1
|
Chen Y, Dong H, Xiao C, Wang Q, Gong J, Hou Y. Elasticity of trachea in the silkworm: A role of gene BmMuc91C. INSECT SCIENCE 2025. [PMID: 39821476 DOI: 10.1111/1744-7917.13492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/08/2024] [Accepted: 11/05/2024] [Indexed: 01/19/2025]
Abstract
Respiration is a vital process essential for organism survival, with most terrestrial insects relying on a sophisticated tubular tracheal network. In the current study, a gene with repetitive sequence was identified within the silkworm genome. Designated as BmMuc91C, it contains a dozen repeated motifs "PSSSYGAPX" and "GGYSSGGX" in its sequence. BmMuc91C exhibits specific expression in the tracheal system of silkworm larvae, with significantly higher expression levels during the molting stage. Overexpression of BmMuc91C in individual silkworms resulted in a marked increase in tracheal diameter, particularly during the molting stage. Immunofluorescence staining using a BmMuc91C antibody revealed a noticeable thickening of the apical extracellular matrix in the trachea. Tensile testing confirmed a considerable enhancement in tracheal elasticity. Additionally, a BmMuc91C mutation strain of silkworms was generated using the clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR-associated nuclease 9 system. Although no significant differences were observed in the growth, development, and molting of BmMuc91C mutant silkworms, mechanical tests demonstrated a decrease in tracheal elasticity. Transcriptomic techniques revealed that a significant number of cuticular and chitin-binding proteins were among the differentially expressed genes between mutant and wild-type silkworms. Furthermore, the recombined BmMuc91C protein was successfully expressed using the Escherichia coli system. Cross-linking experiments with horseradish peroxidase demonstrated the formation of macromolecular complexes of BmMuc91C, which exhibited spontaneous luminescent properties under ultraviolet light. This research sheds light on the role of elastic proteins in insect tracheae and provides valuable insights for the development of elastic biomaterials.
Collapse
Affiliation(s)
- Yifei Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Haonan Dong
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Chunxia Xiao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Qinglang Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| | - Jing Gong
- College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Yong Hou
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Biological Science Research Center, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Dong Y, Huang L, Liu L. Comparative analysis of testicular fusion in Spodoptera litura (cutworm) and Bombyx mori (silkworm): Histological and transcriptomic insights. Gen Comp Endocrinol 2024; 356:114562. [PMID: 38848820 DOI: 10.1016/j.ygcen.2024.114562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Spodoptera litura commonly known as the cutworm, is among the most destructive lepidopteran pests affecting over 120 plants species. The powerful destructive nature of this lepidopteran is attributable to its high reproductive capacity. The testicular fusion that occurs during metamorphosis from larvae to pupa in S.litura positively influences the reproductive success of the offspring. In contrast, Bombyx mori, the silkworm, retains separate testes throughout its life and does not undergo this fusion process. Microscopic examination reveals that during testicular fusion in S.litura, the peritoneal sheath becomes thinner and more translucent, whereas in B.mori, the analogous region thickens. The outer basement membrane in S.litura exhibits fractures, discontinuity, and uneven thickness accompanied by a significant presence of cellular secretions, large cell size, increased vesicles, liquid droplets, and a proliferation of rough endoplasmic reticulum and mitochondria. In contrast, the testicular peritoneal sheath of B.mori at comparable developmental stage exhibits minimal change. Comparative transcriptomic analysis of the testicular peritoneal sheath reveals a substantial difference in gene expression between the two species. The disparity in differential expressed genes (DEGs) is linked to an enrichment of numerous transcription factors, intracellular signaling pathways involving Ca2+ and GTPase, as well as intracellular protein transport and signaling pathways. Meanwhile, structural proteins including actin, chitin-binding proteins, membrane protein fractions, cell adhesion, extracellular matrix proteins are predominantly identified. Moreover, the study highlights the enrichment of endopeptidases, serine proteases, proteolytic enzymes and matrix metalloproteins, which may play a role in the degradation of the outer membrane. Five transcription factors-Slforkhead, Slproline, Slcyclic, Slsilk, and SlD-ETS were identified, and their expression pattern were confirmed by qRT-PCR. they are candidates for participating in the regulation of testicular fusion. Our findings underscore significant morphological and trancriptomic variation in the testicular peritoneal sheath of S.litura compared to the silkworm, with substantial changes at the transcriptomic level coinciding with testicular fusion. The research provides valuable clues for understanding the complex mechanisms underlying this unique phenomenon in insects.
Collapse
Affiliation(s)
- Yaqun Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lihua Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
3
|
Sekine S, Tarama M, Wada H, Sami MM, Shibata T, Hayashi S. Emergence of periodic circumferential actin cables from the anisotropic fusion of actin nanoclusters during tubulogenesis. Nat Commun 2024; 15:464. [PMID: 38267421 PMCID: PMC10808230 DOI: 10.1038/s41467-023-44684-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 12/29/2023] [Indexed: 01/26/2024] Open
Abstract
The periodic circumferential cytoskeleton supports various tubular tissues. Radial expansion of the tube lumen causes anisotropic tensile stress, which can be exploited as a geometric cue. However, the molecular machinery linking anisotropy to robust circumferential patterning is poorly understood. Here, we aim to reveal the emergent process of circumferential actin cable formation in a Drosophila tracheal tube. During luminal expansion, sporadic actin nanoclusters emerge and exhibit circumferentially biased motion and fusion. RNAi screening reveals the formin family protein, DAAM, as an essential component responding to tissue anisotropy, and non-muscle myosin II as a component required for nanocluster fusion. An agent-based model simulation suggests that crosslinkers play a crucial role in nanocluster formation and cluster-to-cable transition occurs in response to mechanical anisotropy. Altogether, we propose that an actin nanocluster is an organizational unit that responds to stress in the cortical membrane and builds a higher-order cable structure.
Collapse
Affiliation(s)
- Sayaka Sekine
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan.
| | - Mitsusuke Tarama
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan.
- Department of Physics, Faculty of Science, Kyushu University, Fukuoka, Japan.
| | - Housei Wada
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Mustafa M Sami
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Physics and Biology Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Tatsuo Shibata
- Laboratory for Physical Biology, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
- Kobe University Graduate School of Science, Kobe, Japan
| |
Collapse
|
4
|
Zhang Y, Shen Y, Jin P, Zhu B, Lin Y, Jiang T, Huang X, Wang Y, Zhao Z, Li S. A trade-off in evolution: the adaptive landscape of spiders without venom glands. Gigascience 2024; 13:giae048. [PMID: 39101784 PMCID: PMC11299198 DOI: 10.1093/gigascience/giae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/26/2024] [Accepted: 06/26/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Venom glands play a key role in the predation and defense strategies of almost all spider groups. However, the spider family Uloboridae lacks venom glands and has evolved an adaptive strategy: they excessively wrap their prey directly with spider silk instead of paralyzing it first with toxins. This shift in survival strategy is very fascinating, but the genetic underpinnings behind it are poorly understood. RESULTS Spanning multiple spider groups, we conducted multiomics analyses on Octonoba sinensis and described the adaptive evolution of the Uloboridae family at the genome level. We observed the coding genes of myosin and twitchin in muscles are under positive selection, energy metabolism functions are enhanced, and gene families related to tracheal development and tissue mechanical strength are expanded or emerged, all of which are related to the unique anatomical structure and predatory behavior of spiders in the family Uloboridae. In addition, we also scanned the elements that are absent or under relaxed purifying selection, as well as toxin gene homologs in the genomes of 2 species in this family. The results show that the absence of regions and regions under relaxed selection in these spiders' genomes are concentrated in areas related to development and neurosystem. The search for toxin homologs reveals possible gene function shift between toxins and nontoxins and confirms that there are no reliable toxin genes in the genome of this group. CONCLUSIONS This study demonstrates the trade-off between different predation strategies in spiders, using either chemical or physical strategy, and provides insights into the possible mechanism underlying this trade-off. Venomless spiders need to mobilize multiple developmental and metabolic pathways related to motor function and limb mechanical strength to cover the decline in adaptability caused by the absence of venom glands.
Collapse
Affiliation(s)
- Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Langfang 065000, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yejie Lin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- Hebei Key Laboratory of Animal Diversity, College of Life Sciences, Langfang Normal University, Langfang 065000, China
| | - Tongyao Jiang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xianting Huang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Yang Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Zhe Zhao
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
5
|
Farkas D, Szikora S, Jijumon AS, Polgár TF, Patai R, Tóth MÁ, Bugyi B, Gajdos T, Bíró P, Novák T, Erdélyi M, Mihály J. Peripheral thickening of the sarcomeres and pointed end elongation of the thin filaments are both promoted by SALS and its formin interaction partners. PLoS Genet 2024; 20:e1011117. [PMID: 38198522 PMCID: PMC10805286 DOI: 10.1371/journal.pgen.1011117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/23/2024] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
During striated muscle development the first periodically repeated units appear in the premyofibrils, consisting of immature sarcomeres that must undergo a substantial growth both in length and width, to reach their final size. Here we report that, beyond its well established role in sarcomere elongation, the Sarcomere length short (SALS) protein is involved in Z-disc formation and peripheral growth of the sarcomeres. Our protein localization data and loss-of-function studies in the Drosophila indirect flight muscle strongly suggest that radial growth of the sarcomeres is initiated at the Z-disc. As to thin filament elongation, we used a powerful nanoscopy approach to reveal that SALS is subject to a major conformational change during sarcomere development, which might be critical to stop pointed end elongation in the adult muscles. In addition, we demonstrate that the roles of SALS in sarcomere elongation and radial growth are both dependent on formin type of actin assembly factors. Unexpectedly, when SALS is present in excess amounts, it promotes the formation of actin aggregates highly resembling the ones described in nemaline myopathy patients. Collectively, these findings helped to shed light on the complex mechanisms of SALS during the coordinated elongation and thickening of the sarcomeres, and resulted in the discovery of a potential nemaline myopathy model, suitable for the identification of genetic and small molecule inhibitors.
Collapse
Affiliation(s)
- Dávid Farkas
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - A. S. Jijumon
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
| | - Tamás F. Polgár
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
- Doctoral School of Theoretical Medicine, University of Szeged, Szeged, Hungary
| | - Roland Patai
- Institute of Biophysics, Biological Research Centre, Szeged, Hungary
| | - Mónika Ágnes Tóth
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Pécs, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Péter Bíró
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Szeged, Hungary
- University of Szeged, Department of Genetics, Szeged, Hungary
| |
Collapse
|
6
|
Gazsó-Gerhát G, Gombos R, Tóth K, Kaltenecker P, Szikora S, Bíró J, Csapó E, Asztalos Z, Mihály J. FRL and DAAM are required for lateral adhesion of interommatidial cells and patterning of the retinal floor. Development 2023; 150:dev201713. [PMID: 37997920 PMCID: PMC10690107 DOI: 10.1242/dev.201713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Optical insulation of the unit eyes (ommatidia) is an important prerequisite of precise sight with compound eyes. Separation of the ommatidia is ensured by pigment cells that organize into a hexagonal lattice in the Drosophila eye, forming thin walls between the facets. Cell adhesion, mediated by apically and latero-basally located junctional complexes, is crucial for stable attachment of these cells to each other and the basal lamina. Whereas former studies have focused on the formation and remodelling of the cellular connections at the apical region, here, we report a specific alteration of the lateral adhesion of the lattice cells, leaving the apical junctions largely unaffected. We found that DAAM and FRL, two formin-type cytoskeleton regulatory proteins, play redundant roles in lateral adhesion of the interommatidial cells and patterning of the retinal floor. We show that formin-dependent cortical actin assembly is crucial for latero-basal sealing of the ommatidial lattice. We expect that the investigation of these previously unreported eye phenotypes will pave the way toward a better understanding of the three-dimensional aspects of compound eye development.
