1
|
Koopmans T, van Rooij E. Molecular gatekeepers of endogenous adult mammalian cardiomyocyte proliferation. Nat Rev Cardiol 2025:10.1038/s41569-025-01145-y. [PMID: 40195566 DOI: 10.1038/s41569-025-01145-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/09/2025]
Abstract
Irreversible cardiac fibrosis, cardiomyocyte death and chronic cardiac dysfunction after myocardial infarction pose a substantial global health-care challenge, with no curative treatments available. To regenerate the injured heart, cardiomyocytes must proliferate to replace lost myocardial tissue - a capability that adult mammals have largely forfeited to adapt to the demanding conditions of life. Using various preclinical models, our understanding of cardiomyocyte proliferation has progressed remarkably, leading to the successful reactivation of cell cycle induction in adult animals, with functional recovery after cardiac injury. Central to this success is the targeting of key pathways and structures that drive cardiomyocyte maturation after birth - nucleation and ploidy, sarcomere structure, developmental signalling, chromatin and epigenetic regulation, the microenvironment and metabolic maturation - forming a complex regulatory framework that allows efficient cellular contraction but restricts cardiomyocyte proliferation. In this Review, we explore the molecular pathways underlying these core mechanisms and how their manipulation can reactivate the cell cycle in cardiomyocytes, potentially contributing to cardiac repair.
Collapse
Affiliation(s)
- Tim Koopmans
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands
| | - Eva van Rooij
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW) and University Medical Center Utrecht, Utrecht, Netherlands.
- Department of Cardiology, University Medical Center Utrecht, Utrecht, Netherlands.
| |
Collapse
|
2
|
Feng H, Yang S, Zhang L, Zhu J, Li J, Yang Z. A new Prdm1-Cre line is suitable for studying the second heart field development. Dev Biol 2024; 514:78-86. [PMID: 38880275 DOI: 10.1016/j.ydbio.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
The second heart field (SHF) plays a pivotal role in heart development, particularly in outflow tract (OFT) morphogenesis and septation, as well as in the expansion of the right ventricle (RV). Two mouse Cre lines, the Mef2c-AHF-Cre (Mef2c-Cre) and Isl1-Cre, have been widely used to study the SHF development. However, Cre activity is triggered not only in the SHF but also in the RV in the Mef2c-Cre mice, and in the Isl1-Cre mice, Cre activation is not SHF-specific. Therefore, a more suitable SHF-Cre line is desirable for better understanding SHF development. Here, we generated and characterized the Prdm1-Cre knock-in mice. In comparison with Mef2c-Cre mice, the Cre activity is similar in the pharyngeal and splanchnic mesoderm, and in the OFT of the Prdm1-Cre mice. Nonetheless, it was noticed that Cre expression is largely reduced in the RV of Prdm1-Cre mice compared to the Mef2c-Cre mice. Furthermore, we deleted Hand2, Nkx2-5, Pdk1 and Tbx20 using both Mef2c-Cre and Prdm1-Cre mice to study OFT morphogenesis and septation, making a comparison between these two Cre lines. New insights were obtained in understanding SHF development including differentiation into cardiomyocytes in the OFT using Prdm1-Cre mice. In conclusion, we found that Prdm1-Cre mouse line is a more appropriate tool to monitor SHF development, while the Mef2c-Cre mice are excellent in studying the role and function of the SHF in OFT morphogenesis and septation.
Collapse
Affiliation(s)
- Haiyue Feng
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Suming Yang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Lijun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China
| | - Jingai Zhu
- Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, China
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, Nanjing University Medical School, Nanjing, China.
| |
Collapse
|
3
|
Gao X, Pang S, Ding L, Yan H, Cui Y, Yan B. Genetic and functional variants of the TBX20 gene promoter in dilated cardiomyopathy. Mol Genet Genomic Med 2024; 12:e2355. [PMID: 38284443 PMCID: PMC10795084 DOI: 10.1002/mgg3.2355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/30/2024] Open
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a major cause of heart failure and sudden cardiac death. As DCM is a genetically heterogeneous disease, genetic variants of cardiac transcription factor genes may play an important role. Transcription factor TBX20, an indispensable factor in normal heart development, is involved in the regulation of cardiac structure and function. Although the TBX20 gene is associated with the occurrence and development of DCM, the influence of genetic variants of the TBX20 gene promoter region on DCM has not been reported. METHODS We conducted a case-control study consisting of 107 DCM patients and 210 healthy controls. Genetic variants within TBX20 gene promoter region were identified using sequencing techniques and were functionally analyzed by dual-luciferase reporting assay. Electrophoretic mobility shift assay (EMSA) was used to investigate DNA-protein interactions. RESULTS In this study cohort (n = 317), we identified eight variants within TBX20 gene promoter. One novel DNA sequence variants (DSV) (g.4275G>T) and four single-nucleotide polymorphisms (SNPs) [g.4169G>A (rs1263874255), g.4949C>T (rs1191745927), g.5114G>A (rs112076877), g.5252C>T (rs1356932911)] were identified in DCM patients, but in none of controls. Among them, the DSV (g.4275G>T) and three SNPs [g.4949C>T (rs1191745927), g.5114G>A (rs112076877) and g.5252C>T (rs1356932911)] significantly altered the transcription activity of TBX20 gene promoter by dual-luciferase reporting assay (p < 0.05). Further, EMSA assay indicated that the DSV (g.4275G>T) and three SNPs [g.4949C>T (rs1191745927), g.5114G>A (rs112076877) and g.5252C>T (rs1356932911)] affected the binding of transcription factors. CONCLUSIONS These data indicate that the DSV (g.4275G>T) and three SNPs [g.4949C>T (rs1191745927), g.5114G>A (rs112076877) and g.5252C>T (rs1356932911)] increase transcription activity of TBX20 gene promoter in both HEK-293 and neonatal rat cardiomyocytes (NRCMs) cell lines by affecting the binding of transcription factors. But the mechanism remains to be verified in vivo.
Collapse
Affiliation(s)
- Xue Gao
- Cheeloo College of MedicineShandong UniversityJinanShandongChina
| | - Shuchao Pang
- The Center for Molecular Genetics of Cardiovascular DiseasesAffiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
- Shandong Provincial Sino‐US Cooperation Research Center for Translational MedicineAffiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
| | - Liangcai Ding
- Center for Molecular MedicineYanzhou People's Hospital, Jining Medical UniversityJiningShandongChina
| | - Han Yan
- Center for Molecular MedicineYanzhou People's Hospital, Jining Medical UniversityJiningShandongChina
| | - Yinghua Cui
- Division of CardiologyAffiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
| | - Bo Yan
- The Center for Molecular Genetics of Cardiovascular DiseasesAffiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
- Shandong Provincial Sino‐US Cooperation Research Center for Translational MedicineAffiliated Hospital of Jining Medical University, Jining Medical UniversityJiningShandongChina
- Center for Molecular MedicineYanzhou People's Hospital, Jining Medical UniversityJiningShandongChina
- Institute of Precision MedicineJining Medical UniversityJiningShandongChina
| |
Collapse
|
4
|
Bileckyj C, Blotz B, Cripps RM. Drosophila as a Model to Understand Second Heart Field Development. J Cardiovasc Dev Dis 2023; 10:494. [PMID: 38132661 PMCID: PMC10744189 DOI: 10.3390/jcdd10120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The genetic model system Drosophila has contributed fundamentally to our understanding of mammalian heart specification, development, and congenital heart disease. The relatively simple Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists throughout the life of the animal. It functions at all stages to circulate hemolymph within the open circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled, and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral longitudinal muscles. The formation of these fibers depends critically upon genes known to be necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions of the Drosophila system to the understanding of heart development and disease, discuss the importance of the SHF to mammalian heart development and disease, and then discuss how the ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF development and disease.
Collapse
Affiliation(s)
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
5
|
Edwards W, Bussey OK, Conlon FL. The Tbx20-TLE interaction is essential for the maintenance of the second heart field. Development 2023; 150:dev201677. [PMID: 37756602 PMCID: PMC10629681 DOI: 10.1242/dev.201677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
T-box transcription factor 20 (Tbx20) plays a multifaceted role in cardiac morphogenesis and controls a broad gene regulatory network. However, the mechanism by which Tbx20 activates and represses target genes in a tissue-specific and temporal manner remains unclear. Studies show that Tbx20 directly interacts with the Transducin-like Enhancer of Split (TLE) family of proteins to mediate transcriptional repression. However, a function for the Tbx20-TLE transcriptional repression complex during heart development has yet to be established. We created a mouse model with a two amino acid substitution in the Tbx20 EH1 domain, thereby disrupting the Tbx20-TLE interaction. Disruption of this interaction impaired crucial morphogenic events, including cardiac looping and chamber formation. Transcriptional profiling of Tbx20EH1Mut hearts and analysis of putative direct targets revealed misexpression of the retinoic acid pathway and cardiac progenitor genes. Further, we show that altered cardiac progenitor development and function contribute to the severe cardiac defects in our model. Our studies indicate that TLE-mediated repression is a primary mechanism by which Tbx20 controls gene expression.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Olivia K. Bussey
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank L. Conlon
- Department of Biology and Genetics, McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Integrative Program for Biological & Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
6
|
Jin B, Ishikawa T, Kashima M, Komura R, Hirata H, Okada T, Mori K. Activation of XBP1 but not ATF6α rescues heart failure induced by persistent ER stress in medaka fish. Life Sci Alliance 2023; 6:e202201771. [PMID: 37160311 PMCID: PMC10172766 DOI: 10.26508/lsa.202201771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/11/2023] Open
Abstract
The unfolded protein response is triggered in vertebrates by ubiquitously expressed IRE1α/β (although IRE1β is gut-specific in mice), PERK, and ATF6α/β, transmembrane-type sensor proteins in the ER, to cope with ER stress, the accumulation of unfolded and misfolded proteins in the ER. Here, we burdened medaka fish, a vertebrate model organism, with ER stress persistently from fertilization by knocking out the AXER gene encoding an ATP/ADP exchanger in the ER membrane, leading to decreased ATP concentration-mediated impairment of the activity of Hsp70- and Hsp90-type molecular chaperones in the ER lumen. ER stress and apoptosis were evoked from 4 and 6 dpf, respectively, leading to the death of all AXER-KO medaka by 12 dpf because of heart failure (medaka hatch at 7 dpf). Importantly, constitutive activation of IRE1α signaling-but not ATF6α signaling-rescued this heart failure and allowed AXER-KO medaka to survive 3 d longer, likely because of XBP1-mediated transcriptional induction of ER-associated degradation components. Thus, activation of a specific pathway of the unfolded protein response can cure defects in a particular organ.
