1
|
Giovannini I, Manfrin C, Greco S, Vincenzi J, Altiero T, Guidetti R, Giulianini P, Rebecchi L. Increasing temperature-driven changes in life history traits and gene expression of an Antarctic tardigrade species. Front Physiol 2023; 14:1258932. [PMID: 37766751 PMCID: PMC10520964 DOI: 10.3389/fphys.2023.1258932] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The Antarctic region has been experiencing some of the planet's strongest climatic changes, including an expected increase of the land temperature. The potential effects of this warming trend will lead ecosystems to a risk of losing biodiversity. Antarctic mosses and lichens host different microbial groups, micro-arthropods and meiofaunal organisms (e.g., tardigrades, rotifers). The eutardigrade Acutuncus antarcticus is considered a model animal to study the effect of increasing temperature due to global warming on Antarctic terrestrial communities. In this study, life history traits and fitness of this species are analyzed by rearing specimens at two different and increasing temperatures (5°C vs. 15°C). Moreover, the first transcriptome analysis on A. antarcticus is performed, exposing adult animals to a gradual increase of temperature (5°C, 10°C, 15°C, and 20°C) to find differentially expressed genes under short- (1 day) and long-term (15 days) heat stress. Acutuncus antarcticus specimens reared at 5°C live longer (maximum life span: 686 days), reach sexual maturity later, lay more eggs (which hatch in longer time and in lower percentage) compared with animals reared at 15°C. The fitness decreases in animals belonging to the second generation at both rearing temperatures. The short-term heat exposure leads to significant changes at transcriptomic level, with 67 differentially expressed genes. Of these, 23 upregulated genes suggest alterations of mitochondrial activity and oxido-reductive processes, and two intrinsically disordered protein genes confirm their role to cope with heat stress. The long-term exposure induces alterations limited to 14 genes, and only one annotated gene is upregulated in response to both heat stresses. The decline in transcriptomic response after a long-term exposure indicates that the changes observed in the short-term are likely due to an acclimation response. Therefore, A. antarcticus could be able to cope with increasing temperature over time, including the future conditions imposed by global climate change.
Collapse
Affiliation(s)
- Ilaria Giovannini
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Chiara Manfrin
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Samuele Greco
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Joel Vincenzi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Tiziana Altiero
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Department of Education and Humanities, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Roberto Guidetti
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Piero Giulianini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Lorena Rebecchi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| |
Collapse
|
2
|
Lalsiamthara J, Aballay A. The gut efflux pump MRP-1 exports oxidized glutathione as a danger signal that stimulates behavioral immunity and aversive learning. Commun Biol 2022; 5:422. [PMID: 35513700 PMCID: PMC9072357 DOI: 10.1038/s42003-022-03381-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/19/2022] [Indexed: 11/09/2022] Open
Abstract
Innate immune surveillance, which monitors the presence of potentially harmful microorganisms and the perturbations of host physiology that occur in response to infections, is critical to distinguish pathogens from beneficial microbes. Here, we show that multidrug resistance-associated protein-1 (MRP-1) functions in the basolateral membrane of intestinal cells to transport byproducts of cellular redox reactions to control both molecular and behavioral immunity in Caenorhabditis elegans. Pseudomonas aeruginosa infection disrupts glutathione homeostasis, leading to the excess production of the MRP-1 substrate, oxidized glutathione (GSSG). Extracellular GSSG triggers pathogen avoidance behavior and primes naïve C. elegans to induce aversive learning behavior via neural NMDA class glutamate receptor-1 (NMR-1). Our results indicate that MRP-1 transports GSSG, which acts as a danger signal capable of warning C. elegans of changes in intestinal homeostasis, thereby initiating a gut neural signal that elicits an appropriate host defense response. The multidrug resistance-associated protein-1 (MRP-1) functions in the basolateral membrane of intestinal cells to transport byproducts of cellular redox reactions to control both molecular and behavioral immunity in C. elegans.
Collapse
Affiliation(s)
- Jonathan Lalsiamthara
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University Portland, Oregon, OR, 97239, USA
| | - Alejandro Aballay
- Department of Molecular Microbiology and Immunology, School of Medicine, Oregon Health & Science University Portland, Oregon, OR, 97239, USA.
| |
Collapse
|
3
|
Schrankel CS, Hamdoun A. Early patterning of ABCB, ABCC, and ABCG transporters establishes unique territories of small molecule transport in embryonic mesoderm and endoderm. Dev Biol 2021; 472:115-124. [PMID: 33460641 DOI: 10.1016/j.ydbio.2020.12.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/08/2020] [Accepted: 12/22/2020] [Indexed: 01/16/2023]
Abstract
Directed intercellular movement of diverse small molecules, including metabolites, signal molecules and xenobiotics, is a key feature of multicellularity. Networks of small molecule transporters (SMTs), including several ATP Binding Cassette (ABC) transporters, are central to this process. While small molecule transporters are well described in differentiated organs, little is known about their patterns of expression in early embryogenesis. Here we report the pattern of ABC-type SMT expression and activity during the early development of sea urchins. Of the six major ABCs in this embryo (ABCB1, -B4, -C1, -C4, -C5 and -G2), three expression patterns were observed: 1) ABCB1 and ABCC1 are first expressed ubiquitously, and then become enriched in endoderm and ectoderm-derived structures. 2) ABCC4 and ABCC5 are restricted to a ring of mesoderm in the blastula and ABCC4 is later expressed in the coelomic pouches, the embryonic niche of the primordial germ cells. 3) ABCB4 and ABCG2 are expressed exclusively in endoderm-fated cells. Assays with fluorescent substrates and inhibitors of transporters revealed a ring of ABCC4 efflux activity emanating from ABCC4+ mesodermal cells. Similarly, ABCB1 and ABCB4 efflux activity was observed in the developing gut, prior to the onset of feeding. This study reveals the early establishment of unique territories of small molecule transport during embryogenesis. A pattern of ABCC4/C5 expression is consistent with signaling functions during gut invagination and germ line development, while a later pattern of ABCB1/B4 and ABCG2 is consistent with roles in the embryonic gut. This work provides a conceptual framework with which to examine the function and evolution of SMT networks and to define the specific developmental pathways that drive the expression of these genes.
Collapse
Affiliation(s)
- Catherine S Schrankel
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego. 9500 Gilman Drive, La Jolla, CA, 92093-0202, USA
| | - Amro Hamdoun
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego. 9500 Gilman Drive, La Jolla, CA, 92093-0202, USA.
| |
Collapse
|
4
|
Arribere JA, Kuroyanagi H, Hundley HA. mRNA Editing, Processing and Quality Control in Caenorhabditis elegans. Genetics 2020; 215:531-568. [PMID: 32632025 PMCID: PMC7337075 DOI: 10.1534/genetics.119.301807] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 05/03/2020] [Indexed: 02/06/2023] Open
Abstract
While DNA serves as the blueprint of life, the distinct functions of each cell are determined by the dynamic expression of genes from the static genome. The amount and specific sequences of RNAs expressed in a given cell involves a number of regulated processes including RNA synthesis (transcription), processing, splicing, modification, polyadenylation, stability, translation, and degradation. As errors during mRNA production can create gene products that are deleterious to the organism, quality control mechanisms exist to survey and remove errors in mRNA expression and processing. Here, we will provide an overview of mRNA processing and quality control mechanisms that occur in Caenorhabditis elegans, with a focus on those that occur on protein-coding genes after transcription initiation. In addition, we will describe the genetic and technical approaches that have allowed studies in C. elegans to reveal important mechanistic insight into these processes.
Collapse
Affiliation(s)
| | - Hidehito Kuroyanagi
- Laboratory of Gene Expression, Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113-8510, Japan, and
| | - Heather A Hundley
- Medical Sciences Program, Indiana University School of Medicine-Bloomington, Indiana 47405
| |
Collapse
|
5
|
Jin Y, Dong H, Shi Y, Bian L. Mutually exclusive alternative splicing of pre-mRNAs. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1468. [PMID: 29423937 DOI: 10.1002/wrna.1468] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 12/20/2017] [Accepted: 12/20/2017] [Indexed: 12/14/2022]
Abstract
Pre-mRNA alternative splicing is an important mechanism used to expand protein diversity in higher eukaryotes, and mutually exclusive splicing is a specific type of alternative splicing in which only one of the exons in a cluster is included in functional transcripts. The most extraordinary example of this is the Drosophila melanogaster Down's syndrome cell adhesion molecule gene (Dscam), which potentially encodes 38,016 different isoforms through mutually exclusive splicing. Mutually exclusive splicing is a unique and challenging model that can be used to elucidate the evolution, regulatory mechanism, and function of alternative splicing. The use of new approaches has not only greatly expanded the mutually exclusive exome, but has also enabled the systematic analyses of single-cell alternative splicing during development. Furthermore, the identification of long-range RNA secondary structures provides a mechanistic framework for the regulation of mutually exclusive splicing (i.e., Dscam splicing). This article reviews recent insights into the identification, underlying mechanism, and roles of mutually exclusive splicing. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems.