Collapse
Affiliation(s)
- Gabriella Gazsó-Gerhát
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Rita Gombos
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Péter Kaltenecker
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Judit Bíró
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Enikő Csapó
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged H-6726, Hungary
| | - József Mihály
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Department of Genetics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
7
|
Drees L, Schneider S, Riedel D, Schuh R, Behr M. The proteolysis of ZP proteins is essential to control cell membrane structure and integrity of developing tracheal tubes in Drosophila. eLife 2023; 12:e91079. [PMID: 37872795 PMCID: PMC10597583 DOI: 10.7554/elife.91079] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/20/2023] [Indexed: 10/25/2023] Open
Abstract
Membrane expansion integrates multiple forces to mediate precise tube growth and network formation. Defects lead to deformations, as found in diseases such as polycystic kidney diseases, aortic aneurysms, stenosis, and tortuosity. We identified a mechanism of sensing and responding to the membrane-driven expansion of tracheal tubes. The apical membrane is anchored to the apical extracellular matrix (aECM) and causes expansion forces that elongate the tracheal tubes. The aECM provides a mechanical tension that balances the resulting expansion forces, with Dumpy being an elastic molecule that modulates the mechanical stress on the matrix during tracheal tube expansion. We show in Drosophila that the zona pellucida (ZP) domain protein Piopio interacts and cooperates with the ZP protein Dumpy at tracheal cells. To resist shear stresses which arise during tube expansion, Piopio undergoes ectodomain shedding by the Matriptase homolog Notopleural, which releases Piopio-Dumpy-mediated linkages between membranes and extracellular matrix. Failure of this process leads to deformations of the apical membrane, tears the apical matrix, and impairs tubular network function. We also show conserved ectodomain shedding of the human TGFβ type III receptor by Notopleural and the human Matriptase, providing novel findings for in-depth analysis of diseases caused by cell and tube shape changes.
Collapse
Affiliation(s)
- Leonard Drees
- Research Group Molecular Organogenesis, Department of Molecular Developmental Biology, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Susi Schneider
- Cell biology, Institute for Biology, Leipzig UniversityLeipzigGermany
| | - Dietmar Riedel
- Facility for electron microscopy, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Reinhard Schuh
- Research Group Molecular Organogenesis, Department of Molecular Developmental Biology, Max Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Matthias Behr
- Cell biology, Institute for Biology, Leipzig UniversityLeipzigGermany
| |
Collapse
|
8
|
Pinheiro AS, Tsarouhas V, Senti KA, Arefin B, Samakovlis C. Scavenger receptor endocytosis controls apical membrane morphogenesis in the Drosophila airways. eLife 2023; 12:e84974. [PMID: 37706489 PMCID: PMC10564452 DOI: 10.7554/elife.84974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/13/2023] [Indexed: 09/15/2023] Open
Abstract
The acquisition of distinct branch sizes and shapes is a central aspect in tubular organ morphogenesis and function. In the Drosophila airway tree, the interplay of apical extracellular matrix (ECM) components with the underlying membrane and cytoskeleton controls tube elongation, but the link between ECM composition with apical membrane morphogenesis and tube size regulation is elusive. Here, we characterized Emp (epithelial membrane protein), a Drosophila CD36 homolog belonging to the scavenger receptor class B protein family. emp mutant embryos fail to internalize the luminal chitin deacetylases Serp and Verm at the final stages of airway maturation and die at hatching with liquid filled airways. Emp localizes in apical epithelial membranes and shows cargo selectivity for LDLr-domain containing proteins. emp mutants also display over elongated tracheal tubes with increased levels of the apical proteins Crb, DE-cad, and phosphorylated Src (p-Src). We show that Emp associates with and organizes the βH-Spectrin cytoskeleton and is itself confined by apical F-actin bundles. Overexpression or loss of its cargo protein Serp lead to abnormal apical accumulations of Emp and perturbations in p-Src levels. We propose that during morphogenesis, Emp senses and responds to luminal cargo levels by initiating apical membrane endocytosis along the longitudinal tube axis and thereby restricts airway elongation.
Collapse
Affiliation(s)
- Ana Sofia Pinheiro
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Vasilios Tsarouhas
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
| | - Kirsten André Senti
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
- IMBA – Institute of Molecular Biotechnology, Austrian Academy of SciencesViennaAustria
| | - Badrul Arefin
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
- Sahlgrenska Academy, Gothenburg UniversityGothenburgSweden
| | - Christos Samakovlis
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm UniversityStockholmSweden
- Cardiopulmonary Institute, Justus Liebig University of GiessenGiessenGermany
| |
Collapse
|
9
|
Hui J, Nakamura M, Dubrulle J, Parkhurst SM. Coordinated efforts of different actin filament populations are needed for optimal cell wound repair. Mol Biol Cell 2023; 34:ar15. [PMID: 36598808 PMCID: PMC10011732 DOI: 10.1091/mbc.e22-05-0155] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Cells are subjected to a barrage of daily insults that often lead to their cortices being ripped open and requiring immediate repair. An important component of the cell's repair response is the formation of an actomyosin ring at the wound periphery to mediate its closure. Here we show that inhibition of myosin or the linear actin nucleation factors Diaphanous and/or dishevelled associated activator of morphogenesis results in a disrupted contractile apparatus and delayed wound closure. We also show that the branched actin nucleators WASp and SCAR function nonredundantly as scaffolds to assemble and maintain this contractile actomyosin cable. Removing branched actin leads to the formation of smaller circular actin-myosin structures at the cell cortex and to slow wound closure. Removing linear and branched actin simultaneously results in failed wound closure. Surprisingly, removal of branched actin and myosin results in the formation of parallel linear F-actin filaments that undergo a chiral swirling movement to close the wound, uncovering a new mechanism of cell wound closure. Taken together, we demonstrate the roles of different actin substructures that are required for optimal actomyosin ring formation and the extraordinary resilience of the cell to undergo wound repair when it is unable to form different subsets of these substructures.
Collapse
Affiliation(s)
- Justin Hui
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | | | - Julien Dubrulle
- Cellular Imaging Shared Resource, Fred Hutchinson Cancer Center, Seattle, WA 98109
| | - Susan M Parkhurst
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA 98109
| |
Collapse
|
10
|
Li Z, Wei X, Zhu Y. The prognostic value of DAAM2 in lower grade glioma, liver cancer, and breast cancer. Clin Transl Oncol 2023:10.1007/s12094-023-03111-x. [PMID: 36790676 DOI: 10.1007/s12094-023-03111-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Dishevelled-associated activator of morphogenesis 2 (DAAM2) is a formin protein and has a potential role in the tumor metastasis. The prognostic value of DAAM2 in pan-cancer is investigated in this study. METHODS TCGA and GTEx database were downloaded to perform bioinformatics analysis and ROC curves. Then we explored protein-protein interaction and GO-KEGG enrichment to figure out the protein pathways associated with DAAM2 and studied DAAM2-related immune infiltration and methylation. Fifteen pairs of BRCA clinical samples were enrolled to determine the expression and distribution of DAAM2 in BRCA sections by immunohistochemistry. Finally, BRCA cells were transfected with siRNA targeting DAAM2 and subsequently subject to cell proliferation, migration, and invasion assays. RESULTS DAAM2 was closely related to the diagnosis and clinical characteristics of lower grade glioma (LGG), liver hepatocellular carcinoma (LIHC), and breast cancer (BRCA). Survival curve analysis demonstrated DAAM2 served as a potential prognostic indicator of LGG and LIHC (P = 0.0029 and P = 0.025, respectively). DAAM2 was mainly participated in signaling pathways mediating cytoskeleton regulation and tumor development. The correlation of DAAM2 with tumor-infiltrating immune cells (TIICs) and methylation levels was conducive to the prediction of novel biomarkers of pan-carcinoma. DAAM2 was highly expressed in BRCA tissues than that in paracancerous tissues. The proliferation, invasion, and migration of BRCA cells were inhibited by DAAM2 siRNA. CONCLUSION DAAM2 had a specific value in foretelling the prognosis of LGG, LIHC, and BRCA. High expression level of DAAM2 has longer survival rates in LGG and LIHC. The knockdown of DAAM2 retards the proliferation, invasion, and migration of BRCA cells. This study provides a novel sight of DAAM2 into the exploration of a potential biomarker in pan-cancer.
Collapse
Affiliation(s)
- Zeying Li
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Xiao Wei
- The First Clinical Medical College, Nanjing Medical University, Nanjing, 211166, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
11
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|
12
|
Molina-Pelayo C, Olguin P, Mlodzik M, Glavic A. The conserved Pelado/ZSWIM8 protein regulates actin dynamics by promoting linear actin filament polymerization. Life Sci Alliance 2022; 5:e202201484. [PMID: 35940847 PMCID: PMC9375228 DOI: 10.26508/lsa.202201484] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/24/2022] Open
Abstract
Actin filament polymerization can be branched or linear, which depends on the associated regulatory proteins. Competition for actin monomers occurs between proteins that induce branched or linear actin polymerization. Cell specialization requires the regulation of actin filaments to allow the formation of cell type-specific structures, like cuticular hairs in <i>Drosophila</i>, formed by linear actin filaments. Here, we report the functional analysis of CG34401/<i>pelado</i>, a gene encoding a SWIM domain-containing protein, conserved throughout the animal kingdom, called ZSWIM8 in mammals. Mutant <i>pelado</i> epithelial cells display actin hair elongation defects. This phenotype is reversed by increasing actin monomer levels or by either pushing linear actin polymerization or reducing branched actin polymerization. Similarly, in hemocytes, Pelado is essential to induce filopodia, a linear actin-based structure. We further show that this function of Pelado/ZSWIM8 is conserved in human cells, where Pelado inhibits branched actin polymerization in a cell migration context. In summary, our data indicate that the function of Pelado/ZSWIM8 in regulating actin cytoskeletal dynamics is conserved, favoring linear actin polymerization at the expense of branched filaments.
Collapse
Affiliation(s)
- Claudia Molina-Pelayo
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Patricio Olguin
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Departamento de Neurociencia, Programa de Genética Humana, Instituto de Ciencias Biomédicas, Instituto de Neurociencia Biomédica, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Marek Mlodzik
- Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alvaro Glavic
- Departamento de Biología, Centro FONDAP de Regulación del Genoma, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
13
|
Molecular Dissection of DAAM Function during Axon Growth in Drosophila Embryonic Neurons. Cells 2022; 11:cells11091487. [PMID: 35563792 PMCID: PMC9102401 DOI: 10.3390/cells11091487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/21/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023] Open
Abstract
Axonal growth is mediated by coordinated changes of the actin and microtubule (MT) cytoskeleton. Ample evidence suggests that members of the formin protein family are involved in the coordination of these cytoskeletal rearrangements, but the molecular mechanisms of the formin-dependent actin–microtubule crosstalk remains largely elusive. Of the six Drosophila formins, DAAM was shown to play a pivotal role during axonal growth in all stages of nervous system development, while FRL was implicated in axonal development in the adult brain. Here, we aimed to investigate the potentially redundant function of these two formins, and we attempted to clarify which molecular activities are important for axonal growth. We used a combination of genetic analyses, cellular assays and biochemical approaches to demonstrate that the actin-processing activity of DAAM is indispensable for axonal growth in every developmental condition. In addition, we identified a novel MT-binding motif within the FH2 domain of DAAM, which is required for proper growth and guidance of the mushroom body axons, while being dispensable during embryonic axon development. Together, these data suggest that DAAM is the predominant formin during axonal growth in Drosophila, and highlight the contribution of multiple formin-mediated mechanisms in cytoskeleton coordination during axonal growth.
Collapse
|
14
|
Kaur M, Kumari A, Singh R. The Indigenous Volatile Inhibitor 2-Methyl-2-butene Impacts Biofilm Formation and Interspecies Interaction of the Pathogenic Mucorale Rhizopus arrhizus. MICROBIAL ECOLOGY 2022; 83:506-512. [PMID: 34023922 DOI: 10.1007/s00248-021-01765-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/21/2021] [Indexed: 06/12/2023]
Abstract
2-Methyl-2-butene has recently been reported to be a quorum-based volatile self-inhibitor of spore germination and growth in pathogenic Mucorale Rhizopus arrhizus. The present study aimed to elucidate if this compound can influence R. arrhizus biofilm formation and interspecies interaction. The compound was found to significantly decrease R. arrhizus biofilm formation (p < 0.001), with nearly 25% and 50% lesser biomass in the biofilms cultured with exposure to 4 and 32 µg/ml of 2-methyl-2-butene, respectively. The growth of pre-formed biofilms was also impacted, albeit to a lesser extent. Additionally, 2-methyl-2-butene was found to self-limit R. arrhizus growth during interspecies interaction with Staphylococcus aureus and was detected at a substantially greater concentration in the headspace of co-cultures (2338.75 µg/ml) compared with monocultures (69.52 µg/ml). Some of the C5 derivatives of this compound (3-methyl-1-butanol, 2-methyl-2-butanol, and 3-methyl-1-butyne) were also observed to partially mimic its action, such as inhibition of spore germination, but did not impact R. arrhizus biofilm formation. Finally, the treated R. arrhizus displayed changes in fungal morphology suggestive of cytoskeletal alterations, such as filopodia formation, blebs, increased longitudinal folds and/or corrugations, and finger-like and sheet-like surface protrusions, depending upon the concentration of the compound(s) and the planktonic or biofilm growth mode.
