1
|
Angermeier A, Yu D, Huang Y, Marchetto S, Borg JP, Chang C, Wang J. Dact1 induces Dishevelled oligomerization to facilitate binding partner switch and signalosome formation during convergent extension. Nat Commun 2025; 16:2425. [PMID: 40069199 PMCID: PMC11897371 DOI: 10.1038/s41467-025-57658-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 02/25/2025] [Indexed: 03/15/2025] Open
Abstract
Convergent extension (CE) is a universal morphogenetic engine that promotes polarized tissue extension. In vertebrates, CE is regulated by non-canonical Wnt ligands signaling through "core" proteins of the planar cell polarity (PCP) pathway, including the cytoplasmic protein Dishevelled (Dvl), receptor Frizzled (Fz) and tetraspan protein Van gogh-like (Vangl). PCP was discovered in Drosophila to coordinate polarity in the plane of static epithelium, but does not regulate CE in flies. Existing evidence suggests that adopting PCP for CE might be a vertebrate-specific adaptation with incorporation of new regulators. Herein we use Xenopus to investigate Dact1, a chordate-specific protein. Dact1 induces Dvl to form oligomers that dissociate from Vangl, but stay attached with Fz as signalosome-like clusters and co-aggregate with Fz into protein patches upon non-canonical Wnt induction. Functionally, Dact1 antagonizes Vangl, and synergizes with wild-type Dvl but not its oligomerization-defective mutants. We propose that, by promoting Dvl oligomerization, Dact1 couples Dvl binding partner switch with signalosome-like cluster formation to initiate non-canonical Wnt signaling during vertebrate CE.
Collapse
Affiliation(s)
- Allyson Angermeier
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA
| | - Deli Yu
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA
| | - Yali Huang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA
| | - Sylvie Marchetto
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France
| | - Jean-Paul Borg
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCM, Equipe labellisée Ligue 'Cell Polarity, Cell Signaling And Cancer', Marseille, France
- Institut Universitaire de France, Paris, France
| | - Chenbei Chang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA
| | - Jianbo Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd, Birmingham, AL, 35294, USA.
| |
Collapse
|
2
|
Carroll SH, Schafer S, Kawasaki K, Tsimbal C, Jule AM, Hallett SA, Li E, Liao EC. Genetic requirement of dact1/2 to regulate noncanonical Wnt signaling and calpain 8 during embryonic convergent extension and craniofacial morphogenesis. eLife 2024; 13:RP91648. [PMID: 39570288 PMCID: PMC11581427 DOI: 10.7554/elife.91648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024] Open
Abstract
Wnt signaling plays crucial roles in embryonic patterning including the regulation of convergent extension (CE) during gastrulation, the establishment of the dorsal axis, and later, craniofacial morphogenesis. Further, Wnt signaling is a crucial regulator of craniofacial morphogenesis. The adapter proteins Dact1 and Dact2 modulate the Wnt signaling pathway through binding to Disheveled. However, the distinct relative functions of Dact1 and Dact2 during embryogenesis remain unclear. We found that dact1 and dact2 genes have dynamic spatiotemporal expression domains that are reciprocal to one another suggesting distinct functions during zebrafish embryogenesis. Both dact1 and dact2 contribute to axis extension, with compound mutants exhibiting a similar CE defect and craniofacial phenotype to the wnt11f2 mutant. Utilizing single-cell RNAseq and an established noncanonical Wnt pathway mutant with a shortened axis (gpc4), we identified dact1/2-specific roles during early development. Comparative whole transcriptome analysis between wildtype and gpc4 and wildtype and dact1/2 compound mutants revealed a novel role for dact1/2 in regulating the mRNA expression of the classical calpain capn8. Overexpression of capn8 phenocopies dact1/2 craniofacial dysmorphology. These results identify a previously unappreciated role of capn8 and calcium-dependent proteolysis during embryogenesis. Taken together, our findings highlight the distinct and overlapping roles of dact1 and dact2 in embryonic craniofacial development, providing new insights into the multifaceted regulation of Wnt signaling.
Collapse
Affiliation(s)
- Shannon H Carroll
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Sogand Schafer
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Kenta Kawasaki
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Casey Tsimbal
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Amelie M Jule
- Department of Biostatistics, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Shawn A Hallett
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| | - Edward Li
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Eric C Liao
- Center for Craniofacial Innovation, Children’s Hospital of Philadelphia Research, Institute, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
- Shriners Hospital for ChildrenTampaUnited States
| |
Collapse
|
3
|
Chu CH, Su CH, Hsiao YH, Yu CC, Liao YC, Mao PC, Chen JS, Sun HS. Overexpression of TIAM2S, a Critical Regulator for the Hippocampal-Medial Prefrontal Cortex Network, Progresses Age-Related Spatial Memory Impairment. J Gerontol A Biol Sci Med Sci 2024; 79:glae191. [PMID: 39093820 DOI: 10.1093/gerona/glae191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Indexed: 08/04/2024] Open
Abstract
TIAM Rac1-associated GEF 2 short-form protein (TIAM2S) is abundant in specific brain tissues, especially in the hippocampus, a brain region critical for processing and consolidation of spatial memory. However, how TIAM2S plasticizes the microstructure and circuits of the hippocampus to shape spatial memory as a neuroplastic regulator during aging remains to be determined. In this study, transgenic mice overexpressing human TIAM2S protein (TIAM2S-TG mice) were included, and interdisciplinary approaches, such as spatial memory tests and multiparametric magnetic resonance imaging sequences, were conducted to determine the role and the mechanism of TIAM2S in age-related spatial memory deficits. Despite no changes in their neural and glial markers and neuropathological hallmark expression of the hippocampus, behavioral tests showed that the TIAM2S-TG mice, and not wild-type (WT) mice, developed spatial memory impairment at 18 months old. The T2-weighted and diffusion tensor image analyses were performed to further study the possible role of TIAM2S overexpression in altering the hippocampal structure or neuronal circlets of the mice, increasing their vulnerability to developing spatial memory deficits during aging. The results revealed that the 12-month-old TIAM2S-TG mice had hippocampal dysplasticity, with larger volume, increased fiber numbers, and changed mean fractional anisotropy compared to those in the age-matched WT mice. The fiber tractography analysis exhibited significantly attenuated structural connectivity between the hippocampus and medial prefrontal cortex in the TIAM2S-TG mice. In conclusion, overexpression of TIAM2S, a detrimental factor affecting hippocampus plasticity, causes attenuation of the connectivity within hippocampus-mPFC circuits, leading to age-related spatial memory impairment.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Hao Su
- Center for General Education, Chang Gung University, Taoyuan, Taiwan
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming Chiao Tung University, Taipei, Taiwan
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Hsin Hsiao
- Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chun-Chieh Yu
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Yi-Chun Liao
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pin-Cheng Mao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Shing Chen
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
4
|
Zeng Y, Zhang J, Yue J, Han G, Liu W, Liu L, Lin X, Zha Y, Liu J, Tan Y. The Role of DACT Family Members in Tumorigenesis and Tumor Progression. Int J Biol Sci 2022; 18:4532-4544. [PMID: 35864965 PMCID: PMC9295065 DOI: 10.7150/ijbs.70784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 04/21/2022] [Indexed: 11/21/2022] Open
Abstract
Disheveled-associated antagonist of β-catenin (DACT), which ubiquitously expressed in human tissue, is critical for regulating cell proliferation and several developmental processes in different cellular contexts. In addition, DACT is essential for some other cellular processes, such as cell apoptosis, migration and differentiation. Given the importance of DACT in these cellular processes, many scientists are gradually interested in studying the role of DACT in tumorigenesis and cancer progression. This review article focuses on the latest research regarding the essential functions and potential DACT mechanisms in the occurrence and progression of tumors. Our study indicates that DACT may act as a tumor biomarker for cancer diagnosis and prognosis, as well as a promising therapeutic target in cancers.
Collapse
Affiliation(s)
- Yu Zeng
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jiqin Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jianhe Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Guoqiang Han
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Weijia Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine, Guizhou Provincial People's Hospital, Guiyang, China
| | - Xin Lin
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Yan Zha
- Department of Nephrology, Guizhou Provincial People's Hospital, Guiyang, China
| | - Jian Liu
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| | - Ying Tan
- Department of Neurosurgery, Guizhou Provincial People's Hospital, Guiyang, China
| |
Collapse
|
5
|
Dact1 is expressed during chicken and mouse skeletal myogenesis and modulated in human muscle diseases. Comp Biochem Physiol B Biochem Mol Biol 2021; 256:110645. [PMID: 34252542 DOI: 10.1016/j.cbpb.2021.110645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/02/2021] [Accepted: 07/06/2021] [Indexed: 12/23/2022]
Abstract
Vertebrate skeletal muscle development and repair relies on the precise control of Wnt signaling. Dact1 (Dapper/Frodo) is an important modulator of Wnt signaling, interacting with key components of the various Wnt transduction pathways. Here, we characterized Dact1 mRNA and protein expression in chicken and mouse fetal muscles in vivo and during the differentiation of chick primary and mouse C2C12 myoblasts in vitro. We also performed in silico analysis to investigate Dact1 gene expression in human myopathies, and evaluated the Dact1 protein structure to seek an explanation for the accumulation of Dact1 protein aggregates in the nuclei of myogenic cells. Our results show for the first time that in both chicken and mouse, Dact1 is expressed during myogenesis, with a strong upregulation as cells engage in terminal differentiation, cell cycle withdrawal and cell fusion. In humans, Dact1 expression was found to be altered in specific muscle pathologies, including muscular dystrophies. Our bioinformatic analyses of Dact1 proteins revealed long intrinsically disordered regions, which may underpin the ability of Dact1 to interact with its many partners in the various Wnt pathways. In addition, we found that Dact1 has strong propensity for liquid-liquid phase separation, a feature that explains its ability to form nuclear aggregates and points to a possible role as a molecular 'on'-'off' switch. Taken together, our data suggest Dact1 as a candidate, multi-faceted regulator of amniote myogenesis with a possible pathophysiological role in human muscular diseases.
