1
|
Davidson AE, Straquadine NRW, Cook SA, Liu CG, Nie C, Spaulding MC, Ganz J. A Rapid F0 CRISPR Screen in Zebrafish to Identify Regulator Genes of Neuronal Development in the Enteric Nervous System. Neurogastroenterol Motil 2025; 37:e70009. [PMID: 40189908 PMCID: PMC11996052 DOI: 10.1111/nmo.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/12/2024] [Accepted: 02/08/2025] [Indexed: 04/15/2025]
Abstract
BACKGROUND The neural crest-derived enteric nervous system (ENS) provides the intrinsic innervation of the gut with diverse neuronal subtypes and glial cells. The ENS regulates all essential gut functions, such as motility, nutrient uptake, immune response, and microbiota colonization. Deficits in ENS neuron numbers and composition cause debilitating gut dysfunction. Yet, few studies have identified genes that control neuronal differentiation and the generation of the diverse neuronal subtypes in the ENS. METHODS Utilizing existing CRISPR/Cas9 genome editing technology in zebrafish, we have developed a rapid and scalable screening approach for identifying genes that regulate ENS neurogenesis. KEY RESULTS As a proof-of-concept, F0 guide RNA-injected larvae (F0 crispants) targeting the known ENS regulator genes sox10, ret, or phox2bb phenocopied known ENS phenotypes with high efficiency. We evaluated 10 transcription factor candidate genes as regulators of ENS neurogenesis and function. F0 crispants for five of the tested genes have fewer ENS neurons. Secondary assays in F0 crispants for a subset of the genes that had fewer neurons reveal no effect on enteric progenitor cell migration but differential changes in gut motility. CONCLUSIONS Our multistep, yet straightforward CRISPR screening approach in zebrafish tests the genetic basis of ENS developmental and disease gene functions that will facilitate the high-throughput evaluation of candidate genes from transcriptomic, genome-wide association, or other ENS-omics studies. Such in vivo ENS F0 crispant screens will contribute to a better understanding of ENS neuronal development regulation in vertebrates and what goes awry in ENS disorders.
Collapse
Affiliation(s)
- Ann E. Davidson
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Nora R. W. Straquadine
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Concordia UniversitySt. PaulMinnesotaUSA
| | - Sara A. Cook
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- College of Veterinary Medicine and Biological SciencesColorado State UniversityFort CollinsColoradoUSA
| | - Christina G. Liu
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- Department of DermatologyUniversity of MichiganAnn ArborMichiganUSA
| | - Chuhao Nie
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- University of New EnglandCollege of Osteopathic MedicineBiddefordMaineUSA
| | - Matthew C. Spaulding
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| | - Julia Ganz
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
2
|
Ming Z, Liu F, Moran HR, Lalonde RL, Adams M, Restrepo NK, Joshi P, Ekker SC, Clark KJ, Friedberg I, Sumanas S, Yin C, Mosimann C, Essner JJ, McGrail M. Lineage labeling with zebrafish hand2 Cre and CreERT2 recombinase CRISPR knock-ins. Dev Dyn 2025. [PMID: 40135929 DOI: 10.1002/dvdy.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 02/04/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND The ability to generate endogenous Cre recombinase drivers using CRISPR-Cas9 knock-in technology allows lineage tracing, cell type-specific gene studies, and in vivo validation of inferred developmental trajectories from phenotypic and gene expression analyses. This report describes endogenous zebrafish hand2 Cre and CreERT2 drivers generated with GeneWeld CRISPR-Cas9 precision targeted integration. RESULTS hand2-2A-cre and hand2-2A-creERT2 knock-ins crossed with ubiquitous loxP-based Switch reporters led to broad labeling in expected mesodermal and neural crest-derived lineages in branchial arches, cardiac, fin, liver, intestine, and mesothelial tissues, as well as enteric neurons. Novel patterns of hand2 lineage tracing appeared in venous blood vessels. CreERT2 induction at 24 h reveals hand2-expressing cells in the 24- to 48-h embryo contribute to the venous and intestinal vasculature. Induction in 3 dpf larvae restricts hand2 lineage labeling to mesoderm-derived components of the branchial arches, heart, liver, and enteric neurons. CONCLUSIONS hand2 progenitors from the lateral plate mesoderm and ectoderm contribute to numerous lineages in the developing embryo. At later stages, hand2-expressing cells are restricted to a subset of lineages in the larva. The endogenous hand2 Cre and CreERT2 drivers establish critical new tools to investigate hand2 lineages in zebrafish embryogenesis and larval organogenesis.
Collapse
Affiliation(s)
- Zhitao Ming
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Fang Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Hannah R Moran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Robert L Lalonde
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Megan Adams
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Nicole K Restrepo
- Department of Pathology and Cell Biology, University of South Florida, Tampa, Florida, USA
| | - Parnal Joshi
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Stephen C Ekker
- Department of Pediatrics, University of Texas at Austin, Austin, Texas, USA
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Karl J Clark
- Department of Animal Science, Texas A&M University, College Station, Texas, USA
| | - Iddo Friedberg
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, Iowa, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, University of South Florida, Tampa, Florida, USA
| | - Chunyue Yin
- Division of Gastroenterology, Hepatology and Nutrition, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Christian Mosimann
- Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jeffrey J Essner
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| | - Maura McGrail
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, Iowa, USA
| |
Collapse
|
3
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. Dev Cell 2024; 59:2912-2930.e7. [PMID: 39121855 DOI: 10.1016/j.devcel.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 04/02/2024] [Accepted: 07/12/2024] [Indexed: 08/12/2024]
Abstract
The mammalian kidney maintains fluid homeostasis through diverse epithelial cell types generated from nephron and ureteric progenitor cells. To extend a developmental understanding of the kidney's epithelial networks, we compared chromatin organization (single-nuclear assay for transposase-accessible chromatin sequencing [ATAC-seq]; 112,864 nuclei) and gene expression (single-cell/nuclear RNA sequencing [RNA-seq]; 109,477 cells/nuclei) in the developing human (10.6-17.6 weeks; n = 10) and mouse (post-natal day [P]0; n = 10) kidney, supplementing analysis with published mouse datasets from earlier stages. Single-cell/nuclear datasets were analyzed at a species level, and then nephron and ureteric cellular lineages were extracted and integrated into a common, cross-species, multimodal dataset. Comparative computational analyses identified conserved and divergent features of chromatin organization and linked gene activity, identifying species-specific and cell-type-specific regulatory programs. In situ validation of human-enriched gene activity points to human-specific signaling interactions in kidney development. Further, human-specific enhancer regions were linked to kidney diseases through genome-wide association studies (GWASs), highlighting the potential for clinical insight from developmental modeling.