Collapse
Affiliation(s)
- Mahaldeep Kaur
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Anjna Kumari
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India
| | - Rachna Singh
- Department of Microbial Biotechnology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
15
|
Scholl A, Ndoja I, Jiang L. Drosophila Trachea as a Novel Model of COPD. Int J Mol Sci 2021; 22:ijms222312730. [PMID: 34884534 PMCID: PMC8658011 DOI: 10.3390/ijms222312730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 12/23/2022] Open
Abstract
COPD, a chronic obstructive pulmonary disease, is one of the leading causes of death worldwide. Clinical studies and research in rodent models demonstrated that failure of repair mechanisms to cope with increased ROS and inflammation in the lung leads to COPD. Despite this progress, the molecular mechanisms underlying the development of COPD remain poorly understood, resulting in a lack of effective treatments. Thus, an informative, simple model is highly valued and desired. Recently, the cigarette smoke-induced Drosophila COPD model showed a complex set of pathological phenotypes that resemble those seen in human COPD patients. The Drosophila trachea has been used as a premier model to reveal the mechanisms of tube morphogenesis. The association of these mechanisms to structural changes in COPD can be analyzed by using Drosophila trachea. Additionally, the timeline of structural damage, ROS, and inflammation can be studied in live organisms using fluorescently-tagged proteins. The related function of human COPD genes identified by GWAS can be screened using respective fly homologs. Finally, the Drosophila trachea can be used as a high-throughput drug screening platform to identify novel treatments for COPD. Therefore, Drosophila trachea is an excellent model that is complementary to rodent COPD models.
Collapse
|
16
|
Sherrard KM, Cetera M, Horne-Badovinac S. DAAM mediates the assembly of long-lived, treadmilling stress fibers in collectively migrating epithelial cells in Drosophila. eLife 2021; 10:e72881. [PMID: 34812144 PMCID: PMC8610420 DOI: 10.7554/elife.72881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
Stress fibers (SFs) are actomyosin bundles commonly found in individually migrating cells in culture. However, whether and how cells use SFs to migrate in vivo or collectively is largely unknown. Studying the collective migration of the follicular epithelial cells in Drosophila, we found that the SFs in these cells show a novel treadmilling behavior that allows them to persist as the cells migrate over multiple cell lengths. Treadmilling SFs grow at their fronts by adding new integrin-based adhesions and actomyosin segments over time. This causes the SFs to have many internal adhesions along their lengths, instead of adhesions only at the ends. The front-forming adhesions remain stationary relative to the substrate and typically disassemble as the cell rear approaches. By contrast, a different type of adhesion forms at the SF's terminus that slides with the cell's trailing edge as the actomyosin ahead of it shortens. We further show that SF treadmilling depends on cell movement and identify a developmental switch in the formins that mediate SF assembly, with Dishevelled-associated activator of morphogenesis acting during migratory stages and Diaphanous acting during postmigratory stages. We propose that treadmilling SFs keep each cell on a linear trajectory, thereby promoting the collective motility required for epithelial migration.
Collapse
Affiliation(s)
- Kristin M Sherrard
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Maureen Cetera
- Committee on Development, Regeneration, and Stem Cell Biology, The University of ChicagoChicagoUnited States
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
- Committee on Development, Regeneration, and Stem Cell Biology, The University of ChicagoChicagoUnited States
| |
Collapse
|
17
|
Kandasamy S, Couto K, Thackeray J. A docked mutation phenocopies dumpy oblique alleles via altered vesicle trafficking. PeerJ 2021; 9:e12175. [PMID: 34721959 PMCID: PMC8520396 DOI: 10.7717/peerj.12175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/27/2021] [Indexed: 11/20/2022] Open
Abstract
The Drosophila extracellular matrix protein Dumpy (Dpy) is one of the largest proteins encoded by any animal. One class of dpy mutations produces a characteristic shortening of the wing blade known as oblique (dpyo ), due to altered tension in the developing wing. We describe here the characterization of docked (doc), a gene originally named because of an allele producing a truncated wing. We show that doc corresponds to the gene model CG5484, which encodes a homolog of the yeast protein Yif1 and plays a key role in ER to Golgi vesicle transport. Genetic analysis is consistent with a similar role for Doc in vesicle trafficking: docked alleles interact not only with genes encoding the COPII core proteins sec23 and sec13, but also with the SNARE proteins synaptobrevin and syntaxin. Further, we demonstrate that the strong similarity between the doc1 and dpyo wing phenotypes reflects a functional connection between the two genes; we found that various dpy alleles are sensitive to changes in dosage of genes encoding other vesicle transport components such as sec13 and sar1. Doc's effects on trafficking are not limited to Dpy; for example, reduced doc dosage disturbed Notch pathway signaling during wing blade and vein development. These results suggest a model in which the oblique wing phenotype in doc1 results from reduced transport of wild-type Dumpy protein; by extension, an additional implication is that the dpyo alleles can themselves be explained as hypomorphs.
Collapse
Affiliation(s)
- Suresh Kandasamy
- Department of Biology, Clark University, Worcester, Massachusetts, United States
| | - Kiley Couto
- Department of Biology, Clark University, Worcester, Massachusetts, United States
| | - Justin Thackeray
- Department of Biology, Clark University, Worcester, Massachusetts, United States
| |
Collapse
|
18
|
Szikora S, Görög P, Kozma C, Mihály J. Drosophila Models Rediscovered with Super-Resolution Microscopy. Cells 2021; 10:1924. [PMID: 34440693 PMCID: PMC8391832 DOI: 10.3390/cells10081924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
With the advent of super-resolution microscopy, we gained a powerful toolbox to bridge the gap between the cellular- and molecular-level analysis of living organisms. Although nanoscopy is broadly applicable, classical model organisms, such as fruit flies, worms and mice, remained the leading subjects because combining the strength of sophisticated genetics, biochemistry and electrophysiology with the unparalleled resolution provided by super-resolution imaging appears as one of the most efficient approaches to understanding the basic cell biological questions and the molecular complexity of life. Here, we summarize the major nanoscopic techniques and illustrate how these approaches were used in Drosophila model systems to revisit a series of well-known cell biological phenomena. These investigations clearly demonstrate that instead of simply achieving an improvement in image quality, nanoscopy goes far beyond with its immense potential to discover novel structural and mechanistic aspects. With the examples of synaptic active zones, centrosomes and sarcomeres, we will explain the instrumental role of super-resolution imaging pioneered in Drosophila in understanding fundamental subcellular constituents.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
| | - Péter Görög
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Doctoral School of Multidisciplinary Medical Science, Faculty of Medicine, University of Szeged, H-6725 Szeged, Hungary
| | - Csaba Kozma
- Foundation for the Future of Biomedical Sciences in Szeged, Szeged Scientists Academy, Pálfy u. 52/d, H-6725 Szeged, Hungary;
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Temesvári krt. 62, H-6726 Szeged, Hungary;
- Department of Genetics, University of Szeged, H-6726 Szeged, Hungary
| |
Collapse
|
19
|
Cells into tubes: Molecular and physical principles underlying lumen formation in tubular organs. Curr Top Dev Biol 2020; 143:37-74. [PMID: 33820625 DOI: 10.1016/bs.ctdb.2020.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Tubular networks, such as the vascular and respiratory systems, transport liquids and gases in multicellular organisms. The basic units of these organs are tubes formed by single or multiple cells enclosing a luminal cavity. The formation and maintenance of correctly sized and shaped lumina are fundamental steps in organogenesis and are essential for organismal homeostasis. Therefore, understanding how cells generate, shape and maintain lumina is crucial for understanding normal organogenesis as well as the basis of pathological conditions. Lumen formation involves polarized membrane trafficking, cytoskeletal dynamics, and the influence of intracellular as well as extracellular mechanical forces, such as cortical tension, luminal pressure or blood flow. Various tissue culture and in vivo model systems, ranging from MDCK cell spheroids to tubular organs in worms, flies, fish, and mice, have provided many insights into the molecular and cellular mechanisms underlying lumenogenesis and revealed key factors that regulate the size and shape of cellular tubes. Moreover, the development of new experimental and imaging approaches enabled quantitative analyses of intracellular dynamics and allowed to assess the roles of cellular and tissue mechanics during tubulogenesis. However, how intracellular processes are coordinated and regulated across scales of biological organization to generate properly sized and shaped tubes is only beginning to be understood. Here, we review recent insights into the molecular, cellular and physical mechanisms underlying lumen formation during organogenesis. We discuss how these mechanisms control lumen formation in various model systems, with a special focus on the morphogenesis of tubular organs in Drosophila.
Collapse
|
20
|
Kelley CA, Triplett O, Mallick S, Burkewitz K, Mair WB, Cram EJ. FLN-1/filamin is required to anchor the actomyosin cytoskeleton and for global organization of sub-cellular organelles in a contractile tissue. Cytoskeleton (Hoboken) 2020; 77:379-398. [PMID: 32969593 DOI: 10.1002/cm.21633] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 09/11/2020] [Accepted: 09/17/2020] [Indexed: 01/01/2023]
Abstract
Actomyosin networks are organized in space, direction, size, and connectivity to produce coordinated contractions across cells. We use the C. elegans spermatheca, a tube composed of contractile myoepithelial cells, to study how actomyosin structures are organized. FLN-1/filamin is required for the formation and stabilization of a regular array of parallel, contractile, actomyosin fibers in this tissue. Loss of fln-1 results in the detachment of actin fibers from the basal surface, which then accumulate along the cell junctions and are stabilized by spectrin. In addition, actin and myosin are captured at the nucleus by the linker of nucleoskeleton and cytoskeleton complex (LINC) complex, where they form large foci. Nuclear positioning and morphology, distribution of the endoplasmic reticulum and the mitochondrial network are also disrupted. These results demonstrate that filamin is required to prevent large actin bundle formation and detachment, to prevent excess nuclear localization of actin and myosin, and to ensure correct positioning of organelles.
Collapse
Affiliation(s)
- Charlotte A Kelley
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Olivia Triplett
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Samyukta Mallick
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Kristopher Burkewitz
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA.,Department of Cell and Developmental Biology, Vanderbilt School of Medicine, Nashville, Tennessee, USA
| | - William B Mair
- Department of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Erin J Cram
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Behr M, Riedel D. Glycosylhydrolase genes control respiratory tubes sizes and airway stability. Sci Rep 2020; 10:13377. [PMID: 32770153 PMCID: PMC7414880 DOI: 10.1038/s41598-020-70185-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/24/2020] [Indexed: 11/09/2022] Open
Abstract
Tight barriers are crucial for animals. Insect respiratory cells establish barriers through their extracellular matrices. These chitinous-matrices must be soft and flexible to provide ventilation, but also tight enough to allow oxygen flow and protection against dehydration, infections, and environmental stresses. However, genes that control soft, flexible chitin-matrices are poorly known. We investigated the genes of the chitinolytic glycosylhydrolase-family 18 in the tracheal system of Drosophila melanogaster. Our findings show that five chitinases and three chitinase-like genes organize the tracheal chitin-cuticles. Most of the chitinases degrade chitin from airway lumina to enable oxygen delivery. They further improve chitin-cuticles to enhance tube stability and integrity against stresses. Unexpectedly, some chitinases also support chitin assembly to expand the tube lumen properly. Moreover, Chitinase2 plays a decisive role in the chitin-cuticle formation that establishes taenidial folds to support tube stability. Chitinase2 is apically enriched on the surface of tracheal cells, where it controls the chitin-matrix architecture independently of other known cuticular proteins or chitinases. We suppose that the principle mechanisms of chitin-cuticle assembly and degradation require a set of critical glycosylhydrolases for flexible and not-flexible cuticles. The same glycosylhydrolases support thick laminar cuticle formation and are evolutionarily conserved among arthropods.