Collapse
|
6
|
Esposito M, Fang C, Cook KC, Park N, Wei Y, Spadazzi C, Bracha D, Gunaratna RT, Laevsky G, DeCoste CJ, Slabodkin H, Brangwynne CP, Cristea IM, Kang Y. TGF-β-induced DACT1 biomolecular condensates repress Wnt signalling to promote bone metastasis. Nat Cell Biol 2021; 23:257-267. [PMID: 33723425 PMCID: PMC7970447 DOI: 10.1038/s41556-021-00641-w] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
The complexity of intracellular signalling requires both a diversity of molecular players and the sequestration of activity to unique compartments within the cell. Recent findings on the role of liquid-liquid phase separation provide a distinct mechanism for the spatial segregation of proteins to regulate signalling pathway crosstalk. Here, we discover that DACT1 is induced by TGFβ and forms protein condensates in the cytoplasm to repress Wnt signalling. These condensates do not localize to any known organelles but, rather, exist as phase-separated proteinaceous cytoplasmic bodies. The deletion of intrinsically disordered domains within the DACT1 protein eliminates its ability to both form protein condensates and suppress Wnt signalling. Isolation and mass spectrometry analysis of these particles revealed a complex of protein machinery that sequesters casein kinase 2-a Wnt pathway activator. We further demonstrate that DACT1 condensates are maintained in vivo and that DACT1 is critical to breast and prostate cancer bone metastasis.
Collapse
Affiliation(s)
- Mark Esposito
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Cao Fang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katelyn C Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nana Park
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Chiara Spadazzi
- Osteoncology and Rare Tumors Center, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - Dan Bracha
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Ramesh T Gunaratna
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Gary Laevsky
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - Hannah Slabodkin
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
- Howard Hughes Medical Institute, Princeton University, Princeton, NJ, USA
| | - Ileana M Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
- Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA.
- Cancer Metabolism and Growth Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA.
| |
Collapse
|
7
|
Chu CH, Chen JS, Chuang PC, Su CH, Chan YL, Yang YJ, Chiang YT, Su YY, Gean PW, Sun HS. TIAM2S as a novel regulator for serotonin level enhances brain plasticity and locomotion behavior. FASEB J 2020; 34:3267-3288. [PMID: 31908036 DOI: 10.1096/fj.201901323r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 10/18/2019] [Accepted: 12/23/2019] [Indexed: 11/11/2022]
Abstract
TIAM2S, the short form of human T-cell lymphoma invasion and metastasis 2, can have oncogenic effects when aberrantly expressed in the liver or lungs. However, it is also abundant in healthy, non-neoplastic brain tissue, in which its primary function is still unknown. Here, we examined the neurobiological and behavioral significance of human TIAM2S using the human brain protein panels, a human NT2/D1-derived neuronal cell line model (NT2/N), and transgenic mice that overexpress human TIAM2S (TIAM2S-TG). Our data reveal that TIAM2S exists primarily in neurons of the restricted brain areas around the limbic system and in well-differentiated NT2/N cells. Functional studies revealed that TIAM2S has no guanine nucleotide exchange factor (GEF) activity and is mainly located in the nucleus. Furthermore, whole-transcriptome and enrichment analysis with total RNA sequencing revealed that TIAM2S-knockdown (TIAM2S-KD) was strongly associated with the cellular processes of the brain structural development and differentiation, serotonin-related signaling, and the diseases markers representing neurobehavioral developmental disorders. Moreover, TIAM2S-KD cells display decreased neurite outgrowth and reduced serotonin levels. Moreover, TIAM2S overexpressing TG mice show increased number and length of serotonergic fibers at early postnatal stage, results in higher serotonin levels at both the serum and brain regions, and higher neuroplasticity and hyperlocomotion in latter adulthood. Taken together, our results illustrate the non-oncogenic functions of human TIAM2S and demonstrate that TIAM2S is a novel regulator of serotonin level, brain neuroplasticity, and locomotion behavior.
Collapse
Affiliation(s)
- Chun-Hsien Chu
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jia-Shing Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Pei-Chin Chuang
- Department of Medical Research, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.,Department of Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Hao Su
- Institute for Translational Research in Biomedicine, Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - Ya-Ling Chan
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ying-Ju Yang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ting Chiang
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Ya Su
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Wu Gean
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan.,Department of Pharmacology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - H Sunny Sun
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
8
|
Yasuoka Y, Taira M. Microinjection of DNA Constructs into Xenopus Embryos for Gene Misexpression and cis-Regulatory Module Analysis. Cold Spring Harb Protoc 2019; 2019:pdb.prot097279. [PMID: 30131366 DOI: 10.1101/pdb.prot097279] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introducing exogenous DNA into an embryo can promote misexpression of a gene of interest via transcription regulated by an attached enhancer-promoter. This protocol describes plasmid DNA microinjection into Xenopus embryos for misexpression of genes after zygotic gene expression begins. It also describes a method for coinjecting a reporter plasmid with mRNA or antisense morpholinos to perform luciferase reporter assays, which are useful for quantitative analysis of cis-regulatory sequences responding to endogenous or exogenous stimuli in embryos.
Collapse
Affiliation(s)
- Yuuri Yasuoka
- Marine Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Okinawa 904-0495, Japan
| | - Masanori Taira
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
9
|
Webb BD, Metikala S, Wheeler PG, Sherpa MD, Houten SM, Horb ME, Schadt EE. Heterozygous Pathogenic Variant in DACT1 Causes an Autosomal-Dominant Syndrome with Features Overlapping Townes-Brocks Syndrome. Hum Mutat 2017; 38:373-377. [PMID: 28054444 DOI: 10.1002/humu.23171] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/02/2017] [Indexed: 11/06/2022]
Abstract
A heterozygous nonsense variant was identified in dapper, antagonist of beta-catenin, 1 (DACT1) via whole-exome sequencing in family members with imperforate anus, structural renal abnormalities, genitourinary anomalies, and/or ear anomalies. The DACT1 c.1256G>A;p.Trp419* variant segregated appropriately in the family consistent with an autosomal dominant mode of inheritance. DACT1 is a member of the Wnt-signaling pathway, and mice homozygous for null alleles display multiple congenital anomalies including absent anus with blind-ending colon and genitourinary malformations. To investigate the DACT1 c.1256G>A variant, HEK293 cells were transfected with mutant DACT1 cDNA plasmid, and immunoblotting revealed stability of the DACT1 p.Trp419* protein. Overexpression of DACT1 c.1256G>A mRNA in Xenopus embryos revealed a specific gastrointestinal phenotype of enlargement of the proctodeum. Together, these findings suggest that the DACT1 c.1256G>A nonsense variant is causative of a specific genetic syndrome with features overlapping Townes-Brocks syndrome.
Collapse
Affiliation(s)
- Bryn D Webb
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, New York.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sanjeeva Metikala
- Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Patricia G Wheeler
- Department of Pediatrics, Division of Genetics, Nemours Children's Clinic, Orlando, Florida
| | - Mingma D Sherpa
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Sander M Houten
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marko E Horb
- Bell Center for Regenerative Biology and Tissue Engineering and National Xenopus Resource, Marine Biological Laboratory, Woods Hole, Massachusetts
| | - Eric E Schadt
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York.,Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
10
|
Rabadán MA, Herrera A, Fanlo L, Usieto S, Carmona-Fontaine C, Barriga EH, Mayor R, Pons S, Martí E. Delamination of neural crest cells requires transient and reversible Wnt inhibition mediated by Dact1/2. Development 2016; 143:2194-205. [PMID: 27122165 DOI: 10.1242/dev.134981] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/18/2016] [Indexed: 02/06/2023]
Abstract
Delamination of neural crest (NC) cells is a bona fide physiological model of epithelial-to-mesenchymal transition (EMT), a process that is influenced by Wnt/β-catenin signalling. Using two in vivo models, we show that Wnt/β-catenin signalling is transiently inhibited at the time of NC delamination. In attempting to define the mechanism underlying this inhibition, we found that the scaffold proteins Dact1 and Dact2, which are expressed in pre-migratory NC cells, are required for NC delamination in Xenopus and chick embryos, whereas they do not affect the motile properties of migratory NC cells. Dact1/2 inhibit Wnt/β-catenin signalling upstream of the transcriptional activity of T cell factor (TCF), which is required for EMT to proceed. Dact1/2 regulate the subcellular distribution of β-catenin, preventing β-catenin from acting as a transcriptional co-activator to TCF, yet without affecting its stability. Together, these data identify a novel yet important regulatory element that inhibits β-catenin signalling, which then affects NC delamination.
Collapse
Affiliation(s)
- M Angeles Rabadán
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Antonio Herrera
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Lucia Fanlo
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Susana Usieto
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Carlos Carmona-Fontaine
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Elias H Barriga
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Sebastián Pons
- Department of Cell Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/Baldiri i Reixac 20, Barcelona 08028, Spain
| | - Elisa Martí
- Department of Developmental Biology, Instituto de Biología Molecular de Barcelona, CSIC, Parc Científic de Barcelona, C/ Baldiri i Reixac 20, Barcelona 08028, Spain
| |
Collapse
|
11
|
Xing Q, Xu Z, Zhu Y, Wang X, Wang J, Chen D, Xu Y, He X, Xiang H, Wang B, Cao Y. Genetic analysis of DACT1 in 100 Chinese Han women with Müllerian duct anomalies. Reprod Biomed Online 2016; 32:420-6. [PMID: 26856455 DOI: 10.1016/j.rbmo.2016.01.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 01/07/2016] [Accepted: 01/07/2016] [Indexed: 11/29/2022]
Abstract
Dapper antagonist of catenin-1 (DACT1) plays an important role in embryogenesis and organogenesis of the female reproductive tract in mouse models. The aim of this study was to investigate the association between DACT1 mutations and human Müllerian duct anomalies (MDA). One hundred clinically well-defined Chinese Han patients with MDA and 200 healthy controls were recruited in this study. All four exons coding for DACT1 were amplified and sequenced. A missense mutation (c.G1084A, p.V362M) was identified in a patient who had a didelphic uterus and was absent from the control group. This variant changed the hydrophilicity of the amino acid residue and was predicted to be deleterious to the structure and function of DACT1 protein. The data indicate that the p.V362M mutation of DACT1 may be an underlying cause of MDA.
