and WNT1 genes. Knockdown of PHF1 or of Ezh2 led to up-regulated HoxA gene expression. Interestingly, depletion of PHF1 did correlate with reduced occupancy of Bmi-1, a PRC1 component. As expected, knockdown of Ezh2 led to reduced levels of its catalytic products H3K27me2/H3K27me3. However, reduced levels of PHF1 also led to decreased global levels of H3K27me3. Notably, the levels of H3K27me3 decreased while those of H3K27me2 increased at the up-regulated HoxA loci tested. Consistent with this, the addition of PHF1 specifically stimulated the ability of Ezh2 to catalyze H3K27me3 but not H3K27me1/H3K27me2 in vitro. We conclude that PHF1 modulates the activity of Ezh2 in favor of the repressive H3K27me3 mark. Thus, we propose that PHF1 is a determinant in PcG-mediated gene repression.
Collapse
|
22
|
Schlueter J, Brand T. Left-right axis development: examples of similar and divergent strategies to generate asymmetric morphogenesis in chick and mouse embryos. Cytogenet Genome Res 2007; 117:256-67. [PMID: 17675867 DOI: 10.1159/000103187] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2006] [Accepted: 08/24/2006] [Indexed: 12/18/2022] Open
Abstract
Left-right asymmetry of internal organs is widely distributed in the animal kingdom. The chick and mouse embryos have served as important model organisms to analyze the mechanisms underlying the establishment of the left-right axis. In the chick embryo many genes have been found to be asymmetrically expressed in and around the node, while the same genes in the mouse show symmetric expression patterns. In the mouse there is strong evidence for an establishment of left-right asymmetry through nodal cilia. In contrast, in the chick and in many other organisms left-right asymmetry is probably generated by an early-acting event involving membrane depolarization. In both birds and mammals a conserved Nodal-Lefty-Pitx2 module exists that controls many aspects of asymmetric morphogenesis. This review also gives examples of divergent mechanisms of establishing asymmetric organ formation. Thus there is ample evidence for conserved and non-conserved strategies to generate asymmetry in birds and mammals.
Collapse
Affiliation(s)
- J Schlueter
- Cell and Developmental Biology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
23
|
Spéder P, Petzoldt A, Suzanne M, Noselli S. Strategies to establish left/right asymmetry in vertebrates and invertebrates. Curr Opin Genet Dev 2007; 17:351-8. [PMID: 17643981 DOI: 10.1016/j.gde.2007.05.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 05/18/2007] [Accepted: 05/22/2007] [Indexed: 10/23/2022]
Abstract
Left/right (L/R) asymmetry is essential during embryonic development for organ positioning, looping and handed morphogenesis. A major goal in the field is to understand how embryos initially determine their left and right hand sides, a process known as symmetry breaking. A number of recent studies on several vertebrate and invertebrate model organisms have provided a more complex view on how L/R asymmetry is established, revealing an apparent partition between deuterostomes and protostomes. In deuterostomes, nodal cilia represent a conserved symmetry-breaking process; nevertheless, growing evidence shows the existence of pre-cilia L/R asymmetries involving active ion flows. In protostomes like snails and Drosophila, symmetry breaking relies on different mechanisms, involving, in particular, the actin cytoskeleton and associated molecular motors.
Collapse
Affiliation(s)
- Pauline Spéder
- ISBDC, University of Nice Sophia-Antipolis, CNRS, Parc Valrose, 06108 NICE Cedex 2, France
| | | | | | | |
Collapse
|
24
|
Yu L, Liu H, Yan M, Yang J, Long F, Muneoka K, Chen Y. Shox2 is required for chondrocyte proliferation and maturation in proximal limb skeleton. Dev Biol 2007; 306:549-59. [PMID: 17481601 PMCID: PMC2062576 DOI: 10.1016/j.ydbio.2007.03.518] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 03/22/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
Mutations in the short stature homeobox gene SHOX lead to growth retardation associated with Turner, Leri-Weill dyschondrosteosis, and Langer mesomelic dysplasia syndromes, which marked the shortening of the forearms and lower legs. We report here that in contrast to the SHOX mutations in humans, Shox2 deficiency in mice leads to a virtual elimination of the stylopod in the developing limbs, while the zeugopod and autopod appear relatively normal. This phenotype is consistent with the restriction of the Shox2 expression to the proximal mesenchyme in the limb bud and later to chondrocytes associated with the forming stylopod. In the Shox2(-/-) embryo, the mesenchymal condensation for the stylopod initiates normally but the cartilaginous element subsequently fails in growth, chondrogenesis and endochondral ossification. A dramatic down-regulation of Runx2 and Runx3 could account for the lack of chondrocyte hypertrophy, while a down-regulation of Ihh expression may be responsible for a significant reduction in chondrocyte proliferation in the mutant stylopod. We further demonstrate that an enhanced and ectopic Bmp4 expression in the proximal limb of the Shox2 embryo may underlie the down-regulation of Runx2, as ectopically applied exogenous BMP4 represses Runx2 expression in the early limb bud. Moreover, we show that mouse Shox2, similar to human SHOX, can perform opposite roles on gene expression: either as a transcription activator or a repressor in different cell types. Our results establish a key role for Shox2 in regulating the growth of stylopod by controlling chondrocyte maturation via Runx2 and Runx3.