Collapse
Affiliation(s)
- Matthias Behr
- Institute for Biology, Leipzig University, Philipp-Rosenthal-Str. 55, 04103, Leipzig, Germany.
| | - Dietmar Riedel
- Max-Planck-Institute for Biophysical Chemistry, Electron Microscopy Group, 37077, Göttingen, Germany
| |
Collapse
|
22
|
Szikora S, Gajdos T, Novák T, Farkas D, Földi I, Lenart P, Erdélyi M, Mihály J. Nanoscopy reveals the layered organization of the sarcomeric H-zone and I-band complexes. J Cell Biol 2020; 219:132617. [PMID: 31816054 PMCID: PMC7039190 DOI: 10.1083/jcb.201907026] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/04/2019] [Accepted: 10/22/2019] [Indexed: 01/18/2023] Open
Abstract
Sarcomeres are extremely highly ordered macromolecular assemblies where structural organization is intimately linked to their functionality as contractile units. Although the structural basis of actin and Myosin interaction is revealed at a quasiatomic resolution, much less is known about the molecular organization of the I-band and H-zone. We report the development of a powerful nanoscopic approach, combined with a structure-averaging algorithm, that allowed us to determine the position of 27 sarcomeric proteins in Drosophila melanogaster flight muscles with a quasimolecular, ∼5- to 10-nm localization precision. With this protein localization atlas and template-based protein structure modeling, we have assembled refined I-band and H-zone models with unparalleled scope and resolution. In addition, we found that actin regulatory proteins of the H-zone are organized into two distinct layers, suggesting that the major place of thin filament assembly is an M-line-centered narrow domain where short actin oligomers can form and subsequently anneal to the pointed end.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tamás Gajdos
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Tibor Novák
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - Dávid Farkas
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary
| | - Peter Lenart
- Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Miklós Erdélyi
- Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, Szeged, Hungary.,Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary
| |
Collapse
|
23
|
Nakaya MA, Gudmundsson KO, Komiya Y, Keller JR, Habas R, Yamaguchi TP, Ajima R. Placental defects lead to embryonic lethality in mice lacking the Formin and PCP proteins Daam1 and Daam2. PLoS One 2020; 15:e0232025. [PMID: 32353019 PMCID: PMC7192421 DOI: 10.1371/journal.pone.0232025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 04/06/2020] [Indexed: 01/30/2023] Open
Abstract
The actin cytoskeleton plays a central role in establishing cell polarity and shape during embryonic morphogenesis. Daam1, a member of the Formin family of actin cytoskeleton regulators, is a Dvl2-binding protein that functions in the Wnt/Planar Cell Polarity (PCP) pathway. To examine the role of the Daam proteins in mammalian development, we generated Daam-deficient mice by gene targeting and found that Daam1, but not Daam2, is necessary for fetal survival. Embryonic development of Daam1 mutants was delayed most likely due to functional defects in the labyrinthine layer of the placenta. Examination of Daam2 and Daam1/2 double mutants revealed that Daam1 and Daam2 are functionally redundant during placental development. Of note, neural tube closure defects (NTD), which are observed in several mammalian PCP mutants, are not observed in Wnt5a or Daam1 single mutants, but arise in Daam1;Wnt5a double mutants. These findings demonstrate a unique function for Daam genes in placental development and are consistent with a role for Daam1 in the Wnt/PCP pathway in mammals.
Collapse
Affiliation(s)
- Masa-aki Nakaya
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Kristibjorn Orri Gudmundsson
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Yuko Komiya
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United State of America
| | - Jonathan R. Keller
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Raymond Habas
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania, United State of America
| | - Terry P. Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| | - Rieko Ajima
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute-Frederick, National Institutes of Health, Frederick, Maryland, United State of America
| |
Collapse
|
24
|
Chougule A, Lapraz F, Földi I, Cerezo D, Mihály J, Noselli S. The Drosophila actin nucleator DAAM is essential for left-right asymmetry. PLoS Genet 2020; 16:e1008758. [PMID: 32324733 PMCID: PMC7200016 DOI: 10.1371/journal.pgen.1008758] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 05/05/2020] [Accepted: 04/05/2020] [Indexed: 12/14/2022] Open
Abstract
Left-Right (LR) asymmetry is essential for organ positioning, shape and function. Myosin 1D (Myo1D) has emerged as an evolutionary conserved chirality determinant in both Drosophila and vertebrates. However, the molecular interplay between Myo1D and the actin cytoskeleton underlying symmetry breaking remains poorly understood. To address this question, we performed a dual genetic screen to identify new cytoskeletal factors involved in LR asymmetry. We identified the conserved actin nucleator DAAM as an essential factor required for both dextral and sinistral development. In the absence of DAAM, organs lose their LR asymmetry, while its overexpression enhances Myo1D-induced de novo LR asymmetry. These results show that DAAM is a limiting, LR-specific actin nucleator connecting up Myo1D with a dedicated F-actin network important for symmetry breaking. Although our body looks symmetrical when viewed from the outside, it is in fact highly asymmetrical when we consider the shape and implantation of organs. For example, our heart is on the left side of the thorax, while the liver is on the right. In addition, our heart is made up of two distinct parts, the right heart and the left heart, which play different roles for blood circulation. These asymmetries, called left-right asymmetries, play a fundamental role in the morphogenesis and function of visceral organs and the brain. Aberrant LR asymmetry in human results in severe anatomical defects leading to embryonic lethality, spontaneous abortion and a number of congenital disorders. Our recent work has identified a particular myosin (Myo1D) as a major player in asymmetry in Drosophila and vertebrates. Myosins are proteins that can interact with the skeleton of cells (called the cytoskeleton) to transport other proteins, contract the cells, allow them to move, etc. In this work, we were able to identify all the genes of the cytoskeleton involved with myosin in left-right asymmetry, in particular a so-called 'nucleator' gene because it is capable of forming new parts of the cytoskeleton necessary for setting up asymmetries.
Collapse
Affiliation(s)
- Anil Chougule
- Université Côte D’Azur, CNRS, Inserm, iBV, Nice, France
| | | | - István Földi
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, Hungary
| | | | - József Mihály
- Biological Research Centre, Hungarian Academy of Sciences, Institute of Genetics, Hungary
| | - Stéphane Noselli
- Université Côte D’Azur, CNRS, Inserm, iBV, Nice, France
- * E-mail:
| |
Collapse
|
25
|
Coordination of host and symbiont gene expression reveals a metabolic tug-of-war between aphids and Buchnera. Proc Natl Acad Sci U S A 2020; 117:2113-2121. [PMID: 31964845 DOI: 10.1073/pnas.1916748117] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Symbioses between animals and microbes are often described as mutualistic, but are subject to tradeoffs that may manifest as shifts in host and symbiont metabolism, cellular processes, or symbiont density. In pea aphids, the bacterial symbiont Buchnera is confined to specialized aphid cells called bacteriocytes, where it produces essential amino acids needed by hosts. This relationship is dynamic; Buchnera titer varies within individual aphids and among different clonal aphid lineages, and is affected by environmental and host genetic factors. We examined how host genotypic variation relates to host and symbiont function among seven aphid clones differing in Buchnera titer. We found that bacteriocyte gene expression varies among individual aphids and among aphid clones, and that Buchnera gene expression changes in response. By comparing hosts with low and high Buchnera titer, we found that aphids and Buchnera oppositely regulate genes underlying amino acid biosynthesis and cell growth. In high-titer hosts, both bacteriocytes and symbionts show elevated expression of genes underlying energy metabolism. Several eukaryotic cell signaling pathways are differentially expressed in bacteriocytes of low- versus high-titer hosts: Cell-growth pathways are up-regulated in low-titer genotypes, while membrane trafficking, lysosomal processes, and mechanistic target of rapamycin (mTOR) and cytokine pathways are up-regulated in high-titer genotypes. Specific Buchnera functions are up-regulated within different bacteriocyte environments, with genes underlying flagellar body secretion and flagellar assembly overexpressed in low- and high-titer hosts, respectively. Overall, our results reveal allowances and demands made by both host and symbiont engaged in a metabolic "tug-of-war."
Collapse
|
26
|
van der Lee SJ, Knol MJ, Chauhan G, Satizabal CL, Smith AV, Hofer E, Bis JC, Hibar DP, Hilal S, van den Akker EB, Arfanakis K, Bernard M, Yanek LR, Amin N, Crivello F, Cheung JW, Harris TB, Saba Y, Lopez OL, Li S, van der Grond J, Yu L, Paus T, Roshchupkin GV, Amouyel P, Jahanshad N, Taylor KD, Yang Q, Mathias RA, Boehringer S, Mazoyer B, Rice K, Cheng CY, Maillard P, van Heemst D, Wong TY, Niessen WJ, Beiser AS, Beekman M, Zhao W, Nyquist PA, Chen C, Launer LJ, Psaty BM, Ikram MK, Vernooij MW, Schmidt H, Pausova Z, Becker DM, De Jager PL, Thompson PM, van Duijn CM, Bennett DA, Slagboom PE, Schmidt R, Longstreth WT, Ikram MA, Seshadri S, Debette S, Gudnason V, Adams HHH, DeCarli C. A genome-wide association study identifies genetic loci associated with specific lobar brain volumes. Commun Biol 2019; 2:285. [PMID: 31396565 PMCID: PMC6677735 DOI: 10.1038/s42003-019-0537-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/14/2019] [Indexed: 12/26/2022] Open
Abstract
Brain lobar volumes are heritable but genetic studies are limited. We performed genome-wide association studies of frontal, occipital, parietal and temporal lobe volumes in 16,016 individuals, and replicated our findings in 8,789 individuals. We identified six genetic loci associated with specific lobar volumes independent of intracranial volume. Two loci, associated with occipital (6q22.32) and temporal lobe volume (12q14.3), were previously reported to associate with intracranial and hippocampal volume, respectively. We identified four loci previously unknown to affect brain volumes: 3q24 for parietal lobe volume, and 1q22, 4p16.3 and 14q23.1 for occipital lobe volume. The associated variants were located in regions enriched for histone modifications (DAAM1 and THBS3), or close to genes causing Mendelian brain-related diseases (ZIC4 and FGFRL1). No genetic overlap between lobar volumes and neurological or psychiatric diseases was observed. Our findings reveal part of the complex genetics underlying brain development and suggest a role for regulatory regions in determining brain volumes.
Collapse
Affiliation(s)
- Sven J. van der Lee
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Maria J. Knol
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Ganesh Chauhan
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, 33000 Bordeaux, France
- Centre for Brain Research, Indian Institute of Science, Bangalore, 560012 India
| | - Claudia L. Satizabal
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229 USA
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
| | - Albert Vernon Smith
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036 Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, 8036 Austria
| | - Joshua C. Bis
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
| | - Derrek P. Hibar
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Saima Hilal
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Pharmacology, National University of Singapore, Singapore, 117600 Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore, 119228 Singapore
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Erik B. van den Akker
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
- Pattern Recognition & Bioinformatics, Delft University of Technology, Delft, 2628XE the Netherlands
- Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Konstantinos Arfanakis
- Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, IL 60616 USA
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Manon Bernard
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 ON Canada
| | - Lisa R. Yanek
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Fabrice Crivello
- Neurofunctional Imaging Group - Neurodegenerative Diseases Institute, UMR 5293, Team 5 - CEA - CNRS - Bordeaux University, Bordeaux, 33076 France
| | - Josh W. Cheung
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Tamara B. Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892 USA
| | - Yasaman Saba
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Oscar L. Lopez
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15260 USA
| | - Shuo Li
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Jeroen van der Grond
- Department of Radiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - Tomas Paus
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, M4G 1R8 Canada
- Departments of Psychology and Psychiatry, University of Toronto, Toronto, M5S 1A1 Canada
| | - Gennady V. Roshchupkin
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Philippe Amouyel
- Univ. Lille, Inserm, Centre Hosp. Univ Lille, Institut Pasteur de Lille, LabEx DISTALZ-UMR1167 - RID-AGE - Risk factors and molecular determinants of aging-related, 59000 Lille, France
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Kent D. Taylor
- Institute for Translational Genomics and Population Sciences, Department of Pediatrics at LABioMed-Harbor-UCLA Medical Center, Torrance, CA 90502 USA
| | - Qiong Yang
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Rasika A. Mathias
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Stefan Boehringer
- Department of Biomedical Data Sciences, Statistical Genetics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Bernard Mazoyer
- Neurofunctional Imaging Group - Neurodegenerative Diseases Institute, UMR 5293, Team 5 - CEA - CNRS - Bordeaux University, Bordeaux, 33076 France
| | - Ken Rice
- Department of Biostatistics, University of Washington, Seattle, WA 98195 USA
| | - Ching Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Pauline Maillard
- Imaging of Dementia and Aging (IDeA) Laboratory, University of California-Davis, Davis, CA 95817 USA
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Tien Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Wiro J. Niessen
- Department of Medical Informatics, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Faculty of Applied Sciences, Delft University of Technology, Delft, 2629HZ the Netherlands
| | - Alexa S. Beiser
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
- Department of Biostatistics, School of Public Health, Boston University, Boston, MA 02118 USA
| | - Marian Beekman
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Wanting Zhao
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, 169857 Singapore
| | - Paul A. Nyquist
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Christopher Chen
- Department of Pharmacology, National University of Singapore, Singapore, 117600 Singapore
- Memory, Aging and Cognition Center, National University Health System, Singapore, 119228 Singapore
| | - Lenore J. Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, National Institutes of Health, Bethesda, MD 20892 USA
| | - Bruce M. Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA 98101 USA
- Department of Epidemiology, University of Washington, Seattle, WA 98195 USA
- Department of Health Services, University of Washington, Seattle, WA 98195 USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA 98101 USA
| | - M. Kamran Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Neurology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Meike W. Vernooij
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Helena Schmidt
- Research Unit-Genetic Epidemiology, Gottfried Schatz Research Centre for Cell Signaling, Metabolism and Aging, Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Zdenka Pausova
- The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 ON Canada
- Departments of Physiology and Nutritional Sciences, The Hospital for Sick Children, University of Toronto, Toronto, M5G 1X8 Canada
| | - Diane M. Becker
- GeneSTAR Research Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD 21205 USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Columbia University Medical Center, New York, NY 10032 USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA 02142 USA
| | - Paul M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine of the University of Southern California, Los Angeles, CA 90292 USA
| | - Cornelia M. van Duijn
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center, Chicago, IL 60612 USA
| | - P. Eline Slagboom
- Department of Biomedical Data Sciences, Section of Molecular Epidemiology, Leiden University Medical Center, Leiden, 2333ZA the Netherlands
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, 8036 Austria
| | - W. T. Longstreth
- Department of Epidemiology, University of Washington, Seattle, WA 98195 USA
- Department of Neurology, University of Washington, Seattle, WA 98195 USA
| | - M. Arfan Ikram
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
| | - Sudha Seshadri
- The Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX 78229 USA
- Boston University School of Medicine and the Framingham Heart Study, Boston, MA 02118 USA
| | - Stéphanie Debette
- University of Bordeaux, Bordeaux Population Health Research Center, INSERM UMR 1219, 33000 Bordeaux, France
- Department of Neurology, University Hospital of Bordeaux, Bordeaux, 33000 France
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201 Kopavogur, Iceland
- Faculty of Medicine, University of Iceland, 101 Reykjavik, Iceland
| | - Hieab H. H. Adams
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, 3015CN the Netherlands
- Department of Clinical Genetics, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Charles DeCarli
- Department of Neurology and Center for Neuroscience, University of California at Davis, Davis, CA 95817 USA
| |
Collapse
|
27
|
WASH phosphorylation balances endosomal versus cortical actin network integrities during epithelial morphogenesis. Nat Commun 2019; 10:2193. [PMID: 31097705 PMCID: PMC6522504 DOI: 10.1038/s41467-019-10229-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Abstract
Filamentous actin (F-actin) networks facilitate key processes like cell shape control, division, polarization and motility. The dynamic coordination of F-actin networks and its impact on cellular activities are poorly understood. We report an antagonistic relationship between endosomal F-actin assembly and cortical actin bundle integrity during Drosophila airway maturation. Double mutants lacking receptor tyrosine phosphatases (PTP) Ptp10D and Ptp4E, clear luminal proteins and disassemble apical actin bundles prematurely. These defects are counterbalanced by reduction of endosomal trafficking and by mutations affecting the tyrosine kinase Btk29A, and the actin nucleation factor WASH. Btk29A forms protein complexes with Ptp10D and WASH, and Btk29A phosphorylates WASH. This phosphorylation activates endosomal WASH function in flies and mice. In contrast, a phospho-mimetic WASH variant induces endosomal actin accumulation, premature luminal endocytosis and cortical F-actin disassembly. We conclude that PTPs and Btk29A regulate WASH activity to balance the endosomal and cortical F-actin networks during epithelial tube maturation.