Collapse
Affiliation(s)
- Yongfeng Jin
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Haiyang Dong
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Yang Shi
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Lina Bian
- Institute of Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
6
|
PMK-1 p38 MAPK promotes cadmium stress resistance, the expression of SKN-1/Nrf and DAF-16 target genes, and protein biosynthesis in Caenorhabditis elegans. Mol Genet Genomics 2017; 292:1341-1361. [PMID: 28766017 PMCID: PMC5682872 DOI: 10.1007/s00438-017-1351-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 07/25/2017] [Indexed: 01/01/2023]
Abstract
The mechanisms of cadmium (Cd) resistance are complex and not sufficiently understood. The present study, therefore, aimed at assessing the roles of important components of stress-signaling pathways and of ABC transporters under severe Cd stress in Caenorhabditis elegans. Survival assays on mutant and control animals revealed a significant promotion of Cd resistance by the PMK-1 p38 MAP kinase, the transcription factor DAF-16/FoxO, and the ABC transporter MRP-1. Transcriptome profiling by RNA-Seq on wild type and a pmk-1 mutant under control and Cd stress conditions revealed, inter alia, a PMK-1-dependent promotion of gene expression for the translational machinery. PMK-1 also promoted the expression of target genes of the transcription factors SKN-1/Nrf and DAF-16 in Cd-stressed animals, which included genes for molecular chaperones or immune proteins. Gene expression studies by qRT-PCR confirmed the positive effects of PMK-1 on DAF-16 activity under Cd stress and revealed negative effects of DAF-16 on the expression of genes for MRP-1 and DAF-15/raptor. Additional studies on pmk-1 RNAi-treated wild type and mutant strains provided further information on the effects of PMK-1 on SKN-1 and DAF-16, which resulted in a model of these relationships. The results of this study demonstrate a central role of PMK-1 for the processing of cellular responses to abiotic and biotic stressors, with the promoting effects of PMK-1 on Cd resistance mostly mediated by the transcription factors SKN-1 and DAF-16.
Collapse
|
7
|
Polymorphism in ABC transporter genes of Dirofilaria immitis. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2017; 7:227-235. [PMID: 28494332 PMCID: PMC5421822 DOI: 10.1016/j.ijpddr.2017.04.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/26/2017] [Accepted: 04/28/2017] [Indexed: 11/22/2022]
Abstract
Dirofilaria immitis, a filarial nematode, causes dirofilariasis in dogs, cats and occasionally in humans. Prevention of the disease has been mainly by monthly use of the macrocyclic lactone (ML) endectocides during the mosquito transmission season. Recently, ML resistance has been confirmed in D. immitis and therefore, there is a need to find new classes of anthelmintics. One of the mechanisms associated with ML resistance in nematodes has been the possible role of ATP binding cassette (ABC) transporters in reducing drug concentrations at receptor sites. ABC transporters, mainly from sub-families B, C and G, may contribute to multidrug resistance (MDR) by active efflux of drugs out of the cell. Gene products of ABC transporters may thus serve as the targets for agents that may modulate susceptibility to drugs, by inhibiting drug transport. ABC transporters are believed to be involved in a variety of physiological functions critical to the parasite, such as sterol transport, and therefore may also serve as the target for drugs that can act as anthelmintics on their own. Knowledge of polymorphism in these ABC transporter genes in nematode parasites could provide useful information for the process of drug design. We have identified 15 ABC transporter genes from sub-families A, B, C and G, in D. immitis, by comparative genomic approaches and analyzed them for polymorphism. Whole genome sequencing data from four ML susceptible (SUS) and four loss of efficacy (LOE) pooled populations were used for single nucleotide polymorphism (SNP) genotyping. Out of 231 SNPs identified in those 15 ABC transporter genes, 89 and 75 of them were specific to the SUS or LOE populations, respectively. A few of the SNPs identified may affect gene expression, protein function, substrate specificity or resistance development and may be useful for transporter inhibitor/anthelmintic drug design, or in order to anticipate resistance development. In the D. immitis genome, all ABC-A, -B, -C and -G transporter genes were identified. Within 15 ABC transporter genes identified in D. immitis, 231 SNP loci were found. Four exonic SNPs caused changes in predicted secondary structure of ABC proteins. D. immitis populations have low genetic variability among ABC transporter genes.
Collapse
|
8
|
Yue Y, Hou S, Wang X, Zhan L, Cao G, Li G, Shi Y, Zhang P, Hong W, Lin H, Liu B, Shi F, Yang Y, Jin Y. Role and convergent evolution of competing RNA secondary structures in mutually exclusive splicing. RNA Biol 2017; 14:1399-1410. [PMID: 28277933 DOI: 10.1080/15476286.2017.1294308] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Exon or cassette duplication is an important means of expanding protein and functional diversity through mutually exclusive splicing. However, the mechanistic basis of this process in non-arthropod species remains poorly understood. Here, we demonstrate that MRP1 genes underwent tandem exon duplication in Nematoda, Platyhelminthes, Annelida, Mollusca, Arthropoda, Echinodermata, and early-diverging Chordata but not in late-diverging vertebrates. Interestingly, these events were of independent origin in different phyla, suggesting convergent evolution of alternative splicing. Furthermore, we showed that multiple sets of clade-conserved RNA pairings evolved to guide species-specific mutually exclusive splicing in Arthropoda. Importantly, we also identified a similar structural code in MRP exon clusters of the annelid, Capitella teleta, and chordate, Branchiostoma belcheri, suggesting an evolutionarily conserved competing pairing-guided mechanism in bilaterians. Taken together, these data reveal the molecular determinants and RNA pairing-guided evolution of species-specific mutually exclusive splicing spanning more than 600 million years of bilaterian evolution. These findings have a significant impact on our understanding of the evolution of and mechanism underpinning isoform diversity and complex gene structure.
Collapse
Affiliation(s)
- Yuan Yue
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Shouqing Hou
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Xiu Wang
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China.,b Institute of Ecology, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Leilei Zhan
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Guozheng Cao
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Guoli Li
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Yang Shi
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Peng Zhang
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Weiling Hong
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Hao Lin
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Baoping Liu
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Feng Shi
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Yun Yang
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| | - Yongfeng Jin
- a Institute of Biochemistry, College of Life Sciences, Zhejiang University , Hangzhou , Zhejiang , P.R. China
| |
Collapse
|
9
|
ABC Transporter Required for Intercellular Transfer of Developmental Signals in a Heterocystous Cyanobacterium. J Bacteriol 2015; 197:2685-93. [PMID: 26055115 DOI: 10.1128/jb.00304-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 06/03/2015] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED In the filamentous cyanobacterium Anabaena, patS and hetN encode peptide-derived signals with many of the properties of morphogens. These signals regulate the formation of a periodic pattern of heterocysts by lateral inhibition of differentiation. Here we show that intercellular transfer of the patS- and hetN-dependent developmental signals from heterocysts to vegetative cells requires HetC, a predicted ATP-binding cassette transporter (ABC transporter). Relative to the wild type, in a hetC mutant differentiation resulted in a reduced number of heterocysts that were incapable of nitrogen fixation, but deletion of patS or hetN restored heterocyst number and function in a hetC background. These epistasis results suggest that HetC is necessary for conferring self-immunity to the inhibitors on differentiating cells. Nine hours after induction of differentiation, HetC was required for neither induction of transcription of patS nor intercellular transfer of the patS-encoded signal to neighboring cells. Conversely, in strains lacking HetC, the patS- and hetN-encoded signals were not transferred from heterocyst cells to adjacent vegetative cells. The results support a model in which the patS-dependent signal is initially transferred between vegetative cells in a HetC-independent fashion, but some time before morphological differentiation of heterocysts is complete, transfer of both signals transitions to a HetC-dependent process. IMPORTANCE How chemical cues that regulate pattern formation in multicellular organisms move from one cell to another is a central question in developmental biology. In this study, we show that an ABC transporter, HetC, is necessary for transport of two developmental signals between different types of cells in a filamentous cyanobacterium. ABC transporters are found in organisms as diverse as bacteria and humans and, as the name implies, are often involved in the transport of molecules across a cellular membrane. The activity of HetC was shown to be required for signaling between heterocysts, which supply fixed nitrogen to the organism, and other cells, as well as for conferring immunity to self-signaling on developing heterocysts.