Collapse
Affiliation(s)
- Qiong Xing
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Zuying Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Ying Zhu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Xi Wang
- National Research Institute for Family Planning, Beijing 100081, China
| | - Jing Wang
- National Research Institute for Family Planning, Beijing 100081, China
| | - Dawei Chen
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Yuping Xu
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Xiaojin He
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Huifen Xiang
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China
| | - Binbin Wang
- National Research Institute for Family Planning, Beijing 100081, China.
| | - Yunxia Cao
- Reproductive Medicine Center, Department of Obstetrics and Gynecology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China; Institute of Reproductive Genetics, Anhui Medical University, Hefei 230022, China; Anhui Provincial Engineering Technology Research Center for Biopreservation and Artificial Organs, Hefei 230022, China.
| |
Collapse
|
12
|
Ossipova O, Chuykin I, Chu CW, Sokol SY. Vangl2 cooperates with Rab11 and Myosin V to regulate apical constriction during vertebrate gastrulation. Development 2014; 142:99-107. [PMID: 25480917 DOI: 10.1242/dev.111161] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Core planar cell polarity (PCP) proteins are well known to regulate polarity in Drosophila and vertebrate epithelia; however, their functions in vertebrate morphogenesis remain poorly understood. In this study, we describe a role for PCP signaling in the process of apical constriction during Xenopus gastrulation. The core PCP protein Vangl2 is detected at the apical surfaces of cells at the blastopore lip, and it functions during blastopore formation and closure. Further experiments show that Vangl2, as well as Daam1 and Rho-associated kinase (Rock), regulate apical constriction of bottle cells at the blastopore and ectopic constriction of ectoderm cells triggered by the actin-binding protein Shroom3. At the blastopore lip, Vangl2 is required for the apical accumulation of the recycling endosome marker Rab11. We also show that Rab11 and the associated motor protein Myosin V play essential roles in both endogenous and ectopic apical constriction, and might be involved in Vangl2 trafficking to the cell surface. Overexpression of Rab11 RNA was sufficient to partly restore normal blastopore formation in Vangl2-deficient embryos. These observations suggest that Vangl2 affects Rab11 to regulate apical constriction during blastopore formation.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ilya Chuykin
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
13
|
DACT1 is involved in human placenta development by promoting Wnt signaling. Arch Gynecol Obstet 2014; 291:1289-96. [PMID: 25424899 DOI: 10.1007/s00404-014-3557-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 11/20/2014] [Indexed: 10/24/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the expression of DACT1 in human placenta tissue and the relationship between DACT1 and target genes of the Wnt signaling pathway. METHOD Real-time PCR and western blotting were used to detect the expression of DACT1 and the target genes of Wnt signaling pathway in human placenta tissue. And the relationship between them was analyzed using SPSS 19. RESULTS Real-time PCR results showed that DACT1 expression was significantly higher in 49- to 71-day placenta tissues (mean value = 0.020) than that in 39- to 48-day (the mean value = 0.009). The mRNA expressions of the Wnt signaling pathway target genes, CCND1, CCND2, FOSL1, DAB2 and JUN, were also increased expressed in human placenta tissues. Significant positive associations between DACT1 and CCND1, CCND2, FOSL1, DAB2 and JUN were observed. Western blotting analysis showed that the protein expression of DACT1, CCND1, CCND2, FOSL1, DAB2 and JUN displayed the increasing trend in 43-, 49- and 71-day placenta samples. CONCLUSION DACT1 might play an important role in human placenta development via promoting Wnt signaling.
Collapse
|
14
|
Mandal A, Waxman J. Retinoic acid negatively regulates dact3b expression in the hindbrain of zebrafish embryos. Gene Expr Patterns 2014; 16:122-9. [PMID: 25266145 DOI: 10.1016/j.gep.2014.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 09/09/2014] [Accepted: 09/24/2014] [Indexed: 12/23/2022]
Abstract
Wnt signaling plays important roles in normal development as well as pathophysiological conditions. The Dapper antagonist of β-catenin (Dact) proteins are modulators of both canonical and non-canonical Wnt signaling via direct interactions with Dishevelled (Dvl) and Van Gogh like-2 (Vangl2). Here, we report the dynamic expression patterns of two zebrafish dact3 paralogs during early embryonic development. Our whole mount in situ hybridization (WISH) analysis indicates that specific dact3a expression starts by the tailbud stage in adaxial cells. Later, it is expressed in the anterior lateral plate mesoderm, somites, migrating cranial neural crest, and hindbrain neurons. By comparison, dact3b expression initiates on the dorsal side at the dome stage and soon after is expressed in the dorsal forerunner cells (DFCs) during gastrulation. At later stages, dact3b expression becomes restricted to the branchial neurons of the hindbrain and to the second pharyngeal arch. To investigate how zebrafish dact3 gene expression is regulated, we manipulated retinoic acid (RA) signaling during development and found that it negatively regulates dact3b in the hindbrain. Our study is the first to document the expression of the paralogous zebrafish dact3 genes during early development and demonstrate dact3b can be regulated by RA signaling. Therefore, our study opens up new avenues to study Dact3 function in the development of multiple tissues and suggests a previously unappreciated cross regulation of Wnt signaling by RA signaling in the developing vertebrate hindbrain.
Collapse
Affiliation(s)
- Amrita Mandal
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA; Molecular and Developmental Biology Graduate Program, University of Cincinnati College of Medicine and Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45208, USA
| | - Joshua Waxman
- Heart Institute, Molecular Cardiovascular Biology Division, Cincinnati Children's Hospital Medical Center, Cincinnati OH, USA.
| |
Collapse
|
15
|
Schubert FR, Sobreira DR, Janousek RG, Alvares LE, Dietrich S. Dact genes are chordate specific regulators at the intersection of Wnt and Tgf-β signaling pathways. BMC Evol Biol 2014; 14:157. [PMID: 25099342 PMCID: PMC4236578 DOI: 10.1186/1471-2148-14-157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 07/04/2014] [Indexed: 12/16/2022] Open
Abstract
Background Dacts are multi-domain adaptor proteins. They have been implicated in Wnt and Tgfβ signaling and serve as a nodal point in regulating many cellular activities. Dact genes have so far only been identified in bony vertebrates. Also, the number of Dact genes in a given species, the number and roles of protein motifs and functional domains, and the overlap of gene expression domains are all not clear. To address these problems, we have taken an evolutionary approach, screening for Dact genes in the animal kingdom and establishing their phylogeny and the synteny of Dact loci. Furthermore, we performed a deep analysis of the various Dact protein motifs and compared the expression patterns of different Dacts. Results Our study identified previously not recognized dact genes and showed that they evolved late in the deuterostome lineage. In gnathostomes, four Dact genes were generated by the two rounds of whole genome duplication in the vertebrate ancestor, with Dact1/3 and Dact2/4, respectively, arising from the two genes generated during the first genome duplication. In actinopterygians, a further dact4r gene arose from retrotranscription. The third genome duplication in the teleost ancestor, and subsequent gene loss in most gnathostome lineages left extant species with a subset of Dact genes. The distribution of functional domains suggests that the ancestral Dact function lied with Wnt signaling, and a role in Tgfβ signaling may have emerged with the Dact2/4 ancestor. Motif reduction, in particular in Dact4, suggests that this protein may counteract the function of the other Dacts. Dact genes were expressed in both distinct and overlapping domains, suggesting possible combinatorial function. Conclusions The gnathostome Dact gene family comprises four members, derived from a chordate-specific ancestor. The ability to control Wnt signaling seems to be part of the ancestral repertoire of Dact functions, while the ability to inhibit Tgfβ signaling and to carry out specialized, ortholog-specific roles may have evolved later. The complement of Dact genes coexpressed in a tissue provides a complex way to fine-tune Wnt and Tgfβ signaling. Our work provides the basis for future structural and functional studies aimed at unraveling intracellular regulatory networks.
Collapse
Affiliation(s)
| | | | | | | | - Susanne Dietrich
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, St, Michael's Building, White Swan Road, Portsmouth PO1 2DT, UK.
| |
Collapse
|
16
|
Yang X, Cheyette BNR. SEC14 and spectrin domains 1 (Sestd1) and Dapper antagonist of catenin 1 (Dact1) scaffold proteins cooperatively regulate the Van Gogh-like 2 (Vangl2) four-pass transmembrane protein and planar cell polarity (PCP) pathway during embryonic development in mice. J Biol Chem 2013; 288:20111-20. [PMID: 23696638 DOI: 10.1074/jbc.m113.465427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The planar cell polarity (PCP) pathway is a conserved non-canonical (β-catenin-independent) branch of Wnt signaling crucial to embryogenesis, during which it regulates cell polarity and polarized cell movements. Disruption of PCP components in mice, including Vangl2 and Dact1, results in defective neural tube closure and other developmental defects. Here, we show that Sestd1 is a novel binding partner of Vangl2 and Dact1. The Sestd1-Dact1 interface is formed by circumscribed regions of Sestd1 (the carboxyl-terminal region) and Dact1 (the amino-terminal region). Remarkably, we show that loss of Sestd1 precisely phenocopies loss of Dact1 during embryogenesis in mice, leading to a spectrum of birth malformations, including neural tube defects, a shortened and/or curly tail, no genital tubercle, blind-ended colons, hydronephrotic kidneys, and no bladder. Moreover, as with Dact1, a knock-out mutation at the Sestd1 locus exhibits reciprocal genetic rescue interactions during development with a semidominant mutation at the Vangl2 locus. Consistent with this, examination of Wnt pathway activities in Sestd1 mutant mouse embryonic tissue reveals disrupted PCP pathway biochemistry similar to that characterized in Dact1 mutant embryos. The Sestd1 protein is a divergent member of the Trio family of GTPase regulatory proteins that lacks a guanine nucleotide exchange factor domain. Nonetheless, in cell-based assays the Sestd1-Dact1 interaction can induce Rho GTPase activation. Together, our data indicate that Sestd1 cooperates with Dact1 in Vangl2 regulation and in the PCP pathway during mammalian embryonic development.