Collapse
|
28
|
Lu Q, Bhattachan P, Dong B. Ascidian notochord elongation. Dev Biol 2018; 448:147-153. [PMID: 30458170 DOI: 10.1016/j.ydbio.2018.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 11/27/2022]
Abstract
The elongation of embryo and tissue is a key morphogenetic event in embryogenesis and organogenesis. Notochord, a typical chordate organ, undergoes elongation to perform its regulatory roles and to form the structural support in the embryo. Notochord elongation is morphologically similar across all chordates, but ascidian has evolved distinct molecular and cellular processes. Here, we summarize the current understanding of ascidian notochord elongation. We divide the process into three phases and discuss the underlying molecular mechanisms in each phase. In the first phase, the notochord converges and extends through invagination and mediolateral intercalation, and partially elongates to form a single diameter cell column along the anterior-posterior axis. In the second phase, a cytokinesis-like actomyosin ring is constructed at the equator of each cell and drives notochord to elongate approximately two-fold. The molecular composition and architecture of the ascidian notochord contractile ring are similar to that of the cytokinetic ring. However, the notochord contractile ring does not impose cell division but only drives cell elongation followed by disassembly. We discuss the self-organizing property of the circumferential actomyosin ring, and why it disassembles when certain notochord length is achieved. The similar ring structures are also present in the elongation process of other organs in evolutionarily divergent animals such as Drosophila and C. elegans. We hereby propose that actomyosin ring-based circumferential contraction is a common mechanism adopted in diverse systems to drive embryo and tissue elongation. In the third phase, the notochord experiences tubulogenesis and the endothelial-like cells crawl bi-directionally on the notochord sheath to further lengthen the notochord. In this review, we also discuss extracellular matrix proteins, notochord sheath, and surrounding tissues that may contribute to notochord integrity and morphogenesis.
Collapse
Affiliation(s)
- Qiongxuan Lu
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Punit Bhattachan
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
29
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
30
|
Liu Y, Lusk CM, Cho MH, Silverman EK, Qiao D, Zhang R, Scheurer ME, Kheradmand F, Wheeler DA, Tsavachidis S, Armstrong G, Zhu D, Wistuba II, Chow CWB, Behrens C, Pikielny CW, Neslund-Dudas C, Pinney SM, Anderson M, Kupert E, Bailey-Wilson J, Gaba C, Mandal D, You M, de Andrade M, Yang P, Field JK, Liloglou T, Davies M, Lissowska J, Swiatkowska B, Zaridze D, Mukeriya A, Janout V, Holcatova I, Mates D, Milosavljevic S, Scelo G, Brennan P, McKay J, Liu G, Hung RJ, The COPDGene Investigators, Christiani DC, Schwartz AG, Amos CI, Spitz MR. Rare Variants in Known Susceptibility Loci and Their Contribution to Risk of Lung Cancer. J Thorac Oncol 2018; 13:1483-1495. [PMID: 29981437 PMCID: PMC6366341 DOI: 10.1016/j.jtho.2018.06.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/06/2018] [Accepted: 06/17/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Genome-wide association studies are widely used to map genomic regions contributing to lung cancer (LC) susceptibility, but they typically do not identify the precise disease-causing genes/variants. To unveil the inherited genetic variants that cause LC, we performed focused exome-sequencing analyses on genes located in 121 genome-wide association study-identified loci previously implicated in the risk of LC, chronic obstructive pulmonary disease, pulmonary function level, and smoking behavior. METHODS Germline DNA from 260 case patients with LC and 318 controls were sequenced by utilizing VCRome 2.1 exome capture. Filtering was based on enrichment of rare and potential deleterious variants in cases (risk alleles) or controls (protective alleles). Allelic association analyses of single-variant and gene-based burden tests of multiple variants were performed. Promising candidates were tested in two independent validation studies with a total of 1773 case patients and 1123 controls. RESULTS We identified 48 rare variants with deleterious effects in the discovery analysis and validated 12 of the 43 candidates that were covered in the validation platforms. The top validated candidates included one well-established truncating variant, namely, BRCA2, DNA repair associated gene (BRCA2) K3326X (OR = 2.36, 95% confidence interval [CI]: 1.38-3.99), and three newly identified variations, namely, lymphotoxin beta gene (LTB) p.Leu87Phe (OR = 7.52, 95% CI: 1.01-16.56), prolyl 3-hydroxylase 2 gene (P3H2) p.Gln185His (OR = 5.39, 95% CI: 0.75-15.43), and dishevelled associated activator of morphogenesis 2 gene (DAAM2) p.Asp762Gly (OR = 0.25, 95% CI: 0.10-0.79). Burden tests revealed strong associations between zinc finger protein 93 gene (ZNF93), DAAM2, bromodomain containing 9 gene (BRD9), and the gene LTB and LC susceptibility. CONCLUSION Our results extend the catalogue of regions associated with LC and highlight the importance of germline rare coding variants in LC susceptibility.
Collapse
Affiliation(s)
- Yanhong Liu
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christine M. Lusk
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Michael H. Cho
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Edwin K. Silverman
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Dandi Qiao
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ruyang Zhang
- Harvard University School of Public Health, Boston, MA 02115, USA
| | - Michael E. Scheurer
- Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Farrah Kheradmand
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Michael E. DeBakey Veterans Affairs Medical Center; Houston, TX 77030, USA
| | - David A. Wheeler
- Department of Molecular and Human Genetics, Human Genome Sequence Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Spiridon Tsavachidis
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Georgina Armstrong
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Dakai Zhu
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ignacio I. Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chi-Wan B. Chow
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Carmen Behrens
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Claudio W. Pikielny
- Department of Biomedical Data Science, Geisel School of Medicine, Dartmouth College, Lebanon, NH 03755, USA
| | | | - Susan M. Pinney
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Marshall Anderson
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Elena Kupert
- University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | | | - Colette Gaba
- The University of Toledo College of Medicine, Toledo, OH 43614, USA
| | - Diptasri Mandal
- Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Ming You
- Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | - Ping Yang
- Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - John K. Field
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Triantafillos Liloglou
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Michael Davies
- Roy Castle Lung Cancer Research Programme, The University of Liverpool, Department of Molecular and Clinical Cancer Medicine, Liverpool, UK
| | - Jolanta Lissowska
- The M. Sklodowska-Curie Institute of Oncology Center, Warsaw 02781, Poland
| | - Beata Swiatkowska
- Nofer Institute of Occupational Medicine, Department of Environmental Epidemiology, Lodz 91348, Poland
| | - David Zaridze
- Russian N.N. Blokhin Cancer Research Centre, Moscow 115478, Russian Federation
| | - Anush Mukeriya
- Russian N.N. Blokhin Cancer Research Centre, Moscow 115478, Russian Federation
| | - Vladimir Janout
- Faculty of Health Sciences, Palacky University, Olomouc 77515, Czech Republic
| | - Ivana Holcatova
- Institute of Public Health and Preventive Medicine, Charles University, 2nd Faculty of Medicine, Prague 12800, Czech Republic
| | - Dana Mates
- National Institute of Public Health, Bucharest 050463, Romania
| | - Sasa Milosavljevic
- International Organization for Cancer Prevention and Research (IOCPR), Belgrade, Serbia
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - James McKay
- International Agency for Research on Cancer, Lyon, France
| | - Geoffrey Liu
- Princess Margaret Cancer Center, Toronto, ON, M5G 2M9, Canada
| | - Rayjean J. Hung
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, M5G 1X5 Canada
| | | | | | - Ann G. Schwartz
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Christopher I Amos
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX 77030, USA
| | - Margaret R. Spitz
- Dan L. Duncan Comprehensive Cancer Center, Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
31
|
Blimp-1 Mediates Tracheal Lumen Maturation in Drosophila melanogaster. Genetics 2018; 210:653-663. [PMID: 30082278 DOI: 10.1534/genetics.118.301444] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 08/01/2018] [Indexed: 12/15/2022] Open
Abstract
The specification of tissue identity during embryonic development requires precise spatio-temporal coordination of gene expression. Many transcription factors required for the development of organs have been identified and their expression patterns are known; however, the mechanisms through which they coordinate gene expression in time remain poorly understood. Here, we show that hormone-induced transcription factor Blimp-1 participates in the temporal coordination of tubulogenesis in Drosophila melanogaster by regulating the expression of many genes involved in tube maturation. In particular, we demonstrate that Blimp-1 regulates the expression of genes involved in chitin deposition and F-actin organization. We show that Blimp-1 is involved in the temporal control of lumen maturation by regulating the beginning of chitin deposition. We also report that Blimp-1 represses a variety of genes involved in tracheal maturation. Finally, we reveal that the kinase Btk29A serves as a link between Blimp-1 transcriptional repression and apical extracellular matrix organization.
Collapse
|
32
|
Planar Cell Polarity Signaling in Mammalian Cardiac Morphogenesis. Pediatr Cardiol 2018; 39:1052-1062. [PMID: 29564519 PMCID: PMC5959767 DOI: 10.1007/s00246-018-1860-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 01/16/2023]
Abstract
The mammalian heart is the first organ to form and is critical for embryonic survival and development. With an occurrence of 1%, congenital heart defects (CHDs) are also the most common birth defects in humans, and major cause of childhood morbidity and mortality (Hoffman and Kaplan in J Am Coll Cardiol 39(12):1890-1900, 2002; Samanek in Cardiol Young 10(3):179-185, 2000). Understanding how the heart forms will not only help to determine the etiology and to design diagnostic and therapeutic approaches for CHDs, but may also provide insight into regenerative medicine to repair injured adult hearts. Mammalian heart development requires precise orchestration of growth, differentiation, and morphogenesis to remodel a simple linear heart tube into an intricate, four-chambered heart with properly connected pulmonary artery and aorta, a structural basis for establishing the pulmonary and systemic circulation. Here we will review the recent advance in our understanding of how the planar cell polarity pathway, a highly conserved morphogenetic engine in vertebrates, regulates polarized morphogenetic processes to contribute to both the arterial and venous poles development of the heart.