Collapse
Affiliation(s)
- Sunghyun Kim
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Kari Koppitch
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Riana K Parvez
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jinjin Guo
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - MaryAnne Achieng
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Jack Schnell
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Nils O Lindström
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Andrew P McMahon
- Department of Stem Cell Biology and Regenerative Medicine, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
4
|
Ernsberger U, Rohrer H. The sympathetic nervous system arose in the earliest vertebrates. Nature 2024; 629:46-48. [PMID: 38632426 DOI: 10.1038/d41586-024-01017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
|
5
|
Huhtala L, Karabiyik G, Rautajoki KJ. Development and epigenetic regulation of Atypical teratoid/rhabdoid tumors in the context of cell-of-origin and halted cell differentiation. Neurooncol Adv 2024; 6:vdae162. [PMID: 39465218 PMCID: PMC11502914 DOI: 10.1093/noajnl/vdae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024] Open
Abstract
Atypical teratoid/rhabdoid tumors (AT/RTs) are aggressive brain tumors primarily observed in infants. The only characteristic, recurrent genetic aberration of AT/RTs is biallelic inactivation of SMARCB1 (or SMARCA4). These genes are members of the mSWI/SNF chromatin-remodeling complex, which regulates various developmental processes, including neural differentiation. This review explores AT/RT subgroups regarding their distinct SMARCB1 loss-of-function mechanisms, molecular features, and patient characteristics. Additionally, it addresses the ongoing debate about the oncogenic relevance of cell-of-origin, examining the influence of developmental stage and lineage commitment of the seeding cell on tumor malignancy and other characteristics. Epigenetic dysregulation, particularly through the regulation of histone modifications and DNA hypermethylation, has been shown to play an integral role in AT/RTs' malignancy and differentiation blockage, maintaining cells in a poorly differentiated state via the insufficient activation of differentiation-related genes. Here, the differentiation blockage and its contribution to malignancy are also explored in a cellular context. Understanding these mechanisms and AT/RT heterogeneity is crucial for therapeutic improvements against AT/RTs.
Collapse
Affiliation(s)
- Laura Huhtala
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Goktug Karabiyik
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| | - Kirsi J Rautajoki
- Prostate Cancer Research Center, Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Center, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
6
|
Kim S, Koppitch K, Parvez RK, Guo J, Achieng M, Schnell J, Lindström NO, McMahon AP. Comparative single-cell analyses identify shared and divergent features of human and mouse kidney development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.16.540880. [PMID: 37293066 PMCID: PMC10245679 DOI: 10.1101/2023.05.16.540880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Mammalian kidneys maintain fluid homeostasis through the cellular activity of nephrons and the conjoined collecting system. Each epithelial network originates from distinct progenitor cell populations that reciprocally interact during development. To extend our understanding of human and mouse kidney development, we profiled chromatin organization (ATAC-seq) and gene expression (RNA-seq) in developing human and mouse kidneys. Data were analyzed at a species level and then integrated into a common, cross-species multimodal data set. Comparative analysis of cell types and developmental trajectories identified conserved and divergent features of chromatin organization and linked gene activity, revealing species- and cell-type specific regulatory programs. Identification of human-specific enhancer regions linked through GWAS studies to kidney disease highlights the potential of developmental modeling to provide clinical insight.
Collapse
|
7
|
Liu S, Xiang K, Yuan F, Xiang M. Generation of self-organized autonomic ganglion organoids from fibroblasts. iScience 2023; 26:106241. [PMID: 36922996 PMCID: PMC10009094 DOI: 10.1016/j.isci.2023.106241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/16/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
Neural organoids have been shown to serve as powerful tools for studying the mechanism of neural development and diseases as well as for screening drugs and developing cell-based therapeutics. Somatic cells have previously been reprogrammed into scattered autonomic ganglion (AG) neurons but not AG organoids. Here we have identified a combination of triple transcription factors (TFs) Ascl1, Phox2a/b, and Hand2 (APH) capable of efficiently reprogramming mouse fibroblasts into self-organized and networked induced AG (iAG) organoids, and characterized them by immunostaining, qRT-PCR, patch-clamping, and scRNA-seq approaches. The iAG neurons exhibit molecular properties, subtype diversity, and electrophysiological characteristics of autonomic neurons. Moreover, they can integrate into the superior cervical ganglia following transplantation and innervate and control the beating rate of co-cultured ventricular myocytes. Thus, iAG organoids may provide a valuable tool to study the pathogenesis of autonomic nervous system diseases and screen for drugs, as well as a source for cell-based therapies.
Collapse
Affiliation(s)
- Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Kangjian Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Fa Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| |
Collapse
|
8
|
Reynolds S, Pierce C, Powell B, Kite A, Hall-Ruiz N, Schilling T, Le Pabic P. A show of Hands: Novel and conserved expression patterns of teleost hand paralogs during craniofacial, heart, fin, peripheral nervous system and gut development. Dev Dyn 2021; 250:1796-1809. [PMID: 34091971 PMCID: PMC8639631 DOI: 10.1002/dvdy.380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/14/2021] [Accepted: 06/03/2021] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Hand genes are required for the development of the vertebrate jaw, heart, peripheral nervous system, limb, gut, placenta, and decidua. Two Hand paralogues, Hand1 and Hand2, are present in most vertebrates, where they mediate different functions yet overlap in expression. In ray-finned fishes, Hand gene expression and function is only known for the zebrafish, which represents the rare condition of having a single Hand gene, hand2. Here we describe the developmental expression of hand1 and hand2 in the cichlid Copadichromis azureus. RESULTS hand1 and hand2 are expressed in the cichlid heart, paired fins, pharyngeal arches, peripheral nervous system, gut, and lateral plate mesoderm with different degrees of overlap. CONCLUSIONS Hand gene expression in the gut, peripheral nervous system, and pharyngeal arches may have already been fixed in the lobe- and ray-finned fish common ancestor. In other embryonic regions, such as paired appendages, hand2 expression was fixed, while hand1 expression diverged in lobe- and ray-finned fish lineages. In the lateral plate mesoderm and arch associated catecholaminergic cells, hand1 and hand2 swapped expression between divergent lineages. Distinct expression of cichlid hand1 and hand2 in the epicardium and myocardium of the developing heart may represent the ancestral pattern for bony fishes.
