1
|
Lee S, Seo YE, Choi J, Yan X, Kim T, Choi D, Lee JH. Nucleolar actions in plant development and stress responses. PLANT, CELL & ENVIRONMENT 2024; 47:5189-5204. [PMID: 39169813 DOI: 10.1111/pce.15099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 08/09/2024] [Accepted: 08/10/2024] [Indexed: 08/23/2024]
Abstract
The nucleolus is conventionally acknowledged for its role in ribosomal RNA (rRNA) synthesis and ribosome biogenesis. Recent research has revealed its multifaceted involvement in plant biology, encompassing regulation of the cell cycle, development, and responses to environmental stresses. This comprehensive review explores the diverse roles of the nucleolus in plant growth and responses to environmental stresses. The introduction delves into its traditional functions in rRNA synthesis and potential participation in nuclear liquid-liquid phase separation. By examining the multifaceted roles of nucleolar proteins in plant development, we highlight the impacts of various nucleolar mutants on growth, development, and embryogenesis. Additionally, we reviewed the involvement of nucleoli in responses to abiotic and biotic stresses. Under abiotic stress conditions, the nucleolar structure undergoes morphological changes. In the context of biotic stress, the nucleolus emerges as a common target for effectors of pathogens for manipulation of host immunity to enhance pathogenicity. The detailed exploration of how pathogens interact with nucleoli and manipulate host responses provides valuable insights into plant stress responses as well as plant growth and development. Understanding these processes may pave the way for promising strategies to enhance crop resilience and mitigate the impact of biotic and abiotic stresses in agricultural systems.
Collapse
Affiliation(s)
- Soeui Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | - Ye-Eun Seo
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Jeen Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Xin Yan
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Taewon Kim
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Doil Choi
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Science, Plant Genomics and Breeding Institute, Seoul National University, Seoul, South Korea
| | - Joo Hyun Lee
- Plant Immunity Research Center, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. PLANT MOLECULAR BIOLOGY 2024; 114:65. [PMID: 38816532 PMCID: PMC11372841 DOI: 10.1007/s11103-024-01457-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a -deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Liliia R Abdulkina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Alina Y Lushnenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Pierce G Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA
| | - Lia R Valeeva
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Olivia Boskovic
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Ethan G Lilly
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA
| | - Margarita R Sharipova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Republic of Tatarstan, Kazan, 420008, Russia
| | - Dorothy E Shippen
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, Texas, 77843-2128, USA.
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA.
| | - Eugene V Shakirov
- Department of Biological Sciences, College of Science, Marshall University, Huntington, West Virginia, 25701, USA.
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, West Virginia, 25755, USA.
| |
Collapse
|
3
|
Agabekian IA, Abdulkina LR, Lushnenko AY, Young PG, Valeeva LR, Boskovic O, Lilly EG, Sharipova MR, Shippen DE, Juenger TE, Shakirov EV. Arabidopsis AN3 and OLIGOCELLULA genes link telomere maintenance mechanisms with cell division and expansion control. RESEARCH SQUARE 2023:rs.3.rs-3438810. [PMID: 37961382 PMCID: PMC10635316 DOI: 10.21203/rs.3.rs-3438810/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Telomeres are conserved chromosomal structures necessary for continued cell division and proliferation. In addition to the classical telomerase pathway, multiple other genes including those involved in ribosome metabolism and chromatin modification contribute to telomere length maintenance. We previously reported that Arabidopsis thaliana ribosome biogenesis genes OLI2/NOP2A, OLI5/RPL5A and OLI7/RPL5B have critical roles in telomere length regulation. These three OLIGOCELLULA genes were also shown to function in cell proliferation and expansion control and to genetically interact with the transcriptional co-activator ANGUSTIFOLIA3 (AN3). Here we show that AN3-deficient plants progressively lose telomeric DNA in early homozygous mutant generations, but ultimately establish a new shorter telomere length setpoint by the fifth mutant generation with a telomere length similar to oli2/nop2a - deficient plants. Analysis of double an3 oli2 mutants indicates that the two genes are epistatic for telomere length control. Telomere shortening in an3 and oli mutants is not caused by telomerase inhibition; wild type levels of telomerase activity are detected in all analyzed mutants in vitro. Late generations of an3 and oli mutants are prone to stem cell damage in the root apical meristem, implying that genes regulating telomere length may have conserved functional roles in stem cell maintenance mechanisms. Multiple instances of anaphase fusions in late generations of oli5 and oli7 mutants were observed, highlighting an unexpected effect of ribosome biogenesis factors on chromosome integrity. Overall, our data implicate AN3 transcription coactivator and OLIGOCELLULA proteins in the establishment of telomere length set point in plants and further suggest that multiple regulators with pleiotropic functions can connect telomere biology with cell proliferation and cell expansion pathways.
Collapse
Affiliation(s)
- Inna A Agabekian
- Kazan Federal University: Kazanskij Privolzskij federal'nyj universitet
| | | | - Alina Y Lushnenko
- Kazan Federal University: Kazanskij Privolzskij federal'nyj universitet
| | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Ando S, Nomoto M, Iwakawa H, Vial-Pradel S, Luo L, Sasabe M, Ohbayashi I, Yamamoto KT, Tada Y, Sugiyama M, Machida Y, Kojima S, Machida C. Arabidopsis ASYMMETRIC LEAVES2 and Nucleolar Factors Are Coordinately Involved in the Perinucleolar Patterning of AS2 Bodies and Leaf Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3621. [PMID: 37896084 PMCID: PMC10610122 DOI: 10.3390/plants12203621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a key role in the formation of flat symmetric leaves. AS2 represses the expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). AS2 interacts in vitro with the CGCCGC sequence in ETT/ARF3 exon 1. In cells of leaf primordia, AS2 localizes at peripheral regions of the nucleolus as two AS2 bodies, which are partially overlapped with chromocenters that contain condensed 45S ribosomal DNA repeats. AS2 contains the AS2/LOB domain, which consists of three sequences conserved in the AS2/LOB family: the zinc finger (ZF) motif, the ICG sequence including the conserved glycine residue, and the LZL motif. AS2 and the genes NUCLEOLIN1 (NUC1), RNA HELICASE10 (RH10), and ROOT INITIATION DEFECTIVE2 (RID2) that encode nucleolar proteins coordinately act as repressors against the expression of ETT/ARF3. Here, we examined the formation and patterning of AS2 bodies made from as2 mutants with amino acid substitutions in the ZF motif and the ICG sequence in cells of cotyledons and leaf primordia. Our results showed that the amino acid residues next to the cysteine residues in the ZF motif were essential for both the formation of AS2 bodies and the interaction with ETT/ARF3 DNA. The conserved glycine residue in the ICG sequence was required for the formation of AS2 bodies, but not for the DNA interaction. We also examined the effects of nuc1, rh10, and rid2 mutations, which alter the metabolism of rRNA intermediates and the morphology of the nucleolus, and showed that more than two AS2 bodies were observed in the nucleolus and at its periphery. These results suggested that the patterning of AS2 bodies is tightly linked to the morphology and functions of the nucleolus and the development of flat symmetric leaves in plants.
Collapse
Affiliation(s)
- Sayuri Ando
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| | - Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (M.N.); (L.L.); (Y.T.)
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| | - Simon Vial-Pradel
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| | - Lilan Luo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (M.N.); (L.L.); (Y.T.)
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, Bunkyo-cho, Hirosaki 036-8561, Japan;
| | - Iwai Ohbayashi
- Department of Life Sciences, National Cheng Kung University, Tainan City 701, Taiwan;
| | - Kotaro T. Yamamoto
- Division of Biological Sciences, Faculty of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (M.N.); (L.L.); (Y.T.)
- Center for Gene Research, Nagoya University, Nagoya 464-8602, Japan
| | - Munetaka Sugiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan;
| | - Yasunori Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan; (M.N.); (L.L.); (Y.T.)
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai 487-8501, Japan; (S.A.); (H.I.); (S.V.-P.); (Y.M.)
| |
Collapse
|
5
|
Chang Z, Wang X, Pan X, Yan W, Wu W, Zhuang Y, Li Z, Wang D, Yuan S, Xu C, Chen Z, Liu D, Chen ZS, Tang X, Wu J. The ribosomal protein P0A is required for embryo development in rice. BMC PLANT BIOLOGY 2023; 23:465. [PMID: 37798654 PMCID: PMC10552409 DOI: 10.1186/s12870-023-04445-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 09/06/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The P-stalk is a conserved and vital structural element of ribosome. The eukaryotic P-stalk exists as a P0-(P1-P2)2 pentameric complex, in which P0 function as a base structure for incorporating the stalk onto 60S pre-ribosome. Prior studies have suggested that P0 genes are indispensable for survival in yeast and animals. However, the functions of P0 genes in plants remain elusive. RESULTS In the present study, we show that rice has three P0 genes predicted to encode highly conserved proteins OsP0A, OsP0B and OsP0C. All of these P0 proteins were localized both in cytoplasm and nucleus, and all interacted with OsP1. Intriguingly, the transcripts of OsP0A presented more than 90% of the total P0 transcripts. Moreover, knockout of OsP0A led to embryo lethality, while single or double knockout of OsP0B and OsP0C did not show any visible defects in rice. The genomic DNA of OsP0A could well complement the lethal phenotypes of osp0a mutant. Finally, sequence and syntenic analyses revealed that OsP0C evolved from OsP0A, and that duplication of genomic fragment harboring OsP0C further gave birth to OsP0B, and both of these duplication events might happen prior to the differentiation of indica and japonica subspecies in rice ancestor. CONCLUSION These data suggested that OsP0A functions as the predominant P0 gene, playing an essential role in embryo development in rice. Our findings highlighted the importance of P0 genes in plant development.
Collapse
Affiliation(s)
- Zhenyi Chang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xia Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Xiaoying Pan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wei Yan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Wenshi Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Yi Zhuang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Zhiai Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Dan Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shuting Yuan
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Chunjue Xu
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China
| | - Dongfeng Liu
- Shenzhen Agricultural Technology Promotion Center, Shenzhen, 518055, China
| | - Zi Sheng Chen
- Shenzhen Agricultural Technology Promotion Center, Shenzhen, 518055, China.
| | - Xiaoyan Tang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
- Shenzhen Institute of Molecular Crop Design, Shenzhen, 518107, China.
| | - Jianxin Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
| |
Collapse
|
6
|
Blunt EL, Choi J, Sussman H, Christopherson RC, Keen P, Rahmati Ishka M, Li LY, Idrovo JM, Julkowska MM, Van Eck J, Richards EJ. The nuclear lamina is required for proper development and nuclear shape distortion in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5500-5513. [PMID: 37503569 PMCID: PMC10540737 DOI: 10.1093/jxb/erad294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 07/27/2023] [Indexed: 07/29/2023]
Abstract
The nuclear lamina in plant cells is composed of plant-specific proteins, including nuclear matrix constituent proteins (NMCPs), which have been postulated to be functional analogs of lamin proteins that provide structural integrity to the organelle and help stabilize the three-dimensional organization of the genome. Using genomic editing, we generated alleles for the three genes encoding NMCPs in cultivated tomato (Solanum lycopersicum) to determine if the consequences of perturbing the nuclear lamina in this crop species were similar to or distinct from those observed in the model Arabidopsis thaliana. Loss of the sole NMCP2-class protein was lethal in tomato but is tolerated in Arabidopsis. Moreover, depletion of NMCP1-type nuclear lamina proteins leads to distinct developmental phenotypes in tomato, including leaf morphology defects and reduced root growth rate (in nmcp1b mutants), compared with cognate mutants in Arabidopsis. These findings suggest that the nuclear lamina interfaces with different developmental and signaling pathways in tomato compared with Arabidopsis. At the subcellular level, however, tomato nmcp mutants resembled their Arabidopsis counterparts in displaying smaller and more spherical nuclei in differentiated cells. This result argues that the plant nuclear lamina facilitates nuclear shape distortion in response to forces exerted on the organelle within the cell.