Collapse
Affiliation(s)
- Byungseok Jin
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Tokiro Ishikawa
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Makoto Kashima
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Rei Komura
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Hiromi Hirata
- Department of Chemistry and Biological Science, College of Science and Engineering, Aoyama Gakuin University, Sagamihara, Japan
| | - Tetsuya Okada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| | - Kazutoshi Mori
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
7
|
Yoshida Y, Uchida K, Kodo K, Ishizaki-Asami R, Maeda J, Katsumata Y, Yuasa S, Fukuda K, Kosaki K, Watanabe Y, Nakagawa O, Yamagishi H. A genetic and developmental biological approach for a family with complex congenital heart diseases-evidence of digenic inheritance. Front Cardiovasc Med 2023; 10:1135141. [PMID: 37180804 PMCID: PMC10166836 DOI: 10.3389/fcvm.2023.1135141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/10/2023] [Indexed: 05/16/2023] Open
Abstract
Objective Congenital heart disease (CHD) is caused by cardiovascular developmental defects and has a global prevalence of ∼1%. The etiology of CHD is multifactorial and remains generally unknown, despite advances in analytical techniques based on next-generation sequencing (NGS). The aim of our study was to elucidate the multi-genetic origin and pathogenesis of an intriguing familial case with complex CHD. Methods We performed an original trio-based gene panel analysis using NGS of the family, including two siblings with CHD of single ventricular phenotype, and their unaffected parents. The pathogenicity of the detected rare variants was investigated in silico, and the functional effects of the variants were confirmed in vitro using luciferase assays. The combinatorial effect of gene alterations of the putative responsible genes was tested in vivo using genetically engineered mutant mice. Results NGS-based gene panel analyses revealed two heterozygous rare variants in NODAL and in TBX20 common to the siblings and to just one of parents. Both variants were suspected pathogenic in silico, and decreased transcriptional activities of downstream signaling pathways were observed in vitro. The analyses of Nodal and Tbx20 double mutant mice demonstrated that Nodal+/-Tbx20-/- embryos showed more severe defects than Nodal+/+Tbx20-/- embryos during early heart development. The expression of Pitx2, a known downstream target of Nodal, was downregulated in Tbx20-/- mutants. Conclusions Two rare variants on NODAL and TBX20 genes detected in this family were considered to be loss-of-function mutations. Our results suggest that NODAL and TBX20 may be complementary for the cardiac development, and a combinatorial loss-of-function of NODAL and TBX20 could be implicated in digenic inherence as the etiology of complex CHD associated with single ventricle defects in this family.
Collapse
Affiliation(s)
- Yu Yoshida
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Uchida
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
- Health Center, Keio University, Kanagawa, Japan
| | - Kazuki Kodo
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Jun Maeda
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| | | | - Shinsuke Yuasa
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Keiichi Fukuda
- Department of Cardiology, Keio University School of Medicine, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan
| | - Hiroyuki Yamagishi
- Department of Pediatrics, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
8
|
Das S, Mondal A, Dey C, Chakraborty S, Bhowmik R, Karmakar S, Sengupta A. ER stress induces upregulation of transcription factor Tbx20 and downstream Bmp2 signaling to promote cardiomyocyte survival. J Biol Chem 2023; 299:103031. [PMID: 36805334 PMCID: PMC10036653 DOI: 10.1016/j.jbc.2023.103031] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/03/2023] [Accepted: 02/04/2023] [Indexed: 02/17/2023] Open
Abstract
In the mammalian heart, fetal cardiomyocytes proliferate prior to birth; however, they exit the cell cycle shortly after birth. Recent studies show that adult cardiomyocytes re-enters the cell cycle postinjury to promote cardiac regeneration. The endoplasmic reticulum (ER) orchestrates the production and assembly of different types of proteins, and a disruption in this machinery leads to the generation of ER stress, which activates the unfolded protein response. There is a very fine balance between ER stress-mediated protective and proapoptotic responses. T-box transcription factor 20 (Tbx20) promotes embryonic and adult cardiomyocyte proliferation postinjury to restore cardiac homeostasis. However, the function and regulatory interactions of Tbx20 in ER stress-induced cardiomyopathy have not yet been reported. We show here that ER stress upregulates Tbx20, which activates downstream bone morphogenetic protein 2 (Bmp2)-pSmad1/5/8 signaling to induce cardiomyocyte proliferation and limit apoptosis. However, augmenting ER stress reverses this protective response. We also show that increased expression of tbx20 during ER stress is mediated by the activating transcription factor 6 arm of the unfolded protein response. Cardiomyocyte-specific loss of Tbx20 results in decreased cardiomyocyte proliferation and increased apoptosis. Administration of recombinant Bmp2 protein during ER stress upregulates Tbx20 leading to augmented proliferation, indicating a feed-forward loop mechanism. In in vivo ER stress, as well as in diabetic cardiomyopathy, the activity of Tbx20 is increased with concomitant increased cardiomyocyte proliferation and decreased apoptosis. These data support a critical role of Tbx20-Bmp2 signaling in promoting cardiomyocyte survival during ER stress-induced cardiomyopathies.
Collapse
Affiliation(s)
- Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Arunima Mondal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | - Chandrani Dey
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India
| | | | - Rudranil Bhowmik
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Sanmoy Karmakar
- Bioequivalence Study Centre, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, India.
| |
Collapse
|
9
|
Epigenetic Evaluation of the TBX20 Gene and Environmental Risk Factors in Mexican Paediatric Patients with Congenital Septal Defects. Cells 2023; 12:cells12040586. [PMID: 36831251 PMCID: PMC9953838 DOI: 10.3390/cells12040586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
The TBX20 gene has a key role during cardiogenesis, and it has been related to epigenetic mechanisms in congenital heart disease (CHD). The purpose of this study was to assess the association between DNA methylation status and congenital septal defects. The DNA methylation of seven CpG sites in the TBX20 gene promoter was analyzed through pyrosequencing as a quantitative method in 48 patients with congenital septal defects and 104 individuals with patent ductus arteriosus (PDA). The average methylation was higher in patients than in PDA (p < 0.001). High methylation levels were associated with a higher risk of congenital septal defects (OR = 4.59, 95% CI = 1.57-13.44, p = 0.005). The ROC curve analysis indicated that methylation of the TBX20 gene could be considered a risk marker for congenital septal defects (AUC = 0.682; 95% CI = 0.58-0.77; p < 0.001). The analysis of environmental risk factors in patients with septal defects and PDA showed an association between the consumption of vitamins (OR = 0.10; 95% CI = 0.01-0.98; p = 0.048) and maternal infections (OR = 3.10; 95% CI = 1.26-7.60; p = 0.013). These results suggest that differences in DNA methylation of the TBX20 gene can be associated with septal defects.
Collapse
|
10
|
Gao X, Yan B. The mechanism and diagnostic value of Tbx20 in cardiovascular diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
11
|
Tang Y, Aryal S, Geng X, Zhou X, Fast VG, Zhang J, Lu R, Zhou Y. TBX20 Improves Contractility and Mitochondrial Function During Direct Human Cardiac Reprogramming. Circulation 2022; 146:1518-1536. [PMID: 36102189 PMCID: PMC9662826 DOI: 10.1161/circulationaha.122.059713] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Direct cardiac reprogramming of fibroblasts into cardiomyocytes has emerged as a promising strategy to remuscularize injured myocardium. However, it is insufficient to generate functional induced cardiomyocytes from human fibroblasts using conventional reprogramming cocktails, and the underlying molecular mechanisms are not well studied. METHODS To discover potential missing factors for human direct reprogramming, we performed transcriptomic comparison between human induced cardiomyocytes and functional cardiomyocytes. RESULTS We identified TBX20 (T-box transcription factor 20) as the top cardiac gene that is unable to be activated by the MGT133 reprogramming cocktail (MEF2C, GATA4, TBX5, and miR-133). TBX20 is required for normal heart development and cardiac function in adult cardiomyocytes, yet its role in cardiac reprogramming remains undefined. We show that the addition of TBX20 to the MGT133 cocktail (MGT+TBX20) promotes cardiac reprogramming and activates genes associated with cardiac contractility, maturation, and ventricular heart. Human induced cardiomyocytes produced with MGT+TBX20 demonstrated more frequent beating, calcium oscillation, and higher energy metabolism as evidenced by increased mitochondria numbers and mitochondrial respiration. Mechanistically, comprehensive transcriptomic, chromatin occupancy, and epigenomic studies revealed that TBX20 colocalizes with MGT reprogramming factors at cardiac gene enhancers associated with heart contraction, promotes chromatin binding and co-occupancy of MGT factors at these loci, and synergizes with MGT for more robust activation of target gene transcription. CONCLUSIONS TBX20 consolidates MGT cardiac reprogramming factors to activate cardiac enhancers to promote cardiac cell fate conversion. Human induced cardiomyocytes generated with TBX20 showed enhanced cardiac function in contractility and mitochondrial respiration.
Collapse
Affiliation(s)
- Yawen Tang
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Sajesan Aryal
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Xiaoxiao Geng
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Xinyue Zhou
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Vladimir G. Fast
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Jianyi Zhang
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Rui Lu
- Department of Medicine, Division of Hematology and Oncology (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham.,O’Neal Comprehensive Cancer Center (S.A., X.Z., R.L.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| | - Yang Zhou
- Department of Biomedical Engineering (Y.T., X.G., V.G.F., J.Z., Y.Z.), Heersink School of Medicine, School of Engineering, University of Alabama at Birmingham
| |
Collapse
|
12
|
Feulner L, van Vliet PP, Puceat M, Andelfinger G. Endocardial Regulation of Cardiac Development. J Cardiovasc Dev Dis 2022; 9:jcdd9050122. [PMID: 35621833 PMCID: PMC9144171 DOI: 10.3390/jcdd9050122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023] Open
Abstract
The endocardium is a specialized form of endothelium that lines the inner side of the heart chambers and plays a crucial role in cardiac development. While comparatively less studied than other cardiac cell types, much progress has been made in understanding the regulation of and by the endocardium over the past two decades. In this review, we will summarize what is currently known regarding endocardial origin and development, the relationship between endocardium and other cardiac cell types, and the various lineages that endocardial cells derive from and contribute to. These processes are driven by key molecular mechanisms such as Notch and BMP signaling. These pathways in particular have been well studied, but other signaling pathways and mechanical cues also play important roles. Finally, we will touch on the contribution of stem cell modeling in combination with single cell sequencing and its potential translational impact for congenital heart defects such as bicuspid aortic valves and hypoplastic left heart syndrome. The detailed understanding of cellular and molecular processes in the endocardium will be vital to further develop representative stem cell-derived models for disease modeling and regenerative medicine in the future.
