1
|
Furtado LFV, Alves WP, da Silva VJ, Rabelo ÉML. Hookworm infection as a model for deepen knowledge of iron metabolism and erythropoiesis in anemia. Cytokine 2024; 177:156559. [PMID: 38412767 DOI: 10.1016/j.cyto.2024.156559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/29/2024] [Accepted: 02/20/2024] [Indexed: 02/29/2024]
Abstract
Over the years, there has been progress in understanding the molecular aspects of iron metabolism and erythropoiesis. However, despite research conducted both in laboratories and living organisms, there are still unanswered questions due to the complex nature of these fields. In this study we investigated the effects of hookworm infection on iron metabolism and how the hosts response to anemia is affected using hamsters infected with Ancylostoma ceylanicum as a model. Our data revealed interesting relationships between infection-induced anemia, erythropoiesis, iron metabolism, and immune modulation, such that the elevated production of erythropoietin (EPO) in renal tissue indicated intensified erythropoiesis in response to anemia. Additionally, the increased expression of the erythroferrone (ERFE) gene in the spleen suggested its involvement in iron regulation and erythropoiesis. Gene expression patterns of genes related to iron metabolism varied in different tissues, indicating tissue-specific adaptations to hypoxia. The modulation of pro-inflammatory and anti-inflammatory cytokines highlighted the delicate balance between immune response and erythropoiesis. Data derived from the investigation of changes induced in iron metabolism and stress erythropoiesis following anemia aid in our understanding of mechanisms related to blood spoliation and anemia, which could potentially be extrapolated or compared to other types or causes of anemia. These findings also contribute to our understanding of the pathophysiology of erythropoiesis in the context of blood loss.
Collapse
Affiliation(s)
- Luis Fernando Viana Furtado
- Universidade Federal de Minas Gerais, Faculdade de Farmácia, Departamento de Análises Clínicas e Toxicológicas, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| | - William Pereira Alves
- Universidade Federal de Minas Gerais, Hospital das Clínicas, Avenida Professor Alfredo Balena, 110, Santa Efigênia, CEP 30130-100 Belo Horizonte, Minas Gerais, Brazil
| | - Vivian Jordania da Silva
- Prefeitura Municipal de Sabará, Centro de Controle de Zoonoses, Avenida Charles Gonort, CEP: 34505620, Rosario I, Sabará, Minas Gerais, Brazil
| | - Élida Mara Leite Rabelo
- Universidade Federal de Minas Gerais, Instituto de Ciências Biológicas, Departamento de Parasitologia, Avenida Presidente Antônio Carlos, 6627, Pampulha, CEP 31270-901 Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
2
|
Sangkhae V, Fisher AL, Ganz T, Nemeth E. Iron Homeostasis During Pregnancy: Maternal, Placental, and Fetal Regulatory Mechanisms. Annu Rev Nutr 2023; 43:279-300. [PMID: 37253681 PMCID: PMC10723031 DOI: 10.1146/annurev-nutr-061021-030404] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Pregnancy entails a large negative balance of iron, an essential micronutrient. During pregnancy, iron requirements increase substantially to support both maternal red blood cell expansion and the development of the placenta and fetus. As insufficient iron has long been linked to adverse pregnancy outcomes, universal iron supplementation is common practice before and during pregnancy. However, in high-resource countries with iron fortification of staple foods and increased red meat consumption, the effects of too much iron supplementation during pregnancy have become a concern because iron excess has also been linked to adverse pregnancy outcomes. In this review, we address physiologic iron homeostasis of the mother, placenta, and fetus and discuss perturbations in iron homeostasis that result in pathological pregnancy. As many mechanistic regulatory systems have been deduced from animal models, we also discuss the principles learned from these models and how these may apply to human pregnancy.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| | - Allison L Fisher
- Endocrine Unit and Nephrology Division, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Tomas Ganz
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| | - Elizabeta Nemeth
- Center for Iron Disorders, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA;
| |
Collapse
|
3
|
Principe P, Mukosera GT, Gray-Hutto N, Tugung A, Gheorghe CP, Blood AB. Nitric Oxide Affects Heme Oxygenase-1, Hepcidin, and Transferrin Receptor Expression in the Placenta. Int J Mol Sci 2023; 24:ijms24065887. [PMID: 36982960 PMCID: PMC10056931 DOI: 10.3390/ijms24065887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Nitric oxide (NO) is a gasotransmitter that avidly binds both free and heme-bound iron, forming relatively stable iron nitrosyl compounds (FeNOs). We have previously demonstrated that FeNOs are present in the human placenta and are elevated in preeclampsia and intrauterine growth restriction. The ability of NO to sequester iron raises the possibility of the NO-mediated disruption of iron homeostasis in the placenta. In this work, we tested whether exposure of placental syncytiotrophoblasts or villous tissue explants to sub-cytotoxic concentrations of NO would elicit the formation of FeNOs. Furthermore, we measured changes in the mRNA and protein expression levels of key iron regulatory genes in response to NO exposure. Ozone-based chemiluminescence was used to measure concentrations of NO and its metabolites. Our results showed a significant increase in FeNO levels in placental cells and explants treated with NO (p < 0.0001). The mRNA and protein levels of HO-1 were significantly increased in both cultured syncytiotrophoblasts and villous tissue explants (p < 0.01), and the mRNA levels of hepcidin and transferrin receptor were significantly increased in culture syncytiotrophoblasts and villous tissue explants, respectively, (p < 0.01), while no changes were seen in the expression levels of divalent metal transporter-1 or ferroportin. These results suggest a potential role for NO in iron homeostasis in the human placenta and could be relevant for disorders of pregnancy such as fetal growth restriction and preeclampsia.
Collapse
Affiliation(s)
- Patricia Principe
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92354, USA
| | - George T Mukosera
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92354, USA
| | - Nikia Gray-Hutto
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Loma Linda University School of Medicine, 11370 Anderson Street, Loma Linda, CA 92354, USA
| | - Ashra Tugung
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Loma Linda University School of Medicine, 11370 Anderson Street, Loma Linda, CA 92354, USA
| | - Ciprian P Gheorghe
- Department of Obstetrics and Gynecology, Division of Maternal-Fetal Medicine, Loma Linda University School of Medicine, 11370 Anderson Street, Loma Linda, CA 92354, USA
| | - Arlin B Blood
- Lawrence D. Longo Center for Perinatal Biology, Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92354, USA
- Department of Pediatrics, Division of Neonatology, Loma Linda University School of Medicine, 11175 Campus Street, Loma Linda, CA 92354, USA
| |
Collapse
|
4
|
Cao C, Fleming MD. Loss of the placental iron exporter ferroportin 1 causes embryonic demise in late-gestation mouse pregnancy. Development 2022; 149:285826. [PMID: 36398730 DOI: 10.1242/dev.201160] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/07/2022] [Indexed: 11/19/2022]
Abstract
Fetal development relies on adequate iron supply by the placenta. The placental syncytiotrophoblasts (SCTB) express high levels of iron transporters, including ferroportin1 (Fpn1). Whether they are essential in the placenta has not been tested directly, mainly due to the lack of gene manipulation tools in SCTB. Here, we aimed to generate a SCTB-specific Cre mouse and use it to determine the role of placental Fpn1. Using CRISPR/Cas9 technology, we created a syncytin b (Synb) Cre line (SynbCre) targeting the fetal-facing SCTB layer in mouse placental labyrinth. SynbCre deleted Fpn1 in late gestation mouse placentas reliably with high efficiency. Embryos without placental Fpn1 were pale and runted, and died before birth. Fpn1 null placentas had reduced transferrin receptor expression, increased oxidative stress and detoxification responses, and accumulated ferritin in the SCTB instead of the fetal endothelium. In summary, we demonstrate that SynbCre is an effective and specific tool to investigate placental gene function in vivo. The loss of Fpn1 in late gestation mouse placenta is embryonically lethal, providing direct evidence for an essential role of Fpn1 in placental iron transport.