Collapse
Affiliation(s)
- Endia L Blunt
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Junsik Choi
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Hayley Sussman
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Patricia Keen
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Linda Y Li
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Joanna M Idrovo
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | | | - Joyce Van Eck
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| | - Eric J Richards
- The Boyce Thompson Institute, 533 Tower Road, Ithaca, NY 14853, USA
| |
Collapse
|
7
|
Li K, Yan Z, Mu Q, Zhang Q, Liu H, Wang F, Li A, Ding T, Zhao H, Wang P. Overexpressing Ribosomal Protein L16D Affects Leaf Development but Confers Pathogen Resistance in Arabidopsis. Int J Mol Sci 2023; 24:ijms24119479. [PMID: 37298429 DOI: 10.3390/ijms24119479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/27/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
In plant cells, multiple paralogs from ribosomal protein (RP) families are always synchronously expressed, which is likely contributing to ribosome heterogeneity or functional specialization. However, previous studies have shown that most RP mutants share common phenotypes. Consequently, it is difficult to distinguish whether the phenotypes of the mutants have resulted from the loss of specific genes or a global ribosome deficiency. Here, to investigate the role of a specific RP gene, we employed a gene overexpression strategy. We found that Arabidopsis lines overexpressing RPL16D (L16D-OEs) display short and curled rosette leaves. Microscopic observations reveal that both the cell size and cell arrangement are affected in L16D-OEs. The severity of the defect is positively correlated with RPL16D dosage. By combining transcriptomic and proteomic profiling, we found that overexpressing RPL16D decreases the expression of genes involved in plant growth, but increases the expression of genes involved in immune response. Overall, our results suggest that RPL16D is involved in the balance between plant growth and immune response.
Collapse
Affiliation(s)
- Ke Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qian Mu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Qingtian Zhang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Huiping Liu
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Fengxia Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Ao Li
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Tingting Ding
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Hongjun Zhao
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Pengfei Wang
- Shandong Academy of Grape, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
8
|
Wang F, Ren X, Jiang M, Hou K, Xin G, Yan F, Zhao P, Liu W. Male-linked gene TsRPL10a' in androdioecious tree Tapiscia sinensis: implications for sex differentiation by influencing gynoecium development. TREE PHYSIOLOGY 2023; 43:486-500. [PMID: 36401877 DOI: 10.1093/treephys/tpac131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/07/2022] [Accepted: 11/10/2022] [Indexed: 05/03/2023]
Abstract
The mechanism of sex differentiation in androdioecy is of great significance for illuminating the origin and evolution of dioecy. Tapiscia sinensis Oliv. is a functionally androdioecious species with both male and hermaphroditic individuals. Male flowers of T. sinensis lack the ovules of gynoecia compared with hermaphrodites. To identify sex simply and accurately, and further find the potential determinants of sex differentiation in T. sinensis, we found that TsRPL10a', a duplicate of TsRPL10a, was a male-linked gene. The promoter (5' untranslated region and the first intron) of TsRPL10a' can be used to accurately identify sex in T. sinensis. TsRPL10a is a ribosomal protein that is involved in gynoecium development, and sufficient ribosomal levels are necessary for female gametogenesis. The expression level of TsRPL10a was significantly downregulated in male flower primordia compared with hermaphrodites. The RNA fluorescence in situ hybridization (FISH) assay demonstrated that TsRPL10a was almost undetectable in male gynoecia at the gynoecial ridge stage, which was a key period of ovule formation by scanning electron microscope observation. In male flowers, although the promoter activity of TsRPL10a was significantly higher than TsRPL10a' verified by transgenic Arabidopsis thaliana, the transcriptional expression ratio of TsRPL10a was obviously lower than TsRPL10a' and reached its lowest at the gynoecial ridge stage, indicating the existence of a female suppressor. The promoter similarity of TsRPL10a and TsRPL10a' was only 45.29%; the genomic sequence similarity was 89.8%; four amino acids were altered in TsRPL10a'. The secondary structure of TsRPL10a' was different from TsRPL10a, and TsRPL10a' did not exhibit FISH and GUS expression in the gynoecium the way TsRPL10a did. From the perspective of RT-qPCR, its high expression level, followed by the low expression level of TsRPL10a in male flowers, indicates its antagonism function with TsRPL10a. The evolutionary analysis, subcellular localization and flower expression pattern suggested that TsRPL10a might be functionally conserved with AtRPL10aA, AtRPL10aB and AtRPL10aC in A. thaliana. Overall, we speculated that TsRPL10a and its duplicate TsRPL10a' might be involved in sex differentiation by influencing gynoecium development in T. sinensis.
Collapse
Affiliation(s)
- Feng Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Xiaolong Ren
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Minggao Jiang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Kunpeng Hou
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Guiliang Xin
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Feng Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Peng Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| | - Wenzhe Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education, School of Life Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
9
|
Navarro-Quiles C, Mateo-Bonmatí E, Candela H, Robles P, Martínez-Laborda A, Fernández Y, Šimura J, Ljung K, Rubio V, Ponce MR, Micol JL. The Arabidopsis ATP-Binding Cassette E protein ABCE2 is a conserved component of the translation machinery. FRONTIERS IN PLANT SCIENCE 2022; 13:1009895. [PMID: 36325553 PMCID: PMC9618717 DOI: 10.3389/fpls.2022.1009895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
ATP-Binding Cassette E (ABCE) proteins dissociate cytoplasmic ribosomes after translation terminates, and contribute to ribosome recycling, thus linking translation termination to initiation. This function has been demonstrated to be essential in animals, fungi, and archaea, but remains unexplored in plants. In most species, ABCE is encoded by a single-copy gene; by contrast, Arabidopsis thaliana has two ABCE paralogs, of which ABCE2 seems to conserve the ancestral function. We isolated apiculata7-1 (api7-1), the first viable, hypomorphic allele of ABCE2, which has a pleiotropic morphological phenotype reminiscent of mutations affecting ribosome biogenesis factors and ribosomal proteins. We also studied api7-2, a null, recessive lethal allele of ABCE2. Co-immunoprecipitation experiments showed that ABCE2 physically interacts with components of the translation machinery. An RNA-seq study of the api7-1 mutant showed increased responses to iron and sulfur starvation. We also found increased transcript levels of genes related to auxin signaling and metabolism. Our results support for the first time a conserved role for ABCE proteins in translation in plants, as previously shown for the animal, fungal, and archaeal lineages. In Arabidopsis, the ABCE2 protein seems important for general growth and vascular development, likely due to an indirect effect through auxin metabolism.
Collapse
Affiliation(s)
| | | | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | | | | | - Jan Šimura
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Vicente Rubio
- Centro Nacional de Biotecnología, CNB-CSIC, Madrid, Spain
| | - María Rosa Ponce
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
10
|
Robles P, Quesada V. Unveiling the functions of plastid ribosomal proteins in plant development and abiotic stress tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:35-45. [PMID: 36041366 DOI: 10.1016/j.plaphy.2022.07.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Translation of mRNAs into proteins is a universal process and ribosomes are the molecular machinery that carries it out. In eukaryotic cells, ribosomes can be found in the cytoplasm, mitochondria, and also in the chloroplasts of photosynthetic organisms. A number of genetic studies have been performed to determine the function of plastid ribosomal proteins (PRPs). Tobacco has been frequently used as a system to study the ribosomal proteins encoded by the chloroplast genome. In contrast, Arabidopsis thaliana and rice are preferentially used models to study the function of nuclear-encoded PRPs by using direct or reverse genetics approaches. The results of these works have provided a relatively comprehensive catalogue of the roles of PRPs in different plant biology aspects, which highlight that some PRPs are essential, while others are not. The latter ones are involved in chloroplast biogenesis, lateral root formation, leaf morphogenesis, plant growth, photosynthesis or chlorophyll synthesis. Furthermore, small gene families encode some PRPs. In the last few years, an increasing number of findings have revealed a close association between PRPs and tolerance to adverse environmental conditions. Sometimes, the same PRP can be involved in both developmental processes and the response to abiotic stress. The aim of this review is to compile and update the findings hitherto published on the functional analysis of PRPs. The study of the phenotypic effects caused by the disruption of PRPs from different species reveals the involvement of PRPs in different biological processes and highlights the significant impact of plastid translation on plant biology.
Collapse
Affiliation(s)
- Pedro Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Spain.
| |
Collapse
|
11
|
Du L, Adkins S, Xu M. Leaf Development in Medicago truncatula. Genes (Basel) 2022; 13:genes13071203. [PMID: 35885986 PMCID: PMC9321518 DOI: 10.3390/genes13071203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 01/11/2023] Open
Abstract
Forage yield is largely dependent on leaf development, during which the number of leaves, leaflets, leaf size, and shape are determined. In this mini-review, we briefly summarize recent studies of leaf development in Medicago truncatula, a model plant for legumes, with a focus on factors that could affect biomass of leaves. These include: floral development and related genes, lateral organ boundary genes, auxin biosynthesis, transportation and signaling genes, and WOX related genes.
Collapse
|
12
|
Machida Y, Suzuki T, Sasabe M, Iwakawa H, Kojima S, Machida C. Arabidopsis ASYMMETRIC LEAVES2 (AS2): roles in plant morphogenesis, cell division, and pathogenesis. JOURNAL OF PLANT RESEARCH 2022; 135:3-14. [PMID: 34668105 PMCID: PMC8755679 DOI: 10.1007/s10265-021-01349-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 05/26/2023]
Abstract
The ASYMMETRIC LEAVES2 (AS2) gene in Arabidopsis thaliana is responsible for the development of flat, symmetric, and extended leaf laminae and their vein systems. AS2 protein is a member of the plant-specific AS2/LOB protein family, which includes 42 members comprising the conserved amino-terminal domain referred to as the AS2/LOB domain, and the variable carboxyl-terminal region. Among the members, AS2 has been most intensively investigated on both genetic and molecular levels. AS2 forms a complex with the myb protein AS1, and is involved in epigenetic repression of the abaxial genes ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3), ARF4, and class 1 KNOX homeobox genes. The repressed expression of these genes by AS2 is markedly enhanced by the cooperative action of various modifier genes, some of which encode nucleolar proteins. Further downstream, progression of the cell division cycle in the developing organs is stimulated; meristematic states are suppressed in determinate leaf primordia; and the extension of leaf primordia is induced. AS2 binds the specific sequence in exon 1 of ETT/ARF3 and maintains methylated CpGs in several exons of ETT/ARF3. AS2 forms bodies (designated as AS2 bodies) at nucleolar peripheries. AS2 bodies partially overlap chromocenters, including inactive 45S ribosomal DNA repeats, suggesting the presence of molecular and functional links among AS2, the 45S rDNAs, and the nucleolus to exert the repressive regulation of ETT/ARF3. The AS2/LOB domain is characterized by three subdomains, the zinc finger (ZF) motif, the internally conserved-glycine containing (ICG) region, and the leucine-zipper-like (LZL) region. Each of these subdomains is essential for the formation of AS2 bodies. ICG to LZL are required for nuclear localization, but ZF is not. LZL intrinsically has the potential to be exported to the cytoplasm. In addition to its nuclear function, it has been reported that AS2 plays a positive role in geminivirus infection: its protein BV1 stimulates the expression of AS2 and recruits AS2 to the cytoplasm, which enhances virus infectivity by suppression of cytoplasmic post transcriptional gene silencing.
