1
|
Sanchez AC, Banoukh N, Mensching F, Skibbens RV, Iovine MK. Protein turnover downstream of the Nipbl/CRL4 axis contributes to abnormal development in zebrafish embryos. Dev Dyn 2025. [PMID: 40396618 DOI: 10.1002/dvdy.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/03/2025] [Accepted: 04/21/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Mutations in cohesins cause cohesinopathies such as Cornelia de Lange Syndrome (CdLS) and Roberts Syndrome (RBS). Prior findings demonstrate that Esco2 (a cohesin activator) and Smc3 (a core cohesin subunit) regulate the CRL4 E3 ubiquitin ligase. SMC3 mutations, however, account for a small percentage of CdLS. Here, we test whether NIPBL, which when mutated is responsible for 65% of CdLS cases, also regulates CRL4. RESULTS We report that Nipbl knockdown in zebrafish embryos produces developmental abnormalities and reduces the transcription of ddb1, which encodes a key component of CRL4 E3 ligase. The severity of phenotypes in Nipbl knockdown embryos is partially rescued by exogenous ddb1 mRNA, demonstrating that CRL4 ligase function is downstream of Nipbl. These findings suggest that aberrant accumulation of CRL4 ligase substrates contributes to developmental abnormalities. To test this model, we identified candidate CRL4 substrates in zebrafish embryos by LC-MS. The results reveal that elevated expression of one of these candidates, pparαa, is sufficient to produce developmental defects in zebrafish embryos. CONCLUSIONS Nipbl impacts CRL4 ligase activity via regulation of ddb1 expression. We provide evidence that the aberrant accumulation of substrates is sufficient to produce developmental abnormalities consistent with those observed in RBS and CdLS models.
Collapse
Affiliation(s)
- Annie C Sanchez
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Niusha Banoukh
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Fiona Mensching
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| | - M Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, USA
| |
Collapse
|
2
|
Singh G, Skibbens RV. Fdo1, Fkh1, Fkh2, and the Swi6-Mbp1 MBF complex regulate Mcd1 levels to impact eco1 rad61 cell growth in Saccharomyces cerevisiae. Genetics 2024; 228:iyae128. [PMID: 39110836 PMCID: PMC11457938 DOI: 10.1093/genetics/iyae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 07/19/2024] [Indexed: 10/09/2024] Open
Abstract
Cohesins promote proper chromosome segregation, gene transcription, genomic architecture, DNA condensation, and DNA damage repair. Mutations in either cohesin subunits or regulatory genes can give rise to severe developmental abnormalities (such as Robert Syndrome and Cornelia de Lange Syndrome) and also are highly correlated with cancer. Despite this, little is known about cohesin regulation. Eco1 (ESCO2/EFO2 in humans) and Rad61 (WAPL in humans) represent two such regulators but perform opposing roles. Eco1 acetylation of cohesin during S phase, for instance, stabilizes cohesin-DNA binding to promote sister chromatid cohesion. On the other hand, Rad61 promotes the dissociation of cohesin from DNA. While Eco1 is essential, ECO1 and RAD61 co-deletion results in yeast cell viability, but only within a limited temperature range. Here, we report that eco1rad61 cell lethality is due to reduced levels of the cohesin subunit Mcd1. Results from a suppressor screen further reveals that FDO1 deletion rescues the temperature-sensitive (ts) growth defects exhibited by eco1rad61 double mutant cells by increasing Mcd1 levels. Regulation of MCD1 expression, however, appears more complex. Elevated expression of MBP1, which encodes a subunit of the MBF transcription complex, also rescues eco1rad61 cell growth defects. Elevated expression of SWI6, however, which encodes the Mbp1-binding partner of MBF, exacerbates eco1rad61 cell growth and also abrogates the Mpb1-dependent rescue. Finally, we identify two additional transcription factors, Fkh1 and Fkh2, that impact MCD1 expression. In combination, these findings provide new insights into the nuanced and multi-faceted transcriptional pathways that impact MCD1 expression.
Collapse
Affiliation(s)
- Gurvir Singh
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | - Robert V Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
3
|
Horsfield JA. Full circle: a brief history of cohesin and the regulation of gene expression. FEBS J 2023; 290:1670-1687. [PMID: 35048511 DOI: 10.1111/febs.16362] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/21/2021] [Accepted: 01/18/2022] [Indexed: 12/17/2022]
Abstract
The cohesin complex has a range of crucial functions in the cell. Cohesin is essential for mediating chromatid cohesion during mitosis, for repair of double-strand DNA breaks, and for control of gene transcription. This last function has been the subject of intense research ever since the discovery of cohesin's role in the long-range regulation of the cut gene in Drosophila. Subsequent research showed that the expression of some genes is exquisitely sensitive to cohesin depletion, while others remain relatively unperturbed. Sensitivity to cohesin depletion is also remarkably cell type- and/or condition-specific. The relatively recent discovery that cohesin is integral to forming chromatin loops via loop extrusion should explain much of cohesin's gene regulatory properties, but surprisingly, loop extrusion has failed to identify a 'one size fits all' mechanism for how cohesin controls gene expression. This review will illustrate how early examples of cohesin-dependent gene expression integrate with later work on cohesin's role in genome organization to explain mechanisms by which cohesin regulates gene expression.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Genetics Otago Research Centre, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, New Zealand
| |
Collapse
|
4
|
Kyrchanova OV, Bylino OV, Georgiev PG. Mechanisms of enhancer-promoter communication and chromosomal architecture in mammals and Drosophila. Front Genet 2022; 13:1081088. [PMID: 36531247 PMCID: PMC9751008 DOI: 10.3389/fgene.2022.1081088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The spatial organization of chromosomes is involved in regulating the majority of intranuclear processes in higher eukaryotes, including gene expression. Drosophila was used as a model to discover many transcription factors whose homologs play a key role in regulation of gene expression in mammals. According to modern views, a cohesin complex mostly determines the architecture of mammalian chromosomes by forming chromatin loops on anchors created by the CTCF DNA-binding architectural protein. The role of the cohesin complex in chromosome architecture is poorly understood in Drosophila, and CTCF is merely one of many Drosophila architectural proteins with a proven potential to organize specific long-range interactions between regulatory elements in the genome. The review compares the mechanisms responsible for long-range interactions and chromosome architecture between mammals and Drosophila.
Collapse
|
5
|
Popay TM, Dixon JR. Coming full circle: On the origin and evolution of the looping model for enhancer-promoter communication. J Biol Chem 2022; 298:102117. [PMID: 35691341 PMCID: PMC9283939 DOI: 10.1016/j.jbc.2022.102117] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 11/05/2022] Open
Abstract
In mammalian organisms, enhancers can regulate transcription from great genomic distances. How enhancers affect distal gene expression has been a major question in the field of gene regulation. One model to explain how enhancers communicate with their target promoters, the chromatin looping model, posits that enhancers and promoters come in close spatial proximity to mediate communication. Chromatin looping has been broadly accepted as a means for enhancer-promoter communication, driven by accumulating in vitro and in vivo evidence. The genome is now known to be folded into a complex 3D arrangement, created and maintained in part by the interplay of the Cohesin complex and the DNA-binding protein CTCF. In the last few years, however, doubt over the relationship between looping and transcriptional activation has emerged, driven by studies finding that only a modest number of genes are perturbed with acute degradation of looping machinery components. In parallel, newer models describing distal enhancer action have also come to prominence. In this article, we explore the emergence and development of the looping model as a means for enhancer-promoter communication and review the contrasting evidence between historical gene-specific and current global data for the role of chromatin looping in transcriptional regulation. We also discuss evidence for alternative models to chromatin looping and their support in the literature. We suggest that, while there is abundant evidence for chromatin looping as a major mechanism for enhancer function, enhancer-promoter communication is likely mediated by more than one mechanism in an enhancer- and context-dependent manner.
Collapse
Affiliation(s)
- Tessa M Popay
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA
| | - Jesse R Dixon
- Gene Expression Laboratory, The Salk Institute for Biological Studies, La Jolla, California, USA.
| |
Collapse
|
6
|
Shen Y, Zhao D, Sun L, Yang X, Yan X. Congenital vaginal obstruction in a female with Cornelia de Lange syndrome: A case report. Front Endocrinol (Lausanne) 2022; 13:886235. [PMID: 36093091 PMCID: PMC9453387 DOI: 10.3389/fendo.2022.886235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a rare genetic disease involving multiorgan systems that varies in clinical manifestations. Female genital abnormalities in patients with CdLS are rarely reported, and current guidelines for CdLS contain little information related to female genital abnormalities. We report a case of classic CdLS with an NIPBL gene pathogenic variant in a 4.5-year-old girl who experienced recurrent urinary tract infections (UTIs) with vesical tenesmus. Urogenital physical and imaging examinations revealed external vaginal orifice obstruction and bilateral vesicoureteral reflux (VUR). Vaginal diaphragm-like tissue resection and vaginal orifice plasty were performed on this patient. The symptoms of urination disorders and recurrent UTIs, as well as VUR grading, improved after relieving the vaginal obstruction during the operation. For female CdLS patients, especially those with VUR, it is necessary to check for genital abnormalities and perform timely treatment, which is of great significance in improving urination disorder symptoms, reducing resistance during voiding, decreasing the occurrence of secondary VUR, and controlling recurrent UTIs.