Collapse
|
10
|
Inokuchi A, Yamamoto R, Morita F, Takumi S, Matsusaki H, Ishibashi H, Tominaga N, Arizono K. Effects of lithium on growth, maturation, reproduction and gene expression in the nematodeCaenorhabditis elegans. J Appl Toxicol 2015; 35:999-1006. [DOI: 10.1002/jat.3058] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Revised: 06/27/2014] [Accepted: 06/27/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Ayako Inokuchi
- Graduate School of Environmental and Symbiotic Science; Prefectural University of Kumamoto; 3-1-100 Tsukide Kumamoto 862-8502 Japan
| | - Ryoko Yamamoto
- Graduate School of Environmental and Symbiotic Science; Prefectural University of Kumamoto; 3-1-100 Tsukide Kumamoto 862-8502 Japan
| | - Fumiyo Morita
- Graduate School of Environmental and Symbiotic Science; Prefectural University of Kumamoto; 3-1-100 Tsukide Kumamoto 862-8502 Japan
| | - Shota Takumi
- Faculty of Environmental and Symbiotic Sciences; Prefectural University of Kumamoto; 3-1-100 Tsukide Kumamoto 862-8502 Japan
| | - Hiromi Matsusaki
- Faculty of Environmental and Symbiotic Sciences; Prefectural University of Kumamoto; 3-1-100 Tsukide Kumamoto 862-8502 Japan
| | - Hiroshi Ishibashi
- Department of Food and Nutrition; Shokei University Junior College; Kuhonji 2-6-78 Kumamoto 862-8678 Japan
| | - Nobuaki Tominaga
- Department of Chemical and Biological Engineering; Ariake National College of Technology; 150 Higashi-hagio-machi, Omuta Fukuoka 836-8585 Japan
| | - Koji Arizono
- Faculty of Environmental and Symbiotic Sciences; Prefectural University of Kumamoto; 3-1-100 Tsukide Kumamoto 862-8502 Japan
| |
Collapse
|
11
|
Isotopic labeling of mammalian G protein-coupled receptors heterologously expressed in Caenorhabditis elegans. Anal Biochem 2014; 472:30-6. [PMID: 25461480 DOI: 10.1016/j.ab.2014.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Revised: 11/10/2014] [Accepted: 11/13/2014] [Indexed: 12/28/2022]
Abstract
High-resolution structural determination and dynamic characterization of membrane proteins by nuclear magnetic resonance (NMR) require their isotopic labeling. Although a number of labeled eukaryotic membrane proteins have been successfully expressed in bacteria, they lack post-translational modifications and usually need to be refolded from inclusion bodies. This shortcoming of bacterial expression systems is particularly detrimental for the functional expression of G protein-coupled receptors (GPCRs), the largest family of drug targets, due to their inherent instability. In this work, we show that proteins expressed by a eukaryotic organism can be isotopically labeled and produced with a quality and quantity suitable for NMR characterization. Using our previously described expression system in Caenorhabditis elegans, we showed the feasibility of labeling proteins produced by these worms with (15)N,(13)C by providing them with isotopically labeled bacteria. (2)H labeling also was achieved by growing C. elegans in the presence of 70% heavy water. Bovine rhodopsin, simultaneously expressed in muscular and neuronal worm tissues, was employed as the "test" GPCR to demonstrate the viability of this approach. Although the worms' cell cycle was slightly affected by the presence of heavy isotopes, the final protein yield and quality was appropriate for NMR structural characterization.
Collapse
|
12
|
Inhibition or knockdown of ABC transporters enhances susceptibility of adult and juvenile schistosomes to Praziquantel. PLoS Negl Trop Dis 2014; 8:e3265. [PMID: 25330312 PMCID: PMC4199547 DOI: 10.1371/journal.pntd.0003265] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 09/10/2014] [Indexed: 12/01/2022] Open
Abstract
Parasitic flatworms of the genus Schistosoma cause schistosomiasis, a neglected tropical disease that affects hundreds of millions. Treatment of schistosomiasis depends almost entirely on the drug praziquantel (PZQ). Though essential to treating and controlling schistosomiasis, a major limitation of PZQ is that it is not active against immature mammalian-stage schistosomes. Furthermore, there are reports of field isolates with heritable reductions in PZQ susceptibility, and researchers have selected for PZQ-resistant schistosomes in the laboratory. P-glycoprotein (Pgp; ABCB1) and other ATP binding cassette (ABC) transporters remove a wide variety of toxins and xenobiotics from cells, and have been implicated in multidrug resistance (MDR). Changes in ABC transporter structure or expression levels are also associated with reduced drug susceptibility in parasitic helminths, including schistosomes. Here, we show that the activity of PZQ against schistosome adults and juveniles ex vivo is potentiated by co-administration of either the highly potent Pgp inhibitor tariquidar or combinations of inhibitors targeting multiple ABC multidrug transporters. Adult worms exposed to sublethal PZQ concentrations remain active, but co-administration of ABC transporter inhibitors results in complete loss of motility and disruption of the tegument. Notably, juvenile schistosomes (3–4 weeks post infection), normally refractory to 2 µM PZQ, become paralyzed when transporter inhibitors are added in combination with the PZQ. Experiments using the fluorescent PZQ derivative (R)-PZQ-BODIPY are consistent with the transporter inhibitors increasing effective intraworm concentrations of PZQ. Adult worms in which expression of ABC transporters has been suppressed by RNA interference show increased responsiveness to PZQ and increased retention of (R)-PZQ-BODIPY consistent with an important role for these proteins in setting levels of PZQ susceptibility. These results indicate that parasite ABC multidrug transporters might serve as important targets for enhancing the action of PZQ. They also suggest a potentially novel and readily-available strategy for overcoming reduced PZQ susceptibility of schistosomes. Schistosomes are parasitic flatworms that cause schistosomiasis, a tropical disease affecting hundreds of millions worldwide. Praziquantel (PZQ) is the current drug of choice against schistosomiasis, and, indeed, is the only approved antischistosomal treatment available in most parts of the world. Though effective overall, PZQ has limitations, including its lack of activity against immature schistosomes. Furthermore, reported cure rates in the field are often below optimal levels, and there is increasing evidence that schistosomes can become resistant to the drug. ABC transporters such as P-glycoprotein are efflux transporters that mediate detoxification of cells via removal of toxins and xenobiotics, including drugs. They underlie multidrug resistance in mammalian cells, and are also associated with drug resistance in parasitic worms, including schistosomes. Here, we show that compounds that inhibit these efflux transporters potentiate the activity of PZQ against schistosomes, including normally PZQ-insensitive juvenile worms. Similarly, suppressing expression of these transporters also increases adult worm responsiveness to PZQ. Our experiments may provide insights into the role of these drug transporters in PZQ action, and could also translate into new therapeutic strategies for augmenting treatment of schistosome infections and overcoming drug resistance.
Collapse
|
13
|
Gökirmak T, Shipp LE, Campanale JP, Nicklisch SCT, Hamdoun A. Transport in technicolor: mapping ATP-binding cassette transporters in sea urchin embryos. Mol Reprod Dev 2014; 81:778-93. [PMID: 25156004 DOI: 10.1002/mrd.22357] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 06/27/2014] [Indexed: 12/15/2022]
Abstract
One quarter of eukaryotic genes encode membrane proteins. These include nearly 1,000 transporters that translocate nutrients, signaling molecules, and xenobiotics across membranes. While it is well appreciated that membrane transport is critical for development, the specific roles of many transporters have remained cryptic, in part because of their abundance and the diversity of their substrates. Multidrug resistance ATP-binding cassette (ABC) efflux transporters are one example of cryptic membrane proteins. Although most organisms utilize these ABC transporters during embryonic development, many of these transporters have broad substrate specificity, and their developmental functions remain incompletely understood. Here, we review advances in our understanding of ABC transporters in sea urchin embryos, and methods developed to spatially and temporally map these proteins. These studies reveal that multifunctional transporters are required for signaling, homeostasis, and protection of the embryo, and shed light on how they are integrated into ancestral developmental pathways recapitulated in disease.