Collapse
Affiliation(s)
- Lara Feulner
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Molecular Biology, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Patrick Piet van Vliet
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
| | - Michel Puceat
- LIA (International Associated Laboratory) CHU Sainte-Justine, Montreal, QC H3T 1C5, Canada;
- LIA (International Associated Laboratory) INSERM, 13885 Marseille, France
- INSERM U-1251, Marseille Medical Genetics, Aix-Marseille University, 13885 Marseille, France
| | - Gregor Andelfinger
- Cardiovascular Genetics, CHU Sainte-Justine Research Centre, Montreal, QC H3T 1C5, Canada; (L.F.); (P.P.v.V.)
- Department of Biochemistry and Molecular Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Pediatrics, University of Montreal, Montreal, QC H3T 1J4, Canada
- Department of Biochemistry, University of Montreal, Montreal, QC H3T 1J4, Canada
- Correspondence:
| |
Collapse
|
13
|
Almonaem ERA, Soliman DR, El Sayed MAM, Ahmed IA, Abdelrahman EG. Association between SNP rs59382073 in TBX2 3′ UTR and susceptibility to congenital heart diseases. GENE REPORTS 2022. [DOI: 10.1016/j.genrep.2022.101609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
15
|
Zhou Y, Zhang J. Remuscularization of Ventricular Infarcts Using the Existing Cardiac Cells. ADVANCED TECHNOLOGIES IN CARDIOVASCULAR BIOENGINEERING 2022:51-78. [DOI: 10.1007/978-3-030-86140-7_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
16
|
Wang E, Fan X, Nie Y, Zheng Z, Hu S. Single-Nucleotide Polymorphisms in Exonic and Promoter Regions of Transcription Factors of Second Heart Field Associated with Sporadic Congenital Cardiac Anomalies. Balkan J Med Genet 2021; 24:39-47. [PMID: 36249516 PMCID: PMC9524169 DOI: 10.2478/bjmg-2021-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Multiple second heart field (SHF) transcription factors are involved in cardiac development. In this article we evaluate the relationship between SHF transcription factor polymorphisms and congenital heart disease (CHD). Ten polymorphisms were used for genotyping, and three of these were used for the luciferase assay. The risk of CHD was increased 4.31 times and 1.54 times in the C allele of GATA5: rs6061243 G>C and G allele of TBX20: rs336283 A>G, respectively. The minor alleles of SMYD1: rs1542088 T>G, MEF2C: rs80043958 A>G and GATA5: rs6587239 T>C increased the risk of the simple types of CHD. The minor alleles of GATA5: rs41305803 G>A and MEF2C: rs304154 A>G increased the risk of tetralogy of Fallot (TOF). The minor alleles of TBX20: rs336284 A>G and SMYD1: rs88387557 T>G only increased the risk of a single ventricle (SV). Luciferase assays revealed that the minor alleles of rs304154 and rs336284 decreased the transcriptional levels of MEF2C and TBX20, respectively (p<0.01). When combined with HLTF, the G promoter showed a higher expression level than the A promoter in rs80043958 (p<0.01). Our findings suggest that minor alleles of SNPs in the exonic and promoter regions of transcription factors in the SHF can increase the risks of sporadic CHD.
Collapse
Affiliation(s)
- E Wang
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - X Fan
- Clinical Laboratory Center, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel DiseasesBeijing, 100029, China
| | - Y Nie
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - Z Zheng
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| | - S Hu
- Cardiac Surgery Department, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100037, China
| |
Collapse
|
17
|
Zhang JM, Yu RQ, Wu FZ, Qiao L, Wu XR, Fu YJ, Liang YF, Pang Y, Xie CY. BMP-2 alleviates heart failure with type 2 diabetes mellitus and doxorubicin-induced AC16 cell injury by inhibiting NLRP3 inflammasome-mediated pyroptosis. Exp Ther Med 2021; 22:897. [PMID: 34257710 DOI: 10.3892/etm.2021.10329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic heart failure (CHF) and diabetes mellitus are associated with morbidity and mortality. CHF and diabetes generally simultaneously occur, resulting in adverse outcomes. Diabetes complicates cardiomyopathy and exacerbates heart failure conditions. An increase in natriuretic peptides, including atrial natriuretic peptide (ANP), and another endsogenously generated peptide, brain natriuretic peptide (BNP), serves an essential role in CHF. The aim of this study was to explore the molecular regulation between bone morphogenetic protein-2 (BMP-2) and ANP or BNP in diabetes-associated cardiomyopathy. In total, 25 serum samples were collected from patients with CHF with or without type 2 diabetes mellitus to compare with 25 controls. Cardiomyopathy and hyperglycemia were induced in rats by doxorubicin and streptozotocin, respectively. AC16 cells were used to study molecular mechanisms. BMP, ANP and BNP concentration in patients and rats were measured by ELISA. Flow cytometry was performed to analyze cell pyroptosis and ROS production. Reverse transcription-quantitative PCR and western blotting were used to examine mRNA and protein expression of NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3), pro-caspase-1, caspase-1 (p20) and gasdermin D. BMP-2 was negatively correlated with ANP and BNP in CHF patients with type 2 diabetes mellitus. Similar results were obtained in rats and AC16 cells. BMP-2 decreased the NLRP3 inflammasome activation and cell pyroptosis. The present study found evidence that the cardioprotective effects of BMP-2 act through ANP and BNP both in vivo and in vitro. BMP-2 inhibits inflammasome formation. The results suggested that BMP-2 may serve as a novel therapeutic target for the treatment of diabetic heart conditions.
Collapse
Affiliation(s)
- Jia-Mei Zhang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Rui-Qun Yu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Feng-Zhu Wu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Liang Qiao
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Xiao-Rong Wu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Ying-Jie Fu
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Yue-Feng Liang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Yu Pang
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| | - Chun-Yi Xie
- Department of Cardiovascular Medicine, Shanghai TCM-Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, P.R. China
| |
Collapse
|
18
|
Maldonado-Velez G, Firulli AB. Mechanisms Underlying Cardiomyocyte Development: Can We Exploit Them to Regenerate the Heart? Curr Cardiol Rep 2021; 23:81. [PMID: 34081213 DOI: 10.1007/s11886-021-01510-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/14/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW It is well established that the adult mammalian cardiomyocytes retain a low capacity for cell cycle activity; however, it is insufficient to effectively respond to myocardial injury and facilitate cardiac regenerative repair. Lessons learned from species in which cardiomyocytes do allow for proliferative regeneration/repair have shed light into the mechanisms underlying cardiac regeneration post-injury. Importantly, many of these mechanisms are conserved across species, including mammals, and efforts to tap into these mechanisms effectively within the adult heart are currently of great interest. RECENT FINDINGS Targeting the endogenous gene regulatory networks (GRNs) shown to play roles in the cardiac regeneration of conducive species is seen as a strong approach, as delivery of a single or combination of genes has promise to effectively enhance cell cycle activity and CM proliferation in adult hearts post-myocardial infarction (MI). In situ re-induction of proliferative gene regulatory programs within existing, local, non-damaged cardiomyocytes helps overcome significant technical hurdles, such as successful engraftment of implanted cells or achieving complete cardiomyocyte differentiation from cell-based approaches. Although many obstacles currently exist and need to be overcome to successfully translate these approaches to clinical settings, the current efforts presented here show great promise.
Collapse
Affiliation(s)
- Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN, 46202-5225, USA.
| |
Collapse
|
19
|
Rufaihah AJ, Chen CK, Yap CH, Mattar CNZ. Mending a broken heart: In vitro, in vivo and in silico models of congenital heart disease. Dis Model Mech 2021; 14:dmm047522. [PMID: 33787508 PMCID: PMC8033415 DOI: 10.1242/dmm.047522] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Birth defects contribute to ∼0.3% of global infant mortality in the first month of life, and congenital heart disease (CHD) is the most common birth defect among newborns worldwide. Despite the significant impact on human health, most treatments available for this heterogenous group of disorders are palliative at best. For this reason, the complex process of cardiogenesis, governed by multiple interlinked and dose-dependent pathways, is well investigated. Tissue, animal and, more recently, computerized models of the developing heart have facilitated important discoveries that are helping us to understand the genetic, epigenetic and mechanobiological contributors to CHD aetiology. In this Review, we discuss the strengths and limitations of different models of normal and abnormal cardiogenesis, ranging from single-cell systems and 3D cardiac organoids, to small and large animals and organ-level computational models. These investigative tools have revealed a diversity of pathogenic mechanisms that contribute to CHD, including genetic pathways, epigenetic regulators and shear wall stresses, paving the way for new strategies for screening and non-surgical treatment of CHD. As we discuss in this Review, one of the most-valuable advances in recent years has been the creation of highly personalized platforms with which to study individual diseases in clinically relevant settings.
Collapse
Affiliation(s)
- Abdul Jalil Rufaihah
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Ching Kit Chen
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228
| | - Choon Hwai Yap
- Division of Cardiology, Department of Paediatrics, Khoo Teck Puat -National University Children's Medical Institute, National University Health System, Singapore 119228
- Department of Bioengineering, Imperial College London, London, UK
| | - Citra N Z Mattar
- Experimental Fetal Medicine Group, Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228
- Department of Obstetrics and Gynaecology, National University Health System, Singapore 119228
| |
Collapse
|
20
|
Transcriptional Regulation of Postnatal Cardiomyocyte Maturation and Regeneration. Int J Mol Sci 2021; 22:ijms22063288. [PMID: 33807107 PMCID: PMC8004589 DOI: 10.3390/ijms22063288] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/17/2022] Open
Abstract
During the postnatal period, mammalian cardiomyocytes undergo numerous maturational changes associated with increased cardiac function and output, including hypertrophic growth, cell cycle exit, sarcomeric protein isoform switching, and mitochondrial maturation. These changes come at the expense of loss of regenerative capacity of the heart, contributing to heart failure after cardiac injury in adults. While most studies focus on the transcriptional regulation of embryonic or adult cardiomyocytes, the transcriptional changes that occur during the postnatal period are relatively unknown. In this review, we focus on the transcriptional regulators responsible for these aspects of cardiomyocyte maturation during the postnatal period in mammals. By specifically highlighting this transitional period, we draw attention to critical processes in cardiomyocyte maturation with potential therapeutic implications in cardiovascular disease.