Collapse
Affiliation(s)
- XiaoYong Yang
- Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California, San Francisco, California 94158-2324, USA
| | | |
Collapse
|
17
|
Sensiate LA, Sobreira DR, Da Veiga FC, Peterlini DJ, Pedrosa AV, Rirsch T, Joazeiro PP, Schubert FR, Collares-Buzato CB, Xavier-Neto J, Dietrich S, Alvares LE. Dact gene expression profiles suggest a role for this gene family in integrating Wnt and TGF-β signaling pathways during chicken limb development. Dev Dyn 2013; 243:428-39. [DOI: 10.1002/dvdy.23948] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 12/20/2012] [Accepted: 01/27/2013] [Indexed: 12/22/2022] Open
Affiliation(s)
| | - Débora R. Sobreira
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | | | | | | | - Thaís Rirsch
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| | - Paulo Pinto Joazeiro
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| | - Frank R. Schubert
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | | | | | - Susanne Dietrich
- Institute of Biomedical and Biomolecular Science, University of Portsmouth; Portsmouth United Kingdom
| | - Lúcia Elvira Alvares
- Department of Histology and Embryology; State University of Campinas UNICAMP; Campinas Brazil
| |
Collapse
|
18
|
Li X, Florez S, Wang J, Cao H, Amendt BA. Dact2 represses PITX2 transcriptional activation and cell proliferation through Wnt/beta-catenin signaling during odontogenesis. PLoS One 2013; 8:e54868. [PMID: 23349981 PMCID: PMC3551926 DOI: 10.1371/journal.pone.0054868] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 12/19/2012] [Indexed: 11/19/2022] Open
Abstract
Dact proteins belong to the Dapper/Frodo protein family and function as cytoplasmic attenuators in Wnt and TGFβ signaling. Previous studies show that Dact1 is a potent Wnt signaling inhibitor by promoting degradation of β-catenin. We report a new mechanism for Dact2 function as an inhibitor of the canonical Wnt signaling pathway by interacting with PITX2. PITX2 is a downstream transcription factor in Wnt/β-catenin signaling, and PITX2 synergizes with Lef-1 to activate downstream genes. Immunohistochemistry verified the expression of Dact2 in the tooth epithelium, which correlated with Pitx2 epithelial expression. Dact2 loss of function and PITX2 gain of function studies reveal a feedback mechanism for controlling Dact2 expression. Pitx2 endogenously activates Dact2 expression and Dact2 feeds back to repress Pitx2 transcriptional activity. A Topflash reporter system was employed showing PITX2 activation of Wnt signaling, which is attenuated by Dact2. Transient transfections demonstrate the inhibitory effect of Dact2 on critical dental epithelial differentiation factors during tooth development. Dact2 significantly inhibits PITX2 activation of the Dlx2 and amelogenin promoters. Multiple lines of evidence conclude the inhibition is achieved by the physical interaction between Dact2 and Pitx2 proteins. The loss of function of Dact2 also reveals increased cell proliferation due to up-regulated Wnt downstream genes, cyclinD1 and cyclinD2. In summary, we have identified a novel role for Dact2 as an inhibitor of the canonical Wnt pathway in embryonic tooth development through its regulation of cell proliferation and differentiation.
Collapse
Affiliation(s)
- Xiao Li
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Sergio Florez
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Jianbo Wang
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Huojun Cao
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, United States of America
| | - Brad A. Amendt
- Department of Anatomy and Cell Biology, The University of Iowa, Iowa City, Iowa, United States of America
| |
Collapse
|
19
|
Kivimäe S, Yang XY, Cheyette BNR. All Dact (Dapper/Frodo) scaffold proteins dimerize and exhibit conserved interactions with Vangl, Dvl, and serine/threonine kinases. BMC BIOCHEMISTRY 2011; 12:33. [PMID: 21718540 PMCID: PMC3141656 DOI: 10.1186/1471-2091-12-33] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/30/2011] [Indexed: 02/06/2023]
Abstract
Background The Dact family of scaffold proteins was discovered by virtue of binding to Dvl proteins central to Wnt and Planar Cell Polarity (PCP) signaling. Subsequently Dact proteins have been linked to a growing list of potential partners implicated in β-catenin-dependent and β-catenin-independent forms of Wnt and other signaling. To clarify conserved and non-conserved roles for this protein family, we systematically compared molecular interactions of all three murine Dact paralogs by co-immunoprecipitation of proteins recombinantly expressed in cultured human embryonic kidney cells. Results Every Dact paralog readily formed complexes with the Vangl, Dvl, and CK1δ/ε proteins of species ranging from fruit flies to humans, as well as with PKA and PKC. Dact proteins also formed complexes with themselves and with each other; their conserved N-terminal leucine-zipper domains, which have no known binding partners, were necessary and sufficient for this interaction, suggesting that it reflects leucine-zipper-mediated homo- and hetero-dimerization. We also found weaker, though conserved, interactions of all three Dact paralogs with the catenin superfamily member p120ctn. Complex formation with other previously proposed partners including most other catenins, GSK3, LEF/TCF, HDAC1, and TGFβ receptors was paralog-specific, comparatively weak, and/or more sensitive to empirical conditions. Conclusions Combined with published functional evidence from targeted knock-out mice, these data support a conserved role for Dact proteins in kinase-regulated biochemistry involving Vangl and Dvl. This strongly suggests that a principal role for all Dact family members is in the PCP pathway or a molecularly related signaling cascade in vertebrates.
Collapse
Affiliation(s)
- Saul Kivimäe
- The Nina Ireland Laboratory of Developmental Neurobiology, Department of Psychiatry, University of California San Francisco, 1550 4th St, San Francisco CA 94158-2324, USA.
| | | | | |
Collapse
|
20
|
Hou J, Li EM, Shen JH, Qing-Zhao, Wu ZY, Xu XE, Wu JY, Qiao-Huang, Shen J, Guo MZ, Xu LY. Cytoplasmic HDPR1 is involved in regional lymph node metastasis and tumor development via beta-catenin accumulation in esophageal squamous cell carcinoma. J Histochem Cytochem 2011; 59:711-8. [PMID: 21525190 DOI: 10.1369/0022155411409941] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to evaluate HDPR1 expression in esophageal squamous cell carcinoma (ESCC) and the relationship between HDPR1 and beta-catenin by immunohistochemical analysis. The clinical relevance of these proteins was also analyzed. Immunohistochemistry was performed on paraffin-embedded tissue specimens from 184 ESCC patients to detect the expression of HDPR1 and beta-catenin. The correlation between the results of immunoexpression and the clinicopathologic features was processed statistically. Increased cytoplasmic and nuclear HDPR1 expression was noted in 100 (54.3%) and 131 (71.2%) of 184 specimens, respectively. Statistical analysis showed significant associations of cytoplasmic HDPR1 with regional lymph node metastasis (p = 0.021) and P-stage (p = 0.004). The increased nuclear staining was only correlated with P-stage (p = 0.047). Significant associations of coexpression of cytoplasmic and nuclear HDPR1 with regional lymph node metastasis (p = 0.015) or P-stage (p = 0.002) were observed. Enhanced cytoplasmic expression of HDPR1 was positively correlated with increased cytoplasmic but not reduced membranous beta-catenin expression (r = 0.239, p = 0.027 and r = 0.126, p = 0.089, respectively). These finding suggested that cytoplasmic HDPR1 protein expression was associated with tumor malignant progression via beta-catenin accumulation. It implicated that cytoplasmic HDPR1 expression may serve as a potential predictive factor for lymph node metastasis and tumor development in ESCC.
Collapse
Affiliation(s)
- Jian Hou
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou, Guangdong, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hikasa H, Sokol SY. Phosphorylation of TCF proteins by homeodomain-interacting protein kinase 2. J Biol Chem 2011; 286:12093-100. [PMID: 21285352 DOI: 10.1074/jbc.m110.185280] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Wnt pathways play essential roles in cell proliferation, morphogenesis, and cell fate specification during embryonic development. According to the consensus view, the Wnt pathway prevents the degradation of the key signaling component β-catenin by the protein complex containing the negative regulators Axin and glycogen synthase kinase 3 (GSK3). Stabilized β-catenin associates with TCF proteins and enters the nucleus to promote target gene expression. This study examines the involvement of HIPK2 (homeodomain-interacting protein kinase 2) in the regulation of different TCF proteins in Xenopus embryos in vivo. We show that the TCF family members LEF1, TCF4, and TCF3 are phosphorylated in embryonic ectoderm after Wnt8 stimulation and HIPK2 overexpression. We also find that TCF3 phosphorylation is triggered by canonical Wnt ligands, LRP6, and dominant negative mutants for Axin and GSK3, indicating that this process shares the same upstream regulators with β-catenin stabilization. HIPK2-dependent phosphorylation caused the dissociation of LEF1, TCF4, and TCF3 from a target promoter in vivo. This result provides a mechanistic explanation for the context-dependent function of HIPK2 in Wnt signaling; HIPK2 up-regulates transcription by phosphorylating TCF3, a transcriptional repressor, but inhibits transcription by phosphorylating LEF1, a transcriptional activator. Finally, we show that upon HIPK2-mediated phosphorylation, TCF3 is replaced with positively acting TCF1 at a target promoter. These observations emphasize a critical role for Wnt/HIPK2-dependent TCF phosphorylation and suggest that TCF switching is an important mechanism of Wnt target gene activation in vertebrate embryos.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | |
Collapse
|
22
|
Hong JY, Park JI, Cho K, Gu D, Ji H, Artandi SE, McCrea PD. Shared molecular mechanisms regulate multiple catenin proteins: canonical Wnt signals and components modulate p120-catenin isoform-1 and additional p120 subfamily members. J Cell Sci 2010; 123:4351-65. [PMID: 21098636 DOI: 10.1242/jcs.067199] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wnt signaling pathways have fundamental roles in animal development and tumor progression. Here, employing Xenopus embryos and mammalian cell lines, we report that the degradation machinery of the canonical Wnt pathway modulates p120-catenin protein stability through mechanisms shared with those regulating β-catenin. For example, in common with β-catenin, exogenous expression of destruction complex components, such as GSK3β and axin, promotes degradation of p120-catenin. Again in parallel with β-catenin, reduction of canonical Wnt signals upon depletion of LRP5 and LRP6 results in p120-catenin degradation. At the primary sequence level, we resolved conserved GSK3β phosphorylation sites in the amino-terminal region of p120-catenin present exclusively in isoform-1. Point-mutagenesis of these residues inhibited the association of destruction complex components, such as those involved in ubiquitylation, resulting in stabilization of p120-catenin. Functionally, in line with predictions, p120 stabilization increased its signaling activity in the context of the p120-Kaiso pathway. Importantly, we found that two additional p120-catenin family members, ARVCF-catenin and δ-catenin, associate with axin and are degraded in its presence. Thus, as supported using gain- and loss-of-function approaches in embryo and cell line systems, canonical Wnt signals appear poised to have an impact upon a breadth of catenin biology in vertebrate development and, possibly, human cancers.