Collapse
Affiliation(s)
- Yiding Shen
- Department of Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Dongyan Zhao
- Department of Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Long Sun
- Department of Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiuzhen Yang
- Department of Ultrasound, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiang Yan
- Department of Urology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
7
|
Zhang N, Coutinho LE, Pati D. PDS5A and PDS5B in Cohesin Function and Human Disease. Int J Mol Sci 2021; 22:ijms22115868. [PMID: 34070827 PMCID: PMC8198109 DOI: 10.3390/ijms22115868] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/21/2021] [Accepted: 05/22/2021] [Indexed: 01/02/2023] Open
Abstract
Precocious dissociation of sisters 5 (PDS5) is an associate protein of cohesin that is conserved from yeast to humans. It acts as a regulator of the cohesin complex and plays important roles in various cellular processes, such as sister chromatid cohesion, DNA damage repair, gene transcription, and DNA replication. Vertebrates have two paralogs of PDS5, PDS5A and PDS5B, which have redundant and unique roles in regulating cohesin functions. Herein, we discuss the molecular characteristics and functions of PDS5, as well as the effects of its mutations in the development of diseases and their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Debananda Pati
- Correspondence: ; Tel.: +1-832-824-4575; Fax: +1-832-825-4651
| |
Collapse
|
8
|
Matityahu A, Onn I. Hit the brakes - a new perspective on the loop extrusion mechanism of cohesin and other SMC complexes. J Cell Sci 2021; 134:jcs247577. [PMID: 33419949 DOI: 10.1242/jcs.247577] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The three-dimensional structure of chromatin is determined by the action of protein complexes of the structural maintenance of chromosome (SMC) family. Eukaryotic cells contain three SMC complexes, cohesin, condensin, and a complex of Smc5 and Smc6. Initially, cohesin was linked to sister chromatid cohesion, the process that ensures the fidelity of chromosome segregation in mitosis. In recent years, a second function in the organization of interphase chromatin into topologically associated domains has been determined, and loop extrusion has emerged as the leading mechanism of this process. Interestingly, fundamental mechanistic differences exist between mitotic tethering and loop extrusion. As distinct molecular switches that aim to suppress loop extrusion in different biological contexts have been identified, we hypothesize here that loop extrusion is the default biochemical activity of cohesin and that its suppression shifts cohesin into a tethering mode. With this model, we aim to provide an explanation for how loop extrusion and tethering can coexist in a single cohesin complex and also apply it to the other eukaryotic SMC complexes, describing both similarities and differences between them. Finally, we present model-derived molecular predictions that can be tested experimentally, thus offering a new perspective on the mechanisms by which SMC complexes shape the higher-order structure of chromatin.
Collapse
Affiliation(s)
- Avi Matityahu
- 8 Henrietta Szold St., The Azrieli Faculty of Medicine, Bar-Ilan University, P.O. Box 1589 Safed, Israel
| | - Itay Onn
- 8 Henrietta Szold St., The Azrieli Faculty of Medicine, Bar-Ilan University, P.O. Box 1589 Safed, Israel
| |
Collapse
|
9
|
Ketharnathan S, Labudina A, Horsfield JA. Cohesin Components Stag1 and Stag2 Differentially Influence Haematopoietic Mesoderm Development in Zebrafish Embryos. Front Cell Dev Biol 2020; 8:617545. [PMID: 33365313 PMCID: PMC7750468 DOI: 10.3389/fcell.2020.617545] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cohesin is a multiprotein complex made up of core subunits Smc1, Smc3, and Rad21, and either Stag1 or Stag2. Normal haematopoietic development relies on crucial functions of cohesin in cell division and regulation of gene expression via three-dimensional chromatin organization. Cohesin subunit STAG2 is frequently mutated in myeloid malignancies, but the individual contributions of Stag variants to haematopoiesis or malignancy are not fully understood. Zebrafish have four Stag paralogues (Stag1a, Stag1b, Stag2a, and Stag2b), allowing detailed genetic dissection of the contribution of Stag1-cohesin and Stag2-cohesin to development. Here we characterize for the first time the expression patterns and functions of zebrafish stag genes during embryogenesis. Using loss-of-function CRISPR-Cas9 zebrafish mutants, we show that stag1a and stag2b contribute to primitive embryonic haematopoiesis. Both stag1a and stag2b mutants present with erythropenia by 24 h post-fertilization. Homozygous loss of either paralogue alters the number of haematopoietic/vascular progenitors in the lateral plate mesoderm. The lateral plate mesoderm zone of scl-positive cells is expanded in stag1a mutants with concomitant loss of kidney progenitors, and the number of spi1-positive cells are increased, consistent with skewing toward primitive myelopoiesis. In contrast, stag2b mutants have reduced haematopoietic/vascular mesoderm and downregulation of primitive erythropoiesis. Our results suggest that Stag1 and Stag2 proteins cooperate to balance the production of primitive haematopoietic/vascular progenitors from mesoderm.
Collapse
Affiliation(s)
- Sarada Ketharnathan
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Anastasia Labudina
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand
| | - Julia A Horsfield
- Department of Pathology, Otago Medical School, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Center for Molecular Biodiscovery, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
10
|
Zuilkoski CM, Skibbens RV. PCNA promotes context-specific sister chromatid cohesion establishment separate from that of chromatin condensation. Cell Cycle 2020; 19:2436-2450. [PMID: 32926661 PMCID: PMC7553509 DOI: 10.1080/15384101.2020.1804221] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/24/2020] [Indexed: 10/23/2022] Open
Abstract
Cellular genomes undergo various structural changes that include cis tethering (the tethering together of two loci within a single DNA molecule), which promotes chromosome condensation and transcriptional activation, and trans tethering (the tethering together of two DNA molecules), which promotes sister chromatid cohesion and DNA repair. The protein complex termed cohesin promotes both cis and trans forms of DNA tethering, but the extent to which these cohesin functions occur in temporally or spatially defined contexts remains largely unknown. Prior studies indicate that DNA polymerase sliding clamp PCNA recruits cohesin acetyltransferase Eco1, suggesting that sister chromatid cohesion is established in the context of the DNA replication fork. In support of this model, elevated levels of PCNA rescue the temperature growth and cohesion defects exhibited by eco1 mutant cells. Here, we test whether Eco1-dependent chromatin condensation is also promoted in the context of this DNA replication fork component. Our results reveal that overexpressed PCNA does not promote DNA condensation in eco1 mutant cells, even though Smc3 acetylation levels are increased. We further provide evidence that replication fork-associated E3 ligase impacts on Eco1 are more complex that previously described. In combination, the data suggests that Eco1 acetylates Smc3 and thus promotes sister chromatid cohesion in context of the DNA replication fork, whereas a distinct cohesin population participates in chromatin condensation outside the context of the DNA replication fork.
Collapse
Affiliation(s)
- Caitlin M. Zuilkoski
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, 18015, Bethlehem, Pennsylvania, USA
| |
Collapse
|
11
|
Kim LH, Hong ST, Choi KW. Protein phosphatase 2A interacts with Verthandi/Rad21 to regulate mitosis and organ development in Drosophila. Sci Rep 2019; 9:7624. [PMID: 31110215 PMCID: PMC6527568 DOI: 10.1038/s41598-019-44027-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/07/2019] [Indexed: 12/20/2022] Open
Abstract
Rad21/Scc1 is a subunit of the cohesin complex implicated in gene regulation as well as sister chromatid cohesion. The level of Rad21/Scc1 must be controlled for proper mitosis and gene expression during development. Here, we identify the PP2A catalytic subunit encoded by microtubule star (mts) as a regulator of Drosophila Rad21/Verthandi (Vtd). Mutations in mts and vtd cause synergistic mitotic defects, including abnormal spindles and loss of nuclei during nuclear division in early embryo. Depletion of Mts and Vtd in developing wing synergistically reduces the Cut protein level, causing severe defects in wing growth. Mts and PP2A subunit Twins (Tws) interact with Vtd protein. Loss of Mts or Tws reduces Vtd protein level. Reduced proteasome function suppresses mitotic defects caused by mutations in mts and vtd. Taken together, this work provides evidence that PP2A is required for mitosis and wing growth by regulating the Vtd level through the proteasomal pathway.
Collapse
Affiliation(s)
- Lee-Hyang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Sung-Tae Hong
- Department of Anatomy & Cell Biology, College of Medicine, Chungnam National University, Daejeon, Republic of Korea.,Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, Republic of Korea
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea.
| |
Collapse
|
12
|
Stormo BM, Fox DT. Interphase cohesin regulation ensures mitotic fidelity after genome reduplication. Mol Biol Cell 2019; 30:219-227. [PMID: 30462577 PMCID: PMC6589556 DOI: 10.1091/mbc.e17-10-0582] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/17/2018] [Accepted: 11/15/2018] [Indexed: 12/24/2022] Open
Abstract
To ensure faithful genome propagation, mitotic cells alternate one round of chromosome duplication with one round of chromosome separation. Chromosome separation failure thus causes genome reduplication, which alters mitotic chromosome structure. Such structural alterations are well documented to impair mitotic fidelity following aberrant genome reduplication, including in diseased states. In contrast, we recently showed that naturally occurring genome reduplication does not alter mitotic chromosome structure in Drosophila papillar cells. Our discovery raised the question of how a cell undergoing genome reduplication might regulate chromosome structure to prevent mitotic errors. Here, we show that papillar cells ensure mitotic fidelity through interphase cohesin regulation. We demonstrate a requirement for cohesins during programmed rounds of papillar genome reduplication known as endocycles. This interphase cohesin regulation relies on cohesin release but not cohesin cleavage and depends on the conserved cohesin regulator Pds5 . Our data suggest that a distinct form of interphase cohesin regulation ensures mitotic fidelity after genome reduplication.