Collapse
Affiliation(s)
- Samantha Reynolds
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Christian Pierce
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Benjamin Powell
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Alexandra Kite
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Nicholas Hall-Ruiz
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| | - Thomas Schilling
- Department of Developmental and Cell Biology, University of California Irvine, Irvine, California
| | - Pierre Le Pabic
- Department of Biology and Marine Biology, University of North Carolina Wilmington, Wilmington, North Carolina
| |
Collapse
|
9
|
Cui K, Yang F, Tufan T, Raza MU, Zhan Y, Fan Y, Zeng F, Brown RW, Price JB, Jones TC, Miller GW, Zhu MY. Restoration of Noradrenergic Function in Parkinson's Disease Model Mice. ASN Neuro 2021; 13:17590914211009730. [PMID: 33940943 PMCID: PMC8114769 DOI: 10.1177/17590914211009730] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Dysfunction of the central noradrenergic and dopaminergic systems is the primary neurobiological characteristic of Parkinson’s disease (PD). Importantly, neuronal loss in the locus coeruleus (LC) that occurs in early stages of PD may accelerate progressive loss of dopaminergic neurons. Therefore, restoring the activity and function of the deficient noradrenergic system may be an important therapeutic strategy for early PD. In the present study, the lentiviral constructions of transcription factors Phox2a/2b, Hand2 and Gata3, either alone or in combination, were microinjected into the LC region of the PD model VMAT2 Lo mice at 12 and 18 month age. Biochemical analysis showed that microinjection of lentiviral expression cassettes into the LC significantly increased mRNA levels of Phox2a, and Phox2b, which were accompanied by parallel increases of mRNA and proteins of dopamine β-hydroxylase (DBH) and tyrosine hydroxylase (TH) in the LC. Furthermore, there was considerable enhancement of DBH protein levels in the frontal cortex and hippocampus, as well as enhanced TH protein levels in the striatum and substantia nigra. Moreover, these manipulations profoundly increased norepinephrine and dopamine concentrations in the striatum, which was followed by a remarkable improvement of the spatial memory and locomotor behavior. These results reveal that over-expression of these transcription factors in the LC improves noradrenergic and dopaminergic activities and functions in this rodent model of PD. It provides the necessary groundwork for the development of gene therapies of PD, and expands our understanding of the link between the LC-norepinephrine and dopamine systems during the progression of PD.
Collapse
Affiliation(s)
- Kui Cui
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Fan Yang
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Hong Kong Institute, Asia Metropolitan University, Hong Kong, China
| | - Turan Tufan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Muhammad U Raza
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Yanqiang Zhan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Neurology, Renmin Hospital of the Wuhan University, Wuhan, China
| | - Yan Fan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Fei Zeng
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States.,Department of Neurology, Renmin Hospital of the Wuhan University, Wuhan, China
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| | - Jennifer B Price
- Department of Biological Sciences, College of Arts and Sciences; East Tennessee State University, Johnson City, United States
| | - Thomas C Jones
- Department of Biological Sciences, College of Arts and Sciences; East Tennessee State University, Johnson City, United States
| | - Gary W Miller
- Department of Environmental Health Sciences, Mailmen School of Public Health, Columbia University, New York, New York, United States
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, United States
| |
Collapse
|
10
|
Fan Y, Zeng F, Brown RW, Price JB, Jones TC, Zhu MY. Transcription Factors Phox2a/2b Upregulate Expression of Noradrenergic and Dopaminergic Phenotypes in Aged Rat Brains. Neurotox Res 2020; 38:793-807. [PMID: 32617854 PMCID: PMC7484387 DOI: 10.1007/s12640-020-00250-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/30/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022]
Abstract
The present study investigated the effects of forced overexpression of Phox2a/2b, two transcription factors, in the locus coeruleus (LC) of aged rats on noradrenergic and dopaminergic phenotypes in brains. Results showed that a significant increase in Phox2a/2b mRNA levels in the LC region was paralleled by marked enhancement in expression of DBH and TH per se. Furthermore, similar increases in TH protein levels were observed in the substantial nigra and striatum, as well as in the hippocampus and frontal cortex. Overexpression of Phox2 genes also significantly increased BrdU-positive cells in the hippocampal dentate gyrus and NE levels in the striatum. Moreover, this manipulation significantly improved the cognition behavior. The in vitro experiments revealed that norepinephrine treatments may increase the transcription of TH gene through the epigenetic action on the TH promoter. The results indicate that Phox2 genes may play an important role in improving the function of the noradrenergic and dopaminergic neurons in aged animals, and regulation of Phox2 gene expression may have therapeutic utility in aging or disorders involving degeneration of noradrenergic neurons.
Collapse
Affiliation(s)
- Yan Fan
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- Department of Biochemistry, Nantong University College of Medicine, Nantong, China
| | - Fei Zeng
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
- Department of Neurology, Remin Hospital of the Wuhan University, Wuhan, China
| | - Russell W Brown
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA
| | - Jennifer B Price
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Thomas C Jones
- Department of Biological Sciences, College of Arts and Sciences, East Tennessee State University, Johnson City, TN, USA
| | - Meng-Yang Zhu
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, TN, USA.
| |
Collapse
|
11
|
The diversity of neuronal phenotypes in rodent and human autonomic ganglia. Cell Tissue Res 2020; 382:201-231. [PMID: 32930881 PMCID: PMC7584561 DOI: 10.1007/s00441-020-03279-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/10/2020] [Indexed: 12/29/2022]
Abstract
Selective sympathetic and parasympathetic pathways that act on target organs represent the terminal actors in the neurobiology of homeostasis and often become compromised during a range of neurodegenerative and traumatic disorders. Here, we delineate several neurotransmitter and neuromodulator phenotypes found in diverse parasympathetic and sympathetic ganglia in humans and rodent species. The comparative approach reveals evolutionarily conserved and non-conserved phenotypic marker constellations. A developmental analysis examining the acquisition of selected neurotransmitter properties has provided a detailed, but still incomplete, understanding of the origins of a set of noradrenergic and cholinergic sympathetic neuron populations, found in the cervical and trunk region. A corresponding analysis examining cholinergic and nitrergic parasympathetic neurons in the head, and a range of pelvic neuron populations, with noradrenergic, cholinergic, nitrergic, and mixed transmitter phenotypes, remains open. Of particular interest are the molecular mechanisms and nuclear processes that are responsible for the correlated expression of the various genes required to achieve the noradrenergic phenotype, the segregation of cholinergic locus gene expression, and the regulation of genes that are necessary to generate a nitrergic phenotype. Unraveling the neuron population-specific expression of adhesion molecules, which are involved in axonal outgrowth, pathway selection, and synaptic organization, will advance the study of target-selective autonomic pathway generation.
Collapse
|
12
|
Rapizzi E, Benvenuti S, Deledda C, Martinelli S, Sarchielli E, Fibbi B, Luciani P, Mazzanti B, Pantaleo M, Marroncini G, Vannelli GB, Maggi M, Mannelli M, Luconi M, Peri A. A unique neuroendocrine cell model derived from the human foetal neural crest. J Endocrinol Invest 2020; 43:1259-1269. [PMID: 32157664 DOI: 10.1007/s40618-020-01213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 03/02/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE Nowadays, no human neuroendocrine cell models derived from the neural crest are available. In this study, we present non-transformed long-term primary Neural Crest Cells (NCCs) isolated from the trunk region of the neural crest at VIII-XII gestational weeks of human foetuses obtained from voluntary legal abortion. METHODS AND RESULTS In NCC, quantitative real-time RT PCR demonstrated the expression of neural crest specifier genes, such as Snail1, Snail2/SLUG, Sox10, FoxD3, c-Myc, and p75NTR. Moreover, these cell populations expressed stemness markers (such as Nanog and nestin), as well as markers of motility and invasion (TAGLN, MMP9, CXCR4, and CXCR7), and of neuronal/glial differentiation (MAP2, GFAP, SYP, and TAU). Functional analysis demonstrated that these cells not only possessed high migration properties, but most importantly, they expressed markers of sympatho-adrenal lineage, such as ASCL1 and tyrosine hydroxylase (TH). Moreover, the expression of TH increased after the induction with two different protocols of differentiation towards neuronal and sympatho-adrenal phenotypes. Finally, exposure to conditioned culture media from NCC induced a mature phenotype in a neuronal cell model (namely SH-SY5Y), suggesting that NCC may also act like Schwann precursors. CONCLUSION This unique human cell model provides a solid tool for future studies addressing the bases of human neural crest-derived neuroendocrine tumours.