Collapse
Affiliation(s)
- Ji Yeon Hong
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. Dev Cell 2010; 19:521-32. [PMID: 20951344 DOI: 10.1016/j.devcel.2010.09.005] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 07/23/2010] [Accepted: 09/07/2010] [Indexed: 11/24/2022]
Abstract
A commonly accepted model of Wnt/β-catenin signaling involves target gene activation by a complex of β-catenin with a T-cell factor (TCF) family member. TCF3 is a transcriptional repressor that has been implicated in Wnt signaling and plays key roles in embryonic axis specification and stem cell differentiation. Here we demonstrate that Wnt proteins stimulate TCF3 phosphorylation in gastrulating Xenopus embryos and mammalian cells. This phosphorylation event involves β-catenin-mediated recruitment of homeodomain-interacting protein kinase 2 (HIPK2) to TCF3 and culminates in the dissociation of TCF3 from a target gene promoter. Mutated TCF3 proteins resistant to Wnt-dependent phosphorylation function as constitutive inhibitors of Wnt-mediated activation of Vent2 and Cdx4 during anteroposterior axis specification. These findings reveal an alternative in vivo mechanism of Wnt signaling that involves TCF3 phosphorylation and subsequent derepression of target genes and link this molecular event to a specific developmental process.
Collapse
|
24
|
Okerlund ND, Kivimäe S, Tong CK, Peng IF, Ullian EM, Cheyette BNR. Dact1 is a postsynaptic protein required for dendrite, spine, and excitatory synapse development in the mouse forebrain. J Neurosci 2010; 30:4362-8. [PMID: 20335472 PMCID: PMC2848693 DOI: 10.1523/jneurosci.0354-10.2010] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Accepted: 02/18/2010] [Indexed: 11/21/2022] Open
Abstract
Dact1 (Dapper/Frodo), an intracellular phosphoprotein that binds Dishevelled, catenins, and other signaling proteins, is expressed in the developing and mature mammalian CNS, but its function there is unknown. Dact1 colocalized with synaptic markers and partitioned to postsynaptic fractions from cultured mouse forebrain neurons. Hippocampal neurons from Dact1 knock-out mice had simpler dendritic arbors and fewer spines than hippocampal neurons from wild-type littermates. This correlated with reductions in excitatory synapses and miniature EPSCs, whereas inhibitory synapses were not affected. Loss of Dact1 resulted in a decrease in activated Rac, and recombinant expression of either Dact1 or constitutively active Rac, but not Rho or Cdc42, rescued dendrite and spine phenotypes in Dact1 mutant neurons. Our findings suggest that, during neuronal differentiation, Dact1 plays a critical role in a molecular pathway promoting Rac activity underlying the elaboration of dendrites and the establishment of spines and excitatory synapses.
Collapse
Affiliation(s)
- Nathan D Okerlund
- Departments of Psychiatry, Physiology, and Ophthalmology and Neuroscience Graduate Program, University of California, San Francisco, San Francisco, California 94158, USA
| | | | | | | | | | | |
Collapse
|
25
|
Wen J, Chiang YJ, Gao C, Xue H, Xu J, Ning Y, Hodes RJ, Gao X, Chen YG. Loss of Dact1 disrupts planar cell polarity signaling by altering dishevelled activity and leads to posterior malformation in mice. J Biol Chem 2010; 285:11023-30. [PMID: 20145239 DOI: 10.1074/jbc.m109.085381] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Wnt signaling plays a key role in embryogenesis and cancer development. Dvl (Dishevelled) is a central mediator for both the canonical and noncanonical Wnt pathways. Dact1 (Dapper1, Dpr1), a Dvl interactor, has been shown to negatively modulate Wnt signaling by promoting lysosomal degradation of Dvl. Here we report that Dact1-deficient mice have multiple physiological defects that resemble the human neonate disease congenital caudal regression syndrome, including caudal vertebrae agenesis, anorectal malformation, renal agenesis/dysplasia, fused kidneys, and loss of bladder. These urogenital defects can be traced to impaired hindgut formation starting at embryonic day 8.25. Examination of morphological changes and Wnt target gene expression revealed that the planar cell polarity (PCP) signaling is deregulated, whereas the canonical Wnt/beta-catenin pathway is largely unaffected in mutant embryos. Consistently, the activity of the PCP signal mediators Rho GTPase and c-Jun N-terminal kinase is altered in Dact1(-/-) mouse embryonic fibroblasts. We further observed alterations in the protein level and the cellular distribution of Dvl in the primitive streak of mutant embryos. An increased amount of Dvl2 tends to be accumulated in the cortical regions of the cells, especially at the primitive streak ectoderm close to the posterior endoderm that lately forms the hindgut diverticulum. Together, these data suggest that Dact1 may regulate vertebrate PCP by controlling the level and the cellular localization of Dvl protein.
Collapse
Affiliation(s)
- Jun Wen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, College of Life Sciences, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Choi SC, Sokol SY. The involvement of lethal giant larvae and Wnt signaling in bottle cell formation in Xenopus embryos. Dev Biol 2009; 336:68-75. [PMID: 19782678 DOI: 10.1016/j.ydbio.2009.09.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 09/18/2009] [Accepted: 09/21/2009] [Indexed: 12/29/2022]
Abstract
Lethal giant larvae (Lgl) plays a critical role in establishment of cell polarity in epithelial cells. While Frizzled/Dsh signaling has been implicated in the regulation of the localization and activity of Lgl, it remains unclear whether specific Wnt ligands are involved. Here we show that Wnt5a triggers the release of Lgl from the cell cortex into the cytoplasm with the concomitant decrease in Lgl stability. The observed changes in Lgl localization were independent of atypical PKC (aPKC), which is known to influence Lgl distribution. In ectodermal cells, both Wnt5a and Lgl triggered morphological and molecular changes characteristic of apical constriction, whereas depletion of their functions prevented endogenous and ectopic bottle cell formation. Furthermore, Lgl RNA partially rescued bottle cell formation in embryos injected with a dominant negative Wnt5a construct. These results suggest a molecular link between Wnt5a and Lgl that is essential for apical constriction during vertebrate gastrulation.
Collapse
Affiliation(s)
- Sun-Cheol Choi
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
27
|
Dpr Acts as a molecular switch, inhibiting Wnt signaling when unphosphorylated, but promoting Wnt signaling when phosphorylated by casein kinase Idelta/epsilon. PLoS One 2009; 4:e5522. [PMID: 19440376 PMCID: PMC2679210 DOI: 10.1371/journal.pone.0005522] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Accepted: 04/20/2009] [Indexed: 11/25/2022] Open
Abstract
The Wnt pathway is a key regulator of development and tumorigenesis. Dpr (Dact/Frodo) influences Wnt signaling in part through the interaction of its PDZ-B domain with Dsh's PDZ domain. Studies have shown that XDpr1a and its close relative, Frodo, are involved in multiple steps of the Wnt pathway in either inhibitory or activating roles. We found that XDpr1a is phosphorylated by casein kinase Iδ/ε (CKIδ/ε), an activator of Wnt signaling, in the presence of XDsh. Abrogating XDpr1a's ability to bind XDsh through mutation of XDpr1a's PDZ-B domain blocks CK1δ/ε's phosphorylation of XDpr1a. Conversely, XDsh possessing a mutation in its PDZ domain that is unable to bind XDpr1a does not promote XDpr1a phosphorylation. Phosphorylation of XDpr1a and XDsh by CKIδ/ε decreases their interaction. Moreover, the phosphorylation of XDpr1a by CKIδ/ε not only abrogates XDpr1a's promotion of β-catenin degradation but blocks β-catenin degradation. Our data suggest that XDpr1a phosphorylation by CKIδ/ε is dependent on the interaction of XDpr1a's PDZ-B domain with XDsh's PDZ domain, and that the phosphorylation state of XDpr1a determines whether it inhibits or activates Wnt signaling.