Collapse
Affiliation(s)
- Benjamin M. Stormo
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
| | - Donald T. Fox
- Department of Cell Biology, Duke University Medical Center, Durham, NC 27710
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710
| |
Collapse
|
13
|
Slaughter BD, Hawley RS. The anatomy of a nucleus: As revealed by chromosome painting. PLoS Genet 2018; 14:e1007445. [PMID: 30001330 PMCID: PMC6042688 DOI: 10.1371/journal.pgen.1007445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Brian D. Slaughter
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| |
Collapse
|
14
|
Misulovin Z, Pherson M, Gause M, Dorsett D. Brca2, Pds5 and Wapl differentially control cohesin chromosome association and function. PLoS Genet 2018; 14:e1007225. [PMID: 29447171 PMCID: PMC5831647 DOI: 10.1371/journal.pgen.1007225] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/28/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
The cohesin complex topologically encircles chromosomes and mediates sister chromatid cohesion to ensure accurate chromosome segregation upon cell division. Cohesin also participates in DNA repair and gene transcription. The Nipped-B-Mau2 protein complex loads cohesin onto chromosomes and the Pds5-Wapl complex removes cohesin. Pds5 is also essential for sister chromatid cohesion, indicating that it has functions beyond cohesin removal. The Brca2 DNA repair protein interacts with Pds5, but the roles of this complex beyond DNA repair are unknown. Here we show that Brca2 opposes Pds5 function in sister chromatid cohesion by assaying precocious sister chromatid separation in metaphase spreads of cultured cells depleted for these proteins. By genome-wide chromatin immunoprecipitation we find that Pds5 facilitates SA cohesin subunit association with DNA replication origins and that Brca2 inhibits SA binding, mirroring their effects on sister chromatid cohesion. Cohesin binding is maximal at replication origins and extends outward to occupy active genes and regulatory sequences. Pds5 and Wapl, but not Brca2, limit the distance that cohesin extends from origins, thereby determining which active genes, enhancers and silencers bind cohesin. Using RNA-seq we find that Brca2, Pds5 and Wapl influence the expression of most genes sensitive to Nipped-B and cohesin, largely in the same direction. These findings demonstrate that Brca2 regulates sister chromatid cohesion and gene expression in addition to its canonical role in DNA repair and expand the known functions of accessory proteins in cohesin's diverse functions.
Collapse
Affiliation(s)
- Ziva Misulovin
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Michelle Pherson
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
15
|
Stormo BM, Fox DT. Polyteny: still a giant player in chromosome research. Chromosome Res 2017; 25:201-214. [PMID: 28779272 PMCID: PMC5768140 DOI: 10.1007/s10577-017-9562-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 12/17/2022]
Abstract
In this era of high-resolution mapping of chromosome territories, topological interactions, and chromatin states, it is increasingly appreciated that the positioning of chromosomes and their interactions within the nucleus is critical for cellular function. Due to their large size and distinctive structure, polytene chromosomes have contributed a wealth of knowledge regarding chromosome regulation. In this review, we discuss the diversity of polytene chromosomes in nature and in disease, examine the recurring structural features of polytene chromosomes in terms of what they reveal about chromosome biology, and discuss recent advances regarding how polytene chromosomes are assembled and disassembled. After over 130 years of study, these giant chromosomes are still powerful tools to understand chromosome biology.
Collapse
Affiliation(s)
- Benjamin M Stormo
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Donald T Fox
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
16
|
Abstract
The cohesin protein complex regulates multiple cellular events including sister chromatid cohesion and gene expression. Several distinct human diseases called cohesinopathies have been associated with genetic mutations in cohesin subunit genes or genes encoding regulators of cohesin function. Studies in different model systems, from yeast to mouse have provided insights into the molecular mechanisms of action of cohesin/cohesin regulators and their implications in the pathogenesis of cohesinopathies. The zebrafish has unique advantages for embryonic analyses and quantitative gene knockdown with morpholinos during the first few days of development, in contrast to knockouts of cohesin regulators in flies or mammals, which are either lethal as homozygotes or dramatically compensated for in heterozygotes. This has been particularly informative for Rad21, where a role in gene expression was first shown in zebrafish, and Nipbl, where the fish work revealed tissue-specific functions in heart, gut, and limbs, and long-range enhancer-promoter interactions that control Hox gene expression in vivo. Here we discuss the utility of the zebrafish in studying the developmental and pathogenic roles of cohesin.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Biological Science, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| | - Thomas F Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
17
|
Abstract
Mutations in enhancer-associated chromatin-modifying components and genomic alterations in non-coding regions of the genome occur frequently in cancer, and other diseases pointing to the importance of enhancer fidelity to ensure proper tissue homeostasis. In this review, I will use specific examples to discuss how mutations in chromatin-modifying factors might affect enhancer activity of disease-relevant genes. I will then consider direct evidence from single nucleotide polymorphisms, small insertions, or deletions but also larger genomic rearrangements such as duplications, deletions, translocations, and inversions of specific enhancers to demonstrate how they have the ability to impact enhancer activity of disease genes including oncogenes and tumor suppressor genes. Considering that the scientific community only fairly recently has begun to focus its attention on "enhancer malfunction" in disease, I propose that multiple new enhancer-regulated and disease-relevant processes will be uncovered in the near future that will constitute the mechanistic basis for novel therapeutic avenues.
Collapse
Affiliation(s)
- Hans-Martin Herz
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
18
|
Shwartz M, Matityahu A, Onn I. Identification of Functional Domains in the Cohesin Loader Subunit Scc4 by a Random Insertion/Dominant Negative Screen. G3 (BETHESDA, MD.) 2016; 6:2655-63. [PMID: 27280786 PMCID: PMC4978918 DOI: 10.1534/g3.116.031674] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 06/02/2016] [Indexed: 11/18/2022]
Abstract
Cohesin is a multi-subunit complex that plays an essential role in genome stability. Initial association of cohesin with chromosomes requires the loader-a heterodimer composed of Scc4 and Scc2 However, very little is known about the loader's mechanism of action. In this study, we performed a genetic screen to identify functional domains in the Scc4 subunit of the loader. We isolated scc4 mutant alleles that, when overexpressed, have a dominant negative effect on cell viability. We defined a small region in the N terminus of Scc4 that is dominant negative when overexpressed, and on which Scc2/Scc4 activity depends. When the mutant alleles are expressed as a single copy, they are recessive and do not support cell viability, cohesion, cohesin loading or Scc4 chromatin binding. In addition, we show that the mutants investigated reduce, but do not eliminate, the interaction of Scc4 with either Scc2 or cohesin. However, we show that Scc4 cannot bind cohesin in the absence of Scc2 Our results provide new insight into the roles of Scc4 in cohesin loading, and contribute to deciphering the loading mechanism.
Collapse
Affiliation(s)
- Michal Shwartz
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Avi Matityahu
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| | - Itay Onn
- Faculty of Medicine in the Galilee, Bar-Ilan University, Safed, 1311502, Israel
| |
Collapse
|
19
|
Shiba N, Yoshida K, Shiraishi Y, Okuno Y, Yamato G, Hara Y, Nagata Y, Chiba K, Tanaka H, Terui K, Kato M, Park MJ, Ohki K, Shimada A, Takita J, Tomizawa D, Kudo K, Arakawa H, Adachi S, Taga T, Tawa A, Ito E, Horibe K, Sanada M, Miyano S, Ogawa S, Hayashi Y. Whole-exome sequencing reveals the spectrum of gene mutations and the clonal evolution patterns in paediatric acute myeloid leukaemia. Br J Haematol 2016; 175:476-489. [PMID: 27470916 DOI: 10.1111/bjh.14247] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/30/2016] [Indexed: 01/31/2023]
Abstract
Acute myeloid leukaemia (AML) is a molecularly and clinically heterogeneous disease. Targeted sequencing efforts have identified several mutations with diagnostic and prognostic values in KIT, NPM1, CEBPA and FLT3 in both adult and paediatric AML. In addition, massively parallel sequencing enabled the discovery of recurrent mutations (i.e. IDH1/2 and DNMT3A) in adult AML. In this study, whole-exome sequencing (WES) of 22 paediatric AML patients revealed mutations in components of the cohesin complex (RAD21 and SMC3), BCORL1 and ASXL2 in addition to previously known gene mutations. We also revealed intratumoural heterogeneities in many patients, implicating multiple clonal evolution events in the development of AML. Furthermore, targeted deep sequencing in 182 paediatric AML patients identified three major categories of recurrently mutated genes: cohesion complex genes [STAG2, RAD21 and SMC3 in 17 patients (8·3%)], epigenetic regulators [ASXL1/ASXL2 in 17 patients (8·3%), BCOR/BCORL1 in 7 patients (3·4%)] and signalling molecules. We also performed WES in four patients with relapsed AML. Relapsed AML evolved from one of the subclones at the initial phase and was accompanied by many additional mutations, including common driver mutations that were absent or existed only with lower allele frequency in the diagnostic samples, indicating a multistep process causing leukaemia recurrence.
Collapse
Affiliation(s)
- Norio Shiba
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yusuke Okuno
- Department of Paediatrics, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Genki Yamato
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yusuke Hara
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan.,Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yasunobu Nagata
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Kiminori Terui
- Department of Paediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Motohiro Kato
- Department of Paediatrics Haematology and Oncology Research, National Centre for Child Health and Development, Tokyo, Japan
| | - Myoung-Ja Park
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan
| | - Kentaro Ohki
- Department of Paediatrics Haematology and Oncology Research, National Centre for Child Health and Development, Tokyo, Japan
| | - Akira Shimada
- Department of Paediatrics, Okayama University Graduate School of Medicine, Okayama, Japan
| | - Junko Takita
- Department of Paediatrics, The University of Tokyo, Tokyo, Japan
| | - Daisuke Tomizawa
- Division of Leukaemia and Lymphoma, Children's Cancer Centre, National Centre for Child Health and Development, Tokyo, Japan
| | - Kazuko Kudo
- Department of Paediatrics, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hirokazu Arakawa
- Department of Paediatrics, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Souichi Adachi
- Human Health Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Taga
- Department of Paediatrics, Shiga University of Medical Science, Ohtsu, Japan
| | - Akio Tawa
- Department of Paediatrics, National Hospital Organization Osaka National Hospital, Osaka, Japan
| | - Etsuro Ito
- Department of Paediatrics, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Keizo Horibe
- Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Masashi Sanada
- Clinical Research Centre, National Hospital Organization Nagoya Medical Centre, Nagoya, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Centre, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumour Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhide Hayashi
- Department of Haematology/Oncology, Gunma Children's Medical Centre, Shibukawa, Japan. .,Japanese Red Cross Gunma Blood Centre, Maebashi, Japan.
| |
Collapse
|
20
|
Orgil O, Mor H, Matityahu A, Onn I. Identification of a region in the coiled-coil domain of Smc3 that is essential for cohesin activity. Nucleic Acids Res 2016; 44:6309-17. [PMID: 27307603 PMCID: PMC5291275 DOI: 10.1093/nar/gkw539] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 05/30/2016] [Accepted: 06/03/2016] [Indexed: 12/22/2022] Open
Abstract
The cohesin complex plays an important role in sister chromatin cohesion. Cohesin's core is composed of two structural maintenance of chromosome (SMC) proteins, called Smc1 and Smc3. SMC proteins are built from a globular hinge domain, a rod-shaped domain composed of long anti-parallel coiled-coil (CC), and a second globular adenosine triphosphatase domain called the head. The functions of both head and hinge domains have been studied extensively, yet the function of the CC region remains elusive. We identified a mutation in the CC of smc3 (L217P) that disrupts the function of the protein. Cells carrying the smc3-L217P allele have a strong cohesion defect and complexes containing smc3-L217P are not loaded onto the chromosomes. However, the mutation does not affect inter-protein interactions in either the core complex or with the Scc2 loader. We show by molecular dynamics and biochemistry that wild-type Smc3 can adopt distinct conformations, and that adenosine triphosphate (ATP) induces the conformational change. The L217P mutation restricts the ability of the mutated protein to switch between the conformations. We suggest that the function of the CC is to transfer ATP binding/hydrolysis signals between the head and the hinge domains. The results provide a new insight into the mechanism of cohesin activity.