Collapse
Affiliation(s)
- Chang Cao
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mark D Fleming
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
5
|
McDonald EA, Gundogan F, Olveda R, Bartnikas T, Kurtis J, Friedman J. Iron transport across the human placenta is regulated by hepcidin. Pediatr Res 2022; 92:396-402. [PMID: 33069164 PMCID: PMC8052381 DOI: 10.1038/s41390-020-01201-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 09/10/2020] [Accepted: 09/29/2020] [Indexed: 12/21/2022]
Abstract
BACKGROUND Transport of iron across the placenta is critical for appropriate development of the fetus. Iron deficiency during pregnancy remains a major public health concern, particularly in low- and middle-income countries, often exacerbated by infectious diseases leading to altered iron trafficking via inflammatory responses. Herein, we investigate the role of hepcidin, a master regulator of iron homeostasis, on regulation of iron transport across trophoblast cells. METHODS We utilized the Jeg-3 choriocarcinoma cell line for analysis of the expression of transferrin receptor, ferritin, and ferroportin as well as the export of 59Fe in the presence of hepcidin. Placental tissue from human term pregnancies was utilized for immunohistochemistry. RESULTS Hepcidin treatment of Jeg-3 cells decreased the expression of ferroportin and transferrin receptor (TfR) and reduced the cellular export of iron. Lower expression of TfR on the syncytiotrophoblast was associated with the highest levels of hepcidin in maternal circulation, and ferroportin expression was positively associated with placental TfR. Placentas from small-for-gestational-age newborns had significantly lower levels of ferroportin and ferritin gene expression at delivery. CONCLUSIONS Our data suggest that hepcidin plays an important role in the regulation of iron transport across the placenta, making it a critical link in movement of iron into fetal circulation. IMPACT Hepcidin has a direct impact on iron transport across the human placenta. This study provides the first evidence of direct regulation of iron efflux from human trophoblast cells by hepcidin. These data extend our understanding of iron transport across the maternal-fetal interface, a process critical for fetal health and development.
Collapse
Affiliation(s)
- E. A. McDonald
- Center for International Health Research, Rhode Island Hospital, Providence, RI, USA,Department of Pediatrics Alpert Medical School of Brown University, Providence, RI, USA
| | - F. Gundogan
- Department of Pathology, Women & Infants Hospital, Providence, RI, USA
| | - R.M. Olveda
- Department of Immunology, Research Institute for Tropical Medicine, Manila, Philippines
| | - T.B. Bartnikas
- Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - J.D. Kurtis
- Center for International Health Research, Rhode Island Hospital, Providence, RI, USA,Department of Pathology & Laboratory Medicine, Alpert Medical School of Brown University, Providence, RI, USA
| | - J.F. Friedman
- Center for International Health Research, Rhode Island Hospital, Providence, RI, USA,Department of Pediatrics Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
6
|
Zaugg J, Solenthaler F, Albrecht C. Materno-fetal iron transfer and the emerging role of ferroptosis pathways. Biochem Pharmacol 2022; 202:115141. [PMID: 35700759 DOI: 10.1016/j.bcp.2022.115141] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 06/03/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
A successful pregnancy and the birth of a healthy baby depend to a great extent on the controlled supply of essential nutrients via the placenta. Iron is essential for mitochondrial energy supply and oxygen distribution via the blood. However, its high reactivity requires tightly regulated transport processes. Disturbances of maternal-fetal iron transfer during pregnancy can aggravate or lead to severe pathological consequences for the mother and the fetus with lifelong effects. Furthermore, high intracellular iron levels due to disturbed gestational iron homeostasis have recently been associated with the non-apoptotic cell death pathway called ferroptosis. Therefore, the investigation of transplacental iron transport mechanisms, their physiological regulation and potential risks are of high clinical importance. The present review summarizes the current knowledge on principles and regulatory mechanisms underlying materno-fetal iron transport and gives insight into common pregnancy conditions in which iron homeostasis is disturbed. Moreover, the significance of the newly emerging ferroptosis pathway and its impact on the regulation of placental iron homeostasis, oxidative stress and gestational diseases will be discussed.
Collapse
Affiliation(s)
- Jonas Zaugg
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland
| | - Fabia Solenthaler
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland
| | - Christiane Albrecht
- Institute of Biochemistry and Molecular Medicine, Faculty of Medicine, University of Bern, Switzerland; Swiss National Centre of Competence in Research (NCCR) TransCure, University of Bern, Switzerland.
| |
Collapse
|
7
|
Alexandre YO, Schienstock D, Lee HJ, Gandolfo LC, Williams CG, Devi S, Pal B, Groom JR, Cao W, Christo SN, Gordon CL, Starkey G, D'Costa R, Mackay LK, Haque A, Ludewig B, Belz GT, Mueller SN. A diverse fibroblastic stromal cell landscape in the spleen directs tissue homeostasis and immunity. Sci Immunol 2022; 7:eabj0641. [PMID: 34995096 DOI: 10.1126/sciimmunol.abj0641] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Yannick O Alexandre
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Dominik Schienstock
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Hyun Jae Lee
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Luke C Gandolfo
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia
| | - Cameron G Williams
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Sapna Devi
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Bhupinder Pal
- Olivia Newton-John Cancer Research Institute and School of Cancer Medicine, La Trobe University, Heidelberg, VIC, Australia
| | - Joanna R Groom
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Wang Cao
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Susan N Christo
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Claire L Gordon
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.,Department of Infectious Diseases, Austin Health, Melbourne, VIC, Australia
| | - Graham Starkey
- Liver and Intestinal Transplant Unit, Austin Health, Melbourne, VIC, Australia.,Department of Surgery, University of Melbourne, Austin Health, Melbourne, VIC, Australia
| | - Rohit D'Costa
- DonateLife Victoria, Carlton, VIC, Australia.,Department of Intensive Care Medicine, Melbourne Health, Melbourne, VIC, Australia
| | - Laura K Mackay
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Ashraful Haque
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,University of Queensland Diamantina Institute, University of Queensland, Brisbane, QLD, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| |
Collapse
|
8
|
Kopeć Z, Starzyński RR, Jończy A, Mazgaj R, Lipiński P. Role of Iron Metabolism-Related Genes in Prenatal Development: Insights from Mouse Transgenic Models. Genes (Basel) 2021; 12:1382. [PMID: 34573364 PMCID: PMC8465470 DOI: 10.3390/genes12091382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/30/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Iron is an essential nutrient during all stages of mammalian development. Studies carried out over the last 20 years have provided important insights into cellular and systemic iron metabolism in adult organisms and led to the deciphering of many molecular details of its regulation. However, our knowledge of iron handling in prenatal development has remained remarkably under-appreciated, even though it is critical for the health of both the embryo/fetus and its mother, and has a far-reaching impact in postnatal life. Prenatal development requires a continuous, albeit quantitatively matched with the stage of development, supply of iron to support rapid cell division during embryogenesis in order to meet iron needs for erythropoiesis and to build up hepatic iron stores, (which are the major source of this microelement for the neonate). Here, we provide a concise overview of current knowledge of the role of iron metabolism-related genes in the maintenance of iron homeostasis in pre- and post-implantation development based on studies on transgenic (mainly knock-out) mouse models. Most studies on mice with globally deleted genes do not conclude whether underlying in utero iron disorders or lethality is due to defective placental iron transport or iron misregulation in the embryo/fetus proper (or due to both). Therefore, there is a need of animal models with tissue specific targeted deletion of genes to advance the understanding of prenatal iron metabolism.