Collapse
|
33
|
Venditti M, Fasano C, Santillo A, Aniello F, Minucci S. First evidence of DAAM1 localization in mouse seminal vesicles and its possible involvement during regulated exocytosis. C R Biol 2018; 341:228-234. [PMID: 29571963 DOI: 10.1016/j.crvi.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/01/2018] [Accepted: 03/01/2018] [Indexed: 12/26/2022]
Abstract
Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a protein belonging to the formin family, which regulates, together with the small GTPase RhoA, the nucleation and the assembly of actin fibres through Wnt-Dishevelled PCP pathway. Its role has been investigated in essential biological processes, such as cell polarity, movement and adhesion during morphogenesis and organogenesis. In this work, we studied the expression of DAAM1 mRNA and protein by PCR and Western blot analyses and its co-localization with actin in adult mouse seminal vesicles by immunofluorescence. We show that both proteins are cytoplasmic: actin is evident at cell-cell junctions and at cell cortex; DAAM1 had a more diffused localization, but is also prominent at the apical plasmatic membrane of epithelial cells. These findings support our hypothesis of a role of DAAM1 in cytoskeletal rearrangement that occurs during the exocytosis of secretory vesicles, and in particular concerning actin filaments. We were also able to detect DAAM1 and actin association in the smooth muscle cells that surround the epithelium too. In this case, we could only speculate the possible involvement of this formin in muscular cells in the maintenance and the regulation of the contractile structures. The present results strongly suggest that DAAM1 could have a pivotal role in vesicle exocytosis and in the physiology of mouse seminal vesicles.
Collapse
Affiliation(s)
- Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy
| | - Chiara Fasano
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy
| | - Alessandra Santillo
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez, Fisiologia Umana e Funzioni Biologiche Integrate, Università degli studi della Campania "Luigi Vanvitelli", Via Costantinopoli, 16, 80138 Napoli, Italy.
| |
Collapse
|
34
|
Migh E, Götz T, Földi I, Szikora S, Gombos R, Darula Z, Medzihradszky KF, Maléth J, Hegyi P, Sigrist S, Mihály J. Microtubule organization in presynaptic boutons relies on the formin DAAM. Development 2018; 145:dev158519. [PMID: 29487108 DOI: 10.1242/dev.158519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 02/14/2018] [Indexed: 02/02/2023]
Abstract
Regulation of the cytoskeleton is fundamental to the development and function of synaptic terminals, such as neuromuscular junctions. Despite the identification of numerous proteins that regulate synaptic actin and microtubule dynamics, the mechanisms of cytoskeletal control during terminal arbor formation have remained largely elusive. Here, we show that DAAM, a member of the formin family of cytoskeleton organizing factors, is an important presynaptic regulator of neuromuscular junction development in Drosophila We demonstrate that the actin filament assembly activity of DAAM plays a negligible role in terminal formation; rather, DAAM is necessary for synaptic microtubule organization. Genetic interaction studies consistently link DAAM with the Wg/Ank2/Futsch module of microtubule regulation and bouton formation. Finally, we provide evidence that DAAM is tightly associated with the synaptic active zone scaffold, and electrophysiological data point to a role in the modulation of synaptic vesicle release. Based on these results, we propose that DAAM is an important cytoskeletal effector element of the Wg/Ank2 pathway involved in the determination of basic synaptic structures, and, additionally, that DAAM may couple the active zone scaffold to the presynaptic cytoskeleton.
Collapse
Affiliation(s)
- Ede Migh
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Torsten Götz
- Institut für Biologie/Genetik and NeuroCure, Freie Universitat Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Rita Gombos
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Zsuzsanna Darula
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - Katalin F Medzihradszky
- Laboratory of Proteomics Research, Biological Research Centre, Hungarian Academy of Sciences, Szeged H-6726, Hungary
| | - József Maléth
- MTA-SZTE Translational Gastroenterology Research Group, Szeged H-6725, Hungary
| | - Péter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, Szeged H-6725, Hungary
- Institute for Translational Medicine, University of Pecs, Pécs H-7624, Hungary
| | - Stephan Sigrist
- Institut für Biologie/Genetik and NeuroCure, Freie Universitat Berlin, Takustrasse 6, D-14195 Berlin, Germany
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
35
|
Upadhyay M, Kuna M, Tudor S, Martino Cortez Y, Rangan P. A switch in the mode of Wnt signaling orchestrates the formation of germline stem cell differentiation niche in Drosophila. PLoS Genet 2018; 14:e1007154. [PMID: 29370168 PMCID: PMC5811049 DOI: 10.1371/journal.pgen.1007154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 02/13/2018] [Accepted: 12/13/2017] [Indexed: 01/12/2023] Open
Abstract
Germline stem cell (GSC) self-renewal and differentiation into gametes is regulated by both intrinsic factors in the germ line as well as extrinsic factors from the surrounding somatic niche. dWnt4, in the escort cells of the adult somatic niche promotes GSC differentiation using the canonical β-catenin-dependent transcriptional pathway to regulate escort cell survival, adhesion to the germ line and downregulation of self-renewal signaling. Here, we show that in addition to the β-catenin-dependent canonical pathway, dWnt4 also uses downstream components of the Wnt non-canonical pathway to promote escort cell function earlier in development. We find that the downstream non-canonical components, RhoA, Rac1 and cdc42, are expressed at high levels and are active in escort cell precursors of the female larval gonad compared to the adult somatic niche. Consistent with this expression pattern, we find that the non-canonical pathway components function in the larval stages but not in adults to regulate GSC differentiation. In the larval gonad, dWnt4, RhoA, Rac1 and cdc42 are required to promote intermingling of escort cell precursors, a function that then promotes proper escort cell function in the adults. We find that dWnt4 acts by modulating the activity of RhoA, Rac1 and cdc42, but not their protein levels. Together, our results indicate that at different points of development, dWnt4 switches from using the non-canonical pathway components to using a β-catenin-dependent canonical pathway in the escort cells to facilitate the proper differentiation of GSCs. Germ line association with the somatic cells is critical for various aspects of germ cell biology, including migration, self-renewal and differentiation. In Drosophila females, soma–germ line association begins during embryogenesis and continues until the mature egg is formed. In the adult, the somatic escort cells promote differentiation of the germline stem cell daughter using Wnt signaling. dWnt4, a Wnt ligand, acts in an autocrine manner in these escort cells, using the canonical pathway to regulate survival, division and encapsulation of the stem cell daughter, a function critical for differentiation. Here, we show at an earlier stage, in the larvae, the same ligand uses components of Wnt non-canonical pathway, RhoA, Rac1 and cdc42, to regulate proper mingling of escort cell precursors between the germ cells. Thus, dWnt4 uses different modules of signaling at different points in development to promote cell movement and control cytoplasmic protrusions. As Wnts have been associated with cancers, understanding how Wnts modulate cell movement by switching on and off different modules may lead to insights into the etiology and progression of cancers.
Collapse
Affiliation(s)
- Maitreyi Upadhyay
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
| | - Michael Kuna
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Sara Tudor
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Albany Medical College, Albany, New York, United States of America
| | - Yesenia Martino Cortez
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Prashanth Rangan
- Department of Biological Sciences/RNA Institute, University at Albany SUNY, Albany, New York, United States of America
- * E-mail:
| |
Collapse
|
36
|
Rosa JB, Metzstein MM, Ghabrial AS. An Ichor-dependent apical extracellular matrix regulates seamless tube shape and integrity. PLoS Genet 2018; 14:e1007146. [PMID: 29309404 PMCID: PMC5774827 DOI: 10.1371/journal.pgen.1007146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/19/2018] [Accepted: 12/09/2017] [Indexed: 01/25/2023] Open
Abstract
During sprouting angiogenesis in the vertebrate vascular system, and primary branching in the Drosophila tracheal system, specialized tip cells direct branch outgrowth and network formation. When tip cells lumenize, they form subcellular (seamless) tubes. How these seamless tubes are made, shaped and maintained remains poorly understood. Here we characterize a Drosophila mutant called ichor (ich), and show that ich is essential for the integrity and shape of seamless tubes in tracheal terminal cells. We find that Ich regulates seamless tubulogenesis via its role in promoting the formation of a mature apical extracellular matrix (aECM) lining the lumen of the seamless tubes. We determined that ich encodes a zinc finger protein (CG11966) that acts, as a transcriptional activator required for the expression of multiple aECM factors, including a novel membrane-anchored trypsin protease (CG8213). Thus, the integrity and shape of seamless tubes are regulated by the aECM that lines their lumens.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Cell & Developmental Biology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Mark M. Metzstein
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Amin S. Ghabrial
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, New York, United States of America
| |
Collapse
|
37
|
Muñoz-Soriano V, Domingo-Muelas A, Li T, Gamero E, Bizy A, Fariñas I, Alepuz P, Paricio N. Evolutionary conserved role of eukaryotic translation factor eIF5A in the regulation of actin-nucleating formins. Sci Rep 2017; 7:9580. [PMID: 28852021 PMCID: PMC5575014 DOI: 10.1038/s41598-017-10057-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 08/02/2017] [Indexed: 01/26/2023] Open
Abstract
Elongation factor eIF5A is required for the translation of consecutive prolines, and was shown in yeast to translate polyproline-containing Bni1, an actin-nucleating formin required for polarized growth during mating. Here we show that Drosophila eIF5A can functionally replace yeast eIF5A and is required for actin-rich cable assembly during embryonic dorsal closure (DC). Furthermore, Diaphanous, the formin involved in actin dynamics during DC, is regulated by and mediates eIF5A effects. Finally, eIF5A controls cell migration and regulates Diaphanous levels also in mammalian cells. Our results uncover an evolutionary conserved role of eIF5A regulating cytoskeleton-dependent processes through translation of formins in eukaryotes.
Collapse
Affiliation(s)
- Verónica Muñoz-Soriano
- Departamento de Genética, Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Ana Domingo-Muelas
- Departamento de Biología Celular & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Tianlu Li
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08908, Hospitalet de Llobregat, Spain
| | - Esther Gamero
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Alexandra Bizy
- Departamento de Biología Celular & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Isabel Fariñas
- Departamento de Biología Celular & Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Universidad de Valencia, 46100, Burjassot, Spain
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain
| | - Paula Alepuz
- Departamento de Bioquímica y Biología Molecular, Universidad de Valencia, 46100, Burjassot, Spain.
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| | - Nuria Paricio
- Departamento de Genética, Universidad de Valencia, 46100, Burjassot, Spain.
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED), Universidad de Valencia, 46100, Burjassot, Spain.
| |
Collapse
|
38
|
Szikora S, Földi I, Tóth K, Migh E, Vig A, Bugyi B, Maléth J, Hegyi P, Kaltenecker P, Sanchez-Soriano N, Mihály J. The formin DAAM is required for coordination of the actin and microtubule cytoskeleton in axonal growth cones. J Cell Sci 2017; 130:2506-2519. [PMID: 28606990 DOI: 10.1242/jcs.203455] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/05/2017] [Indexed: 01/10/2023] Open
Abstract
Directed axonal growth depends on correct coordination of the actin and microtubule cytoskeleton in the growth cone. However, despite the relatively large number of proteins implicated in actin-microtubule crosstalk, the mechanisms whereby actin polymerization is coupled to microtubule stabilization and advancement in the peripheral growth cone remained largely unclear. Here, we identified the formin Dishevelled-associated activator of morphogenesis (DAAM) as a novel factor playing a role in concerted regulation of actin and microtubule remodeling in Drosophilamelanogaster primary neurons. In vitro, DAAM binds to F-actin as well as to microtubules and has the ability to crosslink the two filament systems. Accordingly, DAAM associates with the neuronal cytoskeleton, and a significant fraction of DAAM accumulates at places where the actin filaments overlap with that of microtubules. Loss of DAAM affects growth cone and microtubule morphology, and several aspects of microtubule dynamics; and biochemical and cellular assays revealed a microtubule stabilization activity and binding to the microtubule tip protein EB1. Together, these data suggest that, besides operating as an actin assembly factor, DAAM is involved in linking actin remodeling in filopodia to microtubule stabilization during axonal growth.