Collapse
Affiliation(s)
- Ling Yu
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70117, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Manning L, Ohyama K, Saeger B, Hatano O, Wilson SA, Logan M, Placzek M. Regional morphogenesis in the hypothalamus: a BMP-Tbx2 pathway coordinates fate and proliferation through Shh downregulation. Dev Cell 2007; 11:873-85. [PMID: 17141161 DOI: 10.1016/j.devcel.2006.09.021] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2005] [Revised: 07/25/2006] [Accepted: 09/25/2006] [Indexed: 10/23/2022]
Abstract
A central challenge in embryonic development is to understand how growth and pattern are coordinated to direct emerging new territories during morphogenesis. Here, we report on a signaling cascade that links cell proliferation and fate, promoting formation of a distinct progenitor domain within the developing chick hypothalamus. We show that the downregulation of Shh in floor plate-like cells in the forebrain governs their progression to a distinctive, proliferating hypothalamic progenitor domain. Shh downregulation occurs via a local BMP-Tbx2 pathway, Tbx2 acting to repress Shh expression. We show in vivo and in vitro that forced maintenance of Shh in hypothalamic progenitors prevents their normal morphogenesis, leading to maintenance of the Shh receptor, ptc, and preventing progression to an Emx2(+)-proliferative progenitor state. Our data identify a molecular pathway for the downregulation of Shh via a BMP-Tbx2 pathway and provide a mechanism for expansion of a discrete progenitor domain within the developing forebrain.
Collapse
Affiliation(s)
- Liz Manning
- MRC Centre Development for Developmental and Biomedical Genetics, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | |
Collapse
|
26
|
Wang S, He F, Xiong W, Gu S, Liu H, Zhang T, Yu X, Chen Y. Polycomblike-2-deficient mice exhibit normal left–right asymmetry. Dev Dyn 2007; 236:853-61. [PMID: 17266133 DOI: 10.1002/dvdy.21070] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Polycomb group (PcG) proteins are required for maintaining the repressed state of developmentally important genes such as homeotic genes. Polycomblike (Pcl), a member of PcG genes with two characteristic PHD finger motifs, was shown to strongly enhance the effects of PcG genes in Drosophila. Three Pcl genes exist in the mouse genome, with their function largely unknown. Our previous studies demonstrate that the chick Pcl2 is essential for the left-right asymmetry by silencing Shh expression in the right side of the node (Wang et al., [2004b] Development 131:4381-4391). To elucidate the in vivo role of mouse Pcl2, we generated Pcl2 mutant mice. Phenotypic analyses indicate the normal development of left-right asymmetry in the Pcl2 mutant mice. However, Pcl2 mutant mice exhibit posterior transformation of axial skeletons and other phenotypic defects, with a relatively low penetrance. These results demonstrate that Pcl2 is dispensable for the normal left-right axis development in mice.
Collapse
Affiliation(s)
- Shusheng Wang
- Division of Developmental Biology, Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Li N, Volff JN, Wizenmann A. Rab23 GTPase is expressed asymmetrically in Hensen's node and plays a role in the dorsoventral patterning of the chick neural tube. Dev Dyn 2007; 236:2993-3006. [DOI: 10.1002/dvdy.21331] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
28
|
Levin M. Is the early left-right axis like a plant, a kidney, or a neuron? The integration of physiological signals in embryonic asymmetry. ACTA ACUST UNITED AC 2006; 78:191-223. [PMID: 17061264 DOI: 10.1002/bdrc.20078] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well-characterized, the left-right (LR) axis has only relatively recently begun to be understood at the molecular level. The mechanisms that ensure invariant LR asymmetry of the heart, viscera, and brain involve fundamental aspects of cell biology, biophysics, and evolutionary biology, and are important not only for basic science but also for the biomedicine of a wide range of birth defects and human genetic syndromes. The LR axis links biomolecular chirality to embryonic development and ultimately to behavior and cognition, revealing feedback loops and conserved functional modules occurring as widely as plants and mammals. This review focuses on the unique and fascinating physiological aspects of LR patterning in a number of vertebrate and invertebrate species, discusses several profound mechanistic analogies between biological regulation in diverse systems (specifically proposing a nonciliary parallel between kidney cells and the LR axis based on subcellular regulation of ion transporter targeting), highlights the possible importance of early, highly-conserved intracellular events that are magnified to embryo-wide scales, and lays out the most important open questions about the function, evolutionary origin, and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Forsyth Center for Regenerative and Developmental Biology, The Forsyth Institute, and the Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, USA.