Collapse
Affiliation(s)
| | | | | | | | - Paweł Lipiński
- Institute of Genetics and Animal Biotechnology, Polish Academy of Sciences, 05-552 Jastrzębiec, Poland; (Z.K.); (R.R.S.); (A.J.); (R.M.)
| |
Collapse
|
9
|
Lakhal-Littleton S. Advances in understanding the crosstalk between mother and fetus on iron utilization. Semin Hematol 2021; 58:153-160. [PMID: 34389107 DOI: 10.1053/j.seminhematol.2021.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/16/2021] [Accepted: 06/25/2021] [Indexed: 12/24/2022]
Abstract
A full-term pregnancy comes with significant demand for iron. Not meeting this demand has adverse effects on maternal health and on the intrauterine and postnatal development of the infant. In the infant, some of these adverse effects cannot be reversed by postnatal iron supplementation, highlighting the need to tackle iron deficiency in utero. Achieving this requires sound understanding of the pathways that govern iron transfer at the fetomaternal interface. Two pathways are emerging as key players in this context; the hepcidin/ferroportin axis pathway and the iron regulatory protein (IRPs) pathway. In late gestation, suppression of maternal hepcidin, by as yet unknown factors, is required for increasing iron availability to the growing fetus. In the placenta, the rate of iron uptake by transferrin receptor TfR1 at the apical/maternal side and of iron release by ferroportin FPN at the basal/fetal side is controlled by IRP1. In fetal hepatocytes, build up of fetal iron stores requires post-translational inhibition of FPN by the cell-autonomous action of hepcidin. In the fetal liver, FPN is also subject to additional control at the transcriptional level, possibly by the action of hypoxia-inducible factor HIF2α. The rates of apical iron uptake and basal iron release in the placenta are modulated according to iron availability in the maternal blood and the placenta's own needs. This placental modulation ensures that the amount of iron delivered to the fetal circulation is maintained within a normal range, even in the face of mild maternal iron deficiency or overload. However, when maternal iron deficiency or overload are extreme, placental modulation is not sufficient to maintain normal iron supply to the fetus, resulting in fetal iron deficiency and overload respectively. Thus, the rate of iron transfer at the fetomaternal interface is subject to several regulatory signals operating simultaneously in the maternal liver, the placenta and the fetal liver. These regulatory signals act in concert to maintain normal iron supply to the fetus within a wide range of maternal iron states, but fail to do so when maternal iron deficiency or overload are extreme. The limitations of existing experimental models must be overcome if we are to gain better understanding of the role of these regulatory signals in normal and complicated pregnancy. Ultimately, that understanding could help identify better markers of fetal iron demand and underpin novel iron replacement strategies to treat maternal and fetal iron deficiency.
Collapse
|
10
|
Rajamanickam K, Leela V, Suganya G, Basha SH, Parthiban M, Pazhanivel N, Mangala Gowri A. Expression of iron regulatory proteins in full-term swine placenta. Reprod Domest Anim 2020; 55:931-942. [PMID: 32449967 DOI: 10.1111/rda.13730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/16/2020] [Accepted: 05/17/2020] [Indexed: 11/29/2022]
Abstract
In swine, even though the pregnant sows were with iron abundance, the inborn iron reserve of piglets was compromised. This indicates the insufficiency of molecular machinery involved in local placental iron flux. Here, we investigated the expression of iron regulatory proteins like hepcidin and ferroportin and also their association with iron reserve, inflammation and oxidative stress in placenta of full-term pregnant sows (n = 6). Amplification and sequencing of placental DNA confirmed the presence of hepcidin (MN579557) and ferroportin (MN565887) sequences and their 100% identity with existing GenBank data. Real-time amplification of placental mRNA revealed significant higher expression of hepcidin (p < .05) than ferroportin. Western blot analysis of placental tissues revealed specific bands for both hepcidin (~8 kDa) and ferroportin (~62 kDa) molecules. Immunohistochemistry revealed the immunoreactivity for both proteins in the cytoplasm and membrane of trophoblastic cells of the placenta. Hepcidin and ferroportin expressions were positively associated with placental non-haem iron reserve (p < .0001; p = .033), lipid peroxidation (p = .0060; p < .0001) and reactive oxygen species level (p = .0092; p = .0292). Hepcidin expression was positively associated with interleukin - 6 (p = .0002) and interferon gamma (p < .0001) expressions but ferroportin expression was negatively associated with interleukin-6 (p = .0005), interleukin-1β (p = .0226) and interferon gamma (p = .0059) expressions. This indicates hepcidin and ferroportin may have a role in controlling the local placental iron flux by acting as a molecular bridge between iron trafficking and inflammation.
Collapse
Affiliation(s)
- Kandasamy Rajamanickam
- Department of Veterinary Physiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Venkatasubramanian Leela
- Department of Veterinary Physiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Gopalakrishnan Suganya
- Department of Veterinary Physiology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Sabiha Hayath Basha
- Centre for Stem Cell Research and Regenerative Medicine, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Manoharan Parthiban
- Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Natesan Pazhanivel
- Department of Veterinary Pathology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| | - Angappan Mangala Gowri
- Centre for Stem Cell Research and Regenerative Medicine, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, Chennai, India
| |
Collapse
|
11
|
Sangkhae V, Nemeth E. Placental iron transport: The mechanism and regulatory circuits. Free Radic Biol Med 2019; 133:254-261. [PMID: 29981833 PMCID: PMC7059975 DOI: 10.1016/j.freeradbiomed.2018.07.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/30/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
As the interface between the fetal and maternal circulation, the placenta facilitates both nutrient and waste exchange for the developing fetus. Iron is essential for healthy pregnancy, and transport of iron across the placenta is required for fetal growth and development. Perturbation of this transfer can lead to adverse pregnancy outcomes. Despite its importance, our understanding of how a large amount of iron is transported across placental membranes, how this process is regulated, and which iron transporter proteins function in different placental cells remains rudimentary. Mechanistic studies in mouse models, including placenta-specific deletion or overexpression of iron-related proteins will be essential to make progress. This review summarizes our current understanding about iron transport across the syncytiotrophoblast under physiological conditions and identifies areas for further investigation.