Collapse
Affiliation(s)
- Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan.
| | - Takanori Suzuki
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi, 464-8602, Japan
- Central Research Institute, Ishihara Sangyo Kaisha, Ltd., 2-3-1 Nishi-Shibukawa, Kusatsu, Shiga, 525-0025, Japan
| | - Michiko Sasabe
- Department of Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, 036-8561, Japan
| | - Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| |
Collapse
|
13
|
Norris K, Hopes T, Aspden JL. Ribosome heterogeneity and specialization in development. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 12:e1644. [PMID: 33565275 PMCID: PMC8647923 DOI: 10.1002/wrna.1644] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Regulation of protein synthesis is a vital step in controlling gene expression, especially during development. Over the last 10 years, it has become clear that rather than being homogeneous machines responsible for mRNA translation, ribosomes are highly heterogeneous and can play an active part in translational regulation. These "specialized ribosomes" comprise of specific protein and/or rRNA components, which are required for the translation of particular mRNAs. However, while there is extensive evidence for ribosome heterogeneity, support for specialized functions is limited. Recent work in a variety of developmental model organisms has shed some light on the biological relevance of ribosome heterogeneity. Tissue-specific expression of ribosomal components along with phenotypic analysis of ribosomal gene mutations indicate that ribosome heterogeneity and potentially specialization are common in key development processes like embryogenesis, spermatogenesis, oogenesis, body patterning, and neurogenesis. Several examples of ribosome specialization have now been proposed but strong links between ribosome heterogeneity, translation of specific mRNAs by defined mechanisms, and role of these translation events remain elusive. Furthermore, several studies have indicated that heterogeneous ribosome populations are a product of tissue-specific expression rather than specialized function and that ribosomal protein phenotypes are the result of extra-ribosomal function or overall reduced ribosome levels. Many important questions still need to be addressed in order to determine the functional importance of ribosome heterogeneity to development and disease, which is likely to vary across systems. It will be essential to dissect these issues to fully understand diseases caused by disruptions to ribosomal composition, such as ribosomopathies. This article is categorized under: Translation > Translation Regulation Translation > Ribosome Structure/Function RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Karl Norris
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| | - Tayah Hopes
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| | - Julie Louise Aspden
- Faculty of Biological Sciences, School of Molecular and Cellular BiologyUniversity of LeedsLeedsUK
- Leeds OmicsUniversity of LeedsLeedsUK
| |
Collapse
|
14
|
Cheng C, Yu Q, Wang Y, Wang H, Dong Y, Ji Y, Zhou X, Li Y, Jiang CZ, Gan SS, Zhao L, Fei Z, Gao J, Ma N. Ethylene-regulated asymmetric growth of the petal base promotes flower opening in rose (Rosa hybrida). THE PLANT CELL 2021; 33:1229-1251. [PMID: 33693903 DOI: 10.1093/plcell/koab031] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 01/26/2021] [Indexed: 05/27/2023]
Abstract
Flowers are the core reproductive structures and key distinguishing features of angiosperms. Flower opening to expose stamens and gynoecia is important in cases where pollinators much be attracted to promote cross-pollination, which can enhance reproductive success and species preservation. The floral opening process is accompanied by the coordinated movement of various floral organs, particularly petals. However, the mechanisms underlying petal movement and flower opening are not well understood. Here, we integrated anatomical, physiological, and molecular approaches to determine the petal movement regulatory network using rose (Rosa hybrida) as a model. We found that PETAL MOVEMENT-RELATED PROTEIN1 (RhPMP1), a homeodomain transcription factor (TF) gene, is a direct target of ETHYLENE INSENSITIVE3, a TF that functions downstream of ethylene signaling. RhPMP1 expression was upregulated by ethylene and specifically activated endoreduplication of parenchyma cells on the adaxial side of the petal (ADSP) base by inducing the expression of RhAPC3b, a gene encoding the core subunit of the Anaphase-Promoting Complex. Cell expansion of the parenchyma on the ADSP base was subsequently enhanced, thus resulting in asymmetric growth of the petal base, leading to the typical epinastic movement of petals and flower opening. These findings provide insights into the pathway regulating petal movement and associated flower-opening mechanisms.�.
Collapse
Affiliation(s)
- Chenxia Cheng
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Qin Yu
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yaru Wang
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Hong Wang
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yuhan Dong
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yuqi Ji
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Xiaofeng Zhou
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Yonghong Li
- School of Applied Chemistry and Biotechnology, Shenzhen Polytechnic, Shenzhen 518055, China
| | - Cai-Zhong Jiang
- United States Department of Agriculture, Crop Pathology and Genetic Research Unit, Agricultural Research Service, Davis, California 95616
- Department of Plant Sciences, University of California Davis, Davis, California 95616
| | - Su-Sheng Gan
- Plant Biology Section, School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853
| | - Liangjun Zhao
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853
- USDA Robert W Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Junping Gao
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| | - Nan Ma
- Department of Ornamental Horticulture, State Key Laboratory of Agrobiotechnology, Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, China Agricultural University, Beijing 100193, China
| |
Collapse
|
15
|
Uzair M, Long H, Zafar SA, Patil SB, Chun Y, Li L, Fang J, Zhao J, Peng L, Yuan S, Li X. Narrow Leaf21, encoding ribosomal protein RPS3A, controls leaf development in rice. PLANT PHYSIOLOGY 2021; 186:497-518. [PMID: 33591317 PMCID: PMC8154097 DOI: 10.1093/plphys/kiab075] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/26/2021] [Indexed: 05/19/2023]
Abstract
Leaf morphology influences photosynthesis, transpiration, and ultimately crop yield. However, the molecular mechanism of leaf development is still not fully understood. Here, we identified and characterized the narrow leaf21 (nal21) mutant in rice (Oryza sativa), showing a significant reduction in leaf width, leaf length and plant height, and increased tiller number. Microscopic observation revealed defects in the vascular system and reduced epidermal cell size and number in the nal21 leaf blade. Map-based cloning revealed that NAL21 encodes a ribosomal small subunit protein RPS3A. Ribosome-targeting antibiotics resistance assay and ribosome profiling showed a significant reduction in the free 40S ribosome subunit in the nal21 mutant. The nal21 mutant showed aberrant auxin responses in which multiple auxin response factors (ARFs) harboring upstream open-reading frames (uORFs) in their 5'-untranslated region were repressed at the translational level. The WUSCHEL-related homeobox 3A (OsWOX3A) gene, a key transcription factor involved in leaf blade lateral outgrowth, is also under the translational regulation by RPS3A. Transformation with modified OsARF11, OsARF16, and OsWOX3A genomic DNA (gDNA) lacking uORFs rescued the narrow leaf phenotype of nal21 to a better extent than transformation with their native gDNA, implying that RPS3A could regulate translation of ARFs and WOX3A through uORFs. Our results demonstrate that proper translational regulation of key factors involved in leaf development is essential to maintain normal leaf morphology.
Collapse
Affiliation(s)
- Muhammad Uzair
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haixin Long
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Syed Adeel Zafar
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Suyash B Patil
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan Chun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lu Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jingjing Fang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lixiang Peng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | | | - Xueyong Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Author for communication:
| |
Collapse
|
16
|
Scarpin MR, Leiboff S, Brunkard JO. Parallel global profiling of plant TOR dynamics reveals a conserved role for LARP1 in translation. eLife 2020; 9:e58795. [PMID: 33054972 PMCID: PMC7584452 DOI: 10.7554/elife.58795] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
Target of rapamycin (TOR) is a protein kinase that coordinates eukaryotic metabolism. In mammals, TOR specifically promotes translation of ribosomal protein (RP) mRNAs when amino acids are available to support protein synthesis. The mechanisms controlling translation downstream from TOR remain contested, however, and are largely unexplored in plants. To define these mechanisms in plants, we globally profiled the plant TOR-regulated transcriptome, translatome, proteome, and phosphoproteome. We found that TOR regulates ribosome biogenesis in plants at multiple levels, but through mechanisms that do not directly depend on 5' oligopyrimidine tract motifs (5'TOPs) found in mammalian RP mRNAs. We then show that the TOR-LARP1-5'TOP signaling axis is conserved in plants and regulates expression of a core set of eukaryotic 5'TOP mRNAs, as well as new, plant-specific 5'TOP mRNAs. Our study illuminates ancestral roles of the TOR-LARP1-5'TOP metabolic regulatory network and provides evolutionary context for ongoing debates about the molecular function of LARP1.
Collapse
Affiliation(s)
- M Regina Scarpin
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
| | - Samuel Leiboff
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
- Department of Botany and Plant Pathology, Oregon State UniversityCorvallisUnited States
| | - Jacob O Brunkard
- Department of Plant and Microbial Biology, University of California at BerkeleyBerkeleyUnited States
- Plant Gene Expression Center, U.S. Department of Agriculture Agricultural Research ServiceAlbanyUnited States
- Laboratory of Genetics, University of Wisconsin—MadisonMadisonUnited States
| |
Collapse
|
17
|
Xiong W, Chen X, Zhu C, Zhang J, Lan T, Liu L, Mo B, Chen X. Arabidopsis paralogous genes RPL23aA and RPL23aB encode functionally equivalent proteins. BMC PLANT BIOLOGY 2020; 20:463. [PMID: 33032526 PMCID: PMC7545930 DOI: 10.1186/s12870-020-02672-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 09/23/2020] [Indexed: 05/26/2023]
Abstract
BACKGROUND In plants, each ribosomal protein (RP) is encoded by a small gene family but it is largely unknown whether the family members are functionally diversified. There are two RPL23a paralogous genes (RPL23aA and RPL23aB) encoding cytoplasmic ribosomal proteins in Arabidopsis thaliana. Knock-down of RPL23aA using RNAi impeded growth and led to morphological abnormalities, whereas knock-out of RPL23aB had no observable phenotype, thus these two RPL23a paralogous proteins have been used as examples of ribosomal protein paralogues with functional divergence in many published papers. RESULTS In this study, we characterized T-DNA insertion mutants of RPL23aA and RPL23aB. A rare non-allelic non-complementation phenomenon was found in the F1 progeny of the rpl23aa X rpl23ab cross, which revealed a dosage effect of these two genes. Both RPL23aA and RPL23aB were found to be expressed almost in all examined tissues as revealed by GUS reporter analysis. Expression of RPL23aB driven by the RPL23aA promoter can rescue the phenotype of rpl23aa, indicating these two proteins are actually equivalent in function. Interestingly, based on the publicly available RNA-seq data, we found that these two RPL23a paralogues were expressed in a concerted manner and the expression level of RPL23aA was much higher than that of RPL23aB at different developmental stages and in different tissues. CONCLUSIONS Our findings suggest that the two RPL23a paralogous proteins are functionally equivalent but the two genes are not. RPL23aA plays a predominant role due to its higher expression levels. RPL23aB plays a lesser role due to its lower expression. The presence of paralogous genes for the RPL23a protein in plants might be necessary to maintain its adequate dosage.
Collapse
Affiliation(s)
- Wei Xiong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xiangze Chen
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Chengxin Zhu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Jiancong Zhang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Ting Lan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, Longhua Bioindustry and Innovation Research Institute, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| | - Xuemei Chen
- Department of Botany and Plant Sciences, Institute of Integrative Genome Biology, University of California, Riverside, CA, 92521, USA.
| |
Collapse
|
18
|
Iwakawa H, Takahashi H, Machida Y, Machida C. Roles of ASYMMETRIC LEAVES2 (AS2) and Nucleolar Proteins in the Adaxial-Abaxial Polarity Specification at the Perinucleolar Region in Arabidopsis. Int J Mol Sci 2020; 21:E7314. [PMID: 33022996 PMCID: PMC7582388 DOI: 10.3390/ijms21197314] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 12/14/2022] Open
Abstract
Leaves of Arabidopsis develop from a shoot apical meristem grow along three (proximal-distal, adaxial-abaxial, and medial-lateral) axes and form a flat symmetric architecture. ASYMMETRIC LEAVES2 (AS2), a key regulator for leaf adaxial-abaxial partitioning, encodes a plant-specific nuclear protein and directly represses the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). How AS2 could act as a critical regulator, however, has yet to be demonstrated, although it might play an epigenetic role. Here, we summarize the current understandings of the genetic, molecular, and cellular functions of AS2. A characteristic genetic feature of AS2 is the presence of a number of (about 60) modifier genes, mutations of which enhance the leaf abnormalities of as2. Although genes for proteins that are involved in diverse cellular processes are known as modifiers, it has recently become clear that many modifier proteins, such as NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10), are localized in the nucleolus. Some modifiers including ribosomal proteins are also members of the small subunit processome (SSUP). In addition, AS2 forms perinucleolar bodies partially colocalizing with chromocenters that include the condensed inactive 45S ribosomal RNA genes. AS2 participates in maintaining CpG methylation in specific exons of ETT/ARF3. NUC1 and RH10 genes are also involved in maintaining the CpG methylation levels and repressing ETT/ARF3 transcript levels. AS2 and nucleolus-localizing modifiers might cooperatively repress ETT/ARF3 to develop symmetric flat leaves. These results raise the possibility of a nucleolus-related epigenetic repression system operating for developmental genes unique to plants and predict that AS2 could be a molecule with novel functions that cannot be explained by the conventional concept of transcription factors.
Collapse
Affiliation(s)
- Hidekazu Iwakawa
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan;
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan;
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200, Matsumoto-cho, Kasugai, Aichi 487-8501, Japan;
| |
Collapse
|
19
|
QTG-Finder2: A Generalized Machine-Learning Algorithm for Prioritizing QTL Causal Genes in Plants. G3-GENES GENOMES GENETICS 2020; 10:2411-2421. [PMID: 32430305 PMCID: PMC7341141 DOI: 10.1534/g3.120.401122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Linkage mapping has been widely used to identify quantitative trait loci (QTL) in many plants and usually requires a time-consuming and labor-intensive fine mapping process to find the causal gene underlying the QTL. Previously, we described QTG-Finder, a machine-learning algorithm to rationally prioritize candidate causal genes in QTLs. While it showed good performance, QTG-Finder could only be used in Arabidopsis and rice because of the limited number of known causal genes in other species. Here we tested the feasibility of enabling QTG-Finder to work on species that have few or no known causal genes by using orthologs of known causal genes as the training set. The model trained with orthologs could recall about 64% of Arabidopsis and 83% of rice causal genes when the top 20% ranked genes were considered, which is similar to the performance of models trained with known causal genes. The average precision was 0.027 for Arabidopsis and 0.029 for rice. We further extended the algorithm to include polymorphisms in conserved non-coding sequences and gene presence/absence variation as additional features. Using this algorithm, QTG-Finder2, we trained and cross-validated Sorghum bicolor and Setaria viridis models. The S. bicolor model was validated by causal genes curated from the literature and could recall 70% of causal genes when the top 20% ranked genes were considered. In addition, we applied the S. viridis model and public transcriptome data to prioritize a plant height QTL and identified 13 candidate genes. QTL-Finder2 can accelerate the discovery of causal genes in any plant species and facilitate agricultural trait improvement.