Collapse
|
21
|
Abstract
Cardiac development is a complex developmental process that is initiated soon after gastrulation, as two sets of precardiac mesodermal precursors are symmetrically located and subsequently fused at the embryonic midline forming the cardiac straight tube. Thereafter, the cardiac straight tube invariably bends to the right, configuring the first sign of morphological left–right asymmetry and soon thereafter the atrial and ventricular chambers are formed, expanded and progressively septated. As a consequence of all these morphogenetic processes, the fetal heart acquired a four-chambered structure having distinct inlet and outlet connections and a specialized conduction system capable of directing the electrical impulse within the fully formed heart. Over the last decades, our understanding of the morphogenetic, cellular, and molecular pathways involved in cardiac development has exponentially grown. Multiples aspects of the initial discoveries during heart formation has served as guiding tools to understand the etiology of cardiac congenital anomalies and adult cardiac pathology, as well as to enlighten novels approaches to heal the damaged heart. In this review we provide an overview of the complex cellular and molecular pathways driving heart morphogenesis and how those discoveries have provided new roads into the genetic, clinical and therapeutic management of the diseased hearts.
Collapse
|
22
|
Chen Y, Xiao D, Zhang L, Cai CL, Li BY, Liu Y. The Role of Tbx20 in Cardiovascular Development and Function. Front Cell Dev Biol 2021; 9:638542. [PMID: 33585493 PMCID: PMC7876368 DOI: 10.3389/fcell.2021.638542] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 01/08/2021] [Indexed: 01/05/2023] Open
Abstract
Tbx20 is a member of the Tbx1 subfamily of T-box-containing genes and is known to play a variety of fundamental roles in cardiovascular development and homeostasis as well as cardiac remodeling in response to pathophysiological stresses. Mutations in TBX20 are widely associated with the complex spectrum of congenital heart defects (CHDs) in humans, which includes defects in chamber septation, chamber growth, and valvulogenesis. In addition, genetic variants of TBX20 have been found to be associated with dilated cardiomyopathy and heart arrhythmia. This broad spectrum of cardiac morphogenetic and functional defects is likely due to its broad expression pattern in multiple cardiogenic cell lineages and its critical regulation of transcriptional networks during cardiac development. In this review, we summarize recent findings in our general understanding of the role of Tbx20 in regulating several important aspects of cardiac development and homeostasis and heart function.
Collapse
Affiliation(s)
- Yuwen Chen
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China.,Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Deyong Xiao
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Lu Zhang
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Chen-Leng Cai
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| | - Bai-Yan Li
- Department of Pharmacology, College of Pharmacy, Harbin Medical University, Harbin, China
| | - Ying Liu
- Cardiovascular Developmental Biology Program, Herman B Wells Center for Pediatric Research, Indianapolis, IN, United States
| |
Collapse
|
23
|
Seya D, Ihara D, Shirai M, Kawamura T, Watanabe Y, Nakagawa O. A role of Hey2 transcription factor for right ventricle development through regulation of Tbx2-Mycn pathway during cardiac morphogenesis. Dev Growth Differ 2021; 63:82-92. [PMID: 33410138 DOI: 10.1111/dgd.12707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/29/2020] [Accepted: 12/19/2020] [Indexed: 01/01/2023]
Abstract
A basic helix-loop-helix transcription factor Hey2 is expressed in the ventricular myocardium and endocardium of mouse embryos, and Hey2 null mice die perinatally showing ventricular septal defect, dysplastic tricuspid valve and hypoplastic right ventricle. In order to understand region-specific roles of Hey2 during cardiac morphogenesis, we generated Hey2 conditional knockout (cKO) mice using Mef2c-AHF-Cre, which was active in the anterior part of the second heart field and the right ventricle and outflow tract of the heart. Hey2 cKO neonates reproduced three anomalies commonly observed in Hey2 null mice. An earliest morphological defect was the lack of right ventricular extension along the apico-basal axis at midgestational stages. Underdevelopment of the right ventricle was present in all cKO neonates including those without apparent atresia of right-sided atrioventricular connection. RNA sequencing analysis of cKO embryos identified that the gene expression of a non-chamber T-box factor Tbx2 was ectopically induced in the chamber myocardium of the right ventricle. Consistently, mRNA expression of the Mycn transcription factor, which was a cell cycle regulator transcriptionally repressed by Tbx2, was down regulated, and the number of S-phase cells was significantly decreased in the right ventricle of cKO heart. These results suggest that Hey2 plays an important role in right ventricle development during cardiac morphogenesis, at least in part, through mitigating Tbx2-dependent inhibition of Mycn expression.
Collapse
Affiliation(s)
- Daiki Seya
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Department of Cell Physiology, The Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Dai Ihara
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan.,Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Manabu Shirai
- Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Osaka, Japan
| | - Teruhisa Kawamura
- Laboratory of Stem Cell & Regenerative Medicine, Department of Biomedical Sciences, College of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Yusuke Watanabe
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| | - Osamu Nakagawa
- Department of Molecular Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Osaka, Japan
| |
Collapse
|
24
|
Fang Y, Lai KS, She P, Sun J, Tao W, Zhong TP. Tbx20 Induction Promotes Zebrafish Heart Regeneration by Inducing Cardiomyocyte Dedifferentiation and Endocardial Expansion. Front Cell Dev Biol 2020; 8:738. [PMID: 32850848 PMCID: PMC7417483 DOI: 10.3389/fcell.2020.00738] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022] Open
Abstract
Heart regeneration requires replenishment of lost cardiomyocytes (CMs) and cells of the endocardial lining. However, the signaling regulation and transcriptional control of myocardial dedifferentiation and endocardial activation are incompletely understood during cardiac regeneration. Here, we report that T-Box Transcription Factor 20 (Tbx20) is induced rapidly in the myocardial wound edge in response to various sources of cardiac damages in zebrafish. Inducing Tbx20 specifically in the adult myocardium promotes injury-induced CM proliferation through CM dedifferentiation, leading to loss of CM cellular contacts and re-expression of cardiac embryonic or fetal gene programs. Unexpectedly, we identify that myocardial Tbx20 induction activates the endocardium at the injury site with enhanced endocardial cell extension and proliferation, where it induces the endocardial Bone morphogenetic protein 6 (Bmp6) signaling. Pharmacologically inactivating endocardial Bmp6 signaling reduces expression of its targets, Id1 and Id2b, attenuating the increased endocardial regeneration in tbx20-overexpressing hearts. Altogether, our study demonstrates that Tbx20 induction promotes adult heart regeneration by inducing cardiomyocyte dedifferentiation as well as non-cell-autonomously enhancing endocardial cell regeneration.
Collapse
Affiliation(s)
- Yabo Fang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Kaa Seng Lai
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Peilu She
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Jianjian Sun
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| | - Wufan Tao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Tao P Zhong
- Shanghai Key Laboratory of Regulatory Biology, Institute of Molecular Medicine, School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
25
|
Ihara D, Watanabe Y, Seya D, Arai Y, Isomoto Y, Nakano A, Kubo A, Ogura T, Kawamura T, Nakagawa O. Expression of Hey2 transcription factor in the early embryonic ventricles is controlled through a distal enhancer by Tbx20 and Gata transcription factors. Dev Biol 2020; 461:124-131. [DOI: 10.1016/j.ydbio.2020.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/01/2020] [Accepted: 02/01/2020] [Indexed: 02/07/2023]
|
26
|
Boogerd CJ, Zhu X, Aneas I, Sakabe N, Zhang L, Sobreira DR, Montefiori L, Bogomolovas J, Joslin AC, Zhou B, Chen J, Nobrega MA, Evans SM. Tbx20 Is Required in Mid-Gestation Cardiomyocytes and Plays a Central Role in Atrial Development. Circ Res 2019; 123:428-442. [PMID: 29903739 PMCID: PMC6092109 DOI: 10.1161/circresaha.118.311339] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Supplemental Digital Content is available in the text. Rationale: Mutations in the transcription factor TBX20 (T-box 20) are associated with congenital heart disease. Germline ablation of Tbx20 results in abnormal heart development and embryonic lethality by embryonic day 9.5. Because Tbx20 is expressed in multiple cell lineages required for myocardial development, including pharyngeal endoderm, cardiogenic mesoderm, endocardium, and myocardium, the cell type–specific requirement for TBX20 in early myocardial development remains to be explored. Objective: Here, we investigated roles of TBX20 in midgestation cardiomyocytes for heart development. Methods and Results: Ablation of Tbx20 from developing cardiomyocytes using a doxycycline inducible cTnTCre transgene led to embryonic lethality. The circumference of developing ventricular and atrial chambers, and in particular that of prospective left atrium, was significantly reduced in Tbx20 conditional knockout mutants. Cell cycle analysis demonstrated reduced proliferation of Tbx20 mutant cardiomyocytes and their arrest at the G1-S phase transition. Genome-wide transcriptome analysis of mutant cardiomyocytes revealed differential expression of multiple genes critical for cell cycle regulation. Moreover, atrial and ventricular gene programs seemed to be aberrantly regulated. Putative direct TBX20 targets were identified using TBX20 ChIP-Seq (chromatin immunoprecipitation with high throughput sequencing) from embryonic heart and included key cell cycle genes and atrial and ventricular specific genes. Notably, TBX20 bound a conserved enhancer for a gene key to atrial development and identity, COUP-TFII/Nr2f2 (chicken ovalbumin upstream promoter transcription factor 2/nuclear receptor subfamily 2, group F, member 2). This enhancer interacted with the NR2F2 promoter in human cardiomyocytes and conferred atrial specific gene expression in a transgenic mouse in a TBX20-dependent manner. Conclusions: Myocardial TBX20 directly regulates a subset of genes required for fetal cardiomyocyte proliferation, including those required for the G1-S transition. TBX20 also directly downregulates progenitor-specific genes and, in addition to regulating genes that specify chamber versus nonchamber myocardium, directly activates genes required for establishment or maintenance of atrial and ventricular identity. TBX20 plays a previously unappreciated key role in atrial development through direct regulation of an evolutionarily conserved COUPT-FII enhancer.
Collapse
Affiliation(s)
- Cornelis J. Boogerd
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Xiaoming Zhu
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Ivy Aneas
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Noboru Sakabe
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lunfeng Zhang
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
| | - Debora R. Sobreira
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Lindsey Montefiori
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Julius Bogomolovas
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany (J.B.)
| | - Amelia C. Joslin
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Bin Zhou
- Department of Genetics, Medicine and Pediatrics, Albert Einstein College of Medicine of Yeshiva University, New York, NY (B.Z.)
| | - Ju Chen
- Department of Medicine (J.B., J.C., S.M.E.)
| | - Marcelo A. Nobrega
- University of California, San Diego, La Jolla; Department of Human Genetics, University of Chicago, IL (I.A., N.S., D.R.S., L.M., A.C.J., M.A.N.)
| | - Sylvia M. Evans
- From the Skaggs School of Pharmacy and Pharmaceutical Sciences (C.J.B., X.Z., L.Z., S.M.E.)