Collapse
Affiliation(s)
- Tufan Gökirmak
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California
| | | | | | | | | |
Collapse
|
14
|
Wessel GM, Brayboy L, Fresques T, Gustafson EA, Oulhen N, Ramos I, Reich A, Swartz SZ, Yajima M, Zazueta V. The biology of the germ line in echinoderms. Mol Reprod Dev 2014; 81:679-711. [PMID: 23900765 PMCID: PMC4102677 DOI: 10.1002/mrd.22223] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2013] [Accepted: 07/23/2013] [Indexed: 12/16/2022]
Abstract
The formation of the germ line in an embryo marks a fresh round of reproductive potential. The developmental stage and location within the embryo where the primordial germ cells (PGCs) form, however, differs markedly among species. In many animals, the germ line is formed by an inherited mechanism, in which molecules made and selectively partitioned within the oocyte drive the early development of cells that acquire this material to a germ-line fate. In contrast, the germ line of other animals is fated by an inductive mechanism that involves signaling between cells that directs this specialized fate. In this review, we explore the mechanisms of germ-line determination in echinoderms, an early-branching sister group to the chordates. One member of the phylum, sea urchins, appears to use an inherited mechanism of germ-line formation, whereas their relatives, the sea stars, appear to use an inductive mechanism. We first integrate the experimental results currently available for germ-line determination in the sea urchin, for which considerable new information is available, and then broaden the investigation to the lesser-known mechanisms in sea stars and other echinoderms. Even with this limited insight, it appears that sea stars, and perhaps the majority of the echinoderm taxon, rely on inductive mechanisms for germ-line fate determination. This enables a strongly contrasted picture for germ-line determination in this phylum, but one for which transitions between different modes of germ-line determination might now be experimentally addressed.
Collapse
Affiliation(s)
- Gary M. Wessel
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Lynae Brayboy
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Tara Fresques
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Eric A. Gustafson
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Nathalie Oulhen
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Isabela Ramos
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Adrian Reich
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - S. Zachary Swartz
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Mamiko Yajima
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| | - Vanessa Zazueta
- Department of Molecular Biology, Cellular Biology, and Biochemistry, Brown University, Providence, Rhode Island
| |
Collapse
|
15
|
Kuroyanagi H, Takei S, Suzuki Y. Comprehensive analysis of mutually exclusive alternative splicing in C. elegans. WORM 2014; 3:e28459. [PMID: 25254147 PMCID: PMC4165533 DOI: 10.4161/worm.28459] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/28/2014] [Accepted: 03/06/2014] [Indexed: 12/03/2022]
Abstract
Mutually exclusive selection of one exon in a cluster of exons is a rare form of alternative pre-mRNA splicing, yet suggests strict regulation. However, the repertoires of regulation mechanisms for the mutually exclusive (ME) splicing in vivo are still unknown. Here, we experimentally explore putative ME exons in C. elegans to demonstrate that 29 ME exon clusters in 27 genes are actually selected in a mutually exclusive manner. Twenty-two of the clusters consist of homologous ME exons. Five clusters have too short intervening introns to be excised between the ME exons. Fidelity of ME splicing relies at least in part on nonsense-mediated mRNA decay for 14 clusters. These results thus characterize all the repertoires of ME splicing in this organism.
Collapse
Affiliation(s)
- Hidehito Kuroyanagi
- Laboratory of Gene Expression; Medical Research Institute; Tokyo Medical and Dental University; Bunkyo-ku, Tokyo, Japan
| | - Satomi Takei
- Laboratory of Gene Expression; Medical Research Institute; Tokyo Medical and Dental University; Bunkyo-ku, Tokyo, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Science; University of Tokyo; Kashiwa, Chiba, Japan
| |
Collapse
|
16
|
Chen Y, Jastrzebska B, Cao P, Zhang J, Wang B, Sun W, Yuan Y, Feng Z, Palczewski K. Inherent instability of the retinitis pigmentosa P23H mutant opsin. J Biol Chem 2014; 289:9288-303. [PMID: 24515108 PMCID: PMC3979360 DOI: 10.1074/jbc.m114.551713] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 02/05/2014] [Indexed: 11/06/2022] Open
Abstract
The P23H opsin mutation is the most common cause of autosomal dominant retinitis pigmentosa. Even though the pathobiology of the resulting retinal degeneration has been characterized in several animal models, its complex molecular mechanism is not well understood. Here, we expressed P23H bovine rod opsin in the nervous system of Caenorhabditis elegans. Expression was low due to enhanced protein degradation. The mutant opsin was glycosylated, but the polysaccharide size differed from that of the normal protein. Although P23H opsin aggregated in the nervous system of C. elegans, the pharmacological chaperone 9-cis-retinal stabilized it during biogenesis, producing a variant of rhodopsin called P23H isorhodopsin. In vitro, P23H isorhodopsin folded correctly, formed the appropriate disulfide bond, could be photoactivated but with reduced sensitivity, and underwent Meta II decay at a rate similar to wild type isorhodopsin. In worm neurons, P23H isorhodopsin initiated phototransduction by coupling with the endogenous Gi/o signaling cascade that induced loss of locomotion. Using pharmacological interventions affecting protein synthesis and degradation, we showed that the chromophore could be incorporated either during or after mutant protein translation. However, regeneration of P23H isorhodopsin with chromophore was significantly slower than that of wild type isorhodopsin. This effect, combined with the inherent instability of P23H rhodopsin, could lead to the structural cellular changes and photoreceptor death found in autosomal dominant retinitis pigmentosa. These results also suggest that slow regeneration of P23H rhodopsin could prevent endogenous chromophore-mediated stabilization of rhodopsin in the retina.
Collapse
Affiliation(s)
| | | | | | | | - Benlian Wang
- Center for Proteomics and Bioinformatics, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4965 and
| | - Wenyu Sun
- Polgenix Inc., Cleveland, Ohio 44106
| | | | | | | |
Collapse
|
17
|
Ardelli BF. Transport proteins of the ABC systems superfamily and their role in drug action and resistance in nematodes. Parasitol Int 2013; 62:639-46. [DOI: 10.1016/j.parint.2013.02.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 02/20/2013] [Accepted: 02/21/2013] [Indexed: 11/28/2022]
|
18
|
Bryon A, Wybouw N, Dermauw W, Tirry L, Van Leeuwen T. Genome wide gene-expression analysis of facultative reproductive diapause in the two-spotted spider mite Tetranychus urticae. BMC Genomics 2013; 14:815. [PMID: 24261877 PMCID: PMC4046741 DOI: 10.1186/1471-2164-14-815] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 11/11/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diapause or developmental arrest, is one of the major adaptations that allows mites and insects to survive unfavorable conditions. Diapause evokes a number of physiological, morphological and molecular modifications. In general, diapause is characterized by a suppression of the metabolism, change in behavior, increased stress tolerance and often by the synthesis of cryoprotectants. At the molecular level, diapause is less studied but characterized by a complex and regulated change in gene-expression. The spider mite Tetranychus urticae is a serious polyphagous pest that exhibits a reproductive facultative diapause, which allows it to survive winter conditions. Diapausing mites turn deeply orange in color, stop feeding and do not lay eggs. RESULTS We investigated essential physiological processes in diapausing mites by studying genome-wide expression changes, using a custom built microarray. Analysis of this dataset showed that a remarkable number, 11% of the total number of predicted T. urticae genes, were differentially expressed. Gene Ontology analysis revealed that many metabolic pathways were affected in diapausing females. Genes related to digestion and detoxification, cryoprotection, carotenoid synthesis and the organization of the cytoskeleton were profoundly influenced by the state of diapause. Furthermore, we identified and analyzed an unique class of putative antifreeze proteins that were highly upregulated in diapausing females. We also further confirmed the involvement of horizontally transferred carotenoid synthesis genes in diapause and different color morphs of T. urticae. CONCLUSIONS This study offers the first in-depth analysis of genome-wide gene-expression patterns related to diapause in a member of the Chelicerata, and further adds to our understanding of the overall strategies of diapause in arthropods.