Collapse
Affiliation(s)
- Veena Sangkhae
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 LeConte Ave, CHS 37-131, Los Angeles, CA 90095, USA.
| | - Elizabeta Nemeth
- Center for Iron Disorders, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, 10833 LeConte Ave, CHS 37-131, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Expression of hepcidin and ferroportin in full term placenta of pregnant cows. Theriogenology 2017; 103:90-97. [PMID: 28780484 DOI: 10.1016/j.theriogenology.2017.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/04/2017] [Accepted: 07/25/2017] [Indexed: 12/29/2022]
Abstract
Hepcidin (HEP) and ferroportin (FPN) play a central role in systemic iron homeostasis. The HEP/FPN axis controls both extracellular iron concentration and total body iron levels. HEP is synthesized mainly by hepatocytes and controls the absorption of dietary iron and the distribution of iron to the various cell types; its synthesis is regulated by both iron and innate immunity. FPN is a membrane protein and the major exporter of iron from mammalian cells, including iron recycling macrophages, iron absorbing duodenal enterocytes, and iron storing hepatocytes. HEP limits the pool of extracellular iron by binding FPN and mediating its degradation, thus preventing its release from intracellular sources. Here we investigated, for the first time, the molecular and morphological expression of HEP and FPN in placenta of pregnant cows at term. Their expression has been evaluated investigating their mRNAs by reverse transcriptase PCR (RT-PCR). Sequencing of related amplicons revealed a 100% identity with HEP and FPN sequences from Bos taurus as reported in the GeneBank (mRNASequence ID: NM_001114508.2 and ID: NM_001077970.1, respectively). HEP and FPN proteins have also been revealed by Western blot analysis and immunohistochemistry. The strongest immunoreactivity for both proteins was observed in the cytoplasm of the trophoblastic cells of the villi and the caruncular crypts of the placentome. Hep mRNA was more representative in caruncular rather cotyledonar areas; on the contrary, Fpn mRNA was more expressed in cotyledonar rather than in caruncular areas. Transcripts of ferritin, transferrin and its receptor have been also documented by real time RT-PCR. HEP and FPN placental proteins may play a dual role. HEP/FPN axis seems to have a central role in infections, with microorganisms within macrophages or that survive in the bloodstream or other cellular spaces. In addition, HEP may be responsible for iron flux regulation as a molecular bridge for iron trafficking and response to infection. FPN may also have a significant role for embryonic development, growth and organogenesis.
Collapse
|
13
|
Abstract
Optimal iron nutrition in utero is essential for development of the fetus and helps establish birth iron stores adequate to sustain growth in early infancy. In species with hemochorial placentas, such as humans and rodents, iron in the maternal circulation is transferred to the fetus by directly contacting placental syncytiotrophoblasts. Early kinetic studies provided valuable data on the initial uptake of maternal transferrin, an iron-binding protein, by the placenta. However, the remaining steps of iron trafficking across syncytiotrophoblasts and through the fetal endothelium into the fetal blood remain poorly characterized. Over the last 20 years, identification of transmembrane iron transporters and the iron regulatory hormone hepcidin has greatly expanded the knowledge of cellular iron transport and its regulation by systemic iron status. In addition, emerging human and animal data demonstrating comprised fetal iron stores in severe maternal iron deficiency challenge the classic dogma of exclusive fetal control over the transfer process and indicate that maternal and local signals may play a role in regulating this process. This review compiles current data on the kinetic, molecular, and regulatory aspects of placental iron transport and considers new questions and knowledge gaps raised by these advances.
Collapse
Affiliation(s)
- Chang Cao
- C. Cao and M.D. Fleming are with the Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Mark D Fleming
- C. Cao and M.D. Fleming are with the Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA.
| |
Collapse
|
14
|
Chatterjee S, Sivakamasundari V, Yap SP, Kraus P, Kumar V, Xing X, Lim SL, Sng J, Prabhakar S, Lufkin T. In vivo genome-wide analysis of multiple tissues identifies gene regulatory networks, novel functions and downstream regulatory genes for Bapx1 and its co-regulation with Sox9 in the mammalian vertebral column. BMC Genomics 2014; 15:1072. [PMID: 25480362 PMCID: PMC4302147 DOI: 10.1186/1471-2164-15-1072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/27/2014] [Indexed: 12/30/2022] Open
Abstract
Background Vertebrate organogenesis is a highly complex process involving sequential cascades of transcription factor activation or repression. Interestingly a single developmental control gene can occasionally be essential for the morphogenesis and differentiation of tissues and organs arising from vastly disparate embryological lineages. Results Here we elucidated the role of the mammalian homeobox gene Bapx1 during the embryogenesis of five distinct organs at E12.5 - vertebral column, spleen, gut, forelimb and hindlimb - using expression profiling of sorted wildtype and mutant cells combined with genome wide binding site analysis. Furthermore we analyzed the development of the vertebral column at the molecular level by combining transcriptional profiling and genome wide binding data for Bapx1 with similarly generated data sets for Sox9 to assemble a detailed gene regulatory network revealing genes previously not reported to be controlled by either of these two transcription factors. Conclusions The gene regulatory network appears to control cell fate decisions and morphogenesis in the vertebral column along with the prevention of premature chondrocyte differentiation thus providing a detailed molecular view of vertebral column development. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1072) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Thomas Lufkin
- Department of Biology, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699, USA.
| |
Collapse
|
15
|
Zhang DL, Ghosh MC, Rouault TA. The physiological functions of iron regulatory proteins in iron homeostasis - an update. Front Pharmacol 2014; 5:124. [PMID: 24982634 PMCID: PMC4056636 DOI: 10.3389/fphar.2014.00124] [Citation(s) in RCA: 182] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 05/10/2014] [Indexed: 01/15/2023] Open
Abstract
Iron regulatory proteins (IRPs) regulate the expression of genes involved in iron metabolism by binding to RNA stem-loop structures known as iron responsive elements (IREs) in target mRNAs. IRP binding inhibits the translation of mRNAs that contain an IRE in the 5′untranslated region of the transcripts, and increases the stability of mRNAs that contain IREs in the 3′untranslated region of transcripts. By these mechanisms, IRPs increase cellular iron absorption and decrease storage and export of iron to maintain an optimal intracellular iron balance. There are two members of the mammalian IRP protein family, IRP1 and IRP2, and they have redundant functions as evidenced by the embryonic lethality of the mice that completely lack IRP expression (Irp1-/-/Irp2-/- mice), which contrasts with the fact that Irp1-/- and Irp2-/- mice are viable. In addition, Irp2-/- mice also display neurodegenerative symptoms and microcytic hypochromic anemia, suggesting that IRP2 function predominates in the nervous system and erythropoietic homeostasis. Though the physiological significance of IRP1 had been unclear since Irp1-/- animals were first assessed in the early 1990s, recent studies indicate that IRP1 plays an essential function in orchestrating the balance between erythropoiesis and bodily iron homeostasis. Additionally, Irp1-/- mice develop pulmonary hypertension, and they experience sudden death when maintained on an iron-deficient diet, indicating that IRP1 has a critical role in the pulmonary and cardiovascular systems. This review summarizes recent progress that has been made in understanding the physiological roles of IRP1 and IRP2, and further discusses the implications for clinical research on patients with idiopathic polycythemia, pulmonary hypertension, and neurodegeneration.