Collapse
Affiliation(s)
- Szilárd Szikora
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - István Földi
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Ede Migh
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Andrea Vig
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary
| | - Beáta Bugyi
- University of Pécs, Medical School, Department of Biophysics, Szigeti str. 12, Pécs H-7624, Hungary
- Szentágothai Research Center, Ifjúság str. 34, Pécs H-7624, Hungary
| | - József Maléth
- MTA-SZTE Translational Gastroenterology Research Group, First Department of Internal Medicine, Szeged H-6720, Hungary
| | - Péter Hegyi
- MTA-SZTE Translational Gastroenterology Research Group, First Department of Internal Medicine, Szeged H-6720, Hungary
- Institute for Translational Medicine, Department of Pathophysiology, University of Pécs, Pécs H-7624, Hungary
| | - Péter Kaltenecker
- Institute for Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - Natalia Sanchez-Soriano
- Institute for Translational Medicine, Department of Cellular and Molecular Physiology, University of Liverpool, Liverpool L69 3BX, UK
| | - József Mihály
- Institute of Genetics, Biological Research Centre, Hungarian Academy of Sciences, MTA-SZBK NAP B Axon Growth and Regeneration Group, Temesvári krt. 62, Szeged H-6726, Hungary
| |
Collapse
|
39
|
Lu Y, Zhang Y, Pan MH, Kim NH, Sun SC, Cui XS. Daam1 regulates fascin for actin assembly in mouse oocyte meiosis. Cell Cycle 2017; 16:1350-1356. [PMID: 28682694 DOI: 10.1080/15384101.2017.1325045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
As a formin protein, Daam1 (Dishevelled-associated activator of morphogenesis 1) is reported to regulate series of cell processes like endocytosis, cell morphology and migration via its effects on actin assembly in mitosis. However, whether Daam1 plays roles in female meiosis remains uncertain. In this study, we investigated the expression and functions of Daam1 during mouse oocyte meiosis. Our results indicated that Daam1 localized at the cortex of oocytes, which was similar with actin filaments. After Daam1 morpholino (MO) microinjection, the expression of Daam1 significantly decreased, which resulted in the failure of oocyte polar body extrusion. These results might be due to the defects of actin assembly, since the decreased fluorescence intensity of actin filaments in oocyte cortex and cytoplasm were observed. However, Daam1 knockdown seemed not to affect the meiotic spindle movement. In addition, we found that fascin might be the down effector of Daam1, since the protein expression of fascin decreased after Daam1 knockdown. Thus, our data suggested that Daam1 affected actin assembly during oocyte meiotic division via the regulation of fascin expression.
Collapse
Affiliation(s)
- Yujie Lu
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Yu Zhang
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Meng-Hao Pan
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Nam-Hyung Kim
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| | - Shao-Chen Sun
- a College of Animal Science and Technology , Nanjing Agricultural University , Nanjing , China
| | - Xiang-Shun Cui
- b Department of Animal Sciences , Chungbuk National University , Cheongju , Korea
| |
Collapse
|
40
|
Vig AT, Földi I, Szikora S, Migh E, Gombos R, Tóth MÁ, Huber T, Pintér R, Talián GC, Mihály J, Bugyi B. The activities of the C-terminal regions of the formin protein disheveled-associated activator of morphogenesis (DAAM) in actin dynamics. J Biol Chem 2017. [PMID: 28642367 DOI: 10.1074/jbc.m117.799247] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Disheveled-associated activator of morphogenesis (DAAM) is a diaphanous-related formin protein essential for the regulation of actin cytoskeleton dynamics in diverse biological processes. The conserved formin homology 1 and 2 (FH1-FH2) domains of DAAM catalyze actin nucleation and processively mediate filament elongation. These activities are indirectly regulated by the N- and C-terminal regions flanking the FH1-FH2 domains. Recently, the C-terminal diaphanous-autoregulatory domain (DAD) and the C terminus (CT) of formins have also been shown to regulate actin assembly by directly interacting with actin. Here, to better understand the biological activities of DAAM, we studied the role of DAD-CT regions of Drosophila DAAM in its interaction with actin with in vitro biochemical and in vivo genetic approaches. We found that the DAD-CT region binds actin in vitro and that its main actin-binding element is the CT region, which does not influence actin dynamics on its own. However, we also found that it can tune the nucleating activity and the filament end-interaction properties of DAAM in an FH2 domain-dependent manner. We also demonstrate that DAD-CT makes the FH2 domain more efficient in antagonizing with capping protein. Consistently, in vivo data suggested that the CT region contributes to DAAM-mediated filopodia formation and dynamics in primary neurons. In conclusion, our results demonstrate that the CT region of DAAM plays an important role in actin assembly regulation in a biological context.
Collapse
Affiliation(s)
- Andrea Teréz Vig
- From the Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, Pécs H-7624
| | - István Földi
- the Biological Research Centre, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, and
| | - Szilárd Szikora
- the Biological Research Centre, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, and
| | - Ede Migh
- the Biological Research Centre, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, and
| | - Rita Gombos
- the Biological Research Centre, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, and
| | - Mónika Ágnes Tóth
- From the Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, Pécs H-7624
| | - Tamás Huber
- From the Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, Pécs H-7624
| | - Réka Pintér
- From the Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, Pécs H-7624
| | - Gábor Csaba Talián
- From the Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, Pécs H-7624
| | - József Mihály
- the Biological Research Centre, Institute of Genetics, MTA-SZBK NAP B Axon Growth and Regeneration Group, Hungarian Academy of Sciences, Temesvári krt. 62, Szeged H-6726, and
| | - Beáta Bugyi
- From the Department of Biophysics, Medical School, University of Pécs, Szigeti Str. 12, Pécs H-7624, .,the Szentágothai Research Center, Ifjúság Str. 34, Pécs H-7624, Hungary
| |
Collapse
|
41
|
Tajiri R. Cuticle itself as a central and dynamic player in shaping cuticle. CURRENT OPINION IN INSECT SCIENCE 2017; 19:30-35. [PMID: 28521940 DOI: 10.1016/j.cois.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 10/24/2016] [Accepted: 10/27/2016] [Indexed: 06/07/2023]
Abstract
The wide variety of external morphologies has underlain the evolutionary success of insects. The insect exoskeleton, or cuticle, which covers the entire body and constitutes the external morphology, is extracellular matrix produced by the epidermis. How is cuticle shaped during development? Past studies have mainly focused on patterning, differentiation and morphogenesis of the epidermis. Recently, however, it is becoming clear that cuticle itself plays important and active roles in regulation of cuticle shape. Studies in the past several years show that pre-existing cuticle can influence shaping of new cuticle, and cuticle can sculpt its own shape through its material property. In this review, I summarize recent advances and discuss future prospects.
Collapse
Affiliation(s)
- Reiko Tajiri
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Bioscience Building 501, 5-1-5 Kashiwa-no-ha, Kashiwa-shi, Chiba 277-8562, Japan.
| |
Collapse
|
42
|
Hayashi S, Dong B. Shape and geometry control of the Drosophila tracheal tubule. Dev Growth Differ 2017; 59:4-11. [PMID: 28093725 DOI: 10.1111/dgd.12336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 12/14/2016] [Accepted: 12/14/2016] [Indexed: 02/06/2023]
Abstract
For efficient respiration, tubular airways must be constructed with an optimal diameter and length for the dimensions of the body. In Drosophila, the growth of embryonic tracheal tubules proceeds in two dimensions, by axial elongation and diameter expansion. The growth forces in each dimension are controlled by distinct genetic programs and cellular mechanisms. Recent studies reveal that the apical cortex and the apical extracellular matrix filling the luminal space are essential for the generation, balancing, and equilibrium of these growth forces. We here discuss the mechanical properties and architecture of the apical cortex and extracellular matrix, and their crucial roles in the tissue-level coordination of tubule shape and geometry.
Collapse
Affiliation(s)
- Shigeo Hayashi
- Laboratory for Morphogenetic Signaling, RIKEN Center for Developmental Biology, Kobe, Hyogo, Japan.,Department of Biology, Kobe University Graduate School of Science, Kobe, Hyogo, Japan
| | - Bo Dong
- Ministry of Education Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Shandong, China
| |
Collapse
|
43
|
Qu Y, Hahn I, Webb SED, Pearce SP, Prokop A. Periodic actin structures in neuronal axons are required to maintain microtubules. Mol Biol Cell 2016; 28:296-308. [PMID: 27881663 PMCID: PMC5231898 DOI: 10.1091/mbc.e16-10-0727] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 11/09/2016] [Accepted: 11/15/2016] [Indexed: 12/31/2022] Open
Abstract
Drosophila genetics is combined with high-resolution microscopy and a number of functional readouts to demonstrate key factors required for the presence of regularly spaced rings of cortical actin in axons. The data suggest important roles for the actin rings in microtubule regulation, most likely by sustaining their polymerization. Axons are cable-like neuronal processes wiring the nervous system. They contain parallel bundles of microtubules as structural backbones, surrounded by regularly spaced actin rings termed the periodic membrane skeleton (PMS). Despite being an evolutionarily conserved, ubiquitous, highly ordered feature of axons, the function of PMS is unknown. Here we studied PMS abundance, organization, and function, combining versatile Drosophila genetics with superresolution microscopy and various functional readouts. Analyses with 11 actin regulators and three actin-targeting drugs suggest that PMS contains short actin filaments that are depolymerization resistant and sensitive to spectrin, adducin, and nucleator deficiency, consistent with microscopy-derived models proposing PMS as specialized cortical actin. Upon actin removal, we observed gaps in microtubule bundles, reduced microtubule polymerization, and reduced axon numbers, suggesting a role of PMS in microtubule organization. These effects become strongly enhanced when carried out in neurons lacking the microtubule-stabilizing protein Short stop (Shot). Combining the aforementioned actin manipulations with Shot deficiency revealed a close correlation between PMS abundance and microtubule regulation, consistent with a model in which PMS-dependent microtubule polymerization contributes to their maintenance in axons. We discuss potential implications of this novel PMS function along axon shafts for axon maintenance and regeneration.
Collapse
Affiliation(s)
- Yue Qu
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Ines Hahn
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| | - Stephen E D Webb
- Rutherford Appleton Laboratory, Science and Technology Facilities Council, Didcot OX11 0QX, United Kingdom
| | - Simon P Pearce
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom.,School of Mathematics, University of Manchester, Manchester M13 9PL, United Kingdom
| | - Andreas Prokop
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, United Kingdom
| |
Collapse
|
44
|
Yang Y, Mlodzik M. Wnt-Frizzled/planar cell polarity signaling: cellular orientation by facing the wind (Wnt). Annu Rev Cell Dev Biol 2016; 31:623-46. [PMID: 26566118 DOI: 10.1146/annurev-cellbio-100814-125315] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The establishment of planar cell polarity (PCP) in epithelial and mesenchymal cells is a critical, evolutionarily conserved process during development and organogenesis. Analyses in Drosophila and several vertebrate model organisms have contributed a wealth of information on the regulation of PCP. A key conserved pathway regulating PCP, the so-called core Wnt-Frizzled PCP (Fz/PCP) signaling pathway, was initially identified through genetic studies of Drosophila. PCP studies in vertebrates, most notably mouse and zebrafish, have identified novel factors in PCP signaling and have also defined cellular features requiring PCP signaling input. These studies have shifted focus to the role of Van Gogh (Vang)/Vangl genes in this molecular system. This review focuses on new insights into the core Fz/Vangl/PCP pathway and recent advances in Drosophila and vertebrate PCP studies. We attempt to integrate these within the existing core Fz/Vangl/PCP signaling framework.
Collapse
Affiliation(s)
- Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts 02115;
| | - Marek Mlodzik
- Department of Developmental and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029;
| |
Collapse
|
45
|
Secretory cells in honeybee hypopharyngeal gland: polarized organization and age-dependent dynamics of plasma membrane. Cell Tissue Res 2016; 366:163-74. [PMID: 27210106 DOI: 10.1007/s00441-016-2423-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/25/2016] [Indexed: 01/14/2023]
Abstract
The honeybee hypopharyngeal gland consists in numerous units, each comprising a secretory cell and a canal cell. The secretory cell discharges its products into a convoluted tubular membrane system, the canaliculus, which is surrounded at regular intervals by rings of actin filaments. Using probes for various membrane components, we analyze the organization of the secretory cells relative to the apicobasal configuration of epithelial cells. The canaliculus was defined by labeling with an antibody against phosphorylated ezrin/radixin/moesin (pERM), a marker protein for the apical membrane domain of epithelial cells. Anti-phosphotyrosine visualizes the canalicular system, possibly by staining the microvillar tips. The open end of the canaliculus leads to a region in which the secretory cell is attached to the canal cell by adherens and septate junctions. The remaining plasma membrane stains for Na,K-ATPase and spectrin and represents the basolateral domain. We also used fluorophore-tagged phalloidin, anti-phosphotyrosine and anti-pERM as probes for the canaliculus in order to describe fine-structural changes in the organization of the canalicular system during the adult life cycle. These probes in conjunction with fluorescence microscopy allow the fast and detailed three-dimensional analysis of the canalicular membrane system and its structural changes in a developmental mode or in response to environmental factors.