Collapse
Affiliation(s)
- Astrid Bryon
- Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, B-9000, Ghent, Belgium.
| | | | | | | | | |
Collapse
|
19
|
Unexpected role for dosage compensation in the control of dauer arrest, insulin-like signaling, and FoxO transcription factor activity in Caenorhabditis elegans. Genetics 2013; 194:619-29. [PMID: 23733789 PMCID: PMC3697968 DOI: 10.1534/genetics.113.149948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
During embryogenesis, an essential process known as dosage compensation is initiated to equalize gene expression from sex chromosomes. Although much is known about how dosage compensation is established, the consequences of modulating the stability of dosage compensation postembryonically are not known. Here we define a role for the Caenorhabditis elegans dosage compensation complex (DCC) in the regulation of DAF-2 insulin-like signaling. In a screen for dauer regulatory genes that control the activity of the FoxO transcription factor DAF-16, we isolated three mutant alleles of dpy-21, which encodes a conserved DCC component. Knockdown of multiple DCC components in hermaphrodite and male animals indicates that the dauer suppression phenotype of dpy-21 mutants is due to a defect in dosage compensation per se. In dpy-21 mutants, expression of several X-linked genes that promote dauer bypass is elevated, including four genes encoding components of the DAF-2 insulin-like pathway that antagonize DAF-16/FoxO activity. Accordingly, dpy-21 mutation reduced the expression of DAF-16/FoxO target genes by promoting the exclusion of DAF-16/FoxO from nuclei. Thus, dosage compensation enhances dauer arrest by repressing X-linked genes that promote reproductive development through the inhibition of DAF-16/FoxO nuclear translocation. This work is the first to establish a specific postembryonic function for dosage compensation in any organism. The influence of dosage compensation on dauer arrest, a larval developmental fate governed by the integration of multiple environmental inputs and signaling outputs, suggests that the dosage compensation machinery may respond to external cues by modulating signaling pathways through chromosome-wide regulation of gene expression.
Collapse
|
20
|
Abstract
Constituting the largest group of membrane proteins identified in the human genome, G protein-coupled receptors (GPCRs) help control many physiological processes by responding to various stimuli. As targets for more than 40% of all prescribed pharmaceuticals, detailed understanding of GPCR structures is vital for the design and development of more specific medications and improved patient therapies. But structural information for membrane proteins and GPCRs, in particular, is limited despite considerable interest. The major impediment to obtaining sufficient quantities of highly purified GPCRs in their native form for crystallization lies in their low tissue levels, poor yields, and stability. The only exception is rhodopsin, which is abundantly expressed in the eye and stabilized by its covalently bound chromophore, 11-cis-retinal. Expression systems and purification protocols have yet to be developed for all other GPCRs. Here, we present a novel expression system for human GPCRs in Caenorhabditis elegans that produces sufficient amounts of recombinant proteins to allow their biochemical and structural characterization.
Collapse
|
21
|
Yan R, Urdaneta-Marquez L, Keller K, James CE, Davey MW, Prichard RK. The role of several ABC transporter genes in ivermectin resistance in Caenorhabditis elegans. Vet Parasitol 2012; 190:519-29. [PMID: 22840641 DOI: 10.1016/j.vetpar.2012.06.038] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/27/2012] [Accepted: 06/28/2012] [Indexed: 01/02/2023]
Abstract
The functions of nine ATP-binding cassette (ABC) transporter genes, mrp-1, mrp-4, mrp-6, pgp-2, pgp-3, pgp-4, pgp-5, haf-2 and haf-9, in an ivermectin (IVM) resistant strain of Caenorhabditis elegans were screened by comparing transcription levels between the resistant (IVR10) and wild-type (Bristol N2) strains, and by measuring the effects of RNA interference (RNAi) on the IVM resistant strain, on motility, pharyngeal pumping, egg production and death in the presence or varying concentrations of IVM (0-20 ng/ml). mRNA levels of mrp-1, 2, 4, 5, 6, 7, pgp-1, 2, 4, 12, 14, haf-1, 2 and 3 were significantly increased in IVR10 compared with the N2 strain. At 15 or 20 ng/ml IVM, down regulation of mrp-1, pgp-4, haf-2 and haf-9 significantly increased the effect of IVM to reduce egg production. At low to moderate IVM concentrations, down regulation of mrp-1 and haf-2 reduced the motility of C. elegans. However, at high IVM concentrations motility was increased by down regulation of transcription of pgp-3, pgp-4 and haf-9. Down regulation of expression of mrp-1, pgp-2 and pgp-5 resulted in reduced pharyngeal pumping in the presence of varying concentrations of IVM, while down regulation of mrp-6 and haf-2 increased pharyngeal pumping of the resistant strain irrespective of the IVM concentration used. Although the IVR10 strain was markedly resistant to IVM, compared with the unselected N2 strain, IVM led to the death of the C. elegans in a concentration dependent manner. However, differences in the IVM induced death rate, following RNAi, were not significantly different from the IVR10 strain without RNAi. The study shows that different ABC transporter genes may play a role in modulating the effects of IVM on pharyngeal pumping, motility and egg production, with down regulation of mrp-1 and haf-2 perhaps having the greatest effects. However, down regulation of expression of no individual ABC transporter gene profoundly affected the effect of IVM on mortality in the IVR10 strain. This suggests that some of these ABC transporter genes and their products may play a role in modulating the effects of IVM, but are not, individually, the critical gene responsible for IVM resistance. This study provides a model that may help to understand drug resistance in parasitic nematodes.
Collapse
Affiliation(s)
- Ruofeng Yan
- Institute of Parasitology, McGill University, Montreal, Canada
| | | | | | | | | | | |
Collapse
|
22
|
Shipp LE, Hamdoun A. ATP-binding cassette (ABC) transporter expression and localization in sea urchin development. Dev Dyn 2012; 241:1111-24. [PMID: 22473856 DOI: 10.1002/dvdy.23786] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2012] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND ATP-binding cassette (ABC) transporters are membrane proteins that regulate intracellular concentrations of myriad compounds and ions. There are >100 ABC transporter predictions in the Strongylocentrotus purpuratus genome, including 40 annotated ABCB, ABCC, and ABCG "multidrug efflux" transporters. Despite the importance of multidrug transporters for protection and signaling, their expression patterns have not been characterized in deuterostome embryos. RESULTS Sea urchin embryos expressed 20 ABCB, ABCC, and ABCG transporter genes in the first 58 hr of development, from unfertilized egg to early prism. We quantified transcripts of ABCB1a, ABCB4a, ABCC1, ABCC5a, ABCC9a, and ABCG2b, and found that ABCB1a mRNA was 10-100 times more abundant than other transporter mRNAs. In situ hybridization showed ABCB1a was expressed ubiquitously in embryos, while ABCC5a was restricted to secondary mesenchyme cells and their precursors. Fluorescent protein fusions showed localization of ABCB1a on apical cell surfaces, and ABCC5a on basolateral surfaces. CONCLUSIONS Embryos use many ABC transporters with predicted functions in cell signaling, lysosomal and mitochondrial homeostasis, potassium channel regulation, pigmentation, and xenobiotic efflux. Detailed characterization of ABCB1a and ABCC5a revealed that they have different temporal and spatial gene expression profiles and protein localization patterns that correlate to their predicted functions in protection and development, respectively.
Collapse
Affiliation(s)
- Lauren E Shipp
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, California 92093-0202, USA
| | | |
Collapse
|
23
|
Wollam J, Magner DB, Magomedova L, Rass E, Shen Y, Rottiers V, Habermann B, Cummins CL, Antebi A. A novel 3-hydroxysteroid dehydrogenase that regulates reproductive development and longevity. PLoS Biol 2012; 10:e1001305. [PMID: 22505847 PMCID: PMC3323522 DOI: 10.1371/journal.pbio.1001305] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 03/02/2012] [Indexed: 01/10/2023] Open
Abstract
Endogenous small molecule metabolites that regulate animal longevity are emerging as a novel means to influence health and life span. In C. elegans, bile acid-like steroids called the dafachronic acids (DAs) regulate developmental timing and longevity through the conserved nuclear hormone receptor DAF-12, a homolog of mammalian sterol-regulated receptors LXR and FXR. Using metabolic genetics, mass spectrometry, and biochemical approaches, we identify new activities in DA biosynthesis and characterize an evolutionarily conserved short chain dehydrogenase, DHS-16, as a novel 3-hydroxysteroid dehydrogenase. Through regulation of DA production, DHS-16 controls DAF-12 activity governing longevity in response to signals from the gonad. Our elucidation of C. elegans bile acid biosynthetic pathways reveals the possibility of novel ligands as well as striking biochemical conservation to other animals, which could illuminate new targets for manipulating longevity in metazoans.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Lilia Magomedova
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Elisabeth Rass
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Yidong Shen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Veerle Rottiers
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
| | | | - Carolyn L. Cummins
- Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Adam Antebi
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas, United States of America
- Interdepartmental Program in Cell and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
24
|
Campanale JP, Hamdoun A. Programmed reduction of ABC transporter activity in sea urchin germline progenitors. Development 2012; 139:783-92. [PMID: 22274698 PMCID: PMC3265063 DOI: 10.1242/dev.076752] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2011] [Indexed: 12/15/2022]
Abstract
ATP-binding cassette (ABC) transporters protect embryos and stem cells from mutagens and pump morphogens that control cell fate and migration. In this study, we measured dynamics of ABC transporter activity during formation of sea urchin embryonic cells necessary for the production of gametes, termed the small micromeres. Unexpectedly, we found small micromeres accumulate 2.32 times more of the ABC transporter substrates calcein-AM, CellTrace RedOrange, BoDipy-verapamil and BoDipy-vinblastine, than any other cell in the embryo, indicating a reduction in multidrug efflux activity. The reduction in small micromere ABC transporter activity is mediated by a pulse of endocytosis occurring 20-60 minutes after the appearance of the micromeres--the precursors of the small micromeres. Treating embryos with phenylarsine oxide, an inhibitor of endocytosis, prevents the reduction of transporter activity. Tetramethylrhodamine dextran and cholera toxin B uptake experiments indicate that micromeres have higher rates of bulk and raft-associated membrane endocytosis during the window of transporter downregulation. We hypothesized that this loss of efflux transport could be required for the detection of developmental signaling molecules such as germ cell chemoattractants. Consistent with this hypothesis, we found that the inhibition of ABCB and ABCC-types of efflux transporters disrupts the ordered distribution of small micromeres to the left and right coelomic pouches. These results point to tradeoffs between signaling and the protective functions of the transporters.