Collapse
|
20
|
Martinez-Seidel F, Beine-Golovchuk O, Hsieh YC, Kopka J. Systematic Review of Plant Ribosome Heterogeneity and Specialization. FRONTIERS IN PLANT SCIENCE 2020; 11:948. [PMID: 32670337 PMCID: PMC7332886 DOI: 10.3389/fpls.2020.00948] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 06/10/2020] [Indexed: 05/25/2023]
Abstract
Plants dedicate a high amount of energy and resources to the production of ribosomes. Historically, these multi-protein ribosome complexes have been considered static protein synthesis machines that are not subject to extensive regulation but only read mRNA and produce polypeptides accordingly. New and increasing evidence across various model organisms demonstrated the heterogeneous nature of ribosomes. This heterogeneity can constitute specialized ribosomes that regulate mRNA translation and control protein synthesis. A prominent example of ribosome heterogeneity is seen in the model plant, Arabidopsis thaliana, which, due to genome duplications, has multiple paralogs of each ribosomal protein (RP) gene. We support the notion of plant evolution directing high RP paralog divergence toward functional heterogeneity, underpinned in part by a vast resource of ribosome mutants that suggest specialization extends beyond the pleiotropic effects of single structural RPs or RP paralogs. Thus, Arabidopsis is a highly suitable model to study this phenomenon. Arabidopsis enables reverse genetics approaches that could provide evidence of ribosome specialization. In this review, we critically assess evidence of plant ribosome specialization and highlight steps along ribosome biogenesis in which heterogeneity may arise, filling the knowledge gaps in plant science by providing advanced insights from the human or yeast fields. We propose a data analysis pipeline that infers the heterogeneity of ribosome complexes and deviations from canonical structural compositions linked to stress events. This analysis pipeline can be extrapolated and enhanced by combination with other high-throughput methodologies, such as proteomics. Technologies, such as kinetic mass spectrometry and ribosome profiling, will be necessary to resolve the temporal and spatial aspects of translational regulation while the functional features of ribosomal subpopulations will become clear with the combination of reverse genetics and systems biology approaches.
Collapse
Affiliation(s)
- Federico Martinez-Seidel
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- School of BioSciences, University of Melbourne, Parkville, VIC, Australia
| | | | - Yin-Chen Hsieh
- Bioinformatics Subdivision, Wageningen University, Wageningen, Netherlands
| | - Joachim Kopka
- Willmitzer Department, Max Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| |
Collapse
|
21
|
Luo A, Zhan H, Zhang X, Du H, Zhang Y, Peng X. Cytoplasmic ribosomal protein L14B is essential for fertilization in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110394. [PMID: 32005399 DOI: 10.1016/j.plantsci.2019.110394] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/28/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Plant cytoplasmic ribosomal proteins not only participate in protein synthesis, but also have specific roles in developmental regulation. However, the high heterogeneity of plant ribosome makes our understanding of these proteins very limited. Here we reported that RPL14B, a component of the ribosome large subunit, is critical for fertilization in Arabidopsis. RPL14B is existed in a majority of organs and tissues. No homozygous rpl14b mutant is available, indicating that RPL14B is irreplaceable for sexual reproduction. Smaller-sized rpl14b pollens could germinate normally, but pollen tube competitiveness is grievously weakened. Beside, cell fate specification is impaired in female gametophytes from heterozygous rpl14b/RPL14B ovules, resulting in defect of micropylar pollen tube attraction. However, this defect could be restored by restricted expression of RPL14B in synergid cells. Successful fertilization requires normal pollen tube growth and precise pollen tube guidance. Thus our results show a novel role of RPL14B in fertilization and shed new light on regulatory mechanism of pollen tube growth and precise pollen tube guidance.
Collapse
Affiliation(s)
- An Luo
- College of Life Science, Yangtze University, Jingzhou, 434023, China
| | - Huadong Zhan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xuecheng Zhang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China
| | - Hewei Du
- College of Life Science, Yangtze University, Jingzhou, 434023, China
| | - Yubo Zhang
- Department of Food Science, Foshan University, Foshan, 528231, China.
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
22
|
Luo L, Ando S, Sakamoto Y, Suzuki T, Takahashi H, Ishibashi N, Kojima S, Kurihara D, Higashiyama T, Yamamoto KT, Matsunaga S, Machida C, Sasabe M, Machida Y. The formation of perinucleolar bodies is important for normal leaf development and requires the zinc-finger DNA-binding motif in Arabidopsis ASYMMETRIC LEAVES2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1118-1134. [PMID: 31639235 PMCID: PMC7155070 DOI: 10.1111/tpj.14579] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 05/27/2023]
Abstract
In Arabidopsis, the ASYMMETRIC LEAVES2 (AS2) protein plays a key role in the formation of flat symmetric leaves via direct repression of the abaxial gene ETT/ARF3. AS2 encodes a plant-specific nuclear protein that contains the AS2/LOB domain, which includes a zinc-finger (ZF) motif that is conserved in the AS2/LOB family. We have shown that AS2 binds to the coding DNA of ETT/ARF3, which requires the ZF motif. AS2 is co-localized with AS1 in perinucleolar bodies (AS2 bodies). To identify the amino acid signals in AS2 required for formation of AS2 bodies and function(s) in leaf formation, we constructed recombinant DNAs that encoded mutant AS2 proteins fused to yellow fluorescent protein. We examined the subcellular localization of these proteins in cells of cotyledons and leaf primordia of transgenic plants and cultured cells. The amino acid signals essential for formation of AS2 bodies were located within and adjacent to the ZF motif. Mutant AS2 that failed to form AS2 bodies also failed to rescue the as2-1 mutation. Our results suggest the importance of the formation of AS2 bodies and the nature of interactions of AS2 with its target DNA and nucleolar factors including NUCLEOLIN1. The partial overlap of AS2 bodies with perinucleolar chromocenters with condensed ribosomal RNA genes implies a correlation between AS2 bodies and the chromatin state. Patterns of AS2 bodies in cells during interphase and mitosis in leaf primordia were distinct from those in cultured cells, suggesting that the formation and distribution of AS2 bodies are developmentally modulated in plants.
Collapse
Affiliation(s)
- Lilan Luo
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Present address:
Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Sayuri Ando
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Yuki Sakamoto
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
- Department of Biological SciencesGraduate School of ScienceOsaka University1‐1 Machikaneyama‐choToyonakaOsaka560‐0043Japan
| | - Takanori Suzuki
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Central Research InstituteIshihara Sangyo Kaisha, Ltd.2‐3‐1 Nishi‐ShibukawaKusatsuShiga525‐0025Japan
| | - Hiro Takahashi
- Graduate School of Medical SciencesKanazawa UniversityKakuma‐machiKanazawaIshikawa920‐1192Japan
| | - Nanako Ishibashi
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| | - Shoko Kojima
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Daisuke Kurihara
- JST, PRESTOFuro‐cho, Chikusa‐kuNagoyaAichi464‐8601Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
| | - Tetsuya Higashiyama
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
- Institute of Transformative Bio‐Molecules (ITbM)Nagoya UniversityFuro‐cho, Chiku00sa‐kuNagoyaAichi464‐8601Japan
- Department of Biological SciencesGraduate School of ScienceUniversity of Tokyo7‐3‐1 Hongo, Bukyo‐kuTokyo113‐0033Japan
| | - Kotaro T. Yamamoto
- Division of Biological SciencesFaculty of ScienceHokkaido UniversitySapporo060‐0810Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological ScienceFaculty of Science and TechnologyTokyo University of ScienceNodaChiba278‐8510Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and BiotechnologyChubu UniversityKasugaiAichi487‐8501Japan
| | - Michiko Sasabe
- Department of BiologyFaculty of Agriculture and Life ScienceHirosaki University3 Bunkyo‐choHirosaki036‐8561Japan
| | - Yasunori Machida
- Division of Biological ScienceGraduate School of ScienceNagoya UniversityNagoyaAichi464‐8602Japan
| |
Collapse
|
23
|
Kitagawa M, Balkunde R, Bui H, Jackson D. An Aminoacyl tRNA Synthetase, OKI1, Is Required for Proper Shoot Meristem Size in Arabidopsis. PLANT & CELL PHYSIOLOGY 2019; 60:2597-2608. [PMID: 31393575 DOI: 10.1093/pcp/pcz153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
In plants, the stem cells that form the shoot system reside within the shoot apical meristem (SAM), which is regulated by feedback signaling between the WUSCHEL (WUS) homeobox protein and CLAVATA (CLV) peptides and receptors. WUS-CLV feedback signaling can be modulated by various endogenous or exogenous factors, such as chromatin state, hormone signaling, reactive oxygen species (ROS) signaling and nutrition, leading to a dynamic control of SAM size corresponding to meristem activity. Despite these insights, however, the knowledge of genes that control SAM size is still limited, and in particular, the regulation by ROS signaling is only beginning to be comprehended. In this study, we report a new function in maintenance of SAM size, encoded by the OKINA KUKI1 (OKI1) gene. OKI1 is expressed in the SAM and encodes a mitochondrial aspartyl tRNA synthetase (AspRS). oki1 mutants display enlarged SAMs with abnormal expression of WUS and CLV3 and overaccumulation of ROS in the meristem. Our findings support the importance of normal AspRS function in the maintenance of the WUS-CLV3 feedback loop and SAM size.
Collapse
Affiliation(s)
- Munenori Kitagawa
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| | - Rachappa Balkunde
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Department of Biology, Washington University in St. Louis, 1 Brookings Drive, St. Louis, MO, USA
| | - Huyen Bui
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
- Center of Biofilm Engineering, Montana State University, 366 Barnard Hall, Bozeman, MT, USA
| | - David Jackson
- Cold Spring Harbor Laboratory, 1 Bungtown road, Cold Spring Harbor, NY, USA
| |
Collapse
|
24
|
Scholz S, Pleßmann J, Enugutti B, Hüttl R, Wassmer K, Schneitz K. The AGC protein kinase UNICORN controls planar growth by attenuating PDK1 in Arabidopsis thaliana. PLoS Genet 2019; 15:e1007927. [PMID: 30742613 PMCID: PMC6386418 DOI: 10.1371/journal.pgen.1007927] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 02/22/2019] [Accepted: 01/02/2019] [Indexed: 11/19/2022] Open
Abstract
Tissue morphogenesis critically depends on the coordination of cellular growth patterns. In plants, many organs consist of clonally distinct cell layers, such as the epidermis, whose cells undergo divisions that are oriented along the plane of the layer. The developmental control of such planar growth is poorly understood. We have previously identified the Arabidopsis AGCVIII-class protein kinase UNICORN (UCN) as a central regulator of this process. Plants lacking UCN activity show spontaneous formation of ectopic multicellular protrusions in integuments and malformed petals indicating that UCN suppresses uncontrolled growth in those tissues. In the current model UCN regulates planar growth of integuments in part by directly repressing the putative transcription factor ABERRANT TESTA SHAPE (ATS). Here we report on the identification of 3-PHOSPHOINOSITIDE-DEPENDENT PROTEIN KINASE 1 (PDK1) as a novel factor involved in UCN-mediated growth control. PDK1 constitutes a basic component of signaling mediated by AGC protein kinases throughout eukaryotes. Arabidopsis PDK1 is implied in stress responses and growth promotion. Here we show that loss-of-function mutations in PDK1 suppress aberrant growth in integuments and petals of ucn mutants. Additional genetic, in vitro, and cell biological data support the view that UCN functions by repressing PDK1. Furthermore, our data indicate that PDK1 is indirectly required for deregulated growth caused by ATS overexpression. Our findings support a model proposing that UCN suppresses ectopic growth in integuments through two independent processes: the attenuation of the protein kinase PDK1 in the cytoplasm and the repression of the transcription factor ATS in the nucleus.