Collapse
Affiliation(s)
- Ola Orgil
- Faculty of Medicine in The Galilee, Bar-Ilan University, 8 Henrietta Szold Street, P.O. Box 1589, Safed 1311502, Israel
| | - Hadar Mor
- Faculty of Medicine in The Galilee, Bar-Ilan University, 8 Henrietta Szold Street, P.O. Box 1589, Safed 1311502, Israel
| | - Avi Matityahu
- Faculty of Medicine in The Galilee, Bar-Ilan University, 8 Henrietta Szold Street, P.O. Box 1589, Safed 1311502, Israel
| | - Itay Onn
- Faculty of Medicine in The Galilee, Bar-Ilan University, 8 Henrietta Szold Street, P.O. Box 1589, Safed 1311502, Israel
| |
Collapse
|
21
|
Cucco F, Musio A. Genome stability: What we have learned from cohesinopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2016; 172:171-8. [PMID: 27091086 DOI: 10.1002/ajmg.c.31492] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cohesin is a multiprotein complex involved in many DNA-related processes such as proper chromosome segregation, replication, transcription, and repair. Mutations in cohesin gene pathways are responsible for human diseases, collectively referred to as cohesinopathies. In addition, both cohesin gene expression dysregulation and mutations have been identified in cancer. Cohesinopathy cells are characterized by genome instability (GIN) visualized by a constellation of markers such as chromosome aneuploidies, chromosome aberrations, precocious sister chromatid separation, premature centromere separation, micronuclei formation, and sensitivity to genotoxic drugs. The emerging picture suggests that GIN observed in cohesinopathies may result from the synergistic effects of the multiple cohesin dysfunctions. © 2016 Wiley Periodicals, Inc.
Collapse
|
22
|
Steiner LA, Schulz V, Makismova Y, Lezon-Geyda K, Gallagher PG. CTCF and CohesinSA-1 Mark Active Promoters and Boundaries of Repressive Chromatin Domains in Primary Human Erythroid Cells. PLoS One 2016; 11:e0155378. [PMID: 27219007 PMCID: PMC4878738 DOI: 10.1371/journal.pone.0155378] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/27/2016] [Indexed: 01/20/2023] Open
Abstract
Background CTCF and cohesinSA-1 are regulatory proteins involved in a number of critical cellular processes including transcription, maintenance of chromatin domain architecture, and insulator function. To assess changes in the CTCF and cohesinSA-1 interactomes during erythropoiesis, chromatin immunoprecipitation coupled with high throughput sequencing and mRNA transcriptome analyses via RNA-seq were performed in primary human hematopoietic stem and progenitor cells (HSPC) and primary human erythroid cells from single donors. Results Sites of CTCF and cohesinSA-1 co-occupancy were enriched in gene promoters in HSPC and erythroid cells compared to single CTCF or cohesin sites. Cell type-specific CTCF sites in erythroid cells were linked to highly expressed genes, with the opposite pattern observed in HSPCs. Chromatin domains were identified by ChIP-seq with antibodies against trimethylated lysine 27 histone H3, a modification associated with repressive chromatin. Repressive chromatin domains increased in both number and size during hematopoiesis, with many more repressive domains in erythroid cells than HSPCs. CTCF and cohesinSA-1 marked the boundaries of these repressive chromatin domains in a cell-type specific manner. Conclusion These genome wide data, changes in sites of protein occupancy, chromatin architecture, and related gene expression, support the hypothesis that CTCF and cohesinSA-1 have multiple roles in the regulation of gene expression during erythropoiesis including transcriptional regulation at gene promoters and maintenance of chromatin architecture. These data from primary human erythroid cells provide a resource for studies of normal and perturbed erythropoiesis.
Collapse
Affiliation(s)
- Laurie A Steiner
- Department of Pediatrics, University of Rochester, Rochester, New York, United States of America
| | - Vincent Schulz
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Yelena Makismova
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kimberly Lezon-Geyda
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Patrick G Gallagher
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut, United States of America.,Departments of Pathology and Genetics, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
23
|
Wu Y, Gause M, Xu D, Misulovin Z, Schaaf CA, Mosarla RC, Mannino E, Shannon M, Jones E, Shi M, Chen WF, Katz OL, Sehgal A, Jongens TA, Krantz ID, Dorsett D. Drosophila Nipped-B Mutants Model Cornelia de Lange Syndrome in Growth and Behavior. PLoS Genet 2015; 11:e1005655. [PMID: 26544867 PMCID: PMC4636142 DOI: 10.1371/journal.pgen.1005655] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/16/2015] [Indexed: 11/18/2022] Open
Abstract
Individuals with Cornelia de Lange Syndrome (CdLS) display diverse developmental deficits, including slow growth, multiple limb and organ abnormalities, and intellectual disabilities. Severely-affected individuals most often have dominant loss-of-function mutations in the Nipped-B-Like (NIPBL) gene, and milder cases often have missense or in-frame deletion mutations in genes encoding subunits of the cohesin complex. Cohesin mediates sister chromatid cohesion to facilitate accurate chromosome segregation, and NIPBL is required for cohesin to bind to chromosomes. Individuals with CdLS, however, do not display overt cohesion or segregation defects. Rather, studies in human cells and model organisms indicate that modest decreases in NIPBL and cohesin activity alter the transcription of many genes that regulate growth and development. Sister chromatid cohesion factors, including the Nipped-B ortholog of NIPBL, are also critical for gene expression and development in Drosophila melanogaster. Here we describe how a modest reduction in Nipped-B activity alters growth and neurological function in Drosophila. These studies reveal that Nipped-B heterozygous mutant Drosophila show reduced growth, learning, and memory, and altered circadian rhythms. Importantly, the growth deficits are not caused by changes in systemic growth controls, but reductions in cell number and size attributable in part to reduced expression of myc (diminutive) and other growth control genes. The learning, memory and circadian deficits are accompanied by morphological abnormalities in brain structure. These studies confirm that Drosophila Nipped-B mutants provide a useful model for understanding CdLS, and provide new insights into the origins of birth defects. Cornelia de Lange Syndrome (CdLS) alters many aspects of growth and development. CdLS is caused by mutations in genes encoding proteins that ensure that chromosomes are distributed equally when a cell divides. These include genes that encode components of the cohesin complex, and Nipped-B-Like (NIPBL) that puts cohesin onto chromosomes. Individuals with CdLS have only modest reductions in the activities of these genes and do not show changes in chromosome distribution. Instead, they show differences in the expression many genes that control development. Animal models of CdLS will be useful for studies aimed at understanding how development is altered, and testing methods for treating CdLS. We find that Drosophila with one mutant copy of the Nipped-B gene, which is equivalent to the NIPBL gene, show characteristics similar to individuals with CdLS. These include reduced growth, learning, memory, and altered circadian rhythms. These studies thus indicate that Drosophila Nipped-B mutants are a valuable system for investigating the causes of the CdLS birth defects, and developing potential treatments. They also reveal that the slow growth in Drosophila Nipped-B mutants is not caused by disruption of systemic hormonal growth controls, and that the learning and memory deficits may reflect changes in brain structure.
Collapse
Affiliation(s)
- Yaning Wu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Maria Gause
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dongbin Xu
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Ziva Misulovin
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Cheri A. Schaaf
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ramya C. Mosarla
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth Mannino
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Megan Shannon
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Emily Jones
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Mi Shi
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Wen-Feng Chen
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Olivia L. Katz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
| | - Amita Sehgal
- Howard Hughes Medical Institute and Department of Neuroscience, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Thomas A. Jongens
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Ian D. Krantz
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States of America
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (IDK); (DD)
| | - Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- * E-mail: (IDK); (DD)
| |
Collapse
|
24
|
Hinshaw SM, Makrantoni V, Kerr A, Marston AL, Harrison SC. Structural evidence for Scc4-dependent localization of cohesin loading. eLife 2015; 4:e06057. [PMID: 26038942 PMCID: PMC4471937 DOI: 10.7554/elife.06057] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 06/01/2015] [Indexed: 01/21/2023] Open
Abstract
The cohesin ring holds newly replicated sister chromatids together until their separation at anaphase. Initiation of sister chromatid cohesion depends on a separate complex, Scc2(NIPBL)/Scc4(Mau2) (Scc2/4), which loads cohesin onto DNA and determines its localization across the genome. Proper cohesin loading is essential for cell division, and partial defects cause chromosome missegregation and aberrant transcriptional regulation, leading to severe developmental defects in multicellular organisms. We present here a crystal structure showing the interaction between Scc2 and Scc4. Scc4 is a TPR array that envelops an extended Scc2 peptide. Using budding yeast, we demonstrate that a conserved patch on the surface of Scc4 is required to recruit Scc2/4 to centromeres and to build pericentromeric cohesion. These findings reveal the role of Scc4 in determining the localization of cohesin loading and establish a molecular basis for Scc2/4 recruitment to centromeres.