Collapse
|
46
|
Pariante P, Dotolo R, Venditti M, Ferrara D, Donizetti A, Aniello F, Minucci S. First Evidence of DAAM1 Localization During the Post-Natal Development of Rat Testis and in Mammalian Sperm. J Cell Physiol 2016; 231:2172-84. [PMID: 26831620 DOI: 10.1002/jcp.25330] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/01/2016] [Indexed: 01/16/2023]
Abstract
Dishevelled-associated activator of morphogenesis 1 (DAAM1) is a formin-family protein involved in nucleation of unbranched actin filaments and in cytoskeletal organization through Wnt-Dishevelled PCP pathway, which participates in essential biological processes, such as cell polarity, movement, and adhesion during morphogenesis and organogenesis. While its role has been investigated during development and in somatic cells, its potential association with the germinal compartment and reproduction is still unexplored. In this work, we assessed the possible association of DAAM1 with the morphogenesis of rat testis. We studied its expression and profiled its localization versus actin and tubulin, during the first wave of spermatogenesis and in the adult gonad (from 7 to 60 dpp). We show that, in mitotic phases, DAAM1 shares its localization with actin in Sertoli cells, gonocytes, and spermatogonia. Later, during meiosis, both proteins are found in spermatocytes, while only actin is detectable at the forming blood-testis barrier. DAAM1, then, follows the development of the acrosome system throughout spermiogenesis, and it is finally retained inside the cytoplasmic droplet in mature gametes, as corroborated by additional immunolocalization data on both rat and human sperm. Unlike the DAAM1, actin keeps its localization in Sertoli cells, and tubulin is associated with their protruding cytoplasm during the process. Our data support, for the first time, the hypothesis of a role for DAAM1 in cytoskeletal organization during Mammalian testis morphogenesis and gamete progression, while also hinting at its possible investigation as a morphological marker of germ cell and sperm physiology. J. Cell. Physiol. 231: 2172-2184, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paolo Pariante
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Raffaele Dotolo
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Massimo Venditti
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Diana Ferrara
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| | - Aldo Donizetti
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| | - Francesco Aniello
- Dipartimento di Biologia, Università di Napoli Federico II, Napoli, Italy
| | - Sergio Minucci
- Dipartimento di Medicina Sperimentale, Sez. Fisiologia Umana e Funzioni Biologiche Integrate "F. Bottazzi", Seconda Università di Napoli, Napoli, Italy
| |
Collapse
|
47
|
Zeng Y, Xie H, Qiao Y, Wang J, Zhu X, He G, Li Y, Ren X, Wang F, Liang L, Ding Y. Formin-like2 regulates Rho/ROCK pathway to promote actin assembly and cell invasion of colorectal cancer. Cancer Sci 2016; 106:1385-93. [PMID: 26258642 PMCID: PMC4638017 DOI: 10.1111/cas.12768] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 07/16/2015] [Accepted: 08/02/2015] [Indexed: 12/26/2022] Open
Abstract
Formin-like2 (FMNL2) is a member of the diaphanous-related formins family, which act as effectors and upstream modulators of Rho GTPases signaling and control the actin-dependent processes, such as cell motility or invasion. FMNL2 has been identified as promoting the motility and metastasis in colorectal carcinoma (CRC). However, whether FMNL2 regulates Rho signaling to promote cancer cell invasion remains unclear. In this study, we demonstrated an essential role for FMNL2 in the activations of Rho/ROCK pathway, SRF transcription or actin assembly, and subsequent CRC cell invasion. FMNL2 could activate Rho/ROCK pathway, and required ROCK to promote CRC cell invasion. Moreover, FMNL2 promoted the formation of filopodia and stress fiber, and activated the SRF transcription in a Rho-dependent manner. We also demonstrated that FMNL2 was necessary for LPA-induced invasion, RhoA/ROCK activation, actin assembly and SRF activation. FMNL2 was an essential component of LPA signal transduction toward RhoA by directly interacting with LARG. LARG silence inhibited RhoA/ROCK pathway and CRC cell invasion. Collectively, these data indicate that FMNL2, acting as upstream of RhoA by interacting with LARG, can promote actin assembly and CRC cell invasion through a Rho/ROCK-dependent mechanism.
Collapse
Affiliation(s)
- Yuanfeng Zeng
- Department of Pathology, Southern Medical University, Guangzhou, China.,Department of Pathology, the People's Hospital, Nanchang, China
| | - Huijun Xie
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yudan Qiao
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Jianmei Wang
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xiling Zhu
- Department of Pathology, Southern Medical University, Guangzhou, China.,Department of Oncology, General Hospital of Armed Police Forces, Beijing, China
| | - Guoyang He
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yuling Li
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Xiaoli Ren
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Feifei Wang
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Li Liang
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Southern Medical University, Guangzhou, China.,Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| |
Collapse
|
48
|
Öztürk-Çolak A, Moussian B, Araújo SJ, Casanova J. A feedback mechanism converts individual cell features into a supracellular ECM structure in Drosophila trachea. eLife 2016; 5. [PMID: 26836303 PMCID: PMC4764556 DOI: 10.7554/elife.09373] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Accepted: 01/25/2016] [Indexed: 11/13/2022] Open
Abstract
The extracellular matrix (ECM), a structure contributed to and commonly shared by many cells in an organism, plays an active role during morphogenesis. Here, we used the Drosophila tracheal system to study the complex relationship between the ECM and epithelial cells during development. We show that there is an active feedback mechanism between the apical ECM (aECM) and the apical F-actin in tracheal cells. Furthermore, we reveal that cell-cell junctions are key players in this aECM patterning and organisation and that individual cells contribute autonomously to their aECM. Strikingly, changes in the aECM influence the levels of phosphorylated Src42A (pSrc) at cell junctions. Therefore, we propose that Src42A phosphorylation levels provide a link for the ECM environment to ensure proper cytoskeletal organisation. DOI:http://dx.doi.org/10.7554/eLife.09373.001 Animal cells can secrete proteins and molecules into the space around them to create a support they can attach to. This structure – known as the extracellular matrix – comes in various forms and can help to shape tissues or influence the way in which cells behave. Inside cells, filaments made of a protein called actin also provide structural support. In fruit fly larvae, “tracheal” cells create a network of tubes that will form the airways of the adult fly. Once this network is complete, these cells secrete the materials to make an extracellular matrix in the internal (apical) surface of the tubes. This matrix has a series of spiralling ridges made from a molecule called chitin. These ridges run along the tubes, spanning several cells and providing the mechanical strength needed to keep the airways open. The ridges appear to form through a co-ordinated effort between the cells, and recent studies suggest that actin filaments may be involved in this process. Here, Öztürk-Çolak et al. investigate this idea further by carrying out a detailed analysis of the relationship between the extracellular matrix and the tracheal cells as the airways develop. The experiments reveal that rings of actin filaments form on the apical side of tracheal cells before the ridges appear. These rings generate regular folds in the membrane that surrounds each tracheal cell and are required for an enzyme to accumulate in the cells. This enzyme produces chitin, leading to its deposition in stripes above the actin rings. Further experiments show that the junctions between cells play an important role in organising the pattern of the extracellular matrix. The active form of a protein called Src42A – which is known to regulate the way actin filaments are organized inside cells – accumulates at these junctions. Excessive Src42A activity in tracheal cells alters the networks of actin filaments and disrupts the formation of the matrix. Öztürk-Çolak et al. also find evidence of a “feedback” mechanism, in which the presence of chitin reduces the activity of Src42A to maintain the correct patterning of actin. These findings reveal that actin and junctions between cells play a central role in co-ordinating the formation of the extracellular matrix in fruit fly airways. The next challenge will be to understand which proteins and other molecules are involved in the process that allows the extracellular matrix to communicate with the cells. DOI:http://dx.doi.org/10.7554/eLife.09373.002
Collapse
Affiliation(s)
- Arzu Öztürk-Çolak
- Institut de Biologia Molecular de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain.,Institut de Recerca Biomedica de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain
| | - Bernard Moussian
- Animal Genetics, Interfaculty Institute for Cell Biology, University of Tuebingen, Tuebingen, Germany.,Institute of Biology Valrose, Faculté des Sciences, University of Nice Sophia Antipolis, Nice, France
| | - Sofia J Araújo
- Institut de Biologia Molecular de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain.,Institut de Recerca Biomedica de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain
| | - Jordi Casanova
- Institut de Biologia Molecular de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain.,Institut de Recerca Biomedica de Barcelona, Parc Cientific de Barcelona, Barcelona, Spain
| |
Collapse
|
49
|
Unique and Overlapping Functions of Formins Frl and DAAM During Ommatidial Rotation and Neuronal Development in Drosophila. Genetics 2016; 202:1135-51. [PMID: 26801180 DOI: 10.1534/genetics.115.181438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 01/18/2016] [Indexed: 01/14/2023] Open
Abstract
The noncanonical Frizzled/planar cell polarity (PCP) pathway regulates establishment of polarity within the plane of an epithelium to generate diversity of cell fates, asymmetric, but highly aligned structures, or to orchestrate the directional migration of cells during convergent extension during vertebrate gastrulation. In Drosophila, PCP signaling is essential to orient actin wing hairs and to align ommatidia in the eye, in part by coordinating the movement of groups of photoreceptor cells during ommatidial rotation. Importantly, the coordination of PCP signaling with changes in the cytoskeleton is essential for proper epithelial polarity. Formins polymerize linear actin filaments and are key regulators of the actin cytoskeleton. Here, we show that the diaphanous-related formin, Frl, the single fly member of the FMNL (formin related in leukocytes/formin-like) formin subfamily affects ommatidial rotation in the Drosophila eye and is controlled by the Rho family GTPase Cdc42. Interestingly, we also found that frl mutants exhibit an axon growth phenotype in the mushroom body, a center for olfactory learning in the Drosophila brain, which is also affected in a subset of PCP genes. Significantly, Frl cooperates with Cdc42 and another formin, DAAM, during mushroom body formation. This study thus suggests that different formins can cooperate or act independently in distinct tissues, likely integrating various signaling inputs with the regulation of the cytoskeleton. It furthermore highlights the importance and complexity of formin-dependent cytoskeletal regulation in multiple organs and developmental contexts.
Collapse
|
50
|
Wells MB, Andrew DJ. "Salivary gland cellular architecture in the Asian malaria vector mosquito Anopheles stephensi". Parasit Vectors 2015; 8:617. [PMID: 26627194 PMCID: PMC4667400 DOI: 10.1186/s13071-015-1229-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 11/23/2015] [Indexed: 12/02/2022] Open
Abstract
Background Anopheles mosquitoes are vectors for malaria, a disease with continued grave outcomes for human health. Transmission of malaria from mosquitoes to humans occurs by parasite passage through the salivary glands (SGs). Previous studies of mosquito SG architecture have been limited in scope and detail. Methods We developed a simple, optimized protocol for fluorescence staining using dyes and/or antibodies to interrogate cellular architecture in Anopheles stephensi adult SGs. We used common biological dyes, antibodies to well-conserved structural and organellar markers, and antibodies against Anopheles salivary proteins to visualize many individual SGs at high resolution by confocal microscopy. Results These analyses confirmed morphological features previously described using electron microscopy and uncovered a high degree of individual variation in SG structure. Our studies provide evidence for two alternative models for the origin of the salivary duct, the structure facilitating parasite transport out of SGs. We compare SG cellular architecture in An. stephensi and Drosophila melanogaster, a fellow Dipteran whose adult SGs are nearly completely unstudied, and find many conserved features despite divergence in overall form and function. Anopheles salivary proteins previously observed at the basement membrane were localized either in SG cells, secretory cavities, or the SG lumen. Our studies also revealed a population of cells with characteristics consistent with regenerative cells, similar to muscle satellite cells or midgut regenerative cells. Conclusions This work serves as a foundation for linking Anopheles stephensi SG cellular architecture to function and as a basis for generating and evaluating tools aimed at preventing malaria transmission at the level of mosquito SGs. Electronic supplementary material The online version of this article (doi:10.1186/s13071-015-1229-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Michael B Wells
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., G-10 Hunterian, Baltimore, MD, 21205, USA.
| | - Deborah J Andrew
- Department of Cell Biology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., G-10 Hunterian, Baltimore, MD, 21205, USA.
| |
Collapse
|