Collapse
Affiliation(s)
- E Rapizzi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - S Benvenuti
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - C Deledda
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - S Martinelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - E Sarchielli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - B Fibbi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - P Luciani
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - B Mazzanti
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Pantaleo
- Genetics and Molecular Medicine Unit, Anna Meyer Children's University Hospital, Florence, Italy
| | - G Marroncini
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - G B Vannelli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - M Maggi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy
| | - M Mannelli
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| | - M Luconi
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy.
- Istituto Nazionale Biostrutture e Biosistemi (INBB), viale delle Medaglie d'Oro 305, 00136, Rome, Italy.
| | - A Peri
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, Viale Pieraccini 6, 50139, Florence, Italy
| |
Collapse
|
13
|
Ernsberger U, Rohrer H. Sympathetic tales: subdivisons of the autonomic nervous system and the impact of developmental studies. Neural Dev 2018; 13:20. [PMID: 30213267 PMCID: PMC6137933 DOI: 10.1186/s13064-018-0117-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/12/2018] [Indexed: 02/06/2023] Open
Abstract
Remarkable progress in a range of biomedical disciplines has promoted the understanding of the cellular components of the autonomic nervous system and their differentiation during development to a critical level. Characterization of the gene expression fingerprints of individual neurons and identification of the key regulators of autonomic neuron differentiation enables us to comprehend the development of different sets of autonomic neurons. Their individual functional properties emerge as a consequence of differential gene expression initiated by the action of specific developmental regulators. In this review, we delineate the anatomical and physiological observations that led to the subdivision into sympathetic and parasympathetic domains and analyze how the recent molecular insights melt into and challenge the classical description of the autonomic nervous system.
Collapse
Affiliation(s)
- Uwe Ernsberger
- Institute for Clinical Neuroanatomy, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| | - Hermann Rohrer
- Institute for Clinical Neuroanatomy, Goethe University, Theodor-Stern-Kai 7, 60590 Frankfurt/Main, Germany
| |
Collapse
|
14
|
Urraca N, Hope K, Victor AK, Belgard TG, Memon R, Goorha S, Valdez C, Tran QT, Sanchez S, Ramirez J, Donaldson M, Bridges D, Reiter LT. Significant transcriptional changes in 15q duplication but not Angelman syndrome deletion stem cell-derived neurons. Mol Autism 2018; 9:6. [PMID: 29423132 PMCID: PMC5787244 DOI: 10.1186/s13229-018-0191-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 01/15/2018] [Indexed: 01/09/2023] Open
Abstract
Background The inability to analyze gene expression in living neurons from Angelman (AS) and Duplication 15q (Dup15q) syndrome subjects has limited our understanding of these disorders at the molecular level. Method Here, we use dental pulp stem cells (DPSC) from AS deletion, 15q Duplication, and neurotypical control subjects for whole transcriptome analysis. We identified 20 genes unique to AS neurons, 120 genes unique to 15q duplication, and 3 shared transcripts that were differentially expressed in DPSC neurons vs controls. Results Copy number correlated with gene expression for most genes across the 15q11.2-q13.1 critical region. Two thirds of the genes differentially expressed in 15q duplication neurons were downregulated compared to controls including several transcription factors, while in AS differential expression was restricted primarily to the 15q region. Here, we show significant downregulation of the transcription factors FOXO1 and HAND2 in neurons from 15q duplication, but not AS deletion subjects suggesting that disruptions in transcriptional regulation may be a driving factor in the autism phenotype in Dup15q syndrome. Downstream analysis revealed downregulation of the ASD associated genes EHPB2 and RORA, both genes with FOXO1 binding sites. Genes upregulated in either Dup15q cortex or idiopathic ASD cortex both overlapped significantly with the most upregulated genes in Dup15q DPSC-derived neurons. Conclusions Finding a significant increase in both HERC2 and UBE3A in Dup15q neurons and significant decrease in these two genes in AS deletion neurons may explain differences between AS deletion class and UBE3A specific classes of AS mutation where HERC2 is expressed at normal levels. Also, we identified an enrichment for FOXO1-regulated transcripts in Dup15q neurons including ASD-associated genes EHPB2 and RORA indicating a possible connection between this syndromic form of ASD and idiopathic cases.
Collapse
Affiliation(s)
- Nora Urraca
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
| | - Kevin Hope
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
- IPBS Program, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - A. Kaitlyn Victor
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
- IPBS Program, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - T. Grant Belgard
- MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3QX UK
| | - Rawaha Memon
- Department of Pediatric Dentistry, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Sarita Goorha
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
| | - Colleen Valdez
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
| | - Quynh T. Tran
- Department of Preventive Medicine, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Silvia Sanchez
- Instituto Nacional de Pediatria, 04530 Mexico City, Mexico
| | - Juanma Ramirez
- Department of Biochemistry and Molecular Biology, University of Basque Country, Bilbao, Spain
| | - Martin Donaldson
- Department of Pediatric Dentistry, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| | - Dave Bridges
- Department of Nutritional Sciences, University of Michigan School of Public Health, 1415 Washington Heights, Ann Arbor, MI 48109 USA
| | - Lawrence T. Reiter
- Department of Neurology, The University of Tennessee Health Science Center, 855 Monroe Ave., Link 415, Memphis, TN 38163 USA
- Department of Pediatrics, The University of Tennessee Health Science Center, Memphis, TN 38163 USA
| |
Collapse
|
15
|
Chan WH, Anderson CR, Gonsalvez DG. From proliferation to target innervation: signaling molecules that direct sympathetic nervous system development. Cell Tissue Res 2017; 372:171-193. [PMID: 28971249 DOI: 10.1007/s00441-017-2693-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 08/30/2017] [Indexed: 02/07/2023]
Abstract
The sympathetic division of the autonomic nervous system includes a variety of cells including neurons, endocrine cells and glial cells. A recent study (Furlan et al. 2017) has revised thinking about the developmental origin of these cells. It now appears that sympathetic neurons and chromaffin cells of the adrenal medulla do not have an immediate common ancestor in the form a "sympathoadrenal cell", as has been long believed. Instead, chromaffin cells arise from Schwann cell precursors. This review integrates the new findings with the expanding body of knowledge on the signalling pathways and transcription factors that regulate the origin of cells of the sympathetic division of the autonomic nervous system.