Collapse
Affiliation(s)
- Stephen M Hinshaw
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
| | - Vasso Makrantoni
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Alastair Kerr
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Adèle L Marston
- Wellcome Trust Centre for Cell Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen C Harrison
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, United States
- Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| |
Collapse
|
25
|
Cuadrado A, Remeseiro S, Graña O, Pisano DG, Losada A. The contribution of cohesin-SA1 to gene expression and chromatin architecture in two murine tissues. Nucleic Acids Res 2015; 43:3056-67. [PMID: 25735743 PMCID: PMC4381060 DOI: 10.1093/nar/gkv144] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 01/30/2015] [Accepted: 02/13/2015] [Indexed: 12/22/2022] Open
Abstract
Cohesin, which in somatic vertebrate cells consists of SMC1, SMC3, RAD21 and either SA1 or SA2, mediates higher-order chromatin organization. To determine how cohesin contributes to the establishment of tissue-specific transcriptional programs, we compared genome-wide cohesin distribution, gene expression and chromatin architecture in cerebral cortex and pancreas from adult mice. More than one third of cohesin binding sites differ between the two tissues and these show reduced overlap with CCCTC-binding factor (CTCF) and are enriched at the regulatory regions of tissue-specific genes. Cohesin/CTCF sites at active enhancers and promoters contain, at least, cohesin-SA1. Analyses of chromatin contacts at the Protocadherin (Pcdh) and Regenerating islet-derived (Reg) gene clusters, mostly expressed in brain and pancreas, respectively, revealed remarkable differences that correlate with the presence of cohesin. We could not detect significant changes in the chromatin contacts at the Pcdh locus when comparing brains from wild-type and SA1 null embryos. In contrast, reduced dosage of SA1 altered the architecture of the Reg locus and decreased the expression of Reg genes in the pancreas of SA1 heterozygous mice. Given the role of Reg proteins in inflammation, such reduction may contribute to the increased incidence of pancreatic cancer observed in these animals.
Collapse
Affiliation(s)
- Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Osvaldo Graña
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Melchor Fernández Almagro 3, 28029 Madrid, Spain
| |
Collapse
|
26
|
Guacci V, Stricklin J, Bloom MS, Guō X, Bhatter M, Koshland D. A novel mechanism for the establishment of sister chromatid cohesion by the ECO1 acetyltransferase. Mol Biol Cell 2015; 26:117-33. [PMID: 25378582 PMCID: PMC4279223 DOI: 10.1091/mbc.e14-08-1268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 10/06/2014] [Accepted: 10/27/2014] [Indexed: 11/30/2022] Open
Abstract
Cohesin complex mediates cohesion between sister chromatids, which promotes high-fidelity chromosome segregation. Eco1p acetylates the cohesin subunit Smc3p during S phase to establish cohesion. The current model posits that this Eco1p-mediated acetylation promotes establishment by abrogating the ability of Wpl1p to destabilize cohesin binding to chromosomes. Here we present data from budding yeast that is incompatible with this Wpl1p-centric model. Two independent in vivo assays show that a wpl1∆ fails to suppress cohesion defects of eco1∆ cells. Moreover, a wpl1∆ also fails to suppress cohesion defects engendered by blocking just the essential Eco1p acetylation sites on Smc3p (K112, K113). Thus removing WPL1 inhibition is insufficient for generating cohesion without ECO1 activity. To elucidate how ECO1 promotes cohesion, we conducted a genetic screen and identified a cohesion activator mutation in the SMC3 head domain (D1189H). Smc3-D1189H partially restores cohesion in eco1∆ wpl1∆ or eco1 mutant cells but robustly restores cohesion in cells blocked for Smc3p K112 K113 acetylation. These data support two important conclusions. First, acetylation of the K112 K113 region by Eco1p promotes cohesion establishment by altering Smc3p head function independent of its ability to antagonize Wpl1p. Second, Eco1p targets other than Smc3p K112 K113 are necessary for efficient establishment.
Collapse
Affiliation(s)
- Vincent Guacci
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Jeremiah Stricklin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Michelle S. Bloom
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Xuánzōng Guō
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Meghna Bhatter
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| | - Douglas Koshland
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720
| |
Collapse
|
27
|
Abstract
Meiosis entails sorting and separating both homologous and sister chromatids. The mechanisms for connecting sister chromatids and homologs during meiosis are highly conserved and include specialized forms of the cohesin complex and a tightly regulated homolog synapsis/recombination pathway designed to yield regular crossovers between homologous chromatids. Drosophila male meiosis is of special interest because it dispenses with large segments of the standard meiotic script, particularly recombination, synapsis and the associated structures. Instead, Drosophila relies on a unique protein complex composed of at least two novel proteins, SNM and MNM, to provide stable connections between homologs during meiosis I. Sister chromatid cohesion in Drosophila is mediated by cohesins, ring-shaped complexes that entrap sister chromatids. However, unlike other eukaryotes Drosophila does not rely on the highly conserved Rec8 cohesin in meiosis, but instead utilizes two novel cohesion proteins, ORD and SOLO, which interact with the SMC1/3 cohesin components in providing meiotic cohesion.
Collapse
Affiliation(s)
- Bruce D McKee
- Department of Biochemistry, Cellular & Molecular Biology; University of Tennessee; Knoxville TN USA ; Genome Science and Technology Program; University of Tennessee; Knoxville TN USA
| | | | | |
Collapse
|
28
|
Muto A, Ikeda S, Lopez-Burks ME, Kikuchi Y, Calof AL, Lander AD, Schilling TF. Nipbl and mediator cooperatively regulate gene expression to control limb development. PLoS Genet 2014; 10:e1004671. [PMID: 25255084 PMCID: PMC4177752 DOI: 10.1371/journal.pgen.1004671] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Haploinsufficiency for Nipbl, a cohesin loading protein, causes Cornelia de Lange Syndrome (CdLS), the most common “cohesinopathy”. It has been proposed that the effects of Nipbl-haploinsufficiency result from disruption of long-range communication between DNA elements. Here we use zebrafish and mouse models of CdLS to examine how transcriptional changes caused by Nipbl deficiency give rise to limb defects, a common condition in individuals with CdLS. In the zebrafish pectoral fin (forelimb), knockdown of Nipbl expression led to size reductions and patterning defects that were preceded by dysregulated expression of key early limb development genes, including fgfs, shha, hand2 and multiple hox genes. In limb buds of Nipbl-haploinsufficient mice, transcriptome analysis revealed many similar gene expression changes, as well as altered expression of additional classes of genes that play roles in limb development. In both species, the pattern of dysregulation of hox-gene expression depended on genomic location within the Hox clusters. In view of studies suggesting that Nipbl colocalizes with the mediator complex, which facilitates enhancer-promoter communication, we also examined zebrafish deficient for the Med12 Mediator subunit, and found they resembled Nipbl-deficient fish in both morphology and gene expression. Moreover, combined partial reduction of both Nipbl and Med12 had a strongly synergistic effect, consistent with both molecules acting in a common pathway. In addition, three-dimensional fluorescent in situ hybridization revealed that Nipbl and Med12 are required to bring regions containing long-range enhancers into close proximity with the zebrafish hoxda cluster. These data demonstrate a crucial role for Nipbl in limb development, and support the view that its actions on multiple gene pathways result from its influence, together with Mediator, on regulation of long-range chromosomal interactions. Limb malformations are a striking feature of Cornelia de Lange Syndrome (CdLS), a multi-system birth defects disorder most commonly caused by haploinsufficiency for NIPBL. In addition to its role as a cohesin-loading factor, Nipbl also regulates gene expression, but how partial Nipbl deficiency causes limb defects is unknown. Using zebrafish and mouse models, we show that expression of multiple key regulators of early limb development, including shha, hand2 and hox genes, are sensitive to Nipbl deficiency. Furthermore, we find morphological and gene expression abnormalities similar to those of Nipbl-deficient zebrafish in the limb buds of zebrafish deficient for the Med12 subunit of Mediator—a protein complex that mediates physical interactions between enhancers and promoters—and genetic interaction studies support the view that Mediator and Nipbl act together. Strikingly, depletion of either Nipbl or Med12 leads to characteristic changes in hox gene expression that reflect the locations of genes within their chromosomal clusters, as well as to disruption of large-scale chromosome organization around the hoxda cluster, consistent with impairment of long-range enhancer-promoter interaction. Together, these findings provide insights into both the etiology of limb defects in CdLS, and the mechanisms by which Nipbl and Mediator influence gene expression.
Collapse
Affiliation(s)
- Akihiko Muto
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Shingo Ikeda
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Martha E. Lopez-Burks
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
| | - Yutaka Kikuchi
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Anne L. Calof
- Department of Biological Science, Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Anatomy & Neurobiology, University of California, Irvine, Irvine, California, United States of America
- * E-mail: (ALC); (ADL)
| | - Arthur D. Lander
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
- * E-mail: (ALC); (ADL)
| | - Thomas F. Schilling
- Department of Developmental & Cell Biology, University of California, Irvine, Irvine, California, United States of America
- Center for Complex Biological Systems, University of California, Irvine, Irvine California
| |
Collapse
|
29
|
Matynia AP, Szankasi P, Shen W, Kelley TW. Molecular genetic biomarkers in myeloid malignancies. Arch Pathol Lab Med 2014; 139:594-601. [PMID: 25152312 DOI: 10.5858/arpa.2014-0096-ra] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
CONTEXT Recent studies using massively parallel sequencing technologies, so-called next-generation sequencing, have uncovered numerous recurrent, single-gene variants or mutations across the spectrum of myeloid malignancies. OBJECTIVES To review the recent advances in the understanding of the molecular basis of myeloid neoplasms, including their significance for diagnostic and prognostic purposes and the possible implications for the development of novel therapeutic strategies. DATA SOURCES Literature review. CONCLUSIONS The recurrent mutations found in myeloid malignancies fall into distinct functional categories. These include (1) cell signaling factors, (2) transcription factors, (3) regulators of the cell cycle, (4) regulators of DNA methylation, (5) regulators of histone modification, (6) RNA-splicing factors, and (7) components of the cohesin complex. As the clinical significance of these mutations and mutation combinations is established, testing for their presence is likely to become a routine part of the diagnostic workup. This review will attempt to establish a framework for understanding these mutations in the context of myeloproliferative neoplasms, myelodysplastic syndromes, and acute myeloid leukemia.