Collapse
Affiliation(s)
- Sebastian Scholz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Janys Pleßmann
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Balaji Enugutti
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Regina Hüttl
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Katrin Wassmer
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
| | - Kay Schneitz
- Entwicklungsbiologie der Pflanzen, Wissenschaftszentrum Weihenstephan, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
25
|
Wu P, Peng M, Li Z, Yuan N, Hu Q, Foster CE, Saski C, Wu G, Sun D, Luo H. DRMY1, a Myb-Like Protein, Regulates Cell Expansion and Seed Production in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2019; 60:285-302. [PMID: 30351427 DOI: 10.1093/pcp/pcy207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
Plant organ development to a specific size and shape is controlled by cell proliferation and cell expansion. Here, we identify a novel Myb-like Arabidopsis gene, Development Related Myb-like1 (DRMY1), which controls cell expansion in both vegetative and reproductive organs. DRMY1 is strongly expressed in developing organs and its expression is reduced by ethylene while it is induced by ABA. DRMY1 has a Myb-like DNA-binding domain, which is predominantly localized in the nucleus and does not exhibit transcriptional activation activity. The loss-of-function T-DNA insertion mutant drmy1 shows reduced organ growth and cell expansion, which is associated with changes in the cell wall matrix polysaccharides. Interestingly, overexpression of DRMY1 in Arabidopsis does not lead to enhanced organ growth. Expression of genes involved in cell wall biosynthesis/remodeling, ribosome biogenesis and in ethylene and ABA signaling pathways is changed with the deficiency of DRMY1. Our results suggest that DRMY1 plays an essential role in organ development by regulating cell expansion either directly by affecting cell wall architecture and/or cytoplasmic growth or indirectly through the ethylene and/or ABA signaling pathways.
Collapse
Affiliation(s)
- Peipei Wu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Mingsheng Peng
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Zhigang Li
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Ning Yuan
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Cliff E Foster
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Christopher Saski
- Clemson University Genomics Institute, Clemson University, Clemson, SC, USA
| | - Guohai Wu
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, USA
| |
Collapse
|
26
|
Ibáñez S, Ruiz-Cano H, Fernández MÁ, Sánchez-García AB, Villanova J, Micol JL, Pérez-Pérez JM. A Network-Guided Genetic Approach to Identify Novel Regulators of Adventitious Root Formation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2019; 10:461. [PMID: 31057574 PMCID: PMC6478000 DOI: 10.3389/fpls.2019.00461] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 03/27/2019] [Indexed: 05/05/2023]
Abstract
Adventitious roots (ARs) are formed de novo during post-embryonic development from non-root tissues, in processes that are highly dependent on environmental inputs. Whole root excision from young seedlings has been previously used as a model to study adventitious root formation in Arabidopsis thaliana hypocotyls. To identify novel regulators of adventitious root formation, we analyzed adventitious rooting in the hypocotyl after whole root excision in 112 T-DNA homozygous leaf mutants, which were selected based on the dynamic expression profiles of their annotated genes during hormone-induced and wound-induced tissue regeneration. Forty-seven T-DNA homozygous lines that displayed low rooting capacity as regards their wild-type background were dubbed as the less adventitious roots (lars) mutants. We identified eight lines with higher rooting capacity than their wild-type background that we named as the more adventitious roots (mars) mutants. A relatively large number of mutants in ribosomal protein-encoding genes displayed a significant reduction in adventitious root number in the hypocotyl after whole root excision. In addition, gene products related to gibberellin (GA) biosynthesis and signaling, auxin homeostasis, and xylem differentiation were confirmed to participate in adventitious root formation. Nearly all the studied mutants tested displayed similar rooting responses from excised whole leaves, which suggest that their affected genes participate in shared regulatory pathways required for de novo organ formation in different organs.
Collapse
Affiliation(s)
- Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - Helena Ruiz-Cano
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - María Á. Fernández
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | | | - Joan Villanova
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
- IDAI Nature S.L., La Pobla de Vallbona, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
| | - José Manuel Pérez-Pérez
- Instituto de Bioingeniería, Universidad Miguel Hernández de Elche, Alicante, Spain
- *Correspondence: José Manuel Pérez-Pérez, ; arolab.edu.umh.es
| |
Collapse
|
27
|
Vial-Pradel S, Keta S, Nomoto M, Luo L, Takahashi H, Suzuki M, Yokoyama Y, Sasabe M, Kojima S, Tada Y, Machida Y, Machida C. Arabidopsis Zinc-Finger-Like Protein ASYMMETRIC LEAVES2 (AS2) and Two Nucleolar Proteins Maintain Gene Body DNA Methylation in the Leaf Polarity Gene ETTIN (ARF3). PLANT & CELL PHYSIOLOGY 2018; 59:1385-1397. [PMID: 29415182 DOI: 10.1093/pcp/pcy031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/02/2018] [Indexed: 05/25/2023]
Abstract
Arabidopsis ASYMMETRIC LEAVES2 (AS2) plays a critical role in leaf adaxial-abaxial partitioning by repressing expression of the abaxial-determining gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). We previously reported that six CpG dinucleotides in its exon 6 are thoroughly methylated by METHYLTRASFERASE1, that CpG methylation levels are inversely correlated with ETT/ARF3 transcript levels and that methylation levels at three out of the six CpG dinucleotides are decreased in as2-1. All these imply that AS2 is involved in epigenetic repression of ETT/ARF3 by gene body DNA methylation. The mechanism of the epigenetic repression by AS2, however, is unknown. Here, we tested mutations of NUCLEOLIN1 (NUC1) and RNA HELICASE10 (RH10) encoding nucleolus-localized proteins for the methylation in exon 6 as these mutations enhance the level of ETT/ARF3 transcripts in as2-1. Methylation levels at three specific CpGs were decreased in rh10-1, and two of those three overlapped with those in as2-1. Methylation levels at two specific CpGs were decreased in nuc1-1, and one of those three overlapped with that in as2-1. No site was affected by both rh10-1 and nuc1-1. One specific CpG was unaffected by these mutations. These results imply that the way in which RH10, NUC1 and AS2 are involved in maintaining methylation at five CpGs in exon 6 might be through at least several independent pathways, which might interact with each other. Furthermore, we found that AS2 binds specifically the sequence containing CpGs in exon 1 of ETT/ARF3, and that the binding requires the zinc-finger-like motif in AS2 that is structurally similar to the zinc finger-CxxC domain in vertebrate DNA methyltransferase1.
Collapse
Affiliation(s)
- Simon Vial-Pradel
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Sumie Keta
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Mika Nomoto
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Lilan Luo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Hiro Takahashi
- Graduate School of Medical Sciences, Kanazawa University, Kakuma-machi, Kanazawa, Ishikawa, Japan
| | - Masataka Suzuki
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Yuri Yokoyama
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Michiko Sasabe
- Faculty of Agriculture and Life Science, Department of Biology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| | - Yasuomi Tada
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, Japan
| |
Collapse
|
28
|
Dong J, Huang H. Auxin polar transport flanking incipient primordium initiates leaf adaxial-abaxial polarity patterning. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2018; 60:455-464. [PMID: 29405646 DOI: 10.1111/jipb.12640] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/05/2018] [Indexed: 05/08/2023]
Abstract
The leaves of most higher plants are polar along their adaxial-abaxial axis, and the development of the adaxial domain (upper side) and the abaxial domain (lower side) makes the leaf a highly efficient photosynthetic organ. It has been proposed that a hypothetical signal transported from the shoot apical meristem (SAM) to the incipient leaf primordium, or conversely, the plant hormone auxin transported from the leaf primordium to the SAM, initiates leaf adaxial-abaxial patterning. This hypothetical signal has been referred to as the Sussex signal, because the research of Ian Sussex published in 1951 was the first to imply its existence. Recent results, however, have shown that auxin polar transport flanking the incipient leaf primordium, but not the Sussex signal, is the key to initiate leaf polarity. Here, we review the new findings and integrate them with other recently published results in the field of leaf development, mainly focusing on the early steps of leaf polarity establishment.
Collapse
Affiliation(s)
- Jiaqiang Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
29
|
Chen W, Wan S, Shen L, Zhou Y, Huang C, Chu P, Guan R. Histological, Physiological, and Comparative Proteomic Analyses Provide Insights into Leaf Rolling in Brassica napus. J Proteome Res 2018; 17:1761-1772. [PMID: 29693398 DOI: 10.1021/acs.jproteome.7b00744] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Moderate leaf rolling is important in ideotype breeding, as it improves photosynthetic efficiency and therefore increases crop yields. To understand the regulatory network of leaf rolling in Brassica napus, a down-curved leaf mutant ( Bndcl1) has been investigated. Physiological analyses indicated that the chlorophyll contents and antioxidant enzyme activities were remarkably increased and the photosynthetic performance was significantly improved in Bndcl1. Consistent with these findings, 943 differentially accumulated proteins (DAPs) were identified in the Bndcl1 mutant and its wild-type plants using iTRAQ-based comparative proteomic analyses. Enrichment analysis of proteins with higher abundance in Bndcl1 revealed that the functional category "photosynthesis" was significantly overrepresented. Moreover, proteins associated with oxidative stress response and photosystem II repairing were also up-accumulated in Bndcl1, which might help the mutant to sustain the photosynthetic efficiency under unfavorable conditions. Histological observation showed that the mutant displayed defects in adaxial-abaxial patterning. Important DAPs associated with leaf polarity establishment were detected in Bndcl1, including ribosomal proteins, proteins involved in post-transcriptional gene silencing, and proteins related to brassinosteroid. Together, our findings may help clarify the mechanisms underlying leaf rolling and its physiological effects on plants and may facilitate ideotype breeding in Brassica napus.
Collapse
Affiliation(s)
- Wenjing Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Shubei Wan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Linkui Shen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Ying Zhou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Chengwei Huang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Pu Chu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| | - Rongzhan Guan
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production , Nanjing Agricultural University , No. 1 Weigang , Nanjing , Jiangsu 210095 , PR China
| |
Collapse
|
30
|
Luong TQ, Keta S, Asai T, Kojima S, Nakagawa A, Micol JL, Xia S, Machida Y, Machida C. A genetic link between epigenetic repressor AS1-AS2 and DNA replication factors in establishment of adaxial-abaxial leaf polarity of Arabidopsis. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:39-49. [PMID: 31275036 PMCID: PMC6543732 DOI: 10.5511/plantbiotechnology.18.0129b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 01/29/2018] [Indexed: 05/27/2023]
Abstract
Balanced development of adaxial and abaxial domains in leaf primordia is critical for the formation of flat symmetric leaf lamina. Arabidopsis ASYMMETRIC LEAVES1 (AS1) and AS2 proteins form a complex (AS1-AS2), which acts as key regulators for the adaxial development by the direct repression of expression of the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3). Many modifier mutations have been identified, which enhance the defect of as1 and as2 mutations to generate abaxialized filamentous leaves without adaxial traits, suggesting that the development of the adaxial domain is achieved by cooperative repression by AS1-AS2 and the wild-type proteins corresponding to the modifiers. Mutations of several genes for DNA replication-related chromatin remodeling factors such as Chromatin Assembly Factor-1 (CAF-1) have been also identified as modifiers. It is still unknown, however, whether mutations in genes involved in DNA replication themselves might act as modifiers. Here we report that as1 and as2 mutants grown in the presence of hydroxyurea, a known inhibitor of DNA replication, form abaxialized filamentous leaves in a concentration-dependent manner. We further show that a mutation of the INCURVATA2 (ICU2) gene, which encodes the putative catalytic subunit of DNA polymerase α, and a mutation of the Replication Factor C Subunit3 (RFC3) gene, which encodes a protein used in replication as a clamp loader, act as modifiers. In addition, as2-1 icu2-1 double mutants showed increased mRNA levels of the genes for leaf abaxialization. These results suggest a tight link between DNA replication and the function of AS1-AS2 in the development of flat leaves.
Collapse
Affiliation(s)
- Toan Quy Luong
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Sumie Keta
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Toshiharu Asai
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Ayami Nakagawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth and Development, Hunan Agricultural University, Changsha 410128, China
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| |
Collapse
|
31
|
Ohbayashi I, Sugiyama M. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 8:2247. [PMID: 29375613 PMCID: PMC5767325 DOI: 10.3389/fpls.2017.02247] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 12/21/2017] [Indexed: 05/24/2023]
Abstract
The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.