Collapse
Affiliation(s)
- W H Chan
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - C R Anderson
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia
| | - David G Gonsalvez
- Department of Anatomy and Neuroscience, School of Biomedical Sciences, The University of Melbourne, Parkville, 3010, Australia.
| |
Collapse
|
16
|
Coordinate expression of pan-neuronal and functional signature genes in sympathetic neurons. Cell Tissue Res 2017; 370:227-241. [PMID: 28936781 DOI: 10.1007/s00441-017-2688-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 08/27/2017] [Indexed: 12/20/2022]
Abstract
Neuron subtypes of the mature nervous system differ in the expression of characteristic marker genes while they share the expression of generic neuronal genes. The regulatory logic that maintains subtype-specific and pan-neuronal genes is not well understood. To begin to address this issue, we analyze RNA sequencing results from whole sympathetic ganglia and single sympathetic neurons in the mouse. We focus on gene products involved in the neuronal cytoskeleton, neurotransmitter synthesis and storage, transmitter release and reception and electrical information processing. We find a particular high correlation in the expression of stathmin 2 and several members of the tubulin beta family, classical pan-neuronal markers. Noradrenergic transmitter-synthesizing enzymes and transporters are also well correlated in their cellular transcript levels. In addition, noradrenergic marker transcript levels correlate well with selected pan-neuronal markers. Such a correlation in transcript levels is also seen between a number of selected ion channel, receptor and synaptic protein genes. These results provide the foundation for the analyses of the coordinated expression of downstream target genes in nerve cells.
Collapse
|
17
|
Gut P, Reischauer S, Stainier DYR, Arnaout R. LITTLE FISH, BIG DATA: ZEBRAFISH AS A MODEL FOR CARDIOVASCULAR AND METABOLIC DISEASE. Physiol Rev 2017; 97:889-938. [PMID: 28468832 PMCID: PMC5817164 DOI: 10.1152/physrev.00038.2016] [Citation(s) in RCA: 213] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 01/09/2017] [Accepted: 01/10/2017] [Indexed: 12/17/2022] Open
Abstract
The burden of cardiovascular and metabolic diseases worldwide is staggering. The emergence of systems approaches in biology promises new therapies, faster and cheaper diagnostics, and personalized medicine. However, a profound understanding of pathogenic mechanisms at the cellular and molecular levels remains a fundamental requirement for discovery and therapeutics. Animal models of human disease are cornerstones of drug discovery as they allow identification of novel pharmacological targets by linking gene function with pathogenesis. The zebrafish model has been used for decades to study development and pathophysiology. More than ever, the specific strengths of the zebrafish model make it a prime partner in an age of discovery transformed by big-data approaches to genomics and disease. Zebrafish share a largely conserved physiology and anatomy with mammals. They allow a wide range of genetic manipulations, including the latest genome engineering approaches. They can be bred and studied with remarkable speed, enabling a range of large-scale phenotypic screens. Finally, zebrafish demonstrate an impressive regenerative capacity scientists hope to unlock in humans. Here, we provide a comprehensive guide on applications of zebrafish to investigate cardiovascular and metabolic diseases. We delineate advantages and limitations of zebrafish models of human disease and summarize their most significant contributions to understanding disease progression to date.
Collapse
Affiliation(s)
- Philipp Gut
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Sven Reischauer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Didier Y R Stainier
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| | - Rima Arnaout
- Nestlé Institute of Health Sciences, EPFL Innovation Park, Lausanne, Switzerland; Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany; and Cardiovascular Research Institute and Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
18
|
Corallo D, Candiani S, Ori M, Aveic S, Tonini GP. The zebrafish as a model for studying neuroblastoma. Cancer Cell Int 2016; 16:82. [PMID: 27822138 PMCID: PMC5093987 DOI: 10.1186/s12935-016-0360-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 10/24/2016] [Indexed: 12/28/2022] Open
Abstract
Neuroblastoma is a tumor arising in the peripheral sympathetic nervous system and is the most common cancer in childhood. Since most of the cellular and molecular mechanisms underlying neuroblastoma onset and progression remain unknown, the generation of new in vivo models might be appropriate to better dissect the peripheral sympathetic nervous system development in both physiological and disease states. This review is focused on the use of zebrafish as a suitable and innovative model to study neuroblastoma development. Here, we briefly summarize the current knowledge about zebrafish peripheral sympathetic nervous system formation, focusing on key genes and cellular pathways that play a crucial role in the differentiation of sympathetic neurons during embryonic development. In addition, we include examples of how genetic changes known to be associated with aggressive neuroblastoma can mimic this malignancy in zebrafish. Thus, we note the value of the zebrafish model in the field of neuroblastoma research, showing how it can improve our current knowledge about genes and biological pathways that contribute to malignant transformation and progression during embryonic life.
Collapse
Affiliation(s)
- Diana Corallo
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| | - Simona Candiani
- Department of Earth, Environmental and Life Sciences, (DISTAV), University of Genova, C.so Europa 26, 16132 Genoa, Italy
| | - Michela Ori
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, S.S.12 Abetone e Brennero 4, 56127 Pisa, Italy
| | - Sanja Aveic
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Pediatric Research Institute, Città della Speranza, 35127 Padua, Italy
| |
Collapse
|
19
|
Transcription of the non-coding RNA upperhand controls Hand2 expression and heart development. Nature 2016; 539:433-436. [PMID: 27783597 DOI: 10.1038/nature20128] [Citation(s) in RCA: 266] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Accepted: 09/29/2016] [Indexed: 12/28/2022]
Abstract
HAND2 is an ancestral regulator of heart development and one of four transcription factors that control the reprogramming of fibroblasts into cardiomyocytes. Deletion of Hand2 in mice results in right ventricle hypoplasia and embryonic lethality. Hand2 expression is tightly regulated by upstream enhancers that reside within a super-enhancer delineated by histone H3 acetyl Lys27 (H3K27ac) modifications. Here we show that transcription of a Hand2-associated long non-coding RNA, which we named upperhand (Uph), is required to maintain the super-enhancer signature and elongation of RNA polymerase II through the Hand2 enhancer locus. Blockade of Uph transcription, but not knockdown of the mature transcript, abolished Hand2 expression, causing right ventricular hypoplasia and embryonic lethality in mice. Given the substantial number of uncharacterized promoter-associated long non-coding RNAs encoded by the mammalian genome, the Uph-Hand2 regulatory partnership offers a mechanism by which divergent non-coding transcription can establish a permissive chromatin environment.
Collapse
|
20
|
Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 2016; 134:97-138. [PMID: 27312492 DOI: 10.1016/bs.mcb.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The zebrafish serves as an excellent model to study vertebrate development and disease. Optically clear embryos, combined with tissue-specific fluorescent reporters, permit direct visualization and measurement of peripheral nervous system formation in real time. Additionally, the model is amenable to rapid cellular, molecular, and genetic approaches to determine how developmental mechanisms contribute to disease states, such as cancer. In this chapter, we describe the development of the peripheral sympathetic nervous system (PSNS) in general, and our current understanding of genetic pathways important in zebrafish PSNS development specifically. We also illustrate how zebrafish genetics is used to identify new mechanisms controlling PSNS development and methods for interrogating the potential role of PSNS developmental pathways in neuroblastoma pathogenesis in vivo using the zebrafish MYCN-driven neuroblastoma model.