Collapse
Affiliation(s)
- Anna P Matynia
- From the Department of Pathology, University of Utah, Salt Lake City (Drs Matynia and Kelley); and Research and Development, ARUP Laboratories, Salt Lake City, Utah (Drs Szankasi and Shen)
| | | | | | | |
Collapse
|
30
|
Abstract
Why certain point mutations in a general transcription factor are associated with specific forms of cancer has been a major question in cancer biology. Enhancers are DNA regulatory elements that are key regulators of tissue-specific gene expression. Recent studies suggest that enhancer malfunction through point mutations in either regulatory elements or factors modulating enhancer-promoter communication could be the cause of tissue-specific cancer development. In this Perspective, we will discuss recent findings in the identification of cancer-related enhancer mutations and the role of Drosophila Trr and its human homologs, the MLL3 and MLL4/COMPASS-like complexes, as enhancer histone H3 lysine 4 (H3K4) monomethyltransferases functioning in enhancer-promoter communication. Recent genome-wide studies in the cataloging of somatic mutations in cancer have identified mutations in intergenic sequences encoding regulatory elements-and in MLL3 and MLL4 in both hematological malignancies and solid tumors. We propose that cancer-associated mutations in MLL3 and MLL4 exert their properties through the malfunction of Trr/MLL3/MLL4-dependent enhancers.
Collapse
|
31
|
Cohesin mutations in myeloid malignancies: underlying mechanisms. Exp Hematol Oncol 2014; 3:13. [PMID: 24904756 PMCID: PMC4046106 DOI: 10.1186/2162-3619-3-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 04/16/2014] [Indexed: 01/09/2023] Open
Abstract
Recently, whole genome sequencing approaches have pinpointed mutations in genes that were previously not associated with cancer. For Acute Myeloid Leukaemia (AML), and other myeloid disorders, these approaches revealed a high prevalence of mutations in genes encoding the chromosome cohesion complex, cohesin. Cohesin mutations represent a novel genetic pathway for AML, but how AML arises from these mutations is unknown. This review will explore the potential mechanisms by which cohesin mutations contribute to AML and other myeloid malignancies.
Collapse
|
32
|
Dowen JM, Young RA. SMC complexes link gene expression and genome architecture. Curr Opin Genet Dev 2014; 25:131-7. [PMID: 24794701 PMCID: PMC4045092 DOI: 10.1016/j.gde.2013.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/14/2013] [Accepted: 11/15/2013] [Indexed: 12/15/2022]
Abstract
The structural maintenance of chromosomes (SMC) complexes are associated with transcriptional enhancers, promoters and insulators, where they contribute to the control of gene expression and genome structure. We review here recent insights into the interlinked roles of SMC complexes in gene expression and genome architecture. Among these, we note evidence that SMC complexes play important roles in the regulation of genes that control cell identity. We conclude by reviewing diseases associated with SMC mutations.
Collapse
Affiliation(s)
- Jill M Dowen
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, United States
| | - Richard A Young
- Whitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142, United States; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
33
|
Carretero M, Ruiz-Torres M, Rodríguez-Corsino M, Barthelemy I, Losada A. Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J 2013; 32:2938-49. [PMID: 24141881 PMCID: PMC3831313 DOI: 10.1038/emboj.2013.230] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 10/02/2013] [Indexed: 12/23/2022] Open
Abstract
Cohesin mediates sister chromatid cohesion and contributes to the organization of interphase chromatin through DNA looping. In vertebrate somatic cells, cohesin consists of Smc1, Smc3, Rad21, and either SA1 or SA2. Three additional factors Pds5, Wapl, and Sororin bind to cohesin and modulate its dynamic association with chromatin. There are two Pds5 proteins in vertebrates, Pds5A and Pds5B, but their functional specificity remains unclear. Here, we demonstrate that Pds5 proteins are essential for cohesion establishment by allowing Smc3 acetylation by the cohesin acetyl transferases (CoATs) Esco1/2 and binding of Sororin. While both proteins contribute to telomere and arm cohesion, Pds5B is specifically required for centromeric cohesion. Furthermore, reduced accumulation of Aurora B at the inner centromere region in cells lacking Pds5B impairs its error correction function, promoting chromosome mis-segregation and aneuploidy. Our work supports a model in which the composition and function of cohesin complexes differs between different chromosomal regions.
Collapse
Affiliation(s)
- María Carretero
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Ruiz-Torres
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miriam Rodríguez-Corsino
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Isabel Barthelemy
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
34
|
Yoshida K, Toki T, Okuno Y, Kanezaki R, Shiraishi Y, Sato-Otsubo A, Sanada M, Park MJ, Terui K, Suzuki H, Kon A, Nagata Y, Sato Y, Wang R, Shiba N, Chiba K, Tanaka H, Hama A, Muramatsu H, Hasegawa D, Nakamura K, Kanegane H, Tsukamoto K, Adachi S, Kawakami K, Kato K, Nishimura R, Izraeli S, Hayashi Y, Miyano S, Kojima S, Ito E, Ogawa S. The landscape of somatic mutations in Down syndrome-related myeloid disorders. Nat Genet 2013; 45:1293-9. [PMID: 24056718 DOI: 10.1038/ng.2759] [Citation(s) in RCA: 275] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 08/19/2013] [Indexed: 12/11/2022]
Abstract
Transient abnormal myelopoiesis (TAM) is a myeloid proliferation resembling acute megakaryoblastic leukemia (AMKL), mostly affecting perinatal infants with Down syndrome. Although self-limiting in a majority of cases, TAM may evolve as non-self-limiting AMKL after spontaneous remission (DS-AMKL). Pathogenesis of these Down syndrome-related myeloid disorders is poorly understood, except for GATA1 mutations found in most cases. Here we report genomic profiling of 41 TAM, 49 DS-AMKL and 19 non-DS-AMKL samples, including whole-genome and/or whole-exome sequencing of 15 TAM and 14 DS-AMKL samples. TAM appears to be caused by a single GATA1 mutation and constitutive trisomy 21. Subsequent AMKL evolves from a pre-existing TAM clone through the acquisition of additional mutations, with major mutational targets including multiple cohesin components (53%), CTCF (20%), and EZH2, KANSL1 and other epigenetic regulators (45%), as well as common signaling pathways, such as the JAK family kinases, MPL, SH2B3 (LNK) and multiple RAS pathway genes (47%).
Collapse
Affiliation(s)
- Kenichi Yoshida
- 1] Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan. [2] Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan. [3]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Nolen LD, Boyle S, Ansari M, Pritchard E, Bickmore WA. Regional chromatin decompaction in Cornelia de Lange syndrome associated with NIPBL disruption can be uncoupled from cohesin and CTCF. Hum Mol Genet 2013; 22:4180-93. [PMID: 23760082 PMCID: PMC3781641 DOI: 10.1093/hmg/ddt265] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/03/2013] [Indexed: 01/09/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a developmental disorder caused by mutations in NIPBL, a protein which has functionally been associated with the cohesin complex. Mutations in core cohesin complex components have also been reported in individuals with CdLS-like phenotypes. In addition to its role in sister chromatid cohesion, cohesin is thought to play a role in regulating gene expression during development. The mechanism of this gene regulation remains unclear, but NIPBL and cohesin have been reported to affect long-range chromosomal interactions, both independently and through interactions with CTCF. We used fluorescence in situ hybridization to investigate whether the disruption of NIPBL affects chromosome architecture. We show that cells from CdLS patients exhibit visible chromatin decompaction, that is most pronounced across gene-rich regions of the genome. Cells carrying mutations predicted to have a more severe effect on NIPBL function show more extensive chromatin decompaction than those carrying milder mutations. This cellular phenotype was reproduced in normal cells depleted for NIPBL with siRNA, but was not seen following the knockdown of either the cohesin component SMC3, or CTCF. We conclude that NIPBL has a function in modulating chromatin architecture, particularly for gene-rich areas of the chromosome, that is not dependent on SMC3/cohesin or CTCF, raising the possibility that the aetiology of disorders associated with the mutation of core cohesin components is distinct from that associated with the disruption of NIPBL itself in classical CdLS.
Collapse
Affiliation(s)
| | | | | | | | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
36
|
The Drosophila enhancer of split gene complex: architecture and coordinate regulation by notch, cohesin, and polycomb group proteins. G3-GENES GENOMES GENETICS 2013; 3:1785-94. [PMID: 23979932 PMCID: PMC3789803 DOI: 10.1534/g3.113.007534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cohesin protein complex functionally interacts with Polycomb group (PcG) silencing proteins to control expression of several key developmental genes, such as the Drosophila Enhancer of split gene complex [E(spl)-C]. The E(spl)-C contains 12 genes that inhibit neural development. In a cell line derived from the central nervous system, cohesin and the PRC1 PcG protein complex bind and repress E (spl)-C transcription, but the repression mechanisms are unknown. The genes in the E(spl)-C are directly activated by the Notch receptor. Here we show that depletion of cohesin or PRC1 increases binding of the Notch intracellular fragment to genes in the E(spl)-C, correlating with increased transcription. The increased transcription likely reflects both direct effects of cohesin and PRC1 on RNA polymerase activity at the E(spl)-C, and increased expression of Notch ligands. By chromosome conformation capture we find that the E(spl)-C is organized into a self-interactive architectural domain that is co-extensive with the region that binds cohesin and PcG complexes. The self-interactive architecture is formed independently of cohesin or PcG proteins. We posit that the E(spl)-C architecture dictates where cohesin and PcG complexes bind and act when they are recruited by as yet unidentified factors, thereby controlling the E(spl)-C as a coordinated domain.