Collapse
Affiliation(s)
- Iwai Ohbayashi
- FAFU-UCR Joint Center and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
32
|
Kojima K, Tamura J, Chiba H, Fukada K, Tsukaya H, Horiguchi G. Two Nucleolar Proteins, GDP1 and OLI2, Function As Ribosome Biogenesis Factors and Are Preferentially Involved in Promotion of Leaf Cell Proliferation without Strongly Affecting Leaf Adaxial-Abaxial Patterning in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2018; 8:2240. [PMID: 29375609 PMCID: PMC5767255 DOI: 10.3389/fpls.2017.02240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 12/20/2017] [Indexed: 05/25/2023]
Abstract
Leaf abaxial-adaxial patterning is dependent on the mutual repression of leaf polarity genes expressed either adaxially or abaxially. In Arabidopsis thaliana, this process is strongly affected by mutations in ribosomal protein genes and in ribosome biogenesis genes in a sensitized genetic background, such as asymmetric leaves2 (as2). Most ribosome-related mutants by themselves do not show leaf abaxialization, and one of their typical phenotypes is the formation of pointed rather than rounded leaves. In this study, we characterized two ribosome-related mutants to understand how ribosome biogenesis is linked to several aspects of leaf development. Previously, we isolated oligocellula2 (oli2) which exhibits the pointed-leaf phenotype and has a cell proliferation defect. OLI2 encodes a homolog of Nop2 in Saccharomyces cerevisiae, a ribosome biogenesis factor involved in pre-60S subunit maturation. In this study, we found another pointed-leaf mutant that carries a mutation in a gene encoding an uncharacterized protein with a G-patch domain. Similar to oli2, this mutant, named g-patch domain protein1 (gdp1), has a reduced number of leaf cells. In addition, gdp1 oli2 double mutants showed a strong genetic interaction such that they synergistically impaired cell proliferation in leaves and produced markedly larger cells. On the other hand, they showed additive phenotypes when combined with several known ribosomal protein mutants. Furthermore, these mutants have a defect in pre-rRNA processing. GDP1 and OLI2 are strongly expressed in tissues with high cell proliferation activity, and GDP1-GFP and GFP-OLI2 are localized in the nucleolus. These results suggest that OLI2 and GDP1 are involved in ribosome biogenesis. We then examined the effects of gdp1 and oli2 on adaxial-abaxial patterning by crossing them with as2. Interestingly, neither gdp1 nor oli2 strongly enhanced the leaf polarity defect of as2. Similar results were obtained with as2 gdp1 oli2 triple mutants although they showed severe growth defects. These results suggest that the leaf abaxialization phenotype induced by ribosome-related mutations is not merely the result of a general growth defect and that there may be a sensitive process in the ribosome biogenesis pathway that affects adaxial-abaxial patterning when compromised by a mutation.
Collapse
Affiliation(s)
- Koji Kojima
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Junya Tamura
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hiroto Chiba
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Kanae Fukada
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Okazaki Institute for Integrative Bioscience, Okazaki, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Tokyo, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Tokyo, Japan
| |
Collapse
|
33
|
Tian S, Wu J, Liu Y, Huang X, Li F, Wang Z, Sun MX. Ribosomal protein NtRPL17 interacts with kinesin-12 family protein NtKRP and functions in the regulation of embryo/seed size and radicle growth. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5553-5564. [PMID: 29045730 PMCID: PMC5853406 DOI: 10.1093/jxb/erx361] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 09/28/2017] [Indexed: 05/12/2023]
Abstract
We previously reported that a novel motor protein belonging to the kinesin-12 family, NtKRP, displays critical roles in regulating embryo and seed size establishment. However, it remains unknown exactly how NtKRP contributes to this developmental process. Here, we report that a 60S ribosomal protein NtRPL17 directly interacts with NtKRP. The phenotypes of NtRPL17 RNAi lines show notable embryo and seed size reduction. Structural observations of the NtRPL17-silenced embryos/seeds reveal that the embryo size reduction is due to a decrease in cell number. In these embryos, cell division cycle progression is delayed at the G2/M transition. These phenotypes are similar to that in NtKRP-silenced embryos/seeds, indicating that NtKRP and NtRPL17 function as partners in the same regulatory pathway during seed development and specifically regulate cell cycle progression to control embryo/seed size. This work reveals that NtRPL17, as a widely distributed ribosomal protein, plays a critical role in seed development and provides a new clue in the regulation of seed size. Confirmation of the interaction between NtKRP and NtRPL17 and their co-function in the control of the cell cycle also suggests that the mechanism might be conserved in both plants and animals.
Collapse
Affiliation(s)
- Shujuan Tian
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jingjing Wu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yuan Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xiaorong Huang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fen Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
- College of Life Sciences, Henan Normal University, Xinxiang, China
| | - Zhaodan Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Meng-Xiang Sun
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Shi J, Dong J, Xue J, Wang H, Yang Z, Jiao Y, Xu L, Huang H. Model for the role of auxin polar transport in patterning of the leaf adaxial-abaxial axis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:469-480. [PMID: 28849614 DOI: 10.1111/tpj.13670] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/14/2017] [Accepted: 08/18/2017] [Indexed: 05/27/2023]
Abstract
Leaf adaxial-abaxial polarity refers to the two leaf faces, which have different types of cells performing distinct biological functions. In 1951, Ian Sussex reported that when an incipient leaf primordium was surgically isolated by an incision across the vegetative shoot apical meristem (SAM), a radialized structure without an adaxial domain would form. This led to the proposal that a signal, now called the Sussex signal, is transported from the SAM to emerging primordia to direct leaf adaxial-abaxial patterning. It was recently proposed that instead of the Sussex signal, polar transport of the plant hormone auxin is critical in leaf polarity formation. However, how auxin polar transport functions in the process is unknown. Through live imaging, we established a profile of auxin polar transport in and around young leaf primordia. Here we show that auxin polar transport in lateral regions of an incipient primordium forms auxin convergence points. We demonstrated that blocking auxin polar transport in the lateral regions of the incipient primordium by incisions abolished the auxin convergence points and caused abaxialized leaves to form. The lateral incisions also blocked the formation of leaf middle domain and margins and disrupted expression of the middle domain/margin-associated marker gene WUSCHEL-RELATED HOMEOBOX 1 (SlWOX1). Based on these results we propose that the auxin convergence points are required for the formation of leaf middle domain and margins, and the functional middle domain and margins ensure leaf adaxial-abaxial polarity. How middle domain and margins function in the process is discussed.
Collapse
Affiliation(s)
- Jianmin Shi
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Jiaqiang Dong
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Jingshi Xue
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Hua Wang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Zhongnan Yang
- College of Life and Environment Sciences, Shanghai Normal University, 100 Guilin Road, Shanghai, 200234, China
| | - Yuling Jiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Xu
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | - Hai Huang
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| |
Collapse
|
35
|
Saha A, Das S, Moin M, Dutta M, Bakshi A, Madhav MS, Kirti PB. Genome-Wide Identification and Comprehensive Expression Profiling of Ribosomal Protein Small Subunit (RPS) Genes and their Comparative Analysis with the Large Subunit (RPL) Genes in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:1553. [PMID: 28966624 PMCID: PMC5605565 DOI: 10.3389/fpls.2017.01553] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/25/2017] [Indexed: 05/07/2023]
Abstract
Ribosomal proteins (RPs) are indispensable in ribosome biogenesis and protein synthesis, and play a crucial role in diverse developmental processes. Our previous studies on Ribosomal Protein Large subunit (RPL) genes provided insights into their stress responsive roles in rice. In the present study, we have explored the developmental and stress regulated expression patterns of Ribosomal Protein Small (RPS) subunit genes for their differential expression in a spatiotemporal and stress dependent manner. We have also performed an in silico analysis of gene structure, cis-elements in upstream regulatory regions, protein properties and phylogeny. Expression studies of the 34 RPS genes in 13 different tissues of rice covering major growth and developmental stages revealed that their expression was substantially elevated, mostly in shoots and leaves indicating their possible involvement in the development of vegetative organs. The majority of the RPS genes have manifested significant expression under all abiotic stress treatments with ABA, PEG, NaCl, and H2O2. Infection with important rice pathogens, Xanthomonas oryzae pv. oryzae (Xoo) and Rhizoctonia solani also induced the up-regulation of several of the RPS genes. RPS4, 13a, 18a, and 4a have shown higher transcript levels under all the abiotic stresses, whereas, RPS4 is up-regulated in both the biotic stress treatments. The information obtained from the present investigation would be useful in appreciating the possible stress-regulatory attributes of the genes coding for rice ribosomal small subunit proteins apart from their functions as house-keeping proteins. A detailed functional analysis of independent genes is required to study their roles in stress tolerance and generating stress- tolerant crops.
Collapse
Affiliation(s)
- Anusree Saha
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Shubhajit Das
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Mazahar Moin
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Mouboni Dutta
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - Achala Bakshi
- Department of Plant Sciences, University of HyderabadHyderabad, India
| | - M. S. Madhav
- Department of Biotechnology, Indian Institute of Rice ResearchHyderabad, India
| | - P. B. Kirti
- Department of Plant Sciences, University of HyderabadHyderabad, India
| |
Collapse
|
36
|
You Y, Sawikowska A, Neumann M, Posé D, Capovilla G, Langenecker T, Neher RA, Krajewski P, Schmid M. Temporal dynamics of gene expression and histone marks at the Arabidopsis shoot meristem during flowering. Nat Commun 2017; 8:15120. [PMID: 28513600 PMCID: PMC5442315 DOI: 10.1038/ncomms15120] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 03/01/2017] [Indexed: 02/04/2023] Open
Abstract
Plants can produce organs throughout their entire life from pluripotent stem cells located at their growing tip, the shoot apical meristem (SAM). At the time of flowering, the SAM of Arabidopsis thaliana switches fate and starts producing flowers instead of leaves. Correct timing of flowering in part determines reproductive success, and is therefore under environmental and endogenous control. How epigenetic regulation contributes to the floral transition has eluded analysis so far, mostly because of the poor accessibility of the SAM. Here we report the temporal dynamics of the chromatin modifications H3K4me3 and H3K27me3 and their correlation with transcriptional changes at the SAM in response to photoperiod-induced flowering. Emphasizing the importance of tissue-specific epigenomic analyses we detect enrichments of chromatin states in the SAM that were not apparent in whole seedlings. Furthermore, our results suggest that regulation of translation might be involved in adjusting meristem function during the induction of flowering. When plants flower, the shoot apical meristem switches fate to produce floral organs instead of leaves. Here You et al. perform tissue-specific epigenome profiling and show that during this transition changes in histone methylation are correlated with transcriptional responses in the meristem.
Collapse
Affiliation(s)
- Yuan You
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Aneta Sawikowska
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Manuela Neumann
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - David Posé
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Giovanna Capovilla
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Tobias Langenecker
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Richard A Neher
- Evolutionary Dynamics and Biophysics Group, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Paweł Krajewski
- Department of Biometry and Bioinformatics, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.,Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
37
|
Bai J, Qin Y, Liu J, Wang Y, Sa R, Zhang N, Jia R. Proteomic response of oat leaves to long-term salinity stress. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:3387-3399. [PMID: 27866362 DOI: 10.1007/s11356-016-8092-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 11/11/2016] [Indexed: 05/23/2023]
Abstract
Salinity adversely affects plant growth and production. Oat is a moderately salt-tolerant crop and can contribute to improving saline soil. The physiological and molecular responses of the oat plant to long-term salinity were studied. After a 16-day salt treatment (150 mmol L-1NaCl in Hoagland's solution), photosynthetic rate, maximum photosystem II photochemical efficiency, and actual efficiency of photosystem II decreased. The activities of superoxide dismutase, peroxidase, and catalase significantly increased. We also investigated the protein profiles of oat leaves in response to salinity and detected 30 reproducible protein spots by two-dimensional gel electrophoresis that were differentially abundant. Specifically, one protein was up-regulated and 29 proteins were down-regulated compared with the control. These 29 proteins were identified using MALDI-TOF mass spectrometry, and 19 corresponding genes were further investigated by quantitative real-time PCR. These proteins were involved in four types of biological processes: photosynthesis, carbohydrate metabolism and energy, protein biosynthesis, and folding and detoxification. This study indicates that the lower levels of Calvin cycle-related proteins, 50S ribosomal protein L10 and adenosine-triphosphate regulation-related proteins, and the high levels of antioxidant enzymes play important roles in the response of oat to long-term salinity stress.