Collapse
Affiliation(s)
- De-Liang Zhang
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health Bethesda, MD, USA
| | - Manik C Ghosh
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health Bethesda, MD, USA
| | - Tracey A Rouault
- Molecular Medicine Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health Bethesda, MD, USA
| |
Collapse
|
16
|
Li YQ, Bai B, Cao XX, Zhang YH, Yan H, Zheng QQ, Zhuang GH. Divalent metal transporter 1 expression and regulation in human placenta. Biol Trace Elem Res 2012; 146:6-12. [PMID: 21947861 DOI: 10.1007/s12011-011-9214-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 09/14/2011] [Indexed: 01/13/2023]
Abstract
Divalent metal transporter 1 (DMT1) is likely responsible for the release of iron from endosomes to the cytoplasm in placental syncytiotrophoblasts (STB). To determine the localization and the regulation of DMT1 expression by iron directly in placenta, the expression of DMT1 in human term placental tissues and BeWo cells (human placental choriocarcinoma cell line) was detected and the change in expression in response to different iron treatments on BeWo cells was observed. DMT1 was shown to be most prominent near the maternal side in human term placenta and predominantly in the cytoplasm of BeWo cells. BeWo cells were treated with desferrioxamine (DFO) and human holotransferrin (hTf-2Fe) and it was found that both DMT1 mRNA and protein increased significantly with DFO treatment and decreased with hTf-2Fe treatment. Further, DMT1 mRNA responded more significantly to treatments if it possessed an iron-responsive element than mRNA without this element. This study indicated that DMT1 is likely involved in endosomal iron transport in placental STB and placental DMT1 + IRE expression was primarily regulated by the IRE/IRP mechanism.
Collapse
Affiliation(s)
- Yan-Qin Li
- Department of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.
| | | | | | | | | | | | | |
Collapse
|
17
|
Ferroportin-mediated iron transport: expression and regulation. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1426-33. [PMID: 22440327 DOI: 10.1016/j.bbamcr.2012.03.004] [Citation(s) in RCA: 271] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Revised: 02/29/2012] [Accepted: 03/06/2012] [Indexed: 12/13/2022]
Abstract
The distinguishing feature between iron homeostasis in single versus multicellular organisms is the need for multicellular organisms to transfer iron from sites of absorption to sites of utilization and storage. Ferroportin is the only known iron exporter and ferroportin plays an essential role in the export of iron from cells to blood. Ferroportin can be regulated at many different levels including transcriptionally, post-transcriptionally, through mRNA stability and post-translationally, through protein turnover. Additionally, ferroportin may be regulated in both cell-dependent and cell-autonomous fashions. Regulation of ferroportin is critical for iron homeostasis as alterations in ferroportin may result in either iron deficiency or iron overload. This article is part of a Special Issue entitled: Cell Biology of Metals.
Collapse
|
18
|
Li YQ, Bai B, Cao XX, Yan H, Zhuang GH. Ferroportin 1 and hephaestin expression in BeWo cell line with different iron treatment. Cell Biochem Funct 2011; 30:249-55. [PMID: 22170436 DOI: 10.1002/cbf.1843] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 11/13/2011] [Accepted: 11/16/2011] [Indexed: 12/20/2022]
Abstract
The process of placental iron transfer is an important physiological process during pregnancy. However, the molecular mechanism of placental iron transport has not been completely elucidated until now. Ferroportin 1 (FPN1) and hephaestin (Heph) have been identified as the important molecules involved in duodenal iron export. However, whether they participate in the placental iron efflux has been undefined until now. In this study, the BeWo cells were treated with desferrioxamine and Holo-transferrin human in different concentrations and harvested at 48 and 72 h. The mRNA expression of FPN1 and Heph was detected with quantitative real-time polymerase chain reaction, and the protein expression was detected with western blots. The results showed an up-regulated FPN1 expression with desferrioxamine treatment and down-regulated expression with Holo-transferrin human supplementation. However, the change of FPN1 expression at protein level was limited. Heph expression enhanced when cells were treated with desferrioxamine although the quantity of Heph expression was low. Heph expression showed no significant change with Holo-transferrin human supplementation. It indicates that FPN1 may participate in placental iron transport, and placental FPN1 expression is obviously not dependent on the iron regular element/iron regular protein regulation. An alternatively spliced FPN1 isoform that lacks an iron regular element may be the predominant expression in BeWo cells. It also demonstrates that Heph is active in placenta but may not play a key role in placental iron transport because it is not the main part of placental copper oxidase.
Collapse
Affiliation(s)
- Yan-Qin Li
- Department of Public Health, Xi'an Jiaotong University College of Medicine, Xi'an, Shaanxi, China.
| | | | | | | | | |
Collapse
|
19
|
Abstract
Systemic iron homeostasis is regulated by the interaction of the peptide hormone, hepcidin and the iron exporter, ferroportin. Mutations in FPN1, the gene that encodes ferroportin, result in iron-overload disease that shows dominant inheritance and variation in phenotype. The inheritance of ferroportin-linked disorders can be explained by the finding that ferroportin is a multimer and the product of the mutant allele participates in multimer formation. The nature of the ferroportin mutant can explain the variation in phenotype, which is due to either decreased iron export activity or decreased ability to be downregulated by hepcidin. Iron export through ferroportin is determined by the concentration of ferroportin in plasma membrane, which is the result of both synthetic and degradation events. Ferroportin degradation can occur by hepcidin-dependent and hepcidin-independent internalization. Ferroportin expression is regulated transcriptionally and posttranslationally.
Collapse
Affiliation(s)
- Ivana De Domenico
- Department of Internal Medicine, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Diane McVey Ward
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah
| | - Jerry Kaplan
- Department of Pathology, School of Medicine, University of Utah, Salt Lake City, Utah
| |
Collapse
|
20
|
Hepcidin regulates ferroportin expression and intracellular iron homeostasis of erythroblasts. Blood 2011; 118:2868-77. [PMID: 21700773 DOI: 10.1182/blood-2011-01-330241] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The iron-regulatory hormone, hepcidin, regulates systemic iron homeostasis by interacting with the iron export protein ferroportin (FPN1) to adjust iron absorption in enterocytes, iron recycling through reticuloendothelial macrophages, and iron release from storage in hepatocytes. We previously demonstrated that FPN1 was highly expressed in erythroblasts, a cell type that consumes most of the serum iron for use in hemoglobin synthesis. Herein, we have demonstrated that FPN1 localizes to the plasma membrane of erythroblasts, and hepcidin treatment leads to decreased expression of FPN1 and a subsequent increase in intracellular iron concentrations in both erythroblast cell lines and primary erythroblasts. Moreover, injection of exogenous hepcidin decreased FPN1 expression in BM erythroblasts in vivo, whereas iron depletion and associated hepcidin reduction led to increased FPN1 expression in erythroblasts. Taken together, hepcidin decreased FPN1 expression and increased intracellular iron availability of erythroblasts. We hypothesize that FPN1 expression in erythroblasts allows fine-tuning of systemic iron utilization to ensure that erythropoiesis is partially suppressed when nonerythropoietic tissues risk developing iron deficiency. Our results may explain why iron deficiency anemia is the most pronounced early manifestation of mammalian iron deficiency.
Collapse
|
21
|
Ferroportin and erythroid cells: an update. Adv Hematol 2010; 2010. [PMID: 20827391 PMCID: PMC2935194 DOI: 10.1155/2010/404173] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2009] [Revised: 04/08/2010] [Accepted: 06/23/2010] [Indexed: 12/21/2022] Open
Abstract
In recent years there have been major advances in our knowledge of the regulation of iron metabolism that have had implications for understanding the pathophysiology of some human disorders like beta-thalassemia and other iron overload diseases. However, little is known about the relationship among ineffective erythropoiesis, the role of iron-regulatory genes, and tissue iron distribution in beta-thalassemia. The principal aim of this paper is an update about the role of Ferroportin during human normal and pathological erythroid differentiation. Particular attention will be given to beta-thalassemia and other diseases with iron overload. Recent discoveries indicate that there is a potential for therapeutic intervention in beta-thalassemia by means of manipulating iron metabolism.