| |
Collapse
|
29
|
Torlopp A, Breher SS, Schlüter J, Brand T. Comparative analysis of mRNA and protein expression of Popdc1 (Bves) during early development in the chick embryo. Dev Dyn 2006; 235:691-700. [PMID: 16444735 DOI: 10.1002/dvdy.20687] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The isolation of the Popeye gene family was based on its preferential expression in striated muscle tissue. Recently, a monoclonal antibody against chick Popdc1 (also known as Bves) became available and was used in this study to comparatively analyze the expression pattern of Popdc1 at both the protein and mRNA level during early chick embryogenesis. Using whole-mount immunohistochemistry, expression in the heart was first observed at Hamburger and Hamilton (HH) stage 10 in the presumptive left ventricular segment. Cardiac expression was confined to differentiated cardiac myocytes, and undifferentiated myocytes at the anterior and posterior pole showed little expression. After looping, the outer curvature myocardium showed prominent Popdc1 staining, whereas the inner curvature was unlabeled. Despite previous reports, Popdc1 protein was not detectable at any time point in the proepicardium, epicardium, or the smooth muscle layer of the coronary vessels. Whole-mount in situ hybridization using a full-length Popdc1 probe detected novel expression domains, which have not been described previously. Popdc1 mRNA was found in Hensen's node at HH stage 4, and by HH stage 5+, expression became asymmetric. In addition, Popdc1 mRNA was found in pharyngeal endoderm and in the notochordal plate. Subsequently, beginning at HH stage 9, Popdc1 mRNA expression was found in the cardiac mesoderm and expression was maintained in the heart in a pattern very similar to the one observed by antibody staining.
Collapse
Affiliation(s)
- Angela Torlopp
- Cell and Molecular Biology, Technical University of Braunschweig, Germany
| | | | | | | |
Collapse
|
30
|
Ramsdell AF. Left–right asymmetry and congenital cardiac defects: Getting to the heart of the matter in vertebrate left–right axis determination. Dev Biol 2005; 288:1-20. [PMID: 16289136 DOI: 10.1016/j.ydbio.2005.07.038] [Citation(s) in RCA: 154] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Revised: 07/21/2005] [Accepted: 07/26/2005] [Indexed: 01/20/2023]
Abstract
Cellular and molecular left-right differences that are present in the mesodermal heart fields suggest that the heart is lateralized from its inception. Left-right asymmetry persists as the heart fields coalesce to form the primary heart tube, and overt, morphological asymmetry first becomes evident when the heart tube undergoes looping morphogenesis. Thereafter, chamber formation, differentiation of the inflow and outflow tracts, and position of the heart relative to the midline are additional features of heart development that exhibit left-right differences. Observations made in human clinical studies and in animal models of laterality disease suggest that all of these features of cardiac development are influenced by the embryonic left-right body axis. When errors in left-right axis determination happen, they almost always are associated with complex congenital heart malformations. The purpose of this review is to highlight what is presently known about cardiac development and upstream processes of left-right axis determination, and to consider how perturbation of the left-right body plan might ultimately result in particular types of congenital heart defects.
Collapse
Affiliation(s)
- Ann F Ramsdell
- Department of Cell and Developmental Biology and Anatomy, School of Medicine and Program in Women's Studies, College of Arts and Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
31
|
Levin M. Left-right asymmetry in embryonic development: a comprehensive review. Mech Dev 2005; 122:3-25. [PMID: 15582774 DOI: 10.1016/j.mod.2004.08.006] [Citation(s) in RCA: 334] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2004] [Revised: 08/22/2004] [Accepted: 08/23/2004] [Indexed: 12/17/2022]
Abstract
Embryonic morphogenesis occurs along three orthogonal axes. While the patterning of the anterior-posterior and dorsal-ventral axes has been increasingly well characterized, the left-right (LR) axis has only recently begun to be understood at the molecular level. The mechanisms which ensure invariant LR asymmetry of the heart, viscera, and brain represent a thread connecting biomolecular chirality to human cognition, along the way involving fundamental aspects of cell biology, biophysics, and evolutionary biology. An understanding of LR asymmetry is important not only for basic science, but also for the biomedicine of a wide range of birth defects and human genetic syndromes. This review summarizes the current knowledge regarding LR patterning in a number of vertebrate and invertebrate species, discusses several poorly understood but important phenomena, and highlights some important open questions about the evolutionary origin and conservation of mechanisms underlying embryonic asymmetry.
Collapse
Affiliation(s)
- Michael Levin
- Cytokine Biology Department, The Forsyth Institute, Boston, MA 02115, USA.
| |
Collapse
|