Collapse
Affiliation(s)
- M A Morrison
- University of Utah, Salt Lake City, UT, United States
| | | | - A T Look
- Harvard Medical School, Boston, MA, United States
| | - R A Stewart
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
21
|
Stanzel S, Stubbusch J, Pataskar A, Howard MJ, Deller T, Ernsberger U, Tiwari VK, Rohrer H, Tsarovina K. Distinct roles of hand2 in developing and adult autonomic neurons. Dev Neurobiol 2016; 76:1111-24. [PMID: 26818017 DOI: 10.1002/dneu.22378] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/05/2016] [Accepted: 01/07/2016] [Indexed: 11/08/2022]
Abstract
The bHLH transcription factor Hand2 is essential for the acquisition and maintenance of noradrenergic properties of embryonic sympathetic neurons and controls neuroblast proliferation. Hand2 is also expressed in embryonic and postnatal parasympathetic ganglia and remains expressed in sympathetic neurons up to the adult stage. Here, we address its function in developing parasympathetic and adult sympathetic neurons. We conditionally deleted Hand2 in the parasympathetic sphenopalatine ganglion by crossing a line of floxed Hand2 mice with DbhiCre transgenic mice, taking advantage of the transient Dbh expression in parasympathetic ganglia. Hand2 elimination does not affect Dbh expression and sphenopalatine ganglion size at E12.5 and E16.5, in contrast to sympathetic ganglia. These findings demonstrate different functions for Hand2 in the parasympathetic and sympathetic lineage. Our previous Hand2 knockdown in postmitotic, differentiated chick sympathetic neurons resulted in decreased expression of noradrenergic marker genes but it was unclear whether Hand2 is required for maintaining noradrenergic neuron identity in adult animals. We now show that Hand2 elimination in adult Dbh-expressing sympathetic neurons does not decrease the expression of Th and Dbh, in contrast to the situation during development. However, gene expression profiling of adult sympathetic neurons identified 75 Hand2-dependent target genes. Interestingly, a notable proportion of down-regulated genes (15%) encode for proteins with synaptic and neurotransmission functions. These results demonstrate a change in Hand2 target genes during maturation of sympathetic neurons. Whereas Hand2 controls genes regulating noradrenergic differentiation during development, Hand2 seems to be involved in the regulation of genes controlling neurotransmission in adult sympathetic neurons. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1111-1124, 2016.
Collapse
Affiliation(s)
- Sabine Stanzel
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Jutta Stubbusch
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| | - Abhijeet Pataskar
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Marthe J Howard
- Department of Neurosciences and Program in Neurosciences and Neurological Disorders, University of Toledo Health Sciences Campus, Toledo, Ohio, 43614
| | - Thomas Deller
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany
| | - Uwe Ernsberger
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Vijay K Tiwari
- Institute of Molecular Biology (IMB) Boehringer Ingelheim Foundation, Ackermannweg 4, Mainz, 55128, Germany
| | - Hermann Rohrer
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany.,Institute of Clinical Neuroanatomy, Goethe University Frankfurt/M, Theodor-Stern-Kai 7, Frankfurt/M, 60590, Germany.,Ernst-Strüngmann-Institute, Deutschordenstr. 46, Frankfurt/M, 60528, Germany
| | - Konstantina Tsarovina
- Developmental Neurobiology, Max-Planck-Institute for Brain Research, Max-von-Laue-Str. 4, Frankfurt/M, 60438, Germany
| |
Collapse
|
22
|
Fortuna V, Pardanaud L, Brunet I, Ola R, Ristori E, Santoro MM, Nicoli S, Eichmann A. Vascular Mural Cells Promote Noradrenergic Differentiation of Embryonic Sympathetic Neurons. Cell Rep 2015; 11:1786-96. [PMID: 26074079 DOI: 10.1016/j.celrep.2015.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2014] [Revised: 04/14/2015] [Accepted: 05/13/2015] [Indexed: 11/25/2022] Open
Abstract
The sympathetic nervous system controls smooth muscle tone and heart rate in the cardiovascular system. Postganglionic sympathetic neurons (SNs) develop in close proximity to the dorsal aorta (DA) and innervate visceral smooth muscle targets. Here, we use the zebrafish embryo to ask whether the DA is required for SN development. We show that noradrenergic (NA) differentiation of SN precursors temporally coincides with vascular mural cell (VMC) recruitment to the DA and vascular maturation. Blocking vascular maturation inhibits VMC recruitment and blocks NA differentiation of SN precursors. Inhibition of platelet-derived growth factor receptor (PDGFR) signaling prevents VMC differentiation and also blocks NA differentiation of SN precursors. NA differentiation is normal in cloche mutants that are devoid of endothelial cells but have VMCs. Thus, PDGFR-mediated mural cell recruitment mediates neurovascular interactions between the aorta and sympathetic precursors and promotes their noradrenergic differentiation.
Collapse
Affiliation(s)
- Vitor Fortuna
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510, USA; Health Science Institute, Federal University of Bahia, Salvador 40110-902, Brazil
| | - Luc Pardanaud
- CNRS UMR7241, INSERM U1050, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris 75005, France
| | - Isabelle Brunet
- CNRS UMR7241, INSERM U1050, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris 75005, France
| | - Roxana Ola
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Emma Ristori
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Massimo M Santoro
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, 10126 Torino, Italy; VIB Vesalius Research Center, KU Leuven, 3000 Leuven, Belgium
| | - Stefania Nicoli
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510, USA.
| | - Anne Eichmann
- Department of Internal Medicine, Yale Cardiovascular Research Center, Yale University School of Medicine, New Haven, CT 06510, USA; CNRS UMR7241, INSERM U1050, Center for Interdisciplinary Research in Biology (CIRB), Collège de France, Paris 75005, France; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
23
|
Nishimura Y, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T. Zebrafish as a systems toxicology model for developmental neurotoxicity testing. Congenit Anom (Kyoto) 2015; 55:1-16. [PMID: 25109898 DOI: 10.1111/cga.12079] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments.