Collapse
|
22
|
Poli M, Derosas M, Luscieti S, Cavadini P, Campanella A, Verardi R, Finazzi D, Arosio P. Pantothenate kinase-2 (Pank2) silencing causes cell growth reduction, cell-specific ferroportin upregulation and iron deregulation. Neurobiol Dis 2010; 39:204-10. [PMID: 20399859 DOI: 10.1016/j.nbd.2010.04.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Revised: 04/09/2010] [Accepted: 04/09/2010] [Indexed: 11/16/2022] Open
Abstract
Pantothenate kinase 2 (Pank2) is a mitochondrial enzyme that catalyses the first regulatory step of Coenzyme A synthesis and that is responsible for a genetic movement disorder named Pank-associated neurodegeneration (PKAN). This is characterized by abnormal iron accumulation in the brain, particularly in the globus pallidus. We downregulated Pank2 in some cell lines by using specific siRNAs to study its effect on iron homeostasis. In HeLa cells this caused a reduction of cell proliferation and of aconitase activity, signs of cytosolic iron deficiency without mitochondrial iron deposition, and a 12-fold induction of ferroportin mRNA. Pank2 silencing caused a strong induction of ferroportin mRNA also in hepatoma HepG2, a modest one in neuroblastoma SH-SY5Y and none in glioma U373 cells. A reduction of cell growth was observed in all these cell types. The strong Pank2-mediated alteration of ferroportin expression in some cell types might alter iron transfer to the brain and be connected with brain iron accumulation.
Collapse
Affiliation(s)
- Maura Poli
- Dipartimento Materno Infantile e Tecnologie Biomediche, Università di Brescia, viale Europa 11, 25123 Brescia, Italy
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Prenatal inflammation-induced hypoferremia alters dopamine function in the adult offspring in rat: relevance for schizophrenia. PLoS One 2010; 5:e10967. [PMID: 20532043 PMCID: PMC2881043 DOI: 10.1371/journal.pone.0010967] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2010] [Accepted: 05/16/2010] [Indexed: 12/21/2022] Open
Abstract
Maternal infection during pregnancy has been associated with increased incidence of schizophrenia in the adult offspring. Mechanistically, this has been partially attributed to neurodevelopmental disruption of the dopamine neurons, as a consequence of exacerbated maternal immunity. In the present study we sought to target hypoferremia, a cytokine-induced reduction of serum non-heme iron, which is common to all types of infections. Adequate iron supply to the fetus is fundamental for the development of the mesencephalic dopamine neurons and disruption of this following maternal infection can affect the offspring's dopamine function. Using a rat model of localized injury induced by turpentine, which triggers the innate immune response and inflammation, we investigated the effects of maternal iron supplementation on the offspring's dopamine function by assessing behavioral responses to acute and repeated administration of the dopamine indirect agonist, amphetamine. In addition we measured protein levels of tyrosine hydroxylase, and tissue levels of dopamine and its metabolites, in ventral tegmental area, susbtantia nigra, nucleus accumbens, dorsal striatum and medial prefrontal cortex. Offspring of turpentine-treated mothers exhibited greater responses to a single amphetamine injection and enhanced behavioral sensitization following repeated exposure to this drug, when compared to control offspring. These behavioral changes were accompanied by increased baseline levels of tyrosine hydroxylase, dopamine and its metabolites, selectively in the nucleus accumbens. Both, the behavioral and neurochemical changes were prevented by maternal iron supplementation. Localized prenatal inflammation induced a deregulation in iron homeostasis, which resulted in fundamental alterations in dopamine function and behavioral alterations in the adult offspring. These changes are characteristic of schizophrenia symptoms in humans.
Collapse
|
24
|
Iacovelli J, Mlodnicka AE, Veldman P, Ying GS, Dunaief JL, Schumacher A. Brain and retinal ferroportin 1 dysregulation in polycythaemia mice. Brain Res 2009; 1289:85-95. [PMID: 19596281 PMCID: PMC2736625 DOI: 10.1016/j.brainres.2009.06.098] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 06/24/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
Abstract
Disruption of iron homeostasis within the central nervous system (CNS) can lead to profound abnormalities during both development and aging in mammals. The radiation-induced polycythaemia (Pcm) mutation, a 58-bp microdeletion in the promoter region of ferroportin 1 (Fpn1), disrupts transcriptional and post-transcriptional regulation of this pivotal iron transporter. This regulatory mutation induces dynamic alterations in peripheral iron homeostasis such that newborn homozygous Pcm mice exhibit iron deficiency anemia with increased duodenal Fpn1 expression while adult homozygotes display decreased Fpn1 expression and anemia despite organismal iron overload. Herein we report the impact of the Pcm microdeletion on iron homeostasis in two compartments of the central nervous system: brain and retina. At birth, Pcm homozygotes show a marked decrease in brain iron content and reduced levels of Fpn1 expression. Upregulation of transferrin receptor 1 (TfR1) in brain microvasculature appears to mediate the compensatory iron uptake during postnatal development and iron content in Pcm brain is restored to wild-type levels by 7 weeks of age. Similarly, changes in expression are transient and expression of Fpn1 and TfR1 is indistinguishable between Pcm homozygotes and wild-type by 12 weeks of age. Strikingly, the adult Pcm brain is effectively protected from the peripheral iron overload and maintains normal iron content. In contrast to Fpn1 downregulation in perinatal brain, the retina of Pcm homozygotes reveals increased levels of Fpn1 expression. While retinal morphology appears normal at birth and during early postnatal development, adult Pcm mice demonstrate a marked, age-dependent loss of photoreceptors. This phenotype demonstrates the importance of iron homeostasis in retinal health.
Collapse
Affiliation(s)
- Jared Iacovelli
- F. M. Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, University of Pennsylvania, 305 Stellar-Chance Labs, 422 Curie Blvd, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
25
|
Lee PL, Beutler E. Regulation of hepcidin and iron-overload disease. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2009; 4:489-515. [PMID: 19400694 DOI: 10.1146/annurev.pathol.4.110807.092205] [Citation(s) in RCA: 133] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hepcidin, a 25-amino-acid antimicrobial peptide, is the central regulator of iron homeostasis. Hepcidin transcription is upregulated by inflammatory cytokines, iron, and bone morphogenetic proteins and is downregulated by iron deficiency, ineffective erythropoiesis, and hypoxia. The iron transporter ferroportin is the cognate receptor of hepcidin and is destroyed as a result of interaction with the peptide. Except for inherited defects of ferroportin and hepcidin itself, all forms of iron-storage disease appear to arise from hepcidin dysregulation. Studies using multiple approaches have begun to delineate the molecular mechanisms that regulate hepcidin expression, particularly at the transcriptional level. Knowledge of the regulation of hepcidin by inflammation, iron, erythropoiesis, and hypoxia will lead to an understanding of the pathogenesis of primary hemochromatosis, secondary iron overload, and anemia of inflammatory disease.