Collapse
Affiliation(s)
- Joseph P. Campanale
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| | - Amro Hamdoun
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0202, USA
| |
Collapse
|
25
|
Kasinathan RS, Morgan WM, Greenberg RM. Genetic knockdown and pharmacological inhibition of parasite multidrug resistance transporters disrupts egg production in Schistosoma mansoni. PLoS Negl Trop Dis 2011; 5:e1425. [PMID: 22163059 PMCID: PMC3232217 DOI: 10.1371/journal.pntd.0001425] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Accepted: 10/27/2011] [Indexed: 12/17/2022] Open
Abstract
P-glycoprotein (Pgp) and multidrug resistance-associated proteins (MRPs) are ATP-dependent transporters involved in efflux of toxins and xenobiotics from cells. When overexpressed, these transporters can mediate multidrug resistance (MDR) in mammalian cells, and changes in Pgp expression and sequence are associated with drug resistance in helminths. In addition to the role they play in drug efflux, MDR transporters are essential components of normal cellular physiology, and targeting them may prove a useful strategy for development of new therapeutics or of compounds that enhance the efficacy of current anthelmintics. We previously showed that expression of Schistosoma mansoni MDR transporters increases in response to praziquantel (PZQ), the current drug of choice against schistosomiasis, and that reduced PZQ sensitivity correlates with higher levels of these parasite transporters. We have also shown that PZQ inhibits transport by SMDR2, a Pgp orthologue from S. mansoni, and that PZQ is a likely substrate of SMDR2. Here, we examine the physiological roles of SMDR2 and SmMRP1 (the S. mansoni orthologue of MRP1) in S. mansoni adults, using RNAi to knock down expression, and pharmacological agents to inhibit transporter function. We find that both types of treatments disrupt parasite egg deposition by worms in culture. Furthermore, administration of different MDR inhibitors to S. mansoni-infected mice results in a reduction in egg burden in host liver. These schistosome MDR transporters therefore appear to play essential roles in parasite egg production, and can be targeted genetically and pharmacologically. Since eggs are responsible for the major pathophysiological consequences of schistosomiasis, and since they are also the agents for transmission of the disease, these results suggest a potential strategy for reducing disease pathology and spread. Schistosomes are parasitic flatworms that are the causative agents of schistosomiasis, a major tropical disease. As adults, schistosomes reside within the host vasculature, taking up nutrients, evading host defenses, and expelling wastes and toxins. Multidrug resistance transporters are involved in removal of toxins and foreign compounds, including drugs, from cells. These transporters have broad selectivity, and when upregulated or mutated, can confer resistance to a wide spectrum of drugs against mammalian tumor cells. They are also associated with drug resistance in various parasites, including helminths. In this report, we have used knockdown of expression of these proteins and pharmacological inhibition of their transport function to dissect their physiological role in the schistosome life cycle. We find that either reducing transporter expression or pharmacologically inhibiting transporter function leads to disruption of egg production by adult worms. Eggs deposited within the host are the major cause of disease pathology, and eggs excreted by the host are the means of continuation of the life cycle and transmission of the disease. The capability to interfere with schistosome egg production could have major implications for development of new treatment strategies.
Collapse
Affiliation(s)
- Ravi S. Kasinathan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - William M. Morgan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Robert M. Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
26
|
Salom D, Cao P, Sun W, Kramp K, Jastrzebska B, Jin H, Feng Z, Palczewski K. Heterologous expression of functional G-protein-coupled receptors in Caenorhabditis elegans. FASEB J 2011; 26:492-502. [PMID: 22090314 DOI: 10.1096/fj.11-197780] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
New strategies for expression, purification, functional characterization, and structural determination of membrane-spanning G-protein-coupled receptors (GPCRs) are constantly being developed because of their importance to human health. Here, we report a Caenorhabditis elegans heterologous expression system able to produce milligram amounts of functional native and engineered GPCRs. Both bovine opsin [(b)opsin] and human adenosine A(2A) subtype receptor [(h)A(2A)R] expressed in neurons or muscles of C. elegans were localized to cell membranes. Worms expressing these GPCRs manifested changes in motor behavior in response to light and ligands, respectively. With a newly devised protocol, 0.6-1 mg of purified homogenous 9-cis-retinal-bound bovine isorhodopsin [(b)isoRho] and ligand-bound (h)A(2A)R were obtained from C. elegans from one 10-L fermentation at low cost. Purified recombinant (b)isoRho exhibited its signature absorbance spectrum and activated its cognate G-protein transducin in vitro at a rate similar to native rhodopsin (Rho) obtained from bovine retina. Generally high expression levels of 11 native and mutant GPCRs demonstrated the potential of this C. elegans system to produce milligram quantities of high-quality GPCRs and possibly other membrane proteins suitable for detailed characterization.
Collapse
|
27
|
Cao P, Sun W, Kramp K, Zheng M, Salom D, Jastrzebska B, Jin H, Palczewski K, Feng Z. Light-sensitive coupling of rhodopsin and melanopsin to G(i/o) and G(q) signal transduction in Caenorhabditis elegans. FASEB J 2011; 26:480-91. [PMID: 22090313 DOI: 10.1096/fj.11-197798] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Activation of G-protein-coupled receptors (GPCRs) initiates signal transduction cascades that affect many physiological responses. The worm Caenorhabditis elegans expresses >1000 of these receptors along with their cognate heterotrimeric G proteins. Here, we report properties of 9-cis-retinal regenerated bovine opsin [(b)isoRho] and human melanopsin [(h)Mo], two light-activated, heterologously expressed GPCRs in the nervous system of C. elegans with various genetically engineered alterations. Profound transient photoactivation of G(i/o) signaling by (b)isoRho led to a sudden and transient loss of worm motility dependent on cyclic adenosine monophosphate, whereas transient photoactivation of G(q) signaling by (h)Mo enhanced worm locomotion dependent on phospholipase Cβ. These transgenic C. elegans models provide a unique way to study the consequences of G(i/o) and G(q) signaling in vivo with temporal and spatial precision and, by analogy, their relationship to human neuromotor function.
Collapse
Affiliation(s)
- Pengxiu Cao
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106-4965, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Sterol metabolites are critical signaling molecules that regulate metabolism, development, and homeostasis. Oxysterols, bile acids (BAs), and steroids work primarily through cognate sterol-responsive nuclear hormone receptors to control these processes through feed-forward and feedback mechanisms. These signaling pathways are conserved from simple invertebrates to mammals. Indeed, results from various model organisms have yielded fundamental insights into cholesterol and BA homeostasis, lipid and glucose metabolism, protective mechanisms, tissue differentiation, development, reproduction, and even aging. Here, we review how sterols act through evolutionarily ancient mechanisms to control these processes.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Molecular and Cellular Biology, Huffington Center on Aging, Baylor College of Medicine, Houston, Texas 77030, USA
| | | |
Collapse
|
29
|
Yuan Y, Cao P, Smith MA, Kramp K, Huang Y, Hisamoto N, Matsumoto K, Hatzoglou M, Jin H, Feng Z. Dysregulated LRRK2 signaling in response to endoplasmic reticulum stress leads to dopaminergic neuron degeneration in C. elegans. PLoS One 2011; 6:e22354. [PMID: 21857923 PMCID: PMC3153934 DOI: 10.1371/journal.pone.0022354] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 06/23/2011] [Indexed: 11/18/2022] Open
Abstract
Mutation of leucine-rich repeat kinase 2 (LRRK2) is the leading genetic cause of Parkinson's Disease (PD), manifested as age-dependent dopaminergic neurodegeneration, but the underlying molecular mechanisms remain unclear. Multiple roles of LRRK2 may contribute to dopaminergic neurodegeneration. Endoplasmic reticulum (ER) stress has also been linked to PD pathogenesis, but its interactive mechanism with PD genetic factors is largely unknown. Here, we used C. elegans, human neuroblastoma cells and murine cortical neurons to determine the role of LRRK2 in maintaining dopaminergic neuron viability. We found that LRRK2 acts to protect neuroblastoma cells and C. elegans dopaminergic neurons from the toxicity of 6-hydroxydopamine and/or human α-synuclein, possibly through the p38 pathway, by supporting upregulation of GRP78, a key cell survival molecule during ER stress. A pathogenic LRRK2 mutant (G2019S), however, caused chronic p38 activation that led to death of murine neurons and age-related dopaminergic-specific neurodegeneration in nematodes. These observations establish a critical functional link between LRRK2 and ER stress.