Collapse
|
28
|
Alvares LE, Winterbottom FL, Rodrigues Sobreira D, Xavier-Neto J, Schubert FR, Dietrich S. Chicken dapper genes are versatile markers for mesodermal tissues, embryonic muscle stem cells, neural crest cells, and neurogenic placodes. Dev Dyn 2009; 238:1166-78. [DOI: 10.1002/dvdy.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
29
|
Lagathu C, Christodoulides C, Virtue S, Cawthorn WP, Franzin C, Kimber WA, Nora ED, Campbell M, Medina-Gomez G, Cheyette BNR, Vidal-Puig AJ, Sethi JK. Dact1, a nutritionally regulated preadipocyte gene, controls adipogenesis by coordinating the Wnt/beta-catenin signaling network. Diabetes 2009; 58:609-19. [PMID: 19073771 PMCID: PMC2646059 DOI: 10.2337/db08-1180] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2008] [Accepted: 11/26/2008] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Wnt signaling inhibits adipogenesis, but its regulation, physiological relevance, and molecular effectors are poorly understood. Here, we identify the Wnt modulator Dapper1/Frodo1 (Dact1) as a new preadipocyte gene involved in the regulation of murine and human adipogenesis. RESEARCH DESIGN AND METHODS Changes in Dact1 expression were investigated in three in vitro models of adipogenesis. In vitro gain- and loss-of-function studies were used to investigate the mechanism of Dact1 action during adipogenesis. The in vivo regulation of Dact1 and Wnt/beta-catenin signaling were investigated in murine models of altered nutritional status, of pharmacological stimulation of in vivo adipogenesis, and during the development of dietary and genetic obesity. RESULTS Dact1 is a preadipocyte gene that decreases during adipogenesis. However, Dact1 knockdown impairs adipogenesis through activation of the Wnt/beta-catenin signaling pathway, and this is reversed by treatment with the secreted Wnt antagonist, secreted Frizzled-related protein 1 (Sfrp1). In contrast, constitutive Dact1 overexpression promotes adipogenesis and confers resistance to Wnt ligand-induced antiadipogenesis through increased expression of endogenous Sfrps and reduced expression of Wnts. In vivo, in white adipose tissue, Dact1 and Wnt/beta-catenin signaling also exhibit coordinated expression profiles in response to altered nutritional status, in response to pharmacological stimulation of in vivo adipogenesis, and during the development of dietary and genetic obesity. CONCLUSIONS Dact1 regulates adipogenesis through coordinated effects on gene expression that selectively alter intracellular and paracrine/autocrine components of the Wnt/beta-catenin signaling pathway. These novel insights into the molecular mechanisms controlling adipose tissue plasticity provide a functional network with therapeutic potential against diseases, such as obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Claire Lagathu
- Institute of Metabolic Science-Metabolic Research Laboratories and Department of Clinical Biochemistry, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Constam DB. Riding Shotgun: A Dual Role for the Epidermal Growth Factor-Cripto/FRL-1/Cryptic Protein Cripto in Nodal Trafficking. Traffic 2009; 10:783-91. [DOI: 10.1111/j.1600-0854.2009.00874.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
31
|
Louie SH, Yang XY, Conrad WH, Muster J, Angers S, Moon RT, Cheyette BNR. Modulation of the beta-catenin signaling pathway by the dishevelled-associated protein Hipk1. PLoS One 2009; 4:e4310. [PMID: 19183803 PMCID: PMC2629544 DOI: 10.1371/journal.pone.0004310] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Accepted: 12/09/2008] [Indexed: 12/31/2022] Open
Abstract
Background Wnts are evolutionarily conserved ligands that signal through β-catenin-dependent and β-catenin–independent pathways to regulate cell fate, proliferation, polarity, and movements during vertebrate development. Dishevelled (Dsh/Dvl) is a multi-domain scaffold protein required for virtually all known Wnt signaling activities, raising interest in the identification and functions of Dsh-associated proteins. Methodology We conducted a yeast-2-hybrid screen using an N-terminal fragment of Dsh, resulting in isolation of the Xenopus laevis ortholog of Hipk1. Interaction between the Dsh and Hipk1 proteins was confirmed by co-immunoprecipitation assays and mass spectrometry, and further experiments suggest that Hipk1 also complexes with the transcription factor Tcf3. Supporting a nuclear function during X. laevis development, Myc-tagged Hipk1 localizes primarily to the nucleus in animal cap explants, and the endogenous transcript is strongly expressed during gastrula and neurula stages. Experimental manipulations of Hipk1 levels indicate that Hipk1 can repress Wnt/β-catenin target gene activation, as demonstrated by β-catenin reporter assays in human embryonic kidney cells and by indicators of dorsal specification in X. laevis embryos at the late blastula stage. In addition, a subset of Wnt-responsive genes subsequently requires Hipk1 for activation in the involuting mesoderm during gastrulation. Moreover, either over-expression or knock-down of Hipk1 leads to perturbed convergent extension cell movements involved in both gastrulation and neural tube closure. Conclusions These results suggest that Hipk1 contributes in a complex fashion to Dsh-dependent signaling activities during early vertebrate development. This includes regulating the transcription of Wnt/β-catenin target genes in the nucleus, possibly in both repressive and activating ways under changing developmental contexts. This regulation is required to modulate gene expression and cell movements that are essential for gastrulation.
Collapse
Affiliation(s)
- Sarah H. Louie
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Xiao Yong Yang
- Department of Psychiatry, and Graduate Program in Developmental Biology, Program in Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
| | - William H. Conrad
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Jeanot Muster
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Stephane Angers
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Randall T. Moon
- Howard Hughes Medical Institute, Department of Pharmacology, and Institute for Stem Cell and Regenerative Medicine, University of Washington School of Medicine, Seattle, Washington, United States of America
| | - Benjamin N. R. Cheyette
- Department of Psychiatry, and Graduate Program in Developmental Biology, Program in Biological Sciences, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Iioka H, Doerner SK, Tamai K. Kaiso is a bimodal modulator for Wnt/beta-catenin signaling. FEBS Lett 2009; 583:627-32. [PMID: 19166851 DOI: 10.1016/j.febslet.2009.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2008] [Revised: 01/12/2009] [Accepted: 01/12/2009] [Indexed: 11/16/2022]
Abstract
The Wnt family of secreted ligands plays critical roles during embryonic development and tumorigenesis. Here we show that Kaiso, a dual specific DNA-binding protein, functions as a bimodal regulator of canonical Wnt signaling. Loss-of-function analysis of Kaiso abrogated Wnt-mediated reporter activity and axis duplication, whereas gain-of-function analysis of Kaiso dose-dependently resulted in synergistic and suppressive effects. Our analyses further suggest Kaiso can regulate TCF/LEF1-activity for these effects via modulating HDAC1 and beta-catenin-complex formation. Our studies together provide insights into why Kaiso null mice display resistance to intestinal tumors when crossed onto an Apc(Min/+) background.
Collapse
Affiliation(s)
- Hidekazu Iioka
- BRB 723, Department of Genetics, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
33
|
Gao X, Wen J, Zhang L, Li X, Ning Y, Meng A, Chen YG. Dapper1 is a nucleocytoplasmic shuttling protein that negatively modulates Wnt signaling in the nucleus. J Biol Chem 2008; 283:35679-88. [PMID: 18936100 DOI: 10.1074/jbc.m804088200] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling, via the activation of the canonical beta-catenin and lymphoid enhancer factor (LEF)/T-cell factor pathway, plays an important role in embryogenesis and cancer development by regulating the expression of genes involved in cell proliferation, differentiation, and survival. Dapper (Dpr), as a Dishevelled interactor, has been suggested to modulate Wnt signaling by promoting Dishevelled degradation. Here, we provide evidence that Dpr1 shuttles between the cytoplasm and the nucleus. Although overexpressed Dpr1 was mainly found in the cytoplasm, endogenous Dpr1 was localized over the cell, and Wnt1 induced its nuclear export. Treatment with leptomycin B induced nuclear accumulation of both endogenous and overexpressed Dpr1. We further identified the nuclear localization signal and the nuclear export signal within Dpr1. Using reporter assay and in vivo zebrafish embryo assay, we demonstrated that the forced nuclearly localized Dpr1 possessed the ability to antagonize Wnt signaling. Dpr1 interacted with beta-catenin and LEF1 and disrupted their complex formation. Furthermore, Dpr1 could associate with histone deacetylase 1 (HDAC1) and enhance the LEF1-HDAC1 interaction. Together, our findings suggest that Dpr1 negatively modulates the basal activity of Wnt/beta-catenin signaling in the nucleus by keeping LEF1 in the repressive state. Thus, Dpr1 controls Wnt/beta-catenin signaling in both the cytoplasm and the nucleus.
Collapse
Affiliation(s)
- Xia Gao
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
34
|
van Venrooy S, Fichtner D, Kunz M, Wedlich D, Gradl D. Cold-inducible RNA binding protein (CIRP), a novel XTcf-3 specific target gene regulates neural development in Xenopus. BMC DEVELOPMENTAL BIOLOGY 2008; 8:77. [PMID: 18687117 PMCID: PMC2527318 DOI: 10.1186/1471-213x-8-77] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2008] [Accepted: 08/07/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND As nuclear mediators of wnt/beta-catenin signaling, Lef/Tcf transcription factors play important roles in development and disease. Although it is well established, that the four vertebrate Lef/Tcfs have unique functional properties, most studies unite Lef-1, Tcf-1, Tcf-3 and Tcf-4 and reduce their function to uniformly transduce wnt/beta-catenin signaling for activating wnt target genes. In order to discriminate target genes regulated by XTcf-3 from those regulated by XTcf-4 or Lef/Tcfs in general, we performed a subtractive screen, using neuralized Xenopus animal cap explants. RESULTS We identified cold-inducible RNA binding protein (CIRP) as novel XTcf-3 specific target gene. Furthermore, we show that knockdown of XTcf-3 by injection of an antisense morpholino oligonucleotide results in a general broadening of the anterior neural tissue. Depletion of XCIRP by antisense morpholino oligonucleotide injection leads to a reduced stability of mRNA and an enlargement of the anterior neural plate similar to the depletion of XTcf-3. CONCLUSION Distinct steps in neural development are differentially regulated by individual Lef/Tcfs. For proper development of the anterior brain XTcf-3 and the Tcf-subtype specific target XCIRP appear indispensable. Thus, regulation of anterior neural development, at least in part, depends on mRNA stabilization by the novel XTcf-3 target gene XCIRP.
Collapse
|
35
|
Funato Y, Michiue T, Terabayashi T, Yukita A, Danno H, Asashima M, Miki H. Nucleoredoxin regulates the Wnt/planar cell polarity pathway in Xenopus. Genes Cells 2008; 13:965-75. [PMID: 18691226 DOI: 10.1111/j.1365-2443.2008.01220.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Wnt signaling pathway is conserved across species, and is essential for early development. We previously identified nucleoredoxin (NRX) as a protein that interacts with dishevelled (Dvl) in vivo to negatively regulate the Wnt/beta-catenin pathway. However, whether NRX affects another branch of the Wnt pathway, the Wnt/planar cell polarity (PCP) pathway, remains unclear. Here we show that NRX regulates the Wnt/PCP pathway. In Xenopus laevis, over-expression or depletion of NRX by injection of NRX mRNA or antisense morpholino oligonucleotide, respectively, yields the bent-axis phenotype that is typically observed in embryos with abnormal PCP pathway activity. In co-injection experiments of Dvl and NRX mRNA, NRX suppresses the Dvl-induced bent-axis phenotype. Over-expression or depletion of NRX also suppresses the convergent extension movements that are believed to underlie normal gastrulation. We also found that NRX can inhibit Dvl-induced up-regulation of c-Jun phosphorylation. These results indicate that NRX plays crucial roles in the Wnt/PCP pathway through Dvl and regulates Xenopus gastrulation movements.