Collapse
Affiliation(s)
- Pauline L Lee
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | | |
Collapse
|
26
|
Zhang DL, Hughes RM, Ollivierre-Wilson H, Ghosh MC, Rouault TA. A ferroportin transcript that lacks an iron-responsive element enables duodenal and erythroid precursor cells to evade translational repression. Cell Metab 2009; 9:461-73. [PMID: 19416716 PMCID: PMC2685206 DOI: 10.1016/j.cmet.2009.03.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2008] [Revised: 01/28/2009] [Accepted: 03/12/2009] [Indexed: 01/13/2023]
Abstract
Ferroportin (FPN1), the sole characterized mammalian iron exporter, has an iron-responsive element (IRE) in its 5' untranslated region, which ensures that its translation is repressed by iron regulatory proteins (IRPs) in iron-deficient conditions to maintain cellular iron content. However, here we demonstrate that duodenal epithelial and erythroid precursor cells utilize an alternative upstream promoter to express a FPN1 transcript, FPN1B, which lacks the IRE and is not repressed in iron-deficient conditions. The FPN1B transcript encodes ferroportin with an identical open reading frame and contributes significantly to ferroportin protein expression in erythroid precursors and likely also in the duodenum of iron-starved animals. The identification of FPN1B reveals how FPN1 expression can bypass IRP-dependent repression in intestinal iron uptake, even when cells throughout the body are iron deficient. In erythroid precursor cells, we hypothesize that FPN1B expression enhances real-time sensing of systemic iron status and facilitates restriction of erythropoiesis in response to low systemic iron.
Collapse
Affiliation(s)
- De-Liang Zhang
- Molecular Medicine Program, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
27
|
Sandoval H, Thiagarajan P, Dasgupta SK, Schumacher A, Prchal JT, Chen M, Wang J. Essential role for Nix in autophagic maturation of erythroid cells. Nature 2008; 454:232-5. [PMID: 18454133 PMCID: PMC2570948 DOI: 10.1038/nature07006] [Citation(s) in RCA: 925] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2007] [Accepted: 04/16/2008] [Indexed: 01/17/2023]
Abstract
Erythroid cells undergo enucleation and the removal of organelles during terminal differentiation. Although autophagy has been suggested to mediate the elimination of organelles for erythroid maturation, the molecular mechanisms underlying this process remain undefined. Here we report a role for a Bcl-2 family member, Nix (also called Bnip3L), in the regulation of erythroid maturation through mitochondrial autophagy. Nix(-/-) mice developed anaemia with reduced mature erythrocytes and compensatory expansion of erythroid precursors. Erythrocytes in the peripheral blood of Nix(-/-) mice exhibited mitochondrial retention and reduced lifespan in vivo. Although the clearance of ribosomes proceeded normally in the absence of Nix, the entry of mitochondria into autophagosomes for clearance was defective. Deficiency in Nix inhibited the loss of mitochondrial membrane potential (DeltaPsi(m)), and treatment with uncoupling chemicals or a BH3 mimetic induced the loss of DeltaPsi(m) and restored the sequestration of mitochondria into autophagosomes in Nix(-/-) erythroid cells. These results suggest that Nix-dependent loss of DeltaPsi(m) is important for targeting the mitochondria into autophagosomes for clearance during erythroid maturation, and interference with this function impairs erythroid maturation and results in anaemia. Our study may also provide insights into molecular mechanisms underlying mitochondrial quality control involving mitochondrial autophagy.
Collapse
Affiliation(s)
- Hector Sandoval
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Berradi H, Bertho JM, Dudoignon N, Mazur A, Grandcolas L, Baudelin C, Grison S, Voisin P, Gourmelon P, Dublineau I. Renal Anemia Induced by Chronic Ingestion of Depleted Uranium in Rats. Toxicol Sci 2008; 103:397-408. [DOI: 10.1093/toxsci/kfn052] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
29
|
Abstract
Many intracellular pathogens infect macrophages and these pathogens require iron for growth. Here we demonstrate in vitro that the intracellular growth of Chlamydia psittaci, trachomatis, and Legionella pneumophila is regulated by the levels of intracellular iron. Macrophages that express cell surface ferroportin, the only known cellular iron exporter, limit the intracellular growth of these bacteria. Hepcidin is an antimicrobial peptide secreted by the liver in response to inflammation. Hepcidin binds to ferroportin mediating its internalization and degradation. Addition of hepcidin to infected macrophages enhanced the intracellular growth of these pathogens. Macrophages from flatiron mice, a strain heterozygous for a loss-of-function ferroportin mutation, showed enhanced intracellular bacterial growth independent of the presence of exogenous hepcidin. Macrophages, from wild-type or flatiron mice, incubated with the oral iron chelator deferriprone or desferasirox showed reduced intracellular bacterial growth suggesting that these chelators might be therapeutic in chronic intracellular bacterial infections.
Collapse
|
30
|
Abstract
Iron is a micronutrient that is an essential component that drives many metabolic reactions. Too little iron leads to anemia and too much iron increases the oxidative stress of body tissues leading to inflammation, cell death, and system organ dysfunction, including cancer. Maintaining normal iron balance is achieved by rigorous control of the amount absorbed by the intestine, that released from macrophages following erythrophagocytosis of effete red cells and by either release or uptake from hepatocytes. Hepcidin is a recently characterized molecule that appears to play a key role in the regulation of iron efflux from enterocytes, macrophages, and hepatocytes. It is produced by hepatocytes under basal conditions, in response to alterations in increased iron stores or reduced requirement for erythropoiesis and by inflammation. The proteins that regulate hepcidin expression are presently being defined, albeit that our present understanding is still far from complete. This review focuses on the molecules which regulate hepcidin expression. The subsequent characterization of these proteins using molecular, cellular, and physiological approaches also is discussed along with inflammatory signals and receptors involved in hepcidin expression.
Collapse
Affiliation(s)
- Phillip S Oates
- Physiology M311, School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Western Australia, Australia.
| | | |
Collapse
|
31
|
Kim SY, Levenson JM, Korsmeyer S, Sweatt JD, Schumacher A. Developmental regulation of Eed complex composition governs a switch in global histone modification in brain. J Biol Chem 2007; 282:9962-9972. [PMID: 17259173 DOI: 10.1074/jbc.m608722200] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Originally discovered as epigenetic regulators of developmental gene expression, the Polycomb (PcG) and trithorax (trxG) group of proteins form distinct nuclear complexes governing post-translational modification of histone tails. This study identified a novel, developmentally regulated interface between Eed and Mll, pivotal constituents of PcG and trxG pathways, respectively, in mouse brain. Although the PcG proteins Eed and EzH2 (Enhancer of Zeste protein-2) engaged in a common complex during neurodevelopment, Eed associated with the trxG protein Mll upon brain maturation. Comprehensive analysis of multiple histone modifications revealed differential substrate specificity of the novel Eed-Mll complex in adult brain compared with the developmental Eed-EzH2 complex. Newborn brain from eed heterozygotes and eed;Mll double heterozygotes exhibited decreased trimethylation at lysine 27 of histone H3, as well as hyperacetylation of histone H4. In contrast, adult hippocampus from Mll heterozygotes was remarkable for decreased acetylation of histone H4, which restored to wild-type levels in eed;Mll double heterozygotes. A physiological role for the Eed-Mll complex in adult brain was evident from complementary defects in synaptic plasticity in eed and Mll mutant hippocampi. These results support the notion that developmental regulation of complex composition bestows the predominant Eed complex with the chromatin remodeling activity conducive for gene regulation during neurodevelopment and adult brain function. Thus, this study suggests dynamic regulation of chromatin complex composition as a molecular mechanism to co-opt constituents of developmental pathways into the regulation of neuronal memory formation in adult brain.