Collapse
Affiliation(s)
- Yiyuan Yuan
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pengxiu Cao
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Mark A. Smith
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Kristopher Kramp
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Ying Huang
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Naoki Hisamoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya Solution-Oriented Research for Science and Technology, Japan Science and Technology Corporation, Chikusa-ku, Nagoya, Japan
| | - Kunihiro Matsumoto
- Department of Molecular Biology, Graduate School of Science, Institute for Advanced Research, Nagoya Solution-Oriented Research for Science and Technology, Japan Science and Technology Corporation, Chikusa-ku, Nagoya, Japan
| | - Maria Hatzoglou
- Department of Nutrition, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Hui Jin
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Zhaoyang Feng
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, United States of America
- Department of Physiology, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi, China
- * E-mail:
| |
Collapse
|
30
|
Kasinathan RS, Morgan WM, Greenberg RM. Schistosoma mansoni express higher levels of multidrug resistance-associated protein 1 (SmMRP1) in juvenile worms and in response to praziquantel. Mol Biochem Parasitol 2010; 173:25-31. [PMID: 20470831 DOI: 10.1016/j.molbiopara.2010.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/04/2010] [Accepted: 05/05/2010] [Indexed: 12/13/2022]
Abstract
The ATP-binding cassette (ABC) superfamily of proteins comprises several ATP-dependent efflux pumps involved in transport of toxins and xenobiotics from cells. These transporters are essential components of normal physiology, and a subset is associated with development of multidrug resistance. P-glycoprotein (Pgp) and the multidrug resistance-associated proteins (MRPs) represent two classes of these multidrug resistance (MDR) transporters. MRP1 is one type of mammalian MRP, which preferentially transports anionic compounds and compounds detoxified by cellular enzymes such as glutathione-S-transferase. It also transports signaling molecules, including immunomodulators. In schistosomes, both Pgp and MRP substrates localize to the excretory system, a potentially attractive target for new antischistosomals. We have previously shown that expression of schistosome Pgp (SMDR2) is altered in worms exposed to praziquantel (PZQ), the current drug of choice against schistosomiasis, and is expressed at higher levels in worms from isolates with reduced PZQ susceptibility. We have also shown that PZQ interacts directly with SMDR2. Here, we examine the relationship between PZQ and SmMRP1, a Schistosoma mansoni homolog of mammalian MRP1. SmMRP1 RNA is differentially expressed in adult males and females, and levels increase transiently following exposure of adult worms to sub-lethal concentrations of PZQ. A corresponding, though delayed, increase in anti-MRP1-immunoreactive protein also occurs following exposure to PZQ. PZQ-insensitive juvenile worms express higher levels of both SmMRP1 and SMDR2 RNA than mature adults, consistent with the hypothesis that increases in levels of schistosome multidrug transporters may be involved in development or maintenance of reduced susceptibility to PZQ.
Collapse
Affiliation(s)
- Ravi S Kasinathan
- Department of Pathobiology, University of Pennsylvania, Philadelphia, 19104, USA
| | | | | |
Collapse
|
31
|
Kawai H, Tanji T, Shiraishi H, Yamada M, Iijima R, Inoue T, Kezuka Y, Ohashi K, Yoshida Y, Tohyama K, Gengyo-Ando K, Mitani S, Arai H, Ohashi-Kobayashi A, Maeda M. Normal formation of a subset of intestinal granules in Caenorhabditis elegans requires ATP-binding cassette transporters HAF-4 and HAF-9, which are highly homologous to human lysosomal peptide transporter TAP-like. Mol Biol Cell 2009; 20:2979-90. [PMID: 19403699 PMCID: PMC2695804 DOI: 10.1091/mbc.e08-09-0912] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 04/10/2009] [Accepted: 04/17/2009] [Indexed: 11/11/2022] Open
Abstract
TAP-like (TAPL; ABCB9) is a half-type ATP-binding cassette (ABC) transporter that localizes in lysosome and putatively conveys peptides from cytosol to lysosome. However, the physiological role of this transporter remains to be elucidated. Comparison of genome databases reveals that TAPL is conserved in various species from a simple model organism, Caenorhabditis elegans, to mammals. C. elegans possesses homologous TAPL genes: haf-4 and haf-9. In this study, we examined the tissue-specific expression of these two genes and analyzed the phenotypes of the loss-of-function mutants for haf-4 and haf-9 to elucidate the in vivo function of these genes. Both HAF-4 and HAF-9 tagged with green fluorescent protein (GFP) were mainly localized on the membrane of nonacidic but lysosome-associated membrane protein homologue (LMP-1)-positive intestinal granules from larval to adult stage. The mutants for haf-4 and haf-9 exhibited granular defects in late larval and young adult intestinal cells, associated with decreased brood size, prolonged defecation cycle, and slow growth. The intestinal granular phenotype was rescued by the overexpression of the GFP-tagged wild-type protein, but not by the ATP-unbound form of HAF-4. These results demonstrate that two ABC transporters, HAF-4 and HAF-9, are related to intestinal granular formation and some other physiological aspects.
Collapse
Affiliation(s)
- Hiromi Kawai
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takahiro Tanji
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Hirohisa Shiraishi
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Mitsuo Yamada
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Ryoko Iijima
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takao Inoue
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yasuko Kezuka
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Kazuaki Ohashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuo Yoshida
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Koujiro Tohyama
- The Center for Electron Microscopy and Bio-Imaging Research, Iwate Medical University, Morioka, Iwate 020-8505, Japan; and
| | - Keiko Gengyo-Ando
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Shohei Mitani
- Department of Physiology, School of Medicine, Tokyo Women's Medical University, Shinjuku-ku, Tokyo 162-8666, Japan
| | - Hiroyuki Arai
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ayako Ohashi-Kobayashi
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
- Department of Immunobiology, School of Pharmacy, Iwate Medical University, Yahaba, Shiwa-gun, Iwate 028-3694, Japan
| | - Masatomo Maeda
- *Department of Molecular Biology and Biochemistry, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
32
|
James CE, Davey MW. Increased expression of ABC transport proteins is associated with ivermectin resistance in the model nematode Caenorhabditis elegans. Int J Parasitol 2009; 39:213-20. [DOI: 10.1016/j.ijpara.2008.06.009] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 06/12/2008] [Accepted: 06/20/2008] [Indexed: 01/11/2023]
|
33
|
Abstract
Because life is often unpredictable, dynamic, and complex, all animals have evolved remarkable abilities to cope with changes in their external environment and internal physiology. This regulatory plasticity leads to shifts in behavior and metabolism, as well as to changes in development, growth, and reproduction, which is thought to improve the chances of survival and reproductive success. In favorable environments, the nematode Caenorhabditis elegans develops rapidly to reproductive maturity, but in adverse environments, animals arrest at the dauer diapause, a long-lived stress resistant stage. A molecular and genetic analysis of dauer formation has revealed key insights into how sensory and dietary cues are coupled to conserved endocrine pathways, including insulin/IGF, TGF-beta, serotonergic, and steroid hormone signal transduction, which govern the choice between reproduction and survival. These and other pathways reveal a molecular basis for metazoan plasticity in response to extrinsic and intrinsic signals.