- Department of Medicine (J.B., J.C., S.M.E.)
- Department of Pharmacology (S.M.E.)
| |
Collapse
|
27
|
Meng S, Gu Q, Yang X, Lv J, Owusu I, Matrone G, Chen K, Cooke JP, Fang L. TBX20 Regulates Angiogenesis Through the Prokineticin 2-Prokineticin Receptor 1 Pathway. Circulation 2019; 138:913-928. [PMID: 29545372 DOI: 10.1161/circulationaha.118.033939] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Angiogenesis is integral for embryogenesis, and targeting angiogenesis improves the outcome of many pathological conditions in patients. TBX20 is a crucial transcription factor for embryonic development, and its deficiency is associated with congenital heart disease. However, the role of TBX20 in angiogenesis has not been described. METHODS Loss- and gain-of-function approaches were used to explore the role of TBX20 in angiogenesis both in vitro and in vivo. Angiogenesis gene array was used to identify key downstream targets of TBX20. RESULTS Unbiased gene array survey showed that TBX20 knockdown profoundly reduced angiogenesis-associated PROK2 (prokineticin 2) gene expression. Indeed, loss of TBX20 hindered endothelial cell migration and in vitro angiogenesis. In a murine angiogenesis model using subcutaneously implanted Matrigel plugs, we observed that TBX20 deficiency markedly reduced PROK2 expression and restricted intraplug angiogenesis. Furthermore, recombinant PROK2 administration enhanced angiogenesis and blood flow recovery in murine hind-limb ischemia. In zebrafish, transient knockdown of tbx20 by morpholino antisense oligos or genetic disruption of tbx20 by CRISPR/Cas9 impaired angiogenesis. Furthermore, loss of prok2 or its cognate receptor prokr1a also limited angiogenesis. In contrast, overexpression of prok2 or prokr1a rescued the impaired angiogenesis in tbx20-deficient animals. CONCLUSIONS Our study identifies TBX20 as a novel transcription factor regulating angiogenesis through the PROK2-PROKR1 (prokineticin receptor 1) pathway in both development and disease and reveals a novel mode of angiogenic regulation whereby the TBX20-PROK2-PROKR1 signaling cascade may act as a "biological capacitor" to relay and sustain the proangiogenic effect of vascular endothelial growth factor. This pathway may be a therapeutic target in the treatment of diseases with dysregulated angiogenesis.
Collapse
Affiliation(s)
- Shu Meng
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Qilin Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Xiaojie Yang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Jie Lv
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Iris Owusu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Gianfranco Matrone
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Kaifu Chen
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - John P Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| | - Longhou Fang
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, TX
| |
Collapse
|
28
|
Federspiel JD, Tandon P, Wilczewski CM, Wasson L, Herring LE, Venkatesh SS, Cristea IM, Conlon FL. Conservation and divergence of protein pathways in the vertebrate heart. PLoS Biol 2019; 17:e3000437. [PMID: 31490923 PMCID: PMC6750614 DOI: 10.1371/journal.pbio.3000437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 09/18/2019] [Accepted: 08/14/2019] [Indexed: 12/18/2022] Open
Abstract
Heart disease is the leading cause of death in the western world. Attaining a mechanistic understanding of human heart development and homeostasis and the molecular basis of associated disease states relies on the use of animal models. Here, we present the cardiac proteomes of 4 model vertebrates with dual circulatory systems: the pig (Sus scrofa), the mouse (Mus musculus), and 2 frogs (Xenopus laevis and Xenopus tropicalis). Determination of which proteins and protein pathways are conserved and which have diverged within these species will aid in our ability to choose the appropriate models for determining protein function and to model human disease. We uncover mammalian- and amphibian-specific, as well as species-specific, enriched proteins and protein pathways. Among these, we find and validate an enrichment in cell-cycle-associated proteins within Xenopus laevis. To further investigate functional units within cardiac proteomes, we develop a computational approach to profile the abundance of protein complexes across species. Finally, we demonstrate the utility of these data sets for predicting appropriate model systems for studying given cardiac conditions by testing the role of Kielin/chordin-like protein (Kcp), a protein found as enriched in frog hearts compared to mammals. We establish that germ-line mutations in Kcp in Xenopus lead to valve defects and, ultimately, cardiac failure and death. Thus, integrating these findings with data on proteins responsible for cardiac disease should lead to the development of refined, species-specific models for protein function and disease states.
Collapse
Affiliation(s)
| | - Panna Tandon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Caralynn M. Wilczewski
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Lauren Wasson
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Laura E. Herring
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | | | - Ileana M. Cristea
- Princeton University, Princeton, New Jersey, United States of America
| | - Frank L. Conlon
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| |
Collapse
|
29
|
Berg DJ, Kartheiser K, Leyrer M, Saali A, Berson DM. Transcriptomic Signatures of Postnatal and Adult Intrinsically Photosensitive Ganglion Cells. eNeuro 2019; 6:ENEURO.0022-19.2019. [PMID: 31387875 PMCID: PMC6712207 DOI: 10.1523/eneuro.0022-19.2019] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 11/21/2022] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) are rare mammalian photoreceptors essential for non-image-forming vision functions, such as circadian photoentrainment and the pupillary light reflex. They comprise multiple subtypes distinguishable by morphology, physiology, projections, and levels of expression of melanopsin (Opn4), their photopigment. The molecular programs that distinguish ipRGCs from other ganglion cells and ipRGC subtypes from one another remain elusive. Here, we present comprehensive gene expression profiles of early postnatal and adult mouse ipRGCs purified from two lines of reporter mice that mark different sets of ipRGC subtypes. We find dozens of novel genes highly enriched in ipRGCs. We reveal that Rasgrp1 and Tbx20 are selectively expressed in subsets of ipRGCs, though these molecularly defined groups imperfectly match established ipRGC subtypes. We demonstrate that the ipRGCs regulating circadian photoentrainment are diverse at the molecular level. Our findings reveal unexpected complexity in gene expression patterns across mammalian ipRGC subtypes.
Collapse
Affiliation(s)
- Daniel J Berg
- Molecular Biology, Cellular Biology, and Biochemistry Program, Brown University, Providence, Rhode Island 02912
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | | | - Megan Leyrer
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - Alexandra Saali
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| | - David M Berson
- Department of Neuroscience, Brown University, Providence, Rhode Island 02912
| |
Collapse
|
30
|
Mouse HSA+ immature cardiomyocytes persist in the adult heart and expand after ischemic injury. PLoS Biol 2019; 17:e3000335. [PMID: 31246945 PMCID: PMC6619826 DOI: 10.1371/journal.pbio.3000335] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 07/10/2019] [Accepted: 06/05/2019] [Indexed: 12/14/2022] Open
Abstract
The assessment of the regenerative capacity of the heart has been compromised by the lack of surface signatures to characterize cardiomyocytes (CMs). Here, combined multiparametric surface marker analysis with single-cell transcriptional profiling and in vivo transplantation identify the main mouse fetal cardiac populations and their progenitors (PRGs). We found that CMs at different stages of differentiation coexist during development. We identified a population of immature heat stable antigen (HSA)/ cluster of differentiation 24 (CD24)+ CMs that persists throughout life and that, unlike other CM subsets, actively proliferates up to 1 week of age and engrafts cardiac tissue upon transplantation. In the adult heart, a discrete population of HSA/CD24+ CMs appears as mononucleated cells that increase in frequency after infarction. Our work identified cell surface signatures that allow the prospective isolation of CMs at all developmental stages and the detection of a subset of immature CMs throughout life that, although at reduced frequencies, are poised for activation in response to ischemic stimuli. This work opens new perspectives in the understanding and treatment of heart pathologies.
Collapse
|
31
|
Hicks SC, Okrah K, Paulson JN, Quackenbush J, Irizarry RA, Bravo HC. Smooth quantile normalization. Biostatistics 2019; 19:185-198. [PMID: 29036413 DOI: 10.1093/biostatistics/kxx028] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/07/2017] [Indexed: 11/14/2022] Open
Abstract
Between-sample normalization is a critical step in genomic data analysis to remove systematic bias and unwanted technical variation in high-throughput data. Global normalization methods are based on the assumption that observed variability in global properties is due to technical reasons and are unrelated to the biology of interest. For example, some methods correct for differences in sequencing read counts by scaling features to have similar median values across samples, but these fail to reduce other forms of unwanted technical variation. Methods such as quantile normalization transform the statistical distributions across samples to be the same and assume global differences in the distribution are induced by only technical variation. However, it remains unclear how to proceed with normalization if these assumptions are violated, for example, if there are global differences in the statistical distributions between biological conditions or groups, and external information, such as negative or control features, is not available. Here, we introduce a generalization of quantile normalization, referred to as smooth quantile normalization (qsmooth), which is based on the assumption that the statistical distribution of each sample should be the same (or have the same distributional shape) within biological groups or conditions, but allowing that they may differ between groups. We illustrate the advantages of our method on several high-throughput datasets with global differences in distributions corresponding to different biological conditions. We also perform a Monte Carlo simulation study to illustrate the bias-variance tradeoff and root mean squared error of qsmooth compared to other global normalization methods. A software implementation is available from https://github.com/stephaniehicks/qsmooth.