Collapse
Affiliation(s)
- Yuhei Nishimura
- Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu, Japan; Mie University Medical Zebrafish Research Center, Tsu, Japan; Depertment of Systems Pharmacology, Mie University Graduate School of Medicine, Tsu, Japan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, Tsu, Japan; Department of Bioinformatics, Mie University Life Science Research Center, Tsu, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Loss of Hand2 in a population of Periostin lineage cells results in pronounced bradycardia and neonatal death. Dev Biol 2014; 388:149-58. [PMID: 24565998 DOI: 10.1016/j.ydbio.2014.02.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/26/2014] [Accepted: 02/08/2014] [Indexed: 11/21/2022]
Abstract
The Periostin Cre (Postn-Cre) lineage includes endocardial and neural crest derived mesenchymal cells of the cardiac cushions, neural crest-derived components of the sympathetic and enteric nervous systems, and cardiac fibroblasts. In this study, we use the Postn-Cre transgenic allele to conditionally ablate Hand2 (H2CKO). We find that Postn-Cre H2CKOs die shortly after birth despite a lack of obvious cardiac structural defects. To ascertain the cause of death, we performed a detailed comparison of the Postn-Cre lineage and Hand2 expression at mid and late stages of embryonic development. Gene expression analyses demonstrate that Postn-Cre ablates Hand2 from the adrenal medulla as well as the sphenopalatine ganglia of the head. In both cases, Hand2 loss-of-function dramatically reduces expression of Dopamine Beta Hydroxylase (Dbh), a gene encoding a crucial catecholaminergic biosynthetic enzyme. Expression of the genes Tyrosine Hydroxylase (Th) and Phenylethanolamine N-methyltransferase (Pnmt), which also encode essential catecholaminergic enzymes, were severely reduced in postnatal adrenal glands. Electrocardiograms demonstrate that 3-day postnatal Postn-Cre H2CKO pups exhibit sinus bradycardia. In conjunction with the aforementioned gene expression analyses, these results strongly suggest that the observed postnatal lethality occurs due to a catecholamine deficiency and subsequent heart failure.
Collapse
|
26
|
Gallego J. Genetic diseases: congenital central hypoventilation, Rett, and Prader-Willi syndromes. Compr Physiol 2013; 2:2255-79. [PMID: 23723037 DOI: 10.1002/cphy.c100037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present review summarizes current knowledge on three rare genetic disorders of respiratory control, congenital central hypoventilation syndrome (CCHS), Rett syndrome (RTT), and Prader-Willi syndrome (PWS). CCHS is characterized by lack of ventilatory chemosensitivity caused by PHOX2B gene abnormalities consisting mainly of alanine expansions. RTT is associated with episodes of tachypneic and irregular breathing intermixed with breathholds and apneas and is caused by mutations in the X-linked MECP2 gene encoding methyl-CpG-binding protein. PWS manifests as sleep-disordered breathing with apneas and episodes of hypoventilation and is caused by the loss of a group of paternally inherited genes on chromosome 15. CCHS is the most specific disorder of respiratory control, whereas the breathing disorders in RTT and PWS are components of a more general developmental disorder. The main clinical features of these three disorders are reviewed with special emphasis on the associated brain abnormalities. In all three syndromes, disease-causing genetic defects have been identified, allowing the development of genetically engineered mouse models. New directions for future therapies based on these models or, in some cases, on clinical experience are delineated. Studies of CCHS, RTT, and PWS extend our knowledge of the molecular and cellular aspects of respiratory rhythm generation and suggest possible pharmacological approaches to respiratory control disorders. This knowledge is relevant for the clinical management of many respiratory disorders that are far more prevalent than the rare diseases discussed here.
Collapse
Affiliation(s)
- Jorge Gallego
- Inserm U676 and University of Paris Diderot, Paris, France.
| |
Collapse
|
27
|
Shtukmaster S, Schier MC, Huber K, Krispin S, Kalcheim C, Unsicker K. Sympathetic neurons and chromaffin cells share a common progenitor in the neural crest in vivo. Neural Dev 2013; 8:12. [PMID: 23777568 PMCID: PMC3693940 DOI: 10.1186/1749-8104-8-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 05/17/2013] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The neural crest (NC) is a transient embryonic structure unique to vertebrates, which generates peripheral sensory and autonomic neurons, glia, neuroendocrine chromaffin and thyroid C-cells, melanocytes, and mesenchymal derivatives such as parts of the skull, heart, and meninges. The sympathoadrenal (SA) cell lineage is one major sub-lineage of the NC that gives rise to sympathetic neurons, chromaffin cells, and the intermediate small intensely fluorescent (SIF) cells. A key question is when during NC ontogeny do multipotent progenitors segregate into the different NC-derived lineages. Recent evidence suggested that sympathetic, sensory, and melanocyte progenitors delaminate from the thoracic neural tube (NT) in successive, largely non-overlapping waves and that at least certain NC progenitors are already fate-restricted within the NT. Whether sympathetic neurons and chromaffin cells, suggested by cell culture studies to share a common progenitor, are also fate segregated in ovo prior to emigration, is not known. RESULTS We have conducted single cell electroporations of a GFP-encoding plasmid into the dorsal midline of E2 chick NTs at the adrenomedullary level of the NC. Analysis of their derivatives, performed at E6, revealed that in most cases, labelled progeny was detected in both sympathetic ganglia and adrenal glands, where cells co-expressed characteristic marker combinations. CONCLUSIONS Our results show that sympathetic neurons and adrenal chromaffin cells share a common progenitor in the NT. Together with previous findings we suggest that phenotypic diversification of these sublineages is likely to occur after delamination from the NT and prior to target encounter.
Collapse
Affiliation(s)
- Stella Shtukmaster
- Department of Molecular Embryology, Institute of Anatomy and Cell Biology University of Freiburg, Albertstr, 17, Freiburg D-79104, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Distinct neuroblastoma-associated alterations of PHOX2B impair sympathetic neuronal differentiation in zebrafish models. PLoS Genet 2013; 9:e1003533. [PMID: 23754957 PMCID: PMC3675015 DOI: 10.1371/journal.pgen.1003533] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 04/14/2013] [Indexed: 11/19/2022] Open
Abstract
Heterozygous germline mutations and deletions in PHOX2B, a key regulator of autonomic neuron development, predispose to neuroblastoma, a tumor of the peripheral sympathetic nervous system. To gain insight into the oncogenic mechanisms engaged by these changes, we used zebrafish models to study the functional consequences of aberrant PHOX2B expression in the cells of the developing sympathetic nervous system. Allelic deficiency, modeled by phox2b morpholino knockdown, led to a decrease in the terminal differentiation markers th and dbh in sympathetic ganglion cells. The same effect was seen on overexpression of two distinct neuroblastoma-associated frameshift mutations, 676delG and K155X - but not the R100L missense mutation - in the presence of endogenous Phox2b, pointing to their dominant-negative effects. We demonstrate that Phox2b is capable of regulating itself as well as ascl1, and that phox2b deficiency uncouples this autoregulatory mechanism, leading to inhibition of sympathetic neuron differentiation. This effect on terminal differentiation is associated with an increased number of phox2b+, ascl1+, elavl3− cells that respond poorly to retinoic acid. These findings suggest that a reduced dosage of PHOX2B during development, through either a heterozygous deletion or dominant-negative mutation, imposes a block in the differentiation of sympathetic neuronal precursors, resulting in a cell population that is likely to be susceptible to secondary transforming events. Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most common cancer diagnosed in infancy. Although most cases arise sporadically, familial predisposition also occurs in association with mutations in a single copy of the PHOX2B gene, a “master regulator” of sympathetic neuronal development. The exact mechanisms by which these mutations increase susceptibility to neuroblastoma are unclear, primarily because of the paucity of optimal models in which to study very early development of the sympathetic nervous system. We took advantage of the ex vivo development and transparent nature of zebrafish embryos to study the roles of both normal and mutated PHOX2B in development of the sympathetic nervous system. We present data indicating that aberrant PHOX2B expression causes an arrest in the normal maturation of sympathetic neurons, leading to immature cells that are resistant to drug-induced differentiation. Indeed, we demonstrate that phox2b gene “dosage” is important for normal differentiation of sympathetic neurons in the zebrafish and suggest that the population of immature cells resulting from a decreased dosage of this pivotal factor may be susceptible to secondary mutations that could ultimately lead to neuroblastoma.