Collapse
Affiliation(s)
- Nicole Fielenbach
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Adam Antebi
- Huffington Center on Aging, Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
34
|
Role of the Caenorhabditis elegans multidrug resistance gene, mrp-4, in gut granule differentiation. Genetics 2007; 177:1569-82. [PMID: 17947407 DOI: 10.1534/genetics.107.080689] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Caenorhabditis elegans gut granules are lysosome-related organelles with birefringent contents. mrp-4, which encodes an ATP-binding cassette (ABC) transporter homologous to mammalian multidrug resistance proteins, functions in the formation of gut granule birefringence. mrp-4(-) embryos show a delayed appearance of birefringent material in the gut granule but otherwise appear to form gut granules properly. mrp-4(+) activity is required for the extracellular mislocalization of birefringent material, body-length retraction, and NaCl sensitivity, phenotypes associated with defective gut granule biogenesis exhibited by embryos lacking the activity of GLO-1/Rab38, a putative GLO-1 guanine nucleotide exchange factor GLO-4, and the AP-3 complex. Multidrug resistance protein (MRP)-4 localizes to the gut granule membrane, consistent with it playing a direct role in the transport of molecules that compose and/or facilitate the formation of birefringent crystals within the gut granule. However, MRP-4 is also present in oocytes and early embryos, and our genetic analyses indicate that its site of action in the formation of birefringent material may not be limited to just the gut granule in embryos. In a search for genes that function similarly to mrp-4(+), we identified WHT-2, another ABC transporter that acts in parallel to MRP-4 for the formation of birefringent material in the gut granule.
Collapse
|
35
|
Roepke TA, Hamdoun AM, Cherr GN. Increase in multidrug transport activity is associated with oocyte maturation in sea stars. Dev Growth Differ 2007; 48:559-73. [PMID: 17118011 PMCID: PMC3159419 DOI: 10.1111/j.1440-169x.2006.00893.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this study, we report on the presence of efflux transporter activity before oocyte maturation in sea stars and its upregulation after maturation. This activity is similar to the multidrug resistance (MDR) activity mediated by ATP binding cassette (ABC) efflux transporters. In sea star oocytes the efflux activity, as measured by exclusion of calcein-am, increased two-fold 3 h post-maturation. Experiments using specific and non-specific dyes and inhibitors demonstrated that the increase in transporter activity involves an ABCB protein, P-glycoprotein (P-gp), and an ABCC protein similar to the MDR-associated protein (MRP)-like transporters. Western blots using an antibody directed against mammalian P-gp recognized a 45 kDa protein in sea star oocytes that increased in abundance during maturation. An antibody directed against sea urchin ABCC proteins (MRP) recognized three proteins in immature oocytes and two in mature oocytes. Experiments using inhibitors suggest that translation and microtubule function are both required for post-maturation increases in transporter activity. Immunolabeling revealed translocation of stored ABCB proteins to the plasma cell membrane during maturation, and this translocation coincided with increased transport activity. These MDR transporters serve protective roles in oocytes and eggs, as demonstrated by sensitization of the oocytes to the maturation inhibitor, vinblastine, by MRP and PGP-specific transporter inhibitors.
Collapse
Affiliation(s)
- Troy A. Roepke
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California 94923, USA
| | - Amro M. Hamdoun
- Hopkins Marine Station, Stanford University, Pacific Grove, California 93950, USA
| | - Gary N. Cherr
- Bodega Marine Laboratory, University of California Davis, Bodega Bay, California 94923, USA
- Departments of Environmental Toxicology and Nutrition, University of California Davis, Davis, California 95616, USA
- Author to whom all correspondence should be addressed.
| |
Collapse
|
36
|
Abstract
Contrary to the view that embryos and larvae are the most fragile stages of life, development is stable under real-world conditions. Early cleavage embryos are prepared for environmental vagaries by having high levels of cellular defenses already present in the egg before fertilization. Later in development, adaptive responses to the environment either buffer stress or produce alternative developmental phenotypes. These buffers, defenses, and alternative pathways set physiological limits for development under expected conditions; teratology occurs when embryos encounter unexpected environmental changes and when stress exceeds these limits. Of concern is that rapid anthropogenic changes to the environment are beyond the range of these protective mechanisms.
Collapse
Affiliation(s)
- Amro Hamdoun
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950
- *To whom correspondence may be addressed at:
Hopkins Marine Station 120 Oceanview Boulevard, Pacific Grove, CA 93950. E-mail:
or
| | - David Epel
- Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950
- *To whom correspondence may be addressed at:
Hopkins Marine Station 120 Oceanview Boulevard, Pacific Grove, CA 93950. E-mail:
or
| |
Collapse
|
37
|
Goldstone J, Hamdoun A, Cole B, Howard-Ashby M, Nebert D, Scally M, Dean M, Epel D, Hahn M, Stegeman J. The chemical defensome: environmental sensing and response genes in the Strongylocentrotus purpuratus genome. Dev Biol 2006; 300:366-84. [PMID: 17097629 PMCID: PMC3166225 DOI: 10.1016/j.ydbio.2006.08.066] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Revised: 08/18/2006] [Accepted: 08/28/2006] [Indexed: 01/08/2023]
Abstract
Metazoan genomes contain large numbers of genes that participate in responses to environmental stressors. We surveyed the sea urchin Strongylocentrotus purpuratus genome for homologs of gene families thought to protect against chemical stressors; these genes collectively comprise the 'chemical defensome.' Chemical defense genes include cytochromes P450 and other oxidases, various conjugating enzymes, ATP-dependent efflux transporters, oxidative detoxification proteins, and transcription factors that regulate these genes. Together such genes account for more than 400 genes in the sea urchin genome. The transcription factors include homologs of the aryl hydrocarbon receptor, hypoxia-inducible factor, nuclear factor erythroid-derived 2, heat shock factor, and nuclear hormone receptors, which regulate stress-response genes in vertebrates. Some defense gene families, including the ABCC, the UGT, and the CYP families, have undergone expansion in the urchin relative to other deuterostome genomes, whereas the stress sensor gene families do not show such expansion. More than half of the defense genes are expressed during embryonic or larval life stages, indicating their importance during development. This genome-wide survey of chemical defense genes in the sea urchin reveals evolutionary conservation of this network combined with lineage-specific diversification that together suggest the importance of these chemical stress sensing and response mechanisms in early deuterostomes. These results should facilitate future studies on the evolution of chemical defense gene networks and the role of these networks in protecting embryos from chemical stress during development.
Collapse
Affiliation(s)
- J.V. Goldstone
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - A. Hamdoun
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - B.J. Cole
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - M. Howard-Ashby
- Department of Biology, California Institute of Technology, CA, USA
| | - D.W. Nebert
- Department of Environmental Health, University Cincinnati Medical Center, Cincinnati, OH 45267-0056, USA
| | - M. Scally
- Human Genetics Section, Laboratory of Genomic Diversity, NCI-Frederick, Frederick, MD 21702, USA
| | - M. Dean
- Human Genetics Section, Laboratory of Genomic Diversity, NCI-Frederick, Frederick, MD 21702, USA
| | - D. Epel
- Hopkins Marine Station, Stanford University, Oceanview Blvd. Pacific Grove, CA 93950, USA
| | - M.E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - J.J. Stegeman
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
38
|
Sundaram P, Echalier B, Han W, Hull D, Timmons L. ATP-binding cassette transporters are required for efficient RNA interference in Caenorhabditis elegans. Mol Biol Cell 2006; 17:3678-88. [PMID: 16723499 PMCID: PMC1525249 DOI: 10.1091/mbc.e06-03-0192] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
RNA interference (RNAi) is a conserved gene-silencing phenomenon that can be triggered by delivery of double-stranded RNA (dsRNA) to cells and is a widely exploited technology in analyses of gene function. Although a number of proteins that facilitate RNAi have been identified, current descriptions of RNAi and interrelated mechanisms are far from complete. Here, we report that the Caenorhabditis elegans gene haf-6 is required for efficient RNAi. HAF-6 is a member of the ATP-binding cassette (ABC) transporter gene superfamily. ABC transporters use ATP to translocate small molecule substrates across the membranes in which they reside, often against a steep concentration gradient. Collectively, ABC transporters are involved in a variety of activities, including protective or barrier mechanisms that export drugs or toxins from cells, organellar biogenesis, and mechanisms that protect against viral infection. HAF-6 is expressed predominantly in the intestine and germline and is localized to intracellular reticular organelles. We further demonstrate that eight additional ABC genes from diverse subfamilies are each required for efficient RNAi in C. elegans. Thus, the ability to mount a robust RNAi response to dsRNA depends upon the deployment of two ancient systems that respond to environmental assaults: RNAi mechanisms and membrane transport systems that use ABC proteins.
Collapse
Affiliation(s)
- Prema Sundaram
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Benjamin Echalier
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Wang Han
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Dawn Hull
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| | - Lisa Timmons
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS 66045
| |
Collapse
|