Collapse
Affiliation(s)
- Se Young Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
| | - Jonathan M Levenson
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Stanley Korsmeyer
- Howard Hughes Medical Institute, Department of Pathology and Medicine, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115
| | - J David Sweatt
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas 77030
| | - Armin Schumacher
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.
| |
Collapse
|
32
|
Yoon D, Pastore YD, Divoky V, Liu E, Mlodnicka AE, Rainey K, Ponka P, Semenza GL, Schumacher A, Prchal JT. Hypoxia-inducible factor-1 deficiency results in dysregulated erythropoiesis signaling and iron homeostasis in mouse development. J Biol Chem 2006; 281:25703-11. [PMID: 16787915 DOI: 10.1074/jbc.m602329200] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) regulates the transcription of genes whose products play critical roles in energy metabolism, erythropoiesis, angiogenesis, and cell survival. Limited information is available concerning its function in mammalian hematopoiesis. Previous studies have demonstrated that homozygosity for a targeted null mutation in the Hif1alpha gene, which encodes the hypoxia-responsive alpha subunit of HIF-1, causes cardiac, vascular, and neural malformations resulting in lethality by embryonic day 10.5 (E10.5). This study revealed reduced myeloid multilineage and committed erythroid progenitors in HIF-1alpha-deficient embryos, as well as decreased hemoglobin content in erythroid colonies from HIF-1alpha-deficient yolk sacs at E9.5. Dysregulation of erythropoietin (Epo) signaling was evident from a significant decrease in mRNA levels of Epo receptor (EpoR) in Hif1alpha-/- yolk sac as well as Epo and EpoR mRNA in Hif1alpha-/- embryos. The erythropoietic defects in HIF-1alpha-deficient erythroid colonies could not be corrected by cytokines, such as vascular endothelial growth factor and Epo, but were ameliorated by Fe-SIH, a compound delivering iron into cells independently of iron transport proteins. Consistent with profound defects in iron homeostasis, Hif1alpha-/- yolk sac and/or embryos demonstrated aberrant mRNA levels of hepcidin, Fpn1, Irp1, and frascati. We conclude that dysregulated expression of genes encoding Epo, EpoR, and iron regulatory proteins contributes to defective erythropoiesis in Hif1alpha-/- yolk sacs. These results identify a novel role for HIF-1 in the regulation of iron homeostasis and reveal unexpected regulatory differences in Epo/EpoR signaling in yolk sac and embryonic erythropoiesis.
Collapse
Affiliation(s)
- Donghoon Yoon
- Hematology Section, University of Utah, Salt Lake City, Utah 84132, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Hepcidin evolves as a potent hepatocyte-derived regulator of the body's iron distribution piloting the flow of iron via, and directly binding, to the cellular iron exporter ferroportin. The hepcidin-ferroportin axis dominates the iron egress from all cellular compartments that are critical to iron homeostasis, namely placental syncytiotrophoblasts, duodenal enterocytes, hepatocytes and macrophages of the reticuloendothelial system. The gene that encodes hepcidin expression (HAMP) is subject to regulation by proinflammatory cytokines, such as IL-6 and IL-1; excessive hepcidin production explains the relative deficiency of iron during inflammatory states, eventually resulting in the anaemia of inflammation. The haemochromatosis genes HFE, TfR2 and HJV potentially facilitate the transcription of HAMP. Disruption of each of the four genes leads to a diminished hepatic release of hepcidin consistent with both a dominant role of hepcidin in hereditary haemochromatosis and an upstream regulatory role of HFE, TfR2 and HJV on HAMP expression. The engineered generation of hepcidin agonists, mimetics or antagonists could largely broaden current therapeutic strategies to redirect the flow of iron.
Collapse
Affiliation(s)
- R Deicher
- Department of Medicine III, Medical University of Vienna, Vienna, Austria
| | | |
Collapse
|
34
|
Mok H, Mlodnicka AE, Hentze MW, Muckenthaler M, Schumacher A. The Molecular Circuitry Regulating the Switch between Iron Deficiency and Overload in Mice. J Biol Chem 2006; 281:7946-51. [PMID: 16418170 DOI: 10.1074/jbc.m509857200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Recent positional cloning of the radiation-induced polycythaemia (Pcm) mutation revealed a 58-bp microdeletion in the promoter region of ferroportin 1 (Fpn1), the sole cellular iron exporter identified to date. Here we report a molecular definition of the regulatory mechanisms governing the dynamic changes in iron balance in Pcm heterozygous mice between 3 and 12 weeks of age. Hepatic and/or duodenal response patterns of iron metabolism genes, such as Trfr, cybrd1, and Slc11a2, explained the transition from early postnatal iron deficiency to iron overload by 12 weeks of age. A significant delay in developmental up-regulation of hepcidin (Hamp), the pivotal hormonal regulator of iron homeostasis, correlated with high levels of Fpn1 expression in hepatic Kupffer cells and duodenal epithelial cells at 7 weeks of age. Conversely, upon up-regulation of Hamp expression at 12 weeks of age, Fpn1 expression decreased, indicative of a Hamp-mediated homeostatic loop. Hamp regulation due to iron did not appear dependent on transcription-level changes of the murine homolog of Hemojuvelin (Rgmc). Aged cohorts of Pcm mice exhibited low levels of Fpn1 expression in the context of an iron-deficient erythropoiesis and profound iron sequestration in reticuloendothelial macrophages, duodenum, and other tissues. Thus, similar to the anemia of chronic disease, these findings demonstrate decreased iron bioavailability due to sustained down-regulation of Fpn1 levels by Hamp. We conclude that regulatory alleles, such as Pcm, with highly dynamic changes in iron balance are ideally suited to interrogate the genetic circuitry regulating iron metabolism.
Collapse
Affiliation(s)
- Henry Mok
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | |
Collapse
|
35
|
Fernández-Valdivia R, Zhang Y, Pai S, Metzker ML, Schumacher A. l7Rn6 encodes a novel protein required for clara cell function in mouse lung development. Genetics 2005; 172:389-99. [PMID: 16157679 PMCID: PMC1456166 DOI: 10.1534/genetics.105.048736] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The highly secretory Clara cells play a pivotal role in protecting the lung against inflammation and oxidative stress. This study reports the positional cloning of a novel protein required for Clara cell physiology in mouse lung development. The perinatal lethal N-ethyl-N-nitrosourea-induced l7Rn6(4234SB) allele contained a nonsense mutation in the previously hypothetical gene NM_026304 on chromosome 7. Whereas l7Rn6 mRNA levels were indistinguishable from wild type, l7Rn6(4234SB) homozygotes exhibited decreased expression of the truncated protein, suggesting protein instability. During late gestation, l7Rn6 was widely expressed in the cytoplasm of lung epithelial cells, whereas perinatal expression was restricted to the bronchiolar epithelium. Homozygosity for the l7Rn6(4234SB) allele did not affect early steps in lung patterning, growth, or cellular differentiation. Rather, mutant lungs demonstrated severe emphysematous enlargement of the distal respiratory sacs at birth. Clara cell pathophysiology was evident from decreased cytoplasmic CCSP and SP-B protein levels, enlargement and disorganization of the Golgi complex, and formation of aberrant vesicular structures. Additional support for a role in the secretory pathway derived from l7Rn6 localization to the endoplasmic reticulum. Thus, l7Rn6 represents a novel protein required for organization and/or function of the secretory apparatus in Clara cells in mouse lung.
Collapse
|