Collapse
Affiliation(s)
- Jianhui Bai
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, People's Republic of China
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, 010019, People's Republic of China
| | - Yan Qin
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, People's Republic of China
| | - Jinghui Liu
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, 010019, People's Republic of China.
| | - Yuqing Wang
- Institute of Grassland Research of Chinese Academy of Agricultural Sciences, Hohhot, 010010, People's Republic of China.
| | - Rula Sa
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, 010019, People's Republic of China
| | - Na Zhang
- Science Innovation Team of Oats, Inner Mongolia Agricultural University, Hohhot, 010019, People's Republic of China
| | - Ruizong Jia
- Hawaii Agriculture Research Center, Kunia, HI, 96759, USA
| |
Collapse
|
38
|
Ribosomal protein L18aB is required for both male gametophyte function and embryo development in Arabidopsis. Sci Rep 2016; 6:31195. [PMID: 27502163 PMCID: PMC4977502 DOI: 10.1038/srep31195] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/14/2016] [Indexed: 01/01/2023] Open
Abstract
Ribosomal proteins are involved in numerous essential cell activities in plants. However, the regulatory role in specific plant developmental processes has not yet been fully elucidated. Here we identified the new ribosomal protein L18aB, which is specifically involved in sexual reproduction and plays a critical role in male gametophyte development and embryo pattern formation. In rpl18aB mutant plants, the mature pollen grains can germinate normally, but their competitiveness for growing in the style is significantly reduced. More interestingly, RPL18aB is required in early embryogenesis. rpl18aB embryos displayed irregular cell division orientations in the early pro-embryo and arrested at the globular stage with possible, secondary pattern formation defects. Further investigations revealed that the polar transportation of auxin is disturbed in the rpl18aB mutant embryos, which may explain the observed failure in embryo pattern formation. The cell type-specific complementation of RPL18aB in rpl18aB was not able to recover the phenotype, indicating that RPL18aB may play an essential role in early cell fate determination. This work unravels a novel role in embryo development for a ribosomal protein, and provides insight into regulatory mechanism of early embryogenesis.
Collapse
|
39
|
Matsumura Y, Ohbayashi I, Takahashi H, Kojima S, Ishibashi N, Keta S, Nakagawa A, Hayashi R, Saéz-Vásquez J, Echeverria M, Sugiyama M, Nakamura K, Machida C, Machida Y. A genetic link between epigenetic repressor AS1-AS2 and a putative small subunit processome in leaf polarity establishment of Arabidopsis. Biol Open 2016; 5:942-54. [PMID: 27334696 PMCID: PMC4958277 DOI: 10.1242/bio.019109] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Although the DEAD-box RNA helicase family is ubiquitous in eukaryotes, its developmental role remains unelucidated. Here, we report that cooperative action between the Arabidopsis nucleolar protein RH10, an ortholog of human DEAD-box RNA helicase DDX47, and the epigenetic repressor complex of ASYMMETRIC-LEAVES1 (AS1) and AS2 (AS1-AS2) is critical to repress abaxial (ventral) genes ETT/ARF3 and ARF4, which leads to adaxial (dorsal) development in leaf primordia at shoot apices. Double mutations of rh10-1 and as2 (or as1) synergistically up-regulated the abaxial genes, which generated abaxialized filamentous leaves with loss of the adaxial domain. DDX47 is part of the small subunit processome (SSUP) that mediates rRNA biogenesis. In rh10-1 we found various defects in SSUP-related events, such as: accumulation of 35S/33S rRNA precursors; reduction in the 18S/25S ratio; and nucleolar hypertrophy. Double mutants of as2 with mutations of genes that encode other candidate SSUP-related components such as nucleolin and putative rRNA methyltransferase exhibited similar synergistic defects caused by up-regulation of ETT/ARF3 and ARF4. These results suggest a tight link between putative SSUP and AS1-AS2 in repression of the abaxial-determining genes for cell fate decisions for adaxial development. Summary: This paper reports the importance of cooperative action between the nucleus-localized epigenetic repressor and the nucleolus-localized proteins involved in ribosomal RNA processing for polarity establishment of Arabidopsis leaves.
Collapse
Affiliation(s)
- Yoko Matsumura
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Iwai Ohbayashi
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Hakusan 3-7-1, Bunkyo-ku, Tokyo 112-0001, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-shi, Chiba 271-8510, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Nanako Ishibashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Sumie Keta
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Ayami Nakagawa
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Rika Hayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Julio Saéz-Vásquez
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan 66860, France Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan F-66860, France
| | - Manuel Echeverria
- CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan 66860, France Université de Perpignan Via Domitia, Laboratoire Génome et Développement des Plantes, UMR 5096, Perpignan F-66860, France
| | - Munetaka Sugiyama
- Botanical Gardens, Graduate School of Science, The University of Tokyo, Hakusan 3-7-1, Bunkyo-ku, Tokyo 112-0001, Japan
| | - Kenzo Nakamura
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, 1200 Matsumoto-cho, Kasugai, Aichi 487-8501, Japan
| | - Yasunori Machida
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
40
|
Zheng M, Wang Y, Liu X, Sun J, Wang Y, Xu Y, Lv J, Long W, Zhu X, Guo X, Jiang L, Wang C, Wan J. The RICE MINUTE-LIKE1 (RML1) gene, encoding a ribosomal large subunit protein L3B, regulates leaf morphology and plant architecture in rice. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3457-69. [PMID: 27241493 PMCID: PMC4939763 DOI: 10.1093/jxb/erw167] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mutations of ribosomal proteins (RPs) are known to cause developmental abnormalities in yeast, mammals, and dicotyledonous plants; however, their effects have not been studied in rice. Here, we identifiy a ribosomal biogenesis mutant, rice minute-like1 (rml1) that displays a minute phenotype as evidenced by retarded growth and defects in the vascular system. We determine that RML1 encodes a ribosome large subunit protein 3B (RPL3B) in rice by means of map-based cloning and genetic complementation. RPL3B is abundantly expressed in all the tissues, whereas RPL3A, another RPL3 gene family member, is expressed at low levels. Notably, the expression level of RPL3A in the rml1 mutant is similar to that in the wild-type, suggesting that RPL3A provides no functional compensation for RPL3B in rml1 plants. Ribosomal profiles show that mutation of RPL3B leads to a significant reduction in free 60S ribosomal subunits and polysomes, indicating a ribosomal insufficiency in the rml1 mutant. Our results demonstrate that the ribosomal protein gene RPL3B is required for maintaining normal leaf morphology and plant architecture in rice through its regulation of ribosome biogenesis.
Collapse
Affiliation(s)
- Ming Zheng
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Juan Sun
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yunlong Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yang Xu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jia Lv
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Wuhua Long
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiaopin Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Chunming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, P.R. China
| |
Collapse
|
41
|
Lu D, Ni W, Stanley BA, Ma H. Proteomics and transcriptomics analyses of Arabidopsis floral buds uncover important functions of ARABIDOPSIS SKP1-LIKE1. BMC PLANT BIOLOGY 2016; 16:61. [PMID: 26940208 PMCID: PMC4778361 DOI: 10.1186/s12870-015-0571-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 07/04/2015] [Indexed: 05/09/2023]
Abstract
BACKGROUND The ARABIDOPSIS SKP1-LIKE1 (ASK1) protein functions as a subunit of SKP1-CUL1-F-box (SCF) E3 ubiquitin ligases. Previous genetic studies showed that ASK1 plays important roles in Arabidopsis flower development and male meiosis. However, the molecular impact of ASK1-containing SCF E3 ubiquitin ligases (ASK1-E3s) on the floral proteome and transcriptome is unknown. RESULTS Here we identified proteins that are potentially regulated by ASK1-E3s by comparing floral bud proteomes of wild-type and the ask1 mutant plants. More than 200 proteins were detected in the ask1 mutant but not in wild-type and >300 were detected at higher levels in the ask1 mutant than in wild-type, but their RNA levels were not significantly different between wild-type and ask1 floral buds as shown by transcriptomics analysis, suggesting that they are likely regulated at the protein level by ASK1-E3s. Integrated analyses of floral proteomics and transcriptomics of ask1 and wild-type uncovered several potential aspects of ASK1-E3 functions, including regulation of transcription regulators, kinases, peptidases, and ribosomal proteins, with implications on possible mechanisms of ASK1-E3 functions in floral development. CONCLUSIONS Our results suggested that ASK1-E3s play important roles in Arabidopsis protein degradation during flower development. This study opens up new possibilities for further functional studies of these candidate E3 substrates.
Collapse
Affiliation(s)
- Dihong Lu
- Intercollege Graduate Degree Program in Plant Biology, the Huck Institutes of the Life Sciences, the Pennsylvania State University, University Park, PA, 16802, USA.
| | - Weimin Ni
- Department of Biology, the Pennsylvania State University, University Park, PA, 16802, USA.
- Current address: Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA.
| | - Bruce A Stanley
- Section of Research Resources, Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA.
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
42
|
Ichihashi Y, Tsukaya H. Behavior of Leaf Meristems and Their Modification. FRONTIERS IN PLANT SCIENCE 2015; 6:1060. [PMID: 26648955 PMCID: PMC4664833 DOI: 10.3389/fpls.2015.01060] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 11/13/2015] [Indexed: 05/06/2023]
Abstract
A major source of diversity in flowering plant form is the extensive variability of leaf shape and size. Leaf formation is initiated by recruitment of a handful of cells flanking the shoot apical meristem (SAM) to develop into a complex three-dimensional structure. Leaf organogenesis depends on activities of several distinct meristems that are established and spatiotemporally differentiated after the initiation of leaf primordia. Here, we review recent findings in the gene regulatory networks that orchestrate leaf meristem activities in a model plant Arabidopsis thaliana. We then discuss recent key studies investigating the natural variation in leaf morphology to understand how the gene regulatory networks modulate leaf meristems to yield a substantial diversity of leaf forms during the course of evolution.
Collapse
Affiliation(s)
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of TokyoTokyo, Japan
- Bio-Next Project, Okazaki Institute for Integrative Bioscience, National Institutes of Natural SciencesOkazaki, Japan
| |
Collapse
|
43
|
Mateo-Bonmatí E, Casanova-Sáez R, Quesada V, Hricová A, Candela H, Micol JL. Plastid control of abaxial-adaxial patterning. Sci Rep 2015; 5:15975. [PMID: 26522839 PMCID: PMC4629159 DOI: 10.1038/srep15975] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/07/2015] [Indexed: 01/31/2023] Open
Abstract
Translational regulation, exerted by the cytosolic ribosome, has been shown to participate in the establishment of abaxial-adaxial polarity in Arabidopsis thaliana: many hypomorphic and null alleles of genes encoding proteins of the cytosolic ribosome enhance the leaf polarity defects of asymmetric leaves1 (as1) and as2 mutants. Here, we report the identification of the SCABRA1 (SCA1) nuclear gene, whose loss-of-function mutations also enhance the polarity defects of the as2 mutants. In striking contrast to other previously known enhancers of the phenotypes caused by the as1 and as2 mutations, we found that SCA1 encodes a plastid-type ribosomal protein that functions as a structural component of the 70S plastid ribosome and, therefore, its role in abaxial-adaxial patterning was not expected.
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Rubén Casanova-Sáez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Andrea Hricová
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - Héctor Candela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | - José Luis Micol
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| |
Collapse
|
44
|
Hummel M, Dobrenel T, Cordewener JJHG, Davanture M, Meyer C, Smeekens SJCM, Bailey-Serres J, America TAHP, Hanson J. Proteomic LC-MS analysis of Arabidopsis cytosolic ribosomes: Identification of ribosomal protein paralogs and re-annotation of the ribosomal protein genes. J Proteomics 2015; 128:436-49. [PMID: 26232565 DOI: 10.1016/j.jprot.2015.07.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 06/17/2015] [Accepted: 07/01/2015] [Indexed: 12/01/2022]
Abstract
UNLABELLED Arabidopsis thaliana cytosolic ribosomes are large complexes containing eighty-one distinct ribosomal proteins (r-proteins), four ribosomal RNAs (rRNA) and a plethora of associated (non-ribosomal) proteins. In plants, r-proteins of cytosolic ribosomes are each encoded by two to seven different expressed and similar genes, forming an r-protein family. Distinctions in the r-protein coding sequences of gene family members are a source of variation between ribosomes. We performed proteomic investigation of actively translating cytosolic ribosomes purified using both immunopurification and a classic sucrose cushion centrifugation-based protocol from plants of different developmental stages. Both 1D and 2D LC-MS(E) with data-independent acquisition as well as conventional data-dependent MS/MS procedures were applied. This approach provided detailed identification of 165 r-protein paralogs with high coverage based on proteotypic peptides. The detected r-proteins were the products of the majority (68%) of the 242 cytosolic r-protein genes encoded by the genome. A total of 70 distinct r-proteins were identified. Based on these results and information from DNA microarray and ribosome footprint profiling studies a re-annotation of Arabidopsis r-proteins and genes is proposed. This compendium of the cytosolic r-protein proteome will serve as a template for future investigations on the dynamic structure and function of plant ribosomes. BIOLOGICAL SIGNIFICANCE Translation is one of the most energy demanding processes in a living cell and is therefore carefully regulated. Translational activity is tightly linked to growth control and growth regulating mechanism. Recently established translational profiling technologies, including the profiling of mRNAs associated with polysomes and the mapping of ribosome footprints on mRNAs, have revealed that the expression of gene expression is often fine-tuned by differential translation of gene transcripts. The eukaryotic ribosome, the hub of these important processes, consists of close to eighty different proteins (depending on species) and four large RNAs assembled into two highly conserved subunits. In plants and to lesser extent in yeast, the r-proteins are encoded by more than one actively transcribed gene. As r-protein gene paralogs frequently do not encode identical proteins and are regulated by growth conditions and development, in vivo ribosomes are heterogeneous in their protein content. The regulatory and physiological importance of this heterogeneity is unknown. Here, an improved annotation of the more than two hundred r-protein genes of Arabidopsis is presented that combines proteomic and advanced mRNA expression data. This proteomic investigation and re-annotation of Arabidopsis ribosomes establish a base for future investigations of translational control in plants.