Collapse
Affiliation(s)
- Stephanie C Hicks
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA and Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Kwame Okrah
- Genetech, Product Development Biostatistics, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Joseph N Paulson
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA and Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - John Quackenbush
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA and Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Rafael A Irizarry
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, 450 Brookline Ave, Boston, MA 02215, USA and Department of Biostatistics, Harvard T.H. Chan School of Public Health, 677 Huntington Ave, Boston, MA 02115, USA
| | - Héctor Corrada Bravo
- Department of Computer Science, University of Maryland, College Park, USA and Center for Bioinformatics and Computational Biology, Institute of Advanced Computer Studies, University of Maryland, 8314 Paint Branch Dr., College Park, MD 20742, College Park, USA
| |
Collapse
|
32
|
Susceptibility to congenital heart defects associated with a polymorphism in TBX2 3' untranslated region in the Han Chinese population. Pediatr Res 2019; 85:378-383. [PMID: 30262811 DOI: 10.1038/s41390-018-0181-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/15/2018] [Accepted: 06/19/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Tbx2 plays a critical role in determining fates of cardiomyocytes. Little is known about the contribution of TBX2 3' untranslated region (UTR) variants to the risk of congenital heart defect (CHD). Thus, we aimed to determine the association of single-nucleotide polymorphisms (SNPs) in TBX2 3' UTR with CHD susceptibility. METHODS We recruited 1285 controls and 1241 CHD children from China. SNPs identification and genotyping were detected using Sanger Sequencing and SNaPshot. Stratified analysis was conducted to explore the association between rs59382073 polymorphism and CHD subtypes. Functional analyses were performed by luciferase assays in HEK-293T and H9c2 cells. RESULTS Among five TBX2 3'UTR variants identified, rs59382073 minor allele T carriers had a 1.89-fold increased CHD risk compared to GG genotype (95% CI = 1.48-2.46, P = 4.48 × 10-7). The most probable subtypes were right ventricular outflow tract obstruction, conotruncal, and septal defect. G to T variation decreased luciferase activity in cells. This discrepancy was exaggerated by miR-3940 and miR-708, while their corresponding inhibitors eliminated it. CONCLUSION T allele of rs59382073 in TBX2 3'UTR contributed to greater CHD risk in the Han Chinese population. G to T variation created binding sites for miR-3940 and miR-708 to inhibit gene expression.
Collapse
|
33
|
Moore-Morris T, van Vliet PP, Andelfinger G, Puceat M. Role of Epigenetics in Cardiac Development and Congenital Diseases. Physiol Rev 2019; 98:2453-2475. [PMID: 30156497 DOI: 10.1152/physrev.00048.2017] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The heart is the first organ to be functional in the fetus. Heart formation is a complex morphogenetic process regulated by both genetic and epigenetic mechanisms. Congenital heart diseases (CHD) are the most prominent congenital diseases. Genetics is not sufficient to explain these diseases or the impact of them on patients. Epigenetics is more and more emerging as a basis for cardiac malformations. This review brings the essential knowledge on cardiac biology of development. It further provides a broad background on epigenetics with a focus on three-dimensional conformation of chromatin. Then, we summarize the current knowledge of the impact of epigenetics on cardiac cell fate decision. We further provide an update on the epigenetic anomalies in the genesis of CHD.
Collapse
Affiliation(s)
- Thomas Moore-Morris
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Patrick Piet van Vliet
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Gregor Andelfinger
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| | - Michel Puceat
- Université Aix-Marseille, INSERM UMR- 1251, Marseille , France ; Cardiovascular Genetics, Department of Pediatrics, CHU Sainte-Justine, Montreal, Quebec , Canada ; Université de Montréal, Montreal, Quebec , Canada ; and Laboratoire International Associé INSERM, Marseille France-CHU Ste Justine, Quebec, Canada
| |
Collapse
|
34
|
Zhong H, Zhang H, Tang Z, Guo Z, Yan J, Xiao J, Luo Y, Zhou Y. Evidence for natural selection of immune genes from Parachromis managuensis by transcriptome sequencing. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2018.1519377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Affiliation(s)
- Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Hong Zhang
- Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, Qinzhou University, Qinzhou, PR China
| | - Zhanyang Tang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Zhongbao Guo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Jinpeng Yan
- Department of Cell Biology, School of Life Sciences, Central South University, Changsha, PR China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| | - Yi Zhou
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, PR China
| |
Collapse
|
35
|
Montefiori LE, Sobreira DR, Sakabe NJ, Aneas I, Joslin AC, Hansen GT, Bozek G, Moskowitz IP, McNally EM, Nóbrega MA. A promoter interaction map for cardiovascular disease genetics. eLife 2018; 7:e35788. [PMID: 29988018 PMCID: PMC6053306 DOI: 10.7554/elife.35788] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/21/2018] [Indexed: 12/17/2022] Open
Abstract
Over 500 genetic loci have been associated with risk of cardiovascular diseases (CVDs); however, most loci are located in gene-distal non-coding regions and their target genes are not known. Here, we generated high-resolution promoter capture Hi-C (PCHi-C) maps in human induced pluripotent stem cells (iPSCs) and iPSC-derived cardiomyocytes (CMs) to provide a resource for identifying and prioritizing the functional targets of CVD associations. We validate these maps by demonstrating that promoters preferentially contact distal sequences enriched for tissue-specific transcription factor motifs and are enriched for chromatin marks that correlate with dynamic changes in gene expression. Using the CM PCHi-C map, we linked 1999 CVD-associated SNPs to 347 target genes. Remarkably, more than 90% of SNP-target gene interactions did not involve the nearest gene, while 40% of SNPs interacted with at least two genes, demonstrating the importance of considering long-range chromatin interactions when interpreting functional targets of disease loci.
Collapse
Affiliation(s)
| | - Debora R Sobreira
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Noboru J Sakabe
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Ivy Aneas
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Amelia C Joslin
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Grace T Hansen
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Grazyna Bozek
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| | - Ivan P Moskowitz
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
- Department of Pediatrics and PathologyThe University of ChicagoChicagoUnited States
| | - Elizabeth M McNally
- Center for Genetic MedicineNorthwestern University Feinberg School of MedicineChicagoUnited States
| | - Marcelo A Nóbrega
- Department of Human GeneticsThe University of ChicagoChicagoUnited States
| |
Collapse
|
36
|
Schwarz B, Hollfelder D, Scharf K, Hartmann L, Reim I. Diversification of heart progenitor cells by EGF signaling and differential modulation of ETS protein activity. eLife 2018; 7:32847. [PMID: 29869981 PMCID: PMC6033539 DOI: 10.7554/elife.32847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 06/04/2018] [Indexed: 12/16/2022] Open
Abstract
For coordinated circulation, vertebrate and invertebrate hearts require stereotyped arrangements of diverse cell populations. This study explores the process of cardiac cell diversification in the Drosophila heart, focusing on the two major cardioblast subpopulations: generic working myocardial cells and inflow valve-forming ostial cardioblasts. By screening a large collection of randomly induced mutants, we identified several genes involved in cardiac patterning. Further analysis revealed an unexpected, specific requirement of EGF signaling for the specification of generic cardioblasts and a subset of pericardial cells. We demonstrate that the Tbx20 ortholog Midline acts as a direct target of the EGFR effector Pointed to repress ostial fates. Furthermore, we identified Edl/Mae, an antagonist of the ETS factor Pointed, as a novel cardiac regulator crucial for ostial cardioblast specification. Combining these findings, we propose a regulatory model in which the balance between activation of Pointed and its inhibition by Edl controls cardioblast subtype-specific gene expression. Organs contain many different kinds of cells, each specialised to perform a particular role. The fruit fly heart, for example, has two types of muscle cells: generic heart muscle cells and ostial heart muscle cells. The generic cells contract to force blood around the body, whilst the ostial cells form openings that allow blood to enter the heart. Though both types of cells carry the same genetic information, each uses a different combination of active genes to perform their role. During development, the cells must decide whether to become generic or ostial. They obtain signals from other cells in and near the developing heart, and respond by turning genes on or off. The response uses proteins called transcription factors, which bind to regulatory portions of specific genes. The sequence of signals and transcription factors that control the fate of developing heart muscle cells was not known. So Schwarz et al. examined the process using a technique called a mutagenesis screen. This involved triggering random genetic mutations and looking for flies with defects in their heart muscle cells. Matching the defects to the mutations revealed genes responsible for heart development. Schwarz et al. found that for cells to develop into generic heart muscle cells, a signal called epidermal growth factor (EGF) switches on a transcription factor called Pointed in the cells. Pointed then turns on another transcription factor that switches off the genes for ostial cells. Conversely, ostial heart muscle cells develop when a protein called ‘ETS-domain lacking’ (Edl) interferes with Pointed, allowing the ostial genes to remain on. The balance between Pointed and Edl controls which type of heart cell each cell will become. Many cells in other tissues in fruit flies also produce the Pointed and Edl proteins and respond to EGF signals. This means that this system may help to decide the fate of cells in other organs. The EGF signaling system is also present in other animals, including humans. Future work could reveal whether the same molecular decision making happens in our own hearts.
Collapse
Affiliation(s)
- Benjamin Schwarz
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Katharina Scharf
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Leonie Hartmann
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
37
|
Abstract
During mammalian heart development, restricted myocardial Bmp2 expression is a key patterning signal for atrioventricular canal specification and the epithelial-mesenchyme transition that gives rise to the valves. Using a mouse transgenic line conditionally expressing Bmp2, we show that widespread Bmp2 expression in the myocardium leads to valve and chamber dysmorphogenesis and embryonic death by E15.5. Transgenic embryos show thickened valves, ventricular septal defect, enlarged trabeculae and dilated ventricles, with an endocardium able to undergo EMT both in vivo and in vitro. Gene profiling and marker analysis indicate that cellular proliferation is increased in transgenic embryos, whereas chamber maturation and patterning are impaired. Similarly, forced Bmp2 expression stimulates proliferation and blocks cardiomyocyte differentiation of embryoid bodies. These data show that widespread myocardial Bmp2 expression directs ectopic valve primordium formation and maintains ventricular myocardium and cardiac progenitors in a primitive, proliferative state, identifying the potential of Bmp2 in the expansion of immature cardiomyocytes.