Collapse
|
37
|
Kon A, Shih LY, Minamino M, Sanada M, Shiraishi Y, Nagata Y, Yoshida K, Okuno Y, Bando M, Nakato R, Ishikawa S, Sato-Otsubo A, Nagae G, Nishimoto A, Haferlach C, Nowak D, Sato Y, Alpermann T, Nagasaki M, Shimamura T, Tanaka H, Chiba K, Yamamoto R, Yamaguchi T, Otsu M, Obara N, Sakata-Yanagimoto M, Nakamaki T, Ishiyama K, Nolte F, Hofmann WK, Miyawaki S, Chiba S, Mori H, Nakauchi H, Koeffler HP, Aburatani H, Haferlach T, Shirahige K, Miyano S, Ogawa S. Recurrent mutations in multiple components of the cohesin complex in myeloid neoplasms. Nat Genet 2013; 45:1232-7. [PMID: 23955599 DOI: 10.1038/ng.2731] [Citation(s) in RCA: 302] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 12/14/2022]
Abstract
Cohesin is a multimeric protein complex that is involved in the cohesion of sister chromatids, post-replicative DNA repair and transcriptional regulation. Here we report recurrent mutations and deletions involving multiple components of the cohesin complex, including STAG2, RAD21, SMC1A and SMC3, in different myeloid neoplasms. These mutations and deletions were mostly mutually exclusive and occurred in 12.1% (19/157) of acute myeloid leukemia, 8.0% (18/224) of myelodysplastic syndromes, 10.2% (9/88) of chronic myelomonocytic leukemia, 6.3% (4/64) of chronic myelogenous leukemia and 1.3% (1/77) of classical myeloproliferative neoplasms. Cohesin-mutated leukemic cells showed reduced amounts of chromatin-bound cohesin components, suggesting a substantial loss of cohesin binding sites on chromatin. The growth of leukemic cell lines harboring a mutation in RAD21 (Kasumi-1 cells) or having severely reduced expression of RAD21 and STAG2 (MOLM-13 cells) was suppressed by forced expression of wild-type RAD21 and wild-type RAD21 and STAG2, respectively. These findings suggest a role for compromised cohesin functions in myeloid leukemogenesis.
Collapse
Affiliation(s)
- Ayana Kon
- Cancer Genomics Project, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cohen-Zinder M, Zinder-Cohen M, Karasik D, Onn I. Structural maintenance of chromosome complexes and bone development: the beginning of a wonderful relationship? BONEKEY REPORTS 2013; 2:388. [PMID: 24422108 DOI: 10.1038/bonekey.2013.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/25/2013] [Indexed: 11/09/2022]
Abstract
Bone development depends on environmental, nutritional and hormonal factors. Yet, an ordered and timed activation of genes and their associated molecular pathways are central for the growth and development of healthy bones. The correct expression of genes depends on both cis- and trans-regulatory elements. Of these, the elusive role of chromatin ultrastructure is just beginning to become appreciated. Changes in the higher-order structure of chromatin are affecting the expression of genes in response to intrinsic and environmental signals. Cohesin and condensin are members of the structural maintenance of chromosome (SMC) family of protein complexes, which mediate higher-order chromatin structure by tethering distinct regions of chromatin either inter- or intra-molecularly. In recent years, SMCs had been identified for their function in the regulation of gene expression and developmental processes, whereas malfunction of cohesin or condensin has an impact on human health. However, little is known about the specific roles of SMC complexes in bone development and their possible effect on bone health. Here, we review studies that suggest an intimate link between SMCs and bone development, as well as a plausible effect, direct or indirect, on the bone health. We describe genetic syndromes associated with SMCs with distinctive bone phenotypes and identify links between SMCs and bone-related molecular pathways. Future studies of the relationship between SMCs and bone development will reveal new understandings of both the cellular and molecular roles of SMC complexes and provide new insights into the growth and developmental processes in the bone.
Collapse
Affiliation(s)
| | - Miri Zinder-Cohen
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel
| | - David Karasik
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel ; Hebrew SeniorLife, Harvard Medical School , Boston, MA, USA
| | - Itay Onn
- Faculty of Medicine in the Galilee, Bar-Ilan University , Safed, Israel
| |
Collapse
|
39
|
Abstract
ORC (origin recognition complex) serves as the initiator for the assembly of the pre-RC (pre-replication complex) and the subsequent DNA replication. Together with many of its non-replication functions, ORC is a pivotal regulator of various cellular processes. Notably, a number of reports connect ORC to numerous human diseases, including MGS (Meier-Gorlin syndrome), EBV (Epstein-Barr virus)-infected diseases, American trypanosomiasis and African trypanosomiasis. However, much of the underlying molecular mechanism remains unclear. In those genetic diseases, mutations in ORC alter its function and lead to the dysregulated phenotypes; whereas in some pathogen-induced symptoms, host ORC and archaeal-like ORC are exploited by these organisms to maintain their own genomes. In this review, I provide detailed examples of ORC-related human diseases, and summarize the current findings on how ORC is involved and/or dysregulated. I further discuss how these discoveries can be generalized as model systems, which can then be applied to elucidating other related diseases and revealing potential targets for developing effective therapies.
Collapse
|
40
|
Schaaf CA, Misulovin Z, Gause M, Koenig A, Gohara DW, Watson A, Dorsett D. Cohesin and polycomb proteins functionally interact to control transcription at silenced and active genes. PLoS Genet 2013; 9:e1003560. [PMID: 23818863 PMCID: PMC3688520 DOI: 10.1371/journal.pgen.1003560] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 04/24/2013] [Indexed: 12/05/2022] Open
Abstract
Cohesin is crucial for proper chromosome segregation but also regulates gene transcription and organism development by poorly understood mechanisms. Using genome-wide assays in Drosophila developing wings and cultured cells, we find that cohesin functionally interacts with Polycomb group (PcG) silencing proteins at both silenced and active genes. Cohesin unexpectedly facilitates binding of Polycomb Repressive Complex 1 (PRC1) to many active genes, but their binding is mutually antagonistic at silenced genes. PRC1 depletion decreases phosphorylated RNA polymerase II and mRNA at many active genes but increases them at silenced genes. Depletion of cohesin reduces long-range interactions between Polycomb Response Elements in the invected-engrailed gene complex where it represses transcription. These studies reveal a previously unrecognized role for PRC1 in facilitating productive gene transcription and provide new insights into how cohesin and PRC1 control development.
Collapse
Affiliation(s)
- Cheri A. Schaaf
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Amanda Koenig
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David W. Gohara
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Audrey Watson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
41
|
Calvente A, Viera A, Parra MT, de la Fuente R, Suja JA, Page J, Santos JL, de la Vega CG, Barbero JL, Rufas JS. Dynamics of cohesin subunits in grasshopper meiotic divisions. Chromosoma 2013; 122:77-91. [PMID: 23283389 DOI: 10.1007/s00412-012-0393-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 11/08/2012] [Accepted: 12/01/2012] [Indexed: 01/18/2023]
Abstract
The cohesin complex plays a key role for the maintenance of sister chromatid cohesion and faithful chromosome segregation in both mitosis and meiosis. This complex is formed by two structural maintenance of chromosomes protein family (SMC) subunits and two non-SMC subunits: an α-kleisin subunit SCC1/RAD21/REC8 and an SCC3-like protein. Several studies carried out in different species have revealed that the distribution of the cohesin subunits along the chromosomes during meiotic prophase I is not regular and that some subunits are distinctly incorporated at different cell stages. However, the accurate distribution of the different cohesin subunits in condensed meiotic chromosomes is still controversial. Here, we describe the dynamics of the cohesin subunits SMC1α, SMC3, RAD21 and SA1 during both meiotic divisions in grasshoppers. Although these subunits show a similar patched labelling at the interchromatid domain of metaphase I bivalents, SMCs and non-SMCs subunits do not always colocalise. Indeed, SA1 is the only cohesin subunit accumulated at the centromeric region of all metaphase I chromosomes. Additionally, non-SMC subunits do not appear at the interchromatid domain in either single X or B chromosomes. These data suggest the existence of several cohesin complexes during metaphase I. The cohesin subunits analysed are released from chromosomes at the beginning of anaphase I, with the exception of SA1 which can be detected at the centromeres until telophase II. These observations indicate that the cohesin components may be differentially loaded and released from meiotic chromosomes during the first and second meiotic divisions. The roles of these cohesin complexes for the maintenance of chromosome structure and their involvement in homologous segregation at first meiotic division are proposed and discussed.
Collapse
Affiliation(s)
- A Calvente
- Departamento de Biología, Facultad de Ciencias, Edificio de Biológicas, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Remeseiro S, Losada A. Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 2013; 25:63-71. [PMID: 23219370 DOI: 10.1016/j.ceb.2012.10.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/18/2012] [Indexed: 12/15/2022]
Abstract
Cohesin is a four subunit complex, conserved from yeast to man, with the ability to hold together two DNA segments within its ring-shaped structure. When the two segments belong to sister chromatids, cohesin is mediating cohesion, which is essential for chromosome segregation in mitosis and meiosis and for homologous DNA repair. When the two DNA segments are in the same chromatid, a loop is formed. These chromatin loops are emerging as a mechanism for controlling the communication between enhancers and promoters and thereby regulate gene expression. They also facilitate DNA replication and recombination. Given all its essential functions, it is not surprising that mutations in cohesin and its interacting factors have been associated to cancer and developmental syndromes known as cohesinopathies.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | |
Collapse
|
43
|
Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A. Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 2012; 26:2604-20. [PMID: 23166019 DOI: 10.1101/gad.201327.112] [Citation(s) in RCA: 297] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Monomethylation of histone H3 on Lys 4 (H3K4me1) and acetylation of histone H3 on Lys 27 (H3K27ac) are histone modifications that are highly enriched over the body of actively transcribed genes and on enhancers. Although in yeast all H3K4 methylation patterns, including H3K4me1, are implemented by Set1/COMPASS (complex of proteins associated with Set1), there are three classes of COMPASS-like complexes in Drosophila that could carry out H3K4me1 on enhancers: dSet1, Trithorax, and Trithorax-related (Trr). Here, we report that Trr, the Drosophila homolog of the mammalian Mll3/4 COMPASS-like complexes, can function as a major H3K4 monomethyltransferase on enhancers in vivo. Loss of Trr results in a global decrease of H3K4me1 and H3K27ac levels in various tissues. Assays with the cut wing margin enhancer implied a functional role for Trr in enhancer-mediated processes. A genome-wide analysis demonstrated that Trr is required to maintain the H3K4me1 and H3K27ac chromatin signature that resembles the histone modification patterns described for enhancers. Furthermore, studies in the mammalian system suggested a role for the Trr homolog Mll3 in similar processes. Since Trr and mammalian Mll3/4 complexes are distinguished by bearing a unique subunit, the H3K27 demethylase UTX, we propose a model in which the H3K4 monomethyltransferases Trr/Mll3/Mll4 and the H3K27 demethylase UTX cooperate to regulate the transition from inactive/poised to active enhancers.