Collapse
Affiliation(s)
- Yosuke Funato
- Laboratory of Intracellular Signaling, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
36
|
Jiang X, Tan J, Li J, Kivimäe S, Yang X, Zhuang L, Lee PL, Chan MTW, Stanton L, Liu ET, Cheyette BN, Yu Q. DACT3 is an epigenetic regulator of Wnt/beta-catenin signaling in colorectal cancer and is a therapeutic target of histone modifications. Cancer Cell 2008; 13:529-41. [PMID: 18538736 PMCID: PMC2577847 DOI: 10.1016/j.ccr.2008.04.019] [Citation(s) in RCA: 194] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 01/01/2008] [Accepted: 04/02/2008] [Indexed: 12/31/2022]
Abstract
Genetic and epigenetic defects in Wnt/beta-catenin signaling play important roles in colorectal cancer progression. Here we identify DACT3, a member of the DACT (Dpr/Frodo) gene family, as a negative regulator of Wnt/beta-catenin signaling that is transcriptionally repressed in colorectal cancer. Unlike other Wnt signaling inhibitors that are silenced by DNA methylation, DACT3 repression is associated with bivalent histone modifications. Remarkably, DACT3 expression can be robustly derepressed by a pharmacological combination that simultaneously targets both histone methylation and deacetylation, leading to strong inhibition of Dishevelled (Dvl)-mediated Wnt/beta-catenin signaling and massive apoptosis of colorectal cancer cells. Our study identifies DACT3 as an important regulator of Wnt/beta-catenin signaling in colorectal cancer and suggests a potential strategy for therapeutic control of Wnt/beta-catenin signaling in colorectal cancer.
Collapse
Affiliation(s)
- Xia Jiang
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Jing Tan
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Jingsong Li
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Saul Kivimäe
- Department of Psychiatry, Graduate Programs in Developmental Biology and Neuroscience, University of California, San Francisco
| | - Xiaojing Yang
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Li Zhuang
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Puay Leng Lee
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Mark TW. Chan
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Lawrence Stanton
- Stem Cell and Developmental Biology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Edison T. Liu
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| | - Benjamin N.R. Cheyette
- Department of Psychiatry, Graduate Programs in Developmental Biology and Neuroscience, University of California, San Francisco
| | - Qiang Yu
- Cancer Biology and Pharmacology, Genome Institute of Singapore, A*STAR (Agency for Science, Technology and Research), Biopolis, Singapore
| |
Collapse
|
37
|
Yi F, Merrill BJ. Stem cells and TCF proteins: a role for beta-catenin--independent functions. ACTA ACUST UNITED AC 2007; 3:39-48. [PMID: 17873380 DOI: 10.1007/s12015-007-0003-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 12/18/2022]
Abstract
The Wnt signal transduction pathway has been shown to stimulate stem cell self renewal and has been shown to cause cancer in humans. One interesting aspect of Wnt signaling is that it utilizes downstream DNA-binding transcription factors, called Tcf proteins, which can activate transcription of target genes in the presence of a Wnt signal and repress the expression of target genes in the absence of a Wnt signal. Since Tcf proteins are present in Wnt-stimulated and unstimulated stem cells, understanding how Tcf proteins regulate target gene expression in each state offers the potential to understand how stem cells regulate their self-renewal, differentiation, and proliferation. In this article, we will review recent work elucidating the roles Tcf-protein interactions in the context of stem cells and cancer.
Collapse
Affiliation(s)
- Fei Yi
- Molecular Biology Research Building, Department of Biochemistry and Molecular Genetics, University of Illinois, 900 S. Ashland Ave., Chicago, IL 60607, USA
| | | |
Collapse
|
38
|
Michaelidis TM, Lie DC. Wnt signaling and neural stem cells: caught in the Wnt web. Cell Tissue Res 2007; 331:193-210. [PMID: 17828608 DOI: 10.1007/s00441-007-0476-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 07/13/2007] [Indexed: 12/22/2022]
Abstract
Wnt proteins have now been identified as major physiological regulators of multiple aspects of stem cell biology, from self-renewal and pluripotency to precursor cell competence and terminal differentiation. Neural stem cells are the cellular building blocks of the developing nervous system and provide the basis for continued neurogenesis in the adult mammalian central nervous system. Here, we outline the most recent advances in the field about the critical factors and regulatory networks involved in Wnt signaling and discuss recent findings on how this increasingly intricate pathway contributes to the shaping of the developing and adult nervous system on the level of the neural stem cell.
Collapse
Affiliation(s)
- Theologos M Michaelidis
- GSF-National Research Center for Environment and Health, Institute of Developmental Genetics, Ingolstädter Landstrasse 1, 85764, Munich-Neuherberg, Germany
| | | |
Collapse
|
39
|
Cinquin O. Understanding the somitogenesis clock: what's missing? Mech Dev 2007; 124:501-17. [PMID: 17643270 DOI: 10.1016/j.mod.2007.06.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2007] [Revised: 05/10/2007] [Accepted: 06/09/2007] [Indexed: 01/09/2023]
Abstract
The segmentation of vertebrate embryos depends on a complex genetic network that generates highly dynamic gene expression. Many of the elements of the network have been identified, but their interaction and their influence on segmentation remain poorly understood. A few mathematical models have been proposed to explain the dynamics of subsets of the network, but the mechanistic bases remain controversial. This review focuses on outstanding problems with the generation of somitogenesis clock oscillations, and the ways they could regulate segmentation. Proposals that oscillations are generated by a negative feedback loop formed by Lunatic fringe and Notch signaling are weighed against a model based on positive feedback, and the experimental basis for models of simple negative feedback involving Her/Hes genes or Wnt targets is evaluated. Differences are then made explicit between the many 'clock and wavefront' model variants that have been proposed to explain how the clock regulates segmentation. An understanding of the somitogenesis clock will require addressing experimentally the many questions that arise from the study of simple models.
Collapse
Affiliation(s)
- Olivier Cinquin
- Howard Hughes Medical Institute and Department of Biochemistry, University of Wisconsin - Madison, 433 Babcock Drive, Madison, WI 53706, USA.
| |
Collapse
|
40
|
|
41
|
Abstract
Lymphoid enhancer factor/T cell factor proteins (LEF/TCFs) mediate Wnt signals in the nucleus by recruiting beta-catenin and its co-activators to Wnt response elements (WREs) of target genes. This activity is important during development but its misregulation plays a role in disease such as cancer, where overactive Wnt signaling drives LEF/TCFs to transform cells. The size of the LEF/TCF family is small: approximately four members in vertebrates and one orthologous form in flies, worms and hydra. However, size belies complexity. The LEF/TCF family exhibits extensive patterns of alternative splicing, alternative promoter usage and activities of repression, as well as activation. Recent work from numerous laboratories has highlighted how this complexity has important biological consequences in development and disease.
Collapse
Affiliation(s)
- L Arce
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA 92697-4025, USA
| | | | | |
Collapse
|
42
|
Su Y, Zhang L, Gao X, Meng F, Wen J, Zhou H, Meng A, Chen YG. The evolutionally conserved activity of Dapper2 in antagonizing TGF-beta signaling. FASEB J 2006; 21:682-90. [PMID: 17197390 DOI: 10.1096/fj.06-6246com] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Dapper1 and Dapper2, two divergent members of the Dapper family, have been suggested to modulate Wnt and TGF-beta/Nodal signaling in Xenopus and zebrafish. To get a better understanding of Dapper function in mammals, we have cloned the mouse ortholog of zebrafish Dapper2, mDpr2 and investigated its function in regulating TGF-beta signaling activity. Here, we showed that, like zebrafish Dapper2, overexpression of mDpr2 inhibited the TGF-beta-induced expression of the Smad-responsive reporters and targeted TGF-beta type I receptor ALK5 for degradation in mammalian cells. Overexpression of mDpr2 in the zebrafish embryos led to a decrease in expression of the mesoderm marker no tail and goosecoid at the shield stage and eye fusion later, implying that mDpr2 may have an intrinsic in vivo activity similar to fish Dapper2 activity. The expression of mDpr2 was detected throughout the epiblast around the onset of gastrulation and in somites, the neural tube and gut at later stages in mouse embryos, implying a role in early embryonic development. Our data indicate that the function of Dpr2 as a negative regulator of the TGF-beta/Nodal signal pathway is evolutionally conserved, at least in part, in fish and mammals.
Collapse
Affiliation(s)
- Ying Su
- Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Fisher DA, Kivimäe S, Hoshino J, Suriben R, Martin PM, Baxter N, Cheyette BNR. Three Dact gene family members are expressed during embryonic development and in the adult brains of mice. Dev Dyn 2006; 235:2620-30. [PMID: 16881060 DOI: 10.1002/dvdy.20917] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Members of the Dact protein family initially were identified through binding to Dishevelled (Dvl), a cytoplasmic protein central to Wnt signaling. During mouse development, Dact1 is detected in the presomitic mesoderm and somites during segmentation, in the limb bud mesenchyme and other mesoderm-derived tissues, and in the central nervous system (CNS). Dact2 expression is most prominent during organogenesis of the thymus, kidneys, and salivary glands, with much lower levels in the somites and in the developing CNS. Dact3, not previously described in any organism, is expressed in the ventral region of maturing somites, limb bud and branchial arch mesenchyme, and in the embryonic CNS; of the three paralogs, it is the most highly expressed in the adult cerebral cortex. These data are consistent with studies in other vertebrates showing that Dact paralogs have distinct signaling and developmental roles and suggest they may differentially contribute to postnatal brain physiology.
Collapse
Affiliation(s)
- Daniel A Fisher
- Department of Psychiatry and Graduate Programs in Developmental Biology and Neuroscience, University of California, San Francisco, California 94143-2611, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Suriben R, Fisher DA, Cheyette BNR. Dact1presomitic mesoderm expression oscillates in phase withAxin2in the somitogenesis clock of mice. Dev Dyn 2006; 235:3177-83. [PMID: 17013874 DOI: 10.1002/dvdy.20968] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During segmentation (somitogenesis) in vertebrate embryos, somites form in a rostral-to-caudal sequence according to a species-specific rhythm called the somitogenesis clock. The expression of genes participating in somitogenesis oscillates in the presomitic mesoderm (PSM) in time with this clock. We previously reported that the Dact1 gene (aka Dpr1/Frd1/ThyEx3), which encodes a Dishevelled-binding intracellular regulator of Wnt signaling, is prominently expressed in the PSM as well as in a caudal-rostral gradient across the somites of mouse embryos. This observation led us to examine whether Dact1 expression oscillates in the PSM. We have found that Dact1 PSM expression does indeed oscillate in time with the somitogenesis clock. Consistent with its known signaling functions and with the "clock and wavefront" model of signal regulation during somitogenesis, the oscillation of Dact1 occurs in phase with the Wnt signaling component Axin2, and out of phase with the Notch signaling component Lfng.