Collapse
|
38
|
Kennedy L, Kaltenbrun E, Greco TM, Temple B, Herring LE, Cristea IM, Conlon FL. Formation of a TBX20-CASZ1 protein complex is protective against dilated cardiomyopathy and critical for cardiac homeostasis. PLoS Genet 2017; 13:e1007011. [PMID: 28945738 PMCID: PMC5629033 DOI: 10.1371/journal.pgen.1007011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 10/05/2017] [Accepted: 09/07/2017] [Indexed: 01/01/2023] Open
Abstract
By the age of 40, one in five adults without symptoms of cardiovascular disease are at risk for developing congestive heart failure. Within this population, dilated cardiomyopathy (DCM) remains one of the leading causes of disease and death, with nearly half of cases genetically determined. Though genetic and high throughput sequencing-based approaches have identified sporadic and inherited mutations in a multitude of genes implicated in cardiomyopathy, how combinations of asymptomatic mutations lead to cardiac failure remains a mystery. Since a number of studies have implicated mutations of the transcription factor TBX20 in congenital heart diseases, we investigated the underlying mechanisms, using an unbiased systems-based screen to identify novel, cardiac-specific binding partners. We demonstrated that TBX20 physically and genetically interacts with the essential transcription factor CASZ1. This interaction is required for survival, as mice heterozygous for both Tbx20 and Casz1 die post-natally as a result of DCM. A Tbx20 mutation associated with human familial DCM sterically interferes with the TBX20-CASZ1 interaction and provides a physical basis for how this human mutation disrupts normal cardiac function. Finally, we employed quantitative proteomic analyses to define the molecular pathways mis-regulated upon disruption of this novel complex. Collectively, our proteomic, biochemical, genetic, and structural studies suggest that the physical interaction between TBX20 and CASZ1 is required for cardiac homeostasis, and further, that reduction or loss of this critical interaction leads to DCM. This work provides strong evidence that DCM can be inherited through a digenic mechanism. A molecular understanding of cardiomyocyte development is an essential goal for improving clinical approaches to CHD. While TBX20 is an essential transcription factor for heart development and its disease relevance is well established, many fundamental questions remain about the mechanism of TBX20 function. Principle among these is how TBX20 mutations associated with adult dilated cardiomyopathy circumvent (DCM) the essential embryonic requirement for TBX20 in heart development. Here we report using an integrated approach that TBX20 complexes with the cardiac transcription factor CASZ1 in vivo. We confirmed TBX20 and CASZ1 interact biochemically and genetically, and show mice heterozygous for both Tbx20 and Casz1 die, beginning at 4 to 8 weeks post birth, exhibiting hallmarks of DCM. Interestingly, the human mutant TBX20F256I bypasses the early essential requirement for TBX20 but leads to DCM. We report here that TBX20F256I disrupts the TBX20-CASZ1 interaction, ascribing clinical relevance to this protein complex. Further, by using quantitative proteomics we have identified the molecular pathways altered in TBX20-CASZ1-mediated DCM. Together, these results identify a novel interaction between TBX20 and CASZ1 that is essential for maintaining cardiac homeostasis and imply that DCM can be inherited through a digenic mechanism.
Collapse
Affiliation(s)
- Leslie Kennedy
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Erin Kaltenbrun
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Todd M. Greco
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Brenda Temple
- R.L. Juliano Structural Bioinformatics Core, Department of Biochemistry and Biophysics, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Laura E. Herring
- UNC Proteomics Core Facility, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pharmacology, UNC-Chapel Hill, Chapel Hill, NC, United States of America
| | - Ileana M. Cristea
- Department of Molecular Biology, Princeton University, Princeton, NJ, United States of America
| | - Frank L. Conlon
- University of North Carolina McAllister Heart Institute, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Integrative Program for Biological & Genome Sciences, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Genetics, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- Department of Biology, UNC-Chapel Hill, Chapel Hill, NC, United States of America
- * E-mail:
| |
Collapse
|
39
|
Huang RT, Wang J, Xue S, Qiu XB, Shi HY, Li RG, Qu XK, Yang XX, Liu H, Li N, Li YJ, Xu YJ, Yang YQ. TBX20 loss-of-function mutation responsible for familial tetralogy of Fallot or sporadic persistent truncus arteriosus. Int J Med Sci 2017; 14:323-332. [PMID: 28553164 PMCID: PMC5436474 DOI: 10.7150/ijms.17834] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/20/2016] [Indexed: 12/19/2022] Open
Abstract
Congenital heart disease (CHD), the most common form of developmental abnormality in humans, remains a leading cause of morbidity and mortality in neonates. Genetic defects have been recognized as the predominant causes of CHD. Nevertheless, CHD is of substantial genetic heterogeneity and the genetic defects underlying CHD in most cases remain unclear. In the current study, the coding regions and splicing junction sites of the TBX20 gene, which encodes a T-box transcription factor key to cardiovascular morphogenesis, were sequenced in 175 unrelated patients with CHD, and a novel heterozygous TBX20 mutation, p.K274X, was identified in an index patient with tetralogy of Fallot (TOF). Genetic analysis of the proband's available family members showed that his father, elder brother and son had also TOF. In addition, his father and elder brother had also atrial septal defect, and his niece had persistent truncus arteriosus and ventricular septal defect. Analysis of the pedigree revealed that the mutation co-segregated with CHD transmitted in an autosomal dominant fashion, with complete penetrance. The nonsense mutation, which was absent in the 800 control chromosomes, was predicted to produce a truncated protein with only the amino terminus and partial T-box domain left. Functional analyses by using a dual-luciferase reporter assay system showed that the mutant TBX20 lost the ability to transactivate the target gene ANF. Furthermore, the mutation reduced the synergistic activation between TBX20 and NKX2.5 as well as GATA4, two other transcriptional factors previously associated with various CHD, encompassing TOF. This study firstly links TBX20 loss-of-function mutation to familial TOF or sporadic persistent truncus arteriosus, providing novel insight into the molecular pathogenesis of CHD.
Collapse
Affiliation(s)
- Ri-Tai Huang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Juan Wang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai 200120, China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Road, Shanghai 200127, China
| | - Xing-Biao Qiu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Hong-Yu Shi
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ruo-Gu Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xin-Kai Qu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Xiao-Xiao Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Hua Liu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ning Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Yan-Jie Li
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Ying-Jia Xu
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| | - Yi-Qing Yang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
- Department of Cardiovascular Research Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
- Department of Central Laboratory, Shanghai Chest Hospital, Shanghai Jiao Tong University, 241 West Huaihai Road, Shanghai 200030, China
| |
Collapse
|
40
|
Drummond BE, Li Y, Marra AN, Cheng CN, Wingert RA. The tbx2a/b transcription factors direct pronephros segmentation and corpuscle of Stannius formation in zebrafish. Dev Biol 2017; 421:52-66. [PMID: 27840199 PMCID: PMC5955707 DOI: 10.1016/j.ydbio.2016.10.019] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 12/25/2022]
Abstract
The simplified and genetically conserved zebrafish pronephros is an excellent model to examine the cryptic processes of cell fate decisions during the development of nephron segments as well as the origins of associated endocrine cells that comprise the corpuscles of Stannius (CS). Using whole mount in situ hybridization, we found that transcripts of the zebrafish genes t-box 2a (tbx2a) and t-box 2b (tbx2b), which belong to the T-box family of transcription factors, were expressed in the caudal intermediate mesoderm progenitors that give rise to the distal pronephros and CS. Deficiency of tbx2a, tbx2b or both tbx2a/b reduced the size of the distal late (DL) segment, which was accompanied by a proximal convoluted segment (PCT) expansion. Further, tbx2a/b deficiency led to significantly larger CS clusters. These phenotypes were also observed in embryos with the from beyond (fby)c144 mutation, which encodes a premature stop codon in the tbx2b T-box sequence. Conversely, overexpression of tbx2a and tbx2b in wild-type embryos expanded the DL segment where cells were comingled with the adjacent DE, and also decreased CS cell number, but notably did not alter PCT development-providing independent evidence that tbx2a and tbx2b are each necessary and sufficient to promote DL fate and suppress CS genesis. Epistasis studies indicated that tbx2a acts upstream of tbx2b to regulate the DL and CS fates, and likely has other targets as well. Retinoic acid (RA) addition and inhibition studies revealed that tbx2a and tbx2b are negatively regulated by RA signaling. Interestingly, the CS cell expansion that typifies tbx2a/b deficiency also occurred when blocking Notch signaling with the chemical DAPT (N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester). Ectopic activation of Notch in Tg(hsp70::Gal4; UAS::NICD)(NICD) embryos led to a reduced CS post heat-shock induction. To further examine the link between the tbx2a/b genes and Notch during CS formation, DAPT treatment was used to block Notch activity in tbx2a/b deficient embryos, and tbx2a/b knockdown was performed in NICD transgenic embryos. Both manipulations caused similar CS expansions, indicating that Notch functions upstream of the tbx2a/b genes to suppress CS ontogeny. Taken together, these data reveal for the first time that tbx2a/b mitigate pronephros segmentation downstream of RA, and that interplay between Notch signaling and tbx2a/b regulate CS formation, thus providing several novel insights into the genetic regulatory networks that influence these lineages.
Collapse
Affiliation(s)
- Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yue Li
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Amanda N Marra
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Christina N Cheng
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
41
|
|
42
|
Lu F, Langenbacher A, Chen JN. Tbx20 drives cardiac progenitor formation and cardiomyocyte proliferation in zebrafish. Dev Biol 2016; 421:139-148. [PMID: 27940156 DOI: 10.1016/j.ydbio.2016.12.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/30/2016] [Accepted: 12/07/2016] [Indexed: 01/08/2023]
Abstract
Tbx20 is a T-box transcription factor that plays essential roles in the development and maintenance of the heart. Although it is expressed by cardiac progenitors in all species examined, an involvement of Tbx20 in cardiac progenitor formation in vertebrates has not been previously described. Here we report the identification of a zebrafish tbx20 mutation that results in an inactive, truncated protein lacking any functional domains. The cardiac progenitor population is strongly diminished in this mutant, leading to the formation of a small, stretched-out heart. We found that overexpression of Tbx20 results in an enlarged heart with significantly more cardiomyocytes. Interestingly, this increase in cell number is caused by both enhanced cardiac progenitor cell formation and the proliferation of differentiated cardiomyocytes, and is dependent upon the activity of Tbx20's T-box and transcription activation domains. Together, our findings highlight a previously unappreciated role for Tbx20 in promoting cardiac progenitor formation in vertebrates and reveal a novel function for its activation domain in cardiac cell proliferation during embryogenesis.
Collapse
Affiliation(s)
- Fei Lu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States
| | - Adam Langenbacher
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States
| | - Jau-Nian Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, United States.
| |
Collapse
|
43
|
Liu P, Sun Y, Qiu G, Jiang H, Qiu G. Silencing of TBX20 gene expression in rat myocardial and human embryonic kidney cells leads to cell cycle arrest in G2 phase. Mol Med Rep 2016; 14:2904-14. [PMID: 27572266 PMCID: PMC5042752 DOI: 10.3892/mmr.2016.5660] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 07/19/2016] [Indexed: 01/02/2023] Open
Abstract
Congenital heart diseases (CHDs) are the most common birth defects due to abnormal cardiac development. The T-box 20 (TBX20) gene is a member of the T-box family of transcription factors and encodes TBX20, which is essential for early heart development. In the present study, reduced TBX20 expression was observed in CHD tissue samples compared with normal tissues, and the function of TBX20 in Rattus norvegicus myocardial cells [H9c2(2-1)] and human embryonic kidney cells (HEK293) was investigated. TBX20 was silenced in H9c2 and HEK293 cells via transfection of small interfering RNA and short hairpin RNA duplexes, respectively, and TBX20 mRNA and protein levels were subsequently examined using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and western blot analysis. Cell proliferation was assessed using a cell counting kit and proliferating cell nuclear antigen expression was determined by western blotting. Analysis of cell apoptosis was achieved by annexin V-fluorescein isothiocyanate/propidium iodide staining and a fluorometric terminal deoxynucleotidyl transferase dUTP nick-end labeling system. Cell cycle analysis was achieved using fluorescence-activated cell sorting, and, an RT-qPCR array was used to profile the expression of TBX20-related genes. Silencing of TBX20 in H9c2 and HEK293 cells significantly inhibited cell proliferation, induced cell apoptosis and led to G2/M cell cycle arrest. A reduction in cyclin B1 mRNA levels and an increase in cyclin-dependent kinase inhibitor 1B mRNA levels was observed, which indicated that cells were arrested in G2 phase. Concurrently, the mRNA levels of GATA binding protein 4 were increased in both cell lines, which may provide an explanation for the abnormal cardiac hypertrophy observed in patients with congenital heart disease. These results suggest that TBX20 is required for heart morphogenesis, and inhibition of TBX20 expression may lead to the suppression of cell proliferation and cell cycle arrest.