Collapse
Affiliation(s)
- Hans-Martin Herz
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Gimigliano A, Mannini L, Bianchi L, Puglia M, Deardorff MA, Menga S, Krantz ID, Musio A, Bini L. Proteomic profile identifies dysregulated pathways in Cornelia de Lange syndrome cells with distinct mutations in SMC1A and SMC3 genes. J Proteome Res 2012; 11:6111-23. [PMID: 23106691 DOI: 10.1021/pr300760p] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Mutations in cohesin genes have been identified in Cornelia de Lange syndrome (CdLS), but its etiopathogenetic mechanisms are still poorly understood. To define biochemical pathways that are affected in CdLS, we analyzed the proteomic profile of CdLS cell lines carrying mutations in the core cohesin genes, SMC1A and SMC3. Dysregulated protein expression was found in CdLS probands compared to controls. The proteomics analysis was able to discriminate between probands harboring mutations in the different domains of the SMC proteins. In particular, proteins involved in the response to oxidative stress were specifically down-regulated in hinge mutated probands. In addition, the finding that CdLS cell lines show an increase in global oxidative stress argues that it could contribute to some CdLS phenotypic features such as premature physiological aging and genome instability. Finally, the c-MYC gene represents a convergent hub lying at the center of dysregulated pathways, and is down-regulated in CdLS. This study allowed us to highlight, for the first time, specific biochemical pathways that are affected in CdLS, providing plausible causal evidence for some of the phenotypic features seen in CdLS.
Collapse
Affiliation(s)
- Anna Gimigliano
- Functional Proteomics Laboratory, Department of Biotechnologies, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Marsman J, Horsfield JA. Long distance relationships: enhancer-promoter communication and dynamic gene transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1217-27. [PMID: 23124110 DOI: 10.1016/j.bbagrm.2012.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 11/27/2022]
Abstract
The three-dimensional regulation of gene transcription involves loop formation between enhancer and promoter elements, controlling spatiotemporal gene expression in multicellular organisms. Enhancers are usually located in non-coding DNA and can activate gene transcription by recruiting transcription factors, chromatin remodeling factors and RNA Polymerase II. Research over the last few years has revealed that enhancers have tell-tale characteristics that facilitate their detection by several approaches, although the hallmarks of enhancers are not always uniform. Enhancers likely play an important role in the activation of genes by functioning as a primary point of contact for transcriptional activators, and by making physical contact with gene promoters often by means of a chromatin loop. Although numerous transcriptional regulators participate in the formation of chromatin loops that bring enhancers into proximity with promoters, the mechanism(s) of enhancer-promoter connectivity remain enigmatic. Here we discuss enhancer function, review some of the many proteins shown to be involved in establishing enhancer-promoter loops, and describe the dynamics of enhancer-promoter contacts during development, differentiation and in specific cell types.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Pathology, The University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
46
|
Fasulo B, Deuring R, Murawska M, Gause M, Dorighi KM, Schaaf CA, Dorsett D, Brehm A, Tamkun JW. The Drosophila MI-2 chromatin-remodeling factor regulates higher-order chromatin structure and cohesin dynamics in vivo. PLoS Genet 2012; 8:e1002878. [PMID: 22912596 PMCID: PMC3415455 DOI: 10.1371/journal.pgen.1002878] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/17/2012] [Indexed: 11/24/2022] Open
Abstract
dMi-2 is a highly conserved ATP-dependent chromatin-remodeling factor that regulates transcription and cell fates by altering the structure or positioning of nucleosomes. Here we report an unanticipated role for dMi-2 in the regulation of higher-order chromatin structure in Drosophila. Loss of dMi-2 function causes salivary gland polytene chromosomes to lose their characteristic banding pattern and appear more condensed than normal. Conversely, increased expression of dMi-2 triggers decondensation of polytene chromosomes accompanied by a significant increase in nuclear volume; this effect is relatively rapid and is dependent on the ATPase activity of dMi-2. Live analysis revealed that dMi-2 disrupts interactions between the aligned chromatids of salivary gland polytene chromosomes. dMi-2 and the cohesin complex are enriched at sites of active transcription; fluorescence-recovery after photobleaching (FRAP) assays showed that dMi-2 decreases stable association of cohesin with polytene chromosomes. These findings demonstrate that dMi-2 is an important regulator of both chromosome condensation and cohesin binding in interphase cells.
Collapse
Affiliation(s)
- Barbara Fasulo
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Renate Deuring
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Magdalena Murawska
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Kristel M. Dorighi
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Cheri A. Schaaf
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Alexander Brehm
- Institute for Molecular Biology and Tumor Research (IMT), Philipps-University of Marburg, Marburg, Germany
| | - John W. Tamkun
- Department of Molecular, Cell, and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| |
Collapse
|
47
|
Mouri K, Horiuchi SY, Uemura T. Cohesin controls planar cell polarity by regulating the level of the seven-pass transmembrane cadherin Flamingo. Genes Cells 2012; 17:509-24. [PMID: 22563761 DOI: 10.1111/j.1365-2443.2012.01604.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Planar cell polarity (PCP) refers to the coordination of global organ axes and individual cell polarity in vertebrate and invertebrate epithelia. Mechanisms of PCP have been best studied in the Drosophila wing, in which each epidermal cell produces a single wing hair at the distal cell edge, and this spatial specification is mediated by redistribution of the core group proteins, including the seven-pass transmembrane cadherin Flamingo/Starry night (Fmi/Stan), to selective plasma membrane domains. Through genetic screening, we found that a mutation of the SMC3 gene caused dramatic misspecification of wing hair positions. SMC3 protein is one subunit of the cohesin complex, which regulates sister chromatid cohesion and also plays a role in transcriptional control of gene expression. In the SMC3 mutant cells, Fmi appeared to be upregulated by a posttranscriptional mechanism(s), and this elevation of Fmi was at least one cause of the PCP defect. In addition to the PCP phenotype, the loss of the cohesin function affected wing morphogenesis at multiple levels: one malformation was loss of the wing margin, and this was most likely a result of downregulation of the homeodomain protein Cut. At the cellular level, apical cell size and hexagonal packing were affected in the mutant wing. Dysfunction of cohesin in humans results in Cornelia de Lange syndrome (CdLS), which is characterized by various developmental abnormalities and mental retardation. Our analysis of cohesin in epithelia may provide new insight into cellular and molecular mechanisms of CdLS.
Collapse
Affiliation(s)
- Kousuke Mouri
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8507, Japan
| | | | | |
Collapse
|
48
|
Remeseiro S, Cuadrado A, Gómez-López G, Pisano DG, Losada A. A unique role of cohesin-SA1 in gene regulation and development. EMBO J 2012; 31:2090-102. [PMID: 22415368 PMCID: PMC3343463 DOI: 10.1038/emboj.2012.60] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/20/2012] [Indexed: 01/21/2023] Open
Abstract
Vertebrates have two cohesin complexes that consist of Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity is unclear. Mouse embryos lacking SA1 show developmental delay and die before birth. Comparison of the genome-wide distribution of cohesin in wild-type and SA1-null cells reveals that SA1 is largely responsible for cohesin accumulation at promoters and at sites bound by the insulator protein CTCF. As a consequence, ablation of SA1 alters transcription of genes involved in biological processes related to Cornelia de Lange syndrome (CdLS), a genetic disorder linked to dysfunction of cohesin. We show that the presence of cohesin-SA1 at the promoter of myc and of protocadherin genes positively regulates their expression, a task that cannot be assumed by cohesin-SA2. Lack of SA1 also alters cohesin-binding pattern along some gene clusters and leads to dysregulation of genes within. We hypothesize that impaired cohesin-SA1 function in gene expression underlies the molecular aetiology of CdLS.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
49
|
Abstract
The cohesin complex, named for its key role in sister chromatid cohesion, also plays critical roles in gene regulation and DNA repair. It performs all three functions in single cell eukaryotes such as yeasts, and in higher organisms such as man. Minor disruption of cohesin function has significant consequences for human development, even in the absence of measurable effects on chromatid cohesion or chromosome segregation. Here we survey the roles of cohesin in gene regulation and DNA repair, and how these functions vary from yeast to man.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | | |
Collapse
|
50
|
Protein landscape at Drosophila melanogaster telomere-associated sequence repeats. Mol Cell Biol 2012; 32:2170-82. [PMID: 22493064 DOI: 10.1128/mcb.00010-12] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The specific set of proteins bound at each genomic locus contributes decisively to regulatory processes and to the identity of a cell. Understanding of the function of a particular locus requires the knowledge of what factors interact with that locus and how the protein composition changes in different cell types or during the response to internal and external signals. Proteomic analysis of isolated chromatin segments (PICh) was developed as a tool to target, purify, and identify proteins associated with a defined locus and was shown to allow the purification of human telomeric chromatin. Here we have developed this method to identify proteins that interact with the Drosophila telomere-associated sequence (TAS) repeats. Several of the purified factors were validated as novel TAS-bound proteins by chromatin immunoprecipitation, and the Brahma complex was confirmed as a dominant modifier of telomeric position effect through the use of a genetic test. These results offer information on the efficacy of applying the PICh protocol to loci with sequence more complex than that found at human telomeres and identify proteins that bind to the TAS repeats, which might contribute to TAS biology and chromatin silencing.
Collapse
|