Collapse
Affiliation(s)
- Rowena Suriben
- Department of Psychiatry and Graduate Programs in Developmental Biology and Neuroscience, University of California, San Francisco, California, USA
| | | | | |
Collapse
|
45
|
Park JI, Ji H, Jun S, Gu D, Hikasa H, Li L, Sokol SY, McCrea PD. Frodo Links Dishevelled to the p120-Catenin/Kaiso Pathway: Distinct Catenin Subfamilies Promote Wnt Signals. Dev Cell 2006; 11:683-95. [PMID: 17084360 DOI: 10.1016/j.devcel.2006.09.022] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 08/14/2006] [Accepted: 09/26/2006] [Indexed: 12/13/2022]
Abstract
p120-catenin is an Arm repeat protein that interacts with varied components such as cadherin, small G proteins, kinases, and the Kaiso transcriptional repressor. Despite recent advances in understanding the roles that p120-catenin and Kaiso play in downstream modulation of Wnt/beta-catenin signaling, the identity of the upstream regulators of the p120-catenin/Kaiso pathway have remained unclear. Here, we find that p120-catenin binds Frodo, which itself interacts with the Wnt pathway protein Dishevelled (Dsh). In Xenopus laevis, we demonstrate that Wnt signals result in Frodo-mediated stabilization of p120-catenin, which, in turn, promotes Kaiso sequestration or removal from the nucleus. Our results point to Dsh and Frodo as upstream regulators of the p120-catenin/Kaiso signaling pathway. Importantly, this suggests that Wnt signals acting through Dsh regulate the stability of p120-catenin in addition to that of beta-catenin, and that each catenin promotes its respective signal in parallel to regulate distinct, as well as shared, direct downstream gene targets.
Collapse
Affiliation(s)
- Jae-il Park
- Department of Biochemistry and Molecular Biology and Program in Genes and Development, University of Texas M.D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Kibardin A, Ossipova O, Sokol SY. Metastasis-associated kinase modulates Wnt signaling to regulate brain patterning and morphogenesis. Development 2006; 133:2845-54. [PMID: 16790480 PMCID: PMC4428341 DOI: 10.1242/dev.02445] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Wnt signaling is a major pathway regulating cell fate determination, cell proliferation and cell movements in vertebrate embryos. Distinct branches of this pathway activate beta-catenin/TCF target genes and modulate morphogenetic movements in embryonic tissues by reorganizing the cytoskeleton. The selection of different molecular targets in the pathway is driven by multiple phosphorylation events. Here, we report that metastasis-associated kinase (MAK) is a novel regulator of Wnt signaling during morphogenetic movements, and eye and brain development in Xenopus embryos. Injected MAK RNA suppressed Wnt transcriptional reporters and activated Jun N-terminal kinase. Furthermore, MAK was recruited to the cell membrane by Frizzled 3, formed a complex with Dishevelled and phosphorylated Dsh in vitro. The regional brain markers Otx2, En2 and Gbx2 were affected in embryos with modulated MAK activity in a manner consistent with a role for MAK in midbrain-hindbrain boundary formation. Confirming the inhibitory role for this kinase in Wnt/beta-catenin signaling, the midbrain patterning defects in embryos depleted of MAK were rescued by the simultaneous depletion of beta-catenin. These findings indicate that MAK may function in different developmental processes as a switch between the canonical and non-canonical branches of Wnt signaling.
Collapse
Affiliation(s)
- Alexey Kibardin
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Olga Ossipova
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Sergei Y. Sokol
- Department of Molecular, Cell and Developmental Biology, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
47
|
Chen YG, Wang Q, Lin SL, Chang CD, Chuang J, Chung J, Ying SY. Activin signaling and its role in regulation of cell proliferation, apoptosis, and carcinogenesis. Exp Biol Med (Maywood) 2006; 231:534-44. [PMID: 16636301 DOI: 10.1177/153537020623100507] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Activins, cytokine members of the transforming growth factor-beta superfamily, have various effects on many physiological processes, including cell proliferation, cell death, metabolism, homeostasis, differentiation, immune responses endocrine function, etc. Activins interact with two structurally related serine/threonine kinase receptors, type I and type II, and initiate downstream signaling via Smads to regulate gene expression. Understanding how activin signaling is controlled extracellularly and intracellularly would not only lead to more complete understanding of cell growth and apoptosis, but would also provide the basis for therapeutic strategies to treat cancer and other related diseases. This review focuses on the recent progress on activin-receptor interactions, regulations of activin signaling by ligand-binding proteins, receptor-binding proteins, and nucleocytoplasmic shuttling of Smad proteins.
Collapse
Affiliation(s)
- Ye-Guang Chen
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Koza RA, Nikonova L, Hogan J, Rim JS, Mendoza T, Faulk C, Skaf J, Kozak LP. Changes in gene expression foreshadow diet-induced obesity in genetically identical mice. PLoS Genet 2006; 2:e81. [PMID: 16733553 PMCID: PMC1464831 DOI: 10.1371/journal.pgen.0020081] [Citation(s) in RCA: 269] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 04/11/2006] [Indexed: 02/07/2023] Open
Abstract
High phenotypic variation in diet-induced obesity in male C57BL/6J inbred mice suggests a molecular model to investigate non-genetic mechanisms of obesity. Feeding mice a high-fat diet beginning at 8 wk of age resulted in a 4-fold difference in adiposity. The phenotypes of mice characteristic of high or low gainers were evident by 6 wk of age, when mice were still on a low-fat diet; they were amplified after being switched to the high-fat diet and persisted even after the obesogenic protocol was interrupted with a calorically restricted, low-fat chow diet. Accordingly, susceptibility to diet-induced obesity in genetically identical mice is a stable phenotype that can be detected in mice shortly after weaning. Chronologically, differences in adiposity preceded those of feeding efficiency and food intake, suggesting that observed difference in leptin secretion is a factor in determining phenotypes related to food intake. Gene expression analyses of adipose tissue and hypothalamus from mice with low and high weight gain, by microarray and qRT-PCR, showed major changes in the expression of genes of Wnt signaling and tissue re-modeling in adipose tissue. In particular, elevated expression of SFRP5, an inhibitor of Wnt signaling, the imprinted gene MEST and BMP3 may be causally linked to fat mass expansion, since differences in gene expression observed in biopsies of epididymal fat at 7 wk of age (before the high-fat diet) correlated with adiposity after 8 wk on a high-fat diet. We propose that C57BL/6J mice have the phenotypic characteristics suitable for a model to investigate epigenetic mechanisms within adipose tissue that underlie diet-induced obesity. Genetic models to explain the obesity epidemic are inadequate because the emergence of this epidemic over the past 30 y has been too rapid to allow for the appearance of new mutant genes. The authors show that diet-induced obesity among genetically identical mice is characterized by highly variable and stable phenotypes that are established in mice early in life, even before they become exposed to an obesogenic environment. Furthermore, strong associations occur between susceptibility to obesity and the expression of genes implicated in processes that regulate cellular development. Previous studies have shown that abnormal regulation of such genes by epigenetic mechanisms is linked with the development of cancer. Epigenetic mechanisms involve chemical processes that change chromatin structure and gene expression without changing the genetic code. Accordingly, epigenetic modifications of gene structure through nutritional and physiological stress provide mechanisms for inducing obesity that are independent of new mutations to the genome. Experimental models based upon genetically identical mice provide powerful tools for identifying epigenetic and environmental mechanisms causing obesity and other chronic diseases.
Collapse
Affiliation(s)
- Robert A Koza
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Larissa Nikonova
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Jessica Hogan
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Jong-Seop Rim
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Tamra Mendoza
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Christopher Faulk
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
| | - Jihad Skaf
- Applied Biosystems, Foster City, California, United States of America
| | - Leslie P Kozak
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
49
|
Zhang L, Gao X, Wen J, Ning Y, Chen YG. Dapper 1 Antagonizes Wnt Signaling by Promoting Dishevelled Degradation. J Biol Chem 2006; 281:8607-12. [PMID: 16446366 DOI: 10.1074/jbc.m600274200] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Wnt signaling plays pivotal roles in the regulation of embryogenesis and cancer development. Xenopus Dapper (Dpr) was identified as an interacting protein for Dishevelled (Dvl), a Wnt signaling mediator, and modulates Wnt signaling. However, it is largely unclear how Dpr regulates Wnt signaling. Here, we present evidence that human Dpr1, the ortholog of Xenopus Dpr, inhibits Wnt signaling. We have identified the regions responsible for the Dpr-Dvl interaction in both proteins and found that the interaction interface is formed between the DEP (Dishevelled, Egl-10, and pleckstrin) domain of Dvl and the central and the C-terminal regions of Dpr1. The inhibitory function of human Dpr1 requires both its N and C terminus. Overexpression of the C-terminal region corresponding to the last 225 amino acids of Dpr1, in contrast to wild-type Dpr1, enhances Wnt signaling, suggesting a dominant negative function of this region. Furthermore, we have shown that Dpr1 induces Dvl degradation via a lysosome inhibitor-sensitive and proteasome inhibitor-insensitive mechanism. Knockdown of Dpr1 by RNA interference up-regulates endogenous Dvl2 protein. Taken together, our data indicate that the inhibitory activity of Dpr on Wnt signaling is conserved from Xenopus to human and that Dpr1 antagonizes Wnt signaling by inducing Dvl degradation.
Collapse
Affiliation(s)
- Long Zhang
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
50
|
Abstract
The Frodo/dapper (Frd) proteins are recently discovered signaling adaptors, which functionally and physically interact with Wnt and Nodal signaling pathways during vertebrate development. The Frd1 and Frd2 genes are expressed in dynamic patterns in early embryos, frequently in cells undergoing epithelial-mesenchymal transition. The Frd proteins function in multiple developmental processes, including mesoderm and neural tissue specification, early morphogenetic cell movements, and organogenesis. Loss-of-function studies using morpholino antisense oligonucleotides demonstrate that the Frd proteins regulate Wnt signal transduction in a context-dependent manner and may be involved in Nodal signaling. The identification of Frd-associated factors and cellular targets of the Frd proteins should shed light on the molecular mechanisms underlying Frd functions in embryonic development and in cancer.
Collapse
Affiliation(s)
- Barbara K Brott
- Department of Molecular Cell and Developmental Biology Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|