Collapse
Affiliation(s)
- Peiyan Liu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yueling Sun
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Guangbin Qiu
- Department of Laboratory Medicine, 202 Hospital of People's Liberation Army, Shenyang, Heping 110003, P.R. China
| | - Hongkun Jiang
- Department of Pediatrics, The First Affiliated Hospital, China Medical University, Shenyang, Heping 110001, P.R. China
| | - Guangrong Qiu
- Department of Medical Genetics, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
44
|
Abstract
T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates.
Collapse
|
45
|
Boogerd CJ, Aneas I, Sakabe N, Dirschinger RJ, Cheng QJ, Zhou B, Chen J, Nobrega MA, Evans SM. Probing chromatin landscape reveals roles of endocardial TBX20 in septation. J Clin Invest 2016; 126:3023-35. [PMID: 27348591 DOI: 10.1172/jci85350] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 05/05/2016] [Indexed: 12/29/2022] Open
Abstract
Mutations in the T-box transcription factor TBX20 are associated with multiple forms of congenital heart defects, including cardiac septal abnormalities, but our understanding of the contributions of endocardial TBX20 to heart development remains incomplete. Here, we investigated how TBX20 interacts with endocardial gene networks to drive the mesenchymal and myocardial movements that are essential for outflow tract and atrioventricular septation. Selective ablation of Tbx20 in murine endocardial lineages reduced the expression of extracellular matrix and cell migration genes that are critical for septation. Using the assay for transposase-accessible chromatin with high-throughput sequencing (ATAC-seq), we identified accessible chromatin within endocardial lineages and intersected these data with TBX20 ChIP-seq and chromatin loop maps to determine that TBX20 binds a conserved long-range enhancer to regulate versican (Vcan) expression. We also observed reduced Vcan expression in Tbx20-deficient mice, supporting a direct role for TBX20 in Vcan regulation. Further, we show that the Vcan enhancer drove reporter gene expression in endocardial lineages in a TBX20-binding site-dependent manner. This work illuminates gene networks that interact with TBX20 to orchestrate cardiac septation and provides insight into the chromatin landscape of endocardial lineages during septation.
Collapse
|
46
|
Greulich F, Rudat C, Farin HF, Christoffels VM, Kispert A. Lack of Genetic Interaction between Tbx18 and Tbx2/Tbx20 in Mouse Epicardial Development. PLoS One 2016; 11:e0156787. [PMID: 27253890 PMCID: PMC4890940 DOI: 10.1371/journal.pone.0156787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/19/2016] [Indexed: 11/18/2022] Open
Abstract
The epicardium, the outermost layer of the heart, is an essential source of cells and signals for the formation of the cardiac fibrous skeleton and the coronary vasculature, and for the maturation of the myocardium during embryonic development. The molecular factors that control epicardial mobilization and differentiation, and direct the epicardial-myocardial cross-talk are, however, insufficiently understood. The T-box transcription factor gene Tbx18 is specifically expressed in the epicardium of vertebrate embryos. Loss of Tbx18 is dispensable for epicardial development, but may influence coronary vessel maturation. In contrast, over-expression of an activator version of TBX18 severely impairs epicardial development by premature differentiation of epicardial cells into SMCs indicating a potential redundancy of Tbx18 with other repressors of the T-box gene family. Here, we show that Tbx2 and Tbx20 are co-expressed with Tbx18 at different stages of epicardial development. Using a conditional gene targeting approach we find that neither the epicardial loss of Tbx2 nor the combined loss of Tbx2 and Tbx18 affects epicardial development. Similarly, we observed that the heterozygous loss of Tbx20 with and without additional loss of Tbx18 does not impact on epicardial integrity and mobilization in mouse embryos. Thus, Tbx18 does not function redundantly with Tbx2 or Tbx20 in epicardial development.
Collapse
Affiliation(s)
- Franziska Greulich
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Carsten Rudat
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Henner F. Farin
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Vincent M. Christoffels
- Department of Anatomy, Embryology and Physiology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Andreas Kispert
- Institut für Molekularbiologie, Medizinische Hochschule Hannover, Hannover, Germany
- * E-mail:
| |
Collapse
|
47
|
Wilsbacher L, McNally EM. Genetics of Cardiac Developmental Disorders: Cardiomyocyte Proliferation and Growth and Relevance to Heart Failure. ANNUAL REVIEW OF PATHOLOGY 2016; 11:395-419. [PMID: 26925501 PMCID: PMC8978617 DOI: 10.1146/annurev-pathol-012615-044336] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Cardiac developmental disorders represent the most common of human birth defects, and anomalies in cardiomyocyte proliferation drive many of these disorders. This review highlights the molecular mechanisms of prenatal cardiac growth. Trabeculation represents the initial ventricular growth phase and is necessary for embryonic survival. Later in development, the bulk of the ventricular wall derives from the compaction process, yet the arrest of this process can still be compatible with life. Cardiomyocyte proliferation and growth form the basis of both trabeculation and compaction, and mouse models indicate that cardiomyocyte interactions with the surrounding environment are critical for these proliferative processes. The human genetics of left ventricular noncompaction cardiomyopathy suggest that cardiomyocyte cell-autonomous mechanisms contribute to the compaction process. Understanding the determinants of prenatal or early postnatal cardiomyocyte proliferation and growth provides critical information that identifies risk factors for cardiovascular disease, including heart failure and its associated complications of arrhythmias and thromboembolic events.
Collapse
Affiliation(s)
- Lisa Wilsbacher
- Department of Medicine, Center for Genetic Medicine, and Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| | - Elizabeth M McNally
- Department of Medicine, Center for Genetic Medicine, and Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611; ,
| |
Collapse
|
48
|
Abstract
Cardiac transcription factors orchestrate the complex cellular and molecular events required to produce a functioning heart. Misregulation of the cardiac transcription program leads to embryonic developmental defects and is associated with human congenital heart diseases. Recent studies have expanded our understanding of the regulation of cardiac gene expression at an additional layer, involving the coordination of epigenetic and transcriptional regulators. In this review, we highlight and discuss discoveries made possible by the genetic and embryological tools available in the zebrafish model organism, with a focus on the novel functions of cardiac transcription factors and epigenetic and transcriptional regulatory proteins during cardiogenesis.
Collapse
|
49
|
Mild decrease in TBX20 promoter activity is a potentially protective factor against congenital heart defects in the Han Chinese population. Sci Rep 2016; 6:23662. [PMID: 27034249 PMCID: PMC4817057 DOI: 10.1038/srep23662] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 03/01/2016] [Indexed: 12/15/2022] Open
Abstract
Congenital heart defects (CHDs) are one of the most common human birth defects worldwide. TBX20 is a crucial transcription factor for the development of embryonic cardiovascular system. Previous studies have demonstrated that mutations in the TBX20 coding region contribute to familial and sporadic CHD occurrence. However, it remains largely unknown whether variants in the TBX20 regulatory region are also related to CHDs. In this study, we sequenced the 2 kb region upstream of the TBX20 transcription start site in 228 CHD patients and 292 controls in a Han Chinese population. Among the 8 single nucleotide polymorphisms (SNPs) identified, six SNPs are in strong linkage disequilibrium and the minor alleles are associated with lower CHD risk (for rs10235849 chosen as tag SNP, p = 0.0069, OR (95% CI) = 0.68 (0.51–0.90)). Functional analysis showed that the minor alleles have lower transcriptional activity than major alleles in both human heart tissues and three cell lines. The electrophoretic mobility shift assay suggested that TBX20 minor alleles may exhibit higher binding affinity with certain transcription repressors. Our results indicate that a moderately lower TBX20 activity potentially reduces CHD risk in the Han Chinese population, providing new insight in the study of CHD etiology.
Collapse
|
50
|
Mittal A, Sharma R, Prasad R, Bahl A, Khullar M. Role of cardiac TBX20 in dilated cardiomyopathy. Mol Cell Biochem 2016; 414:129-36. [PMID: 26895318 DOI: 10.1007/s11010-016-2666-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 02/11/2016] [Indexed: 01/27/2023]
Abstract
Dilated cardiomyopathy (DCM) is an important cause of heart failure and sudden cardiac death worldwide. Transcription factor TBX20 has been shown to play a crucial role in cardiac development and maintenance of adult mouse heart. Recent studies suggest that TBX20 may have a role in pathophysiology of DCM. In the present study, we examined TBX20 expression in idiopathic DCM patients and in an animal model of cardiomyopathy, and studied its correlation with echocardiographic indices of LV function. Endomyocardial biopsies (EMBs) from intraventricular septal from the right ventricle region were obtained from idiopathic DCM patients (IDCM, n = 30) and from patients with ventricular septal defect (VSD, n = 14) with normal LVEF who served as controls. An animal model of DCM was developed by right renal artery ligation in Wistar rats. Cardiac TBX20 mRNA levels were measured by real-time PCR in IDCM, controls, and in rats. The role of DNA promoter methylation and copy number variation (CNVs) in regulating TBX20 gene expression was also investigated. Cardiac TBX20 mRNA levels were significantly increased (8.9 fold, p < 0.001) in IDCM patients and in RAL rats as compared to the control group. Cardiac TBX20 expression showed a negative correlation with LVEF (r = -0.71, p < 0.001) and a positive correlation with left ventricular end-systolic volume (r = 0.39, p = 0.038). No significant difference in TBX20 CNVs and promoter methylation was observed between IDCM patients and control group. Our results suggest a potential role of TBX20 in pathophysiology of DCM.
Collapse
Affiliation(s)
- Anupam Mittal
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajni Sharma
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rishikesh Prasad
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Bahl
- Department of Cardiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Madhu Khullar
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|