Collapse
Affiliation(s)
- Maureen Hummel
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | - Thomas Dobrenel
- Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden; Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, Saclay Plant Sciences, F-78026 Versailles, France
| | - Jan J H G Cordewener
- BU Bioscience, Plant Research International, P.O. Box 619, 6700 AP Wageningen, The Netherlands
| | - Marlène Davanture
- Plateforme PAPPSO, UMR de Génétique Végétale, Ferme du Moulon, Gif sur Yvette, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin, UMR 1318 INRA AgroParisTech, Saclay Plant Sciences, F-78026 Versailles, France
| | - Sjef J C M Smeekens
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521-0124, USA
| | - Twan A H P America
- Centre for BioSystems Genomics, P.O. Box 98, 6700 AB Wageningen, The Netherlands; Netherlands Proteomics Centre, P.O. Box 80082, 3508 TB Utrecht, The Netherlands
| | - Johannes Hanson
- Molecular Plant Physiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands; Umeå Plant Science Center, Department of Plant Physiology, Umeå University, 90187, Umeå, Sweden.
| |
Collapse
|
45
|
Machida C, Nakagawa A, Kojima S, Takahashi H, Machida Y. The complex of ASYMMETRIC LEAVES (AS) proteins plays a central role in antagonistic interactions of genes for leaf polarity specification in Arabidopsis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2015; 4:655-71. [PMID: 26108442 PMCID: PMC4744985 DOI: 10.1002/wdev.196] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/23/2015] [Accepted: 05/12/2015] [Indexed: 01/17/2023]
Abstract
Leaf primordia are born around meristem‐containing stem cells at shoot apices, grow along three axes (proximal–distal, adaxial–abaxial, medial–lateral), and develop into flat symmetric leaves with adaxial–abaxial polarity. Axis development and polarity specification of Arabidopsis leaves require a network of genes for transcription factor‐like proteins and small RNAs. Here, we summarize present understandings of adaxial‐specific genes, ASYMMETRIC LEAVES1 (AS1) and AS2. Their complex (AS1–AS2) functions in the regulation of the proximal–distal leaf length by directly repressing class 1 KNOX homeobox genes (BP, KNAT2) that are expressed in the meristem periphery below leaf primordia. Adaxial–abaxial polarity specification involves antagonistic interaction of adaxial and abaxial genes including AS1 and AS2 for the development of two respective domains. AS1–AS2 directly represses the abaxial gene ETTIN/AUXIN RESPONSE FACTOR3 (ETT/ARF3) and indirectly represses ETT/ARF3 and ARF4 through tasiR‐ARF. Modifier mutations have been identified that abolish adaxialization and enhance the defect in the proximal–distal patterning in as1 and as2. AS1–AS2 and its modifiers synergistically repress both ARFs and class 1 KNOXs. Repression of ARFs is critical for establishing adaxial–abaxial polarity. On the other hand, abaxial factors KANADI1 (KAN1) and KAN2 directly repress AS2 expression. These data delineate a molecular framework for antagonistic gene interactions among adaxial factors, AS1, AS2, and their modifiers, and the abaxial factors ARFs as key regulators in the establishment of adaxial–abaxial polarity. Possible AS1–AS2 epigenetic repression and activities downstream of ARFs are discussed. WIREs Dev Biol 2015, 4:655–671. doi: 10.1002/wdev.196 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Chiyoko Machida
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Ayami Nakagawa
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Shoko Kojima
- Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Hiro Takahashi
- Graduate School of Horticulture, Chiba University, Chiba, Japan
| | | |
Collapse
|
46
|
Abstract
The development of plant leaves follows a common basic program that is flexible and is adjusted according to species, developmental stage and environmental circumstances. Leaves initiate from the flanks of the shoot apical meristem and develop into flat structures of variable sizes and forms. This process is regulated by plant hormones, transcriptional regulators and mechanical properties of the tissue. Here, we review recent advances in the understanding of how these factors modulate leaf development to yield a substantial diversity of leaf forms. We discuss these issues in the context of leaf initiation, the balance between morphogenesis and differentiation, and patterning of the leaf margin.
Collapse
Affiliation(s)
- Maya Bar
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| | - Naomi Ori
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture and The Otto Warburg Minerva Center for Agricultural Biotechnology, Hebrew University, P.O. Box 12, Rehovot 76100, Israel
| |
Collapse
|
47
|
Devis D, Firth SM, Liang Z, Byrne ME. Dosage Sensitivity of RPL9 and Concerted Evolution of Ribosomal Protein Genes in Plants. FRONTIERS IN PLANT SCIENCE 2015; 6:1102. [PMID: 26734020 PMCID: PMC4679983 DOI: 10.3389/fpls.2015.01102] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/22/2015] [Indexed: 05/19/2023]
Abstract
The ribosome in higher eukaryotes is a large macromolecular complex composed of four rRNAs and eighty different ribosomal proteins. In plants, each ribosomal protein is encoded by multiple genes. Duplicate genes within a family are often necessary to provide a threshold dose of a ribosomal protein but in some instances appear to have non-redundant functions. Here, we addressed whether divergent members of the RPL9 gene family are dosage sensitive or whether these genes have non-overlapping functions. The RPL9 family in Arabidopsis thaliana comprises two nearly identical members, RPL9B and RPL9C, and a more divergent member, RPL9D. Mutations in RPL9C and RPL9D genes lead to delayed growth early in development, and loss of both genes is embryo lethal, indicating that these are dosage-sensitive and redundant genes. Phylogenetic analysis of RPL9 as well as RPL4, RPL5, RPL27a, RPL36a, and RPS6 family genes in the Brassicaceae indicated that multicopy ribosomal protein genes have been largely retained following whole genome duplication. However, these gene families also show instances of tandem duplication, small scale deletion, and evidence of gene conversion. Furthermore, phylogenetic analysis of RPL9 genes in angiosperm species showed that genes within a species are more closely related to each other than to RPL9 genes in other species, suggesting ribosomal protein genes undergo convergent evolution. Our analysis indicates that ribosomal protein gene retention following whole genome duplication contributes to the number of genes in a family. However, small scale rearrangements influence copy number and likely drive concerted evolution of these dosage-sensitive genes.
Collapse
|
48
|
Mateo-Bonmatí E, Casanova-Sáez R, Candela H, Micol JL. Rapid identification of angulata leaf mutations using next-generation sequencing. PLANTA 2014; 240:1113-1122. [PMID: 25102851 DOI: 10.1007/s00425-014-2137-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 07/28/2014] [Indexed: 06/03/2023]
Abstract
Map-based (positional) cloning has traditionally been the preferred strategy for identifying the causal genes underlying the phenotypes of mutants isolated in forward genetic screens. Massively parallel sequencing technologies are enabling the rapid cloning of genes identified in such screens. We have used a combination of linkage mapping and whole-genome re-sequencing to identify the causal mutations in four loss-of-function angulata (anu) mutants. These mutants were isolated in a screen for mutants with defects in leaf shape and leaf pigmentation. Our results show that the anu1-1, anu4-1, anu9-1 and anu12-1 mutants carry new alleles of the previously characterized SECA2, TRANSLOCON AT THE OUTER MEMBRANE OF CHLOROPLASTS 33 (TOC33), NON-INTRINSIC ABC PROTEIN 14 (NAP14) and CLP PROTEASE PROTEOLYTIC SUBUNIT 1 (CLPR1) genes. Re-sequencing the genomes of fine mapped mutants is a feasible approach that has allowed us to identify a moderate number of candidate mutations, including the one that causes the mutant phenotype, in a nonstandard genetic background. Our results indicate that anu mutations specifically affect plastid-localized proteins involved in diverse processes, such as the movement of peptides through chloroplast membranes (ANU1 and ANU4), metal homeostasis (ANU9) and protein degradation (ANU12).
Collapse
Affiliation(s)
- Eduardo Mateo-Bonmatí
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Alicante, Spain
| | | | | | | |
Collapse
|
49
|
Chaki M, Kovacs I, Spannagl M, Lindermayr C. Computational prediction of candidate proteins for S-nitrosylation in Arabidopsis thaliana. PLoS One 2014; 9:e110232. [PMID: 25333472 PMCID: PMC4204854 DOI: 10.1371/journal.pone.0110232] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 09/17/2014] [Indexed: 02/04/2023] Open
Abstract
Nitric oxide (NO) is an important signaling molecule that regulates many physiological processes in plants. One of the most important regulatory mechanisms of NO is S-nitrosylation-the covalent attachment of NO to cysteine residues. Although the involvement of cysteine S-nitrosylation in the regulation of protein functions is well established, its substrate specificity remains unknown. Identification of candidates for S-nitrosylation and their target cysteine residues is fundamental for studying the molecular mechanisms and regulatory roles of S-nitrosylation in plants. Several experimental methods that are based on the biotin switch have been developed to identify target proteins for S-nitrosylation. However, these methods have their limits. Thus, computational methods are attracting considerable attention for the identification of modification sites in proteins. Using GPS-SNO version 1.0, a recently developed S-nitrosylation site-prediction program, a set of 16,610 candidate proteins for S-nitrosylation containing 31,900 S-nitrosylation sites was isolated from the entire Arabidopsis proteome using the medium threshold. In the compartments "chloroplast," "CUL4-RING ubiquitin ligase complex," and "membrane" more than 70% of the proteins were identified as candidates for S-nitrosylation. The high number of identified candidates in the proteome reflects the importance of redox signaling in these compartments. An analysis of the functional distribution of the predicted candidates showed that proteins involved in signaling processes exhibited the highest prediction rate. In a set of 46 proteins, where 53 putative S-nitrosylation sites were already experimentally determined, the GPS-SNO program predicted 60 S-nitrosylation sites, but only 11 overlap with the results of the experimental approach. In general, a computer-assisted method for the prediction of targets for S-nitrosylation is a very good tool; however, further development, such as including the three dimensional structure of proteins in such analyses, would improve the identification of S-nitrosylation sites.
Collapse
Affiliation(s)
- Mounira Chaki
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Izabella Kovacs
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Manuel Spannagl
- Institute of Bioinformatics and Systems Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
50
|
Tiller N, Bock R. The translational apparatus of plastids and its role in plant development. MOLECULAR PLANT 2014; 7:1105-20. [PMID: 24589494 PMCID: PMC4086613 DOI: 10.1093/mp/ssu022] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 02/26/2014] [Indexed: 05/18/2023]
Abstract
Chloroplasts (plastids) possess a genome and their own machinery to express it. Translation in plastids occurs on bacterial-type 70S ribosomes utilizing a set of tRNAs that is entirely encoded in the plastid genome. In recent years, the components of the chloroplast translational apparatus have been intensely studied by proteomic approaches and by reverse genetics in the model systems tobacco (plastid-encoded components) and Arabidopsis (nucleus-encoded components). This work has provided important new insights into the structure, function, and biogenesis of chloroplast ribosomes, and also has shed fresh light on the molecular mechanisms of the translation process in plastids. In addition, mutants affected in plastid translation have yielded strong genetic evidence for chloroplast genes and gene products influencing plant development at various levels, presumably via retrograde signaling pathway(s). In this review, we describe recent progress with the functional analysis of components of the chloroplast translational machinery and discuss the currently available evidence that supports a significant impact of plastid translational activity on plant anatomy and morphology.
Collapse
Affiliation(s)
- Nadine Tiller
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|