Collapse
|
29
|
Abstract
Autonomic cardiac neurons have a common origin in the neural crest but undergo distinct developmental differentiation as they mature toward their adult phenotype. Progenitor cells respond to repulsive cues during migration, followed by differentiation cues from paracrine sources that promote neurochemistry and differentiation. When autonomic axons start to innervate cardiac tissue, neurotrophic factors from vascular tissue are essential for maintenance of neurons before they reach their targets, upon which target-derived trophic factors take over final maturation, synaptic strength and postnatal survival. Although target-derived neurotrophins have a central role to play in development, alternative sources of neurotrophins may also modulate innervation. Both developing and adult sympathetic neurons express proNGF, and adult parasympathetic cardiac ganglion neurons also synthesize and release NGF. The physiological function of these “non-classical” cardiac sources of neurotrophins remains to be determined, especially in relation to autocrine/paracrine sustenance during development.
Cardiac autonomic nerves are closely spatially associated in cardiac plexuses, ganglia and pacemaker regions and so are sensitive to release of neurotransmitter, neuropeptides and trophic factors from adjacent nerves. As such, in many cardiac pathologies, it is an imbalance within the two arms of the autonomic system that is critical for disease progression. Although this crosstalk between sympathetic and parasympathetic nerves has been well established for adult nerves, it is unclear whether a degree of paracrine regulation occurs across the autonomic limbs during development. Aberrant nerve remodeling is a common occurrence in many adult cardiovascular pathologies, and the mechanisms regulating outgrowth or denervation are disparate. However, autonomic neurons display considerable plasticity in this regard with neurotrophins and inflammatory cytokines having a central regulatory function, including in possible neurotransmitter changes. Certainly, neurotrophins and cytokines regulate transcriptional factors in adult autonomic neurons that have vital differentiation roles in development. Particularly for parasympathetic cardiac ganglion neurons, additional examinations of developmental regulatory mechanisms will potentially aid in understanding attenuated parasympathetic function in a number of conditions, including heart failure.
Collapse
Affiliation(s)
- Wohaib Hasan
- Knight Cardiovascular Institute; Oregon Health & Science University; Portland, OR USA
| |
Collapse
|
30
|
Saxena S, Wahl J, Huber-Lang MS, Stadel D, Braubach P, Debatin KM, Beltinger C. Generation of murine sympathoadrenergic progenitor-like cells from embryonic stem cells and postnatal adrenal glands. PLoS One 2013; 8:e64454. [PMID: 23675538 PMCID: PMC3651195 DOI: 10.1371/journal.pone.0064454] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 04/15/2013] [Indexed: 11/18/2022] Open
Abstract
Sympathoadrenergic progenitor cells (SAPs) of the peripheral nervous system (PNS) are important for normal development of the sympathetic PNS and for the genesis of neuroblastoma, the most common and often lethal extracranial solid tumor in childhood. However, it remains difficult to isolate sufficient numbers of SAPs for investigations. We therefore set out to improve generation of SAPs by using two complementary approaches, differentiation from murine embryonic stem cells (ESCs) and isolation from postnatal murine adrenal glands. We provide evidence that selecting for GD2 expression enriches for ESC-derived SAP-like cells and that proliferating SAP-like cells can be isolated from postnatal adrenal glands of mice. These advances may facilitate investigations about the development and malignant transformation of the sympathetic PNS.
Collapse
Affiliation(s)
- Shobhit Saxena
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Joachim Wahl
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Markus S. Huber-Lang
- Institute of Traumatology, Hand- and Reconstructive Surgery, Ulm University, Ulm, Germany
| | - Dominic Stadel
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Peter Braubach
- Division of Neurophysiology, Ulm University, Ulm, Germany
| | - Klaus-Michael Debatin
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Beltinger
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
- * E-mail:
| |
Collapse
|
31
|
Ignatius MS, Unal Eroglu A, Malireddy S, Gallagher G, Nambiar RM, Henion PD. Distinct functional and temporal requirements for zebrafish Hdac1 during neural crest-derived craniofacial and peripheral neuron development. PLoS One 2013; 8:e63218. [PMID: 23667588 PMCID: PMC3646935 DOI: 10.1371/journal.pone.0063218] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
The regulation of gene expression is accomplished by both genetic and epigenetic means and is required for the precise control of the development of the neural crest. In hdac1(b382) mutants, craniofacial cartilage development is defective in two distinct ways. First, fewer hoxb3a, dlx2 and dlx3-expressing posterior branchial arch precursors are specified and many of those that are consequently undergo apoptosis. Second, in contrast, normal numbers of progenitors are present in the anterior mandibular and hyoid arches, but chondrocyte precursors fail to terminally differentiate. In the peripheral nervous system, there is a disruption of enteric, DRG and sympathetic neuron differentiation in hdac1(b382) mutants compared to wildtype embryos. Specifically, enteric and DRG-precursors differentiate into neurons in the anterior gut and trunk respectively, while enteric and DRG neurons are rarely present in the posterior gut and tail. Sympathetic neuron precursors are specified in hdac1(b382) mutants and they undergo generic neuronal differentiation but fail to undergo noradrenergic differentiation. Using the HDAC inhibitor TSA, we isolated enzyme activity and temporal requirements for HDAC function that reproduce hdac1(b382) defects in craniofacial and sympathetic neuron development. Our study reveals distinct functional and temporal requirements for zebrafish hdac1 during neural crest-derived craniofacial and peripheral neuron development.
Collapse
Affiliation(s)
- Myron S. Ignatius
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
| | - Arife Unal Eroglu
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
| | - Smitha Malireddy
- Department of Neuroscience, Ohio State University, Columbus, Ohio, United States of America
| | - Glen Gallagher
- Department of Neuroscience, Ohio State University, Columbus, Ohio, United States of America
| | - Roopa M. Nambiar
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
| | - Paul D. Henion
- Department of Neuroscience, Ohio State University, Columbus, Ohio, United States of America
- Molecular, Cellular and Developmental Biology Program, Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
32
|
The transcription factor Hmx1 and growth factor receptor activities control sympathetic neurons diversification. EMBO J 2013; 32:1613-25. [PMID: 23591430 DOI: 10.1038/emboj.2013.85] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 03/15/2013] [Indexed: 01/17/2023] Open
Abstract
The sympathetic nervous system relies on distinct populations of neurons that use noradrenaline or acetylcholine as neurotransmitter. We show that fating of the sympathetic lineage at early stages results in hybrid precursors from which, genetic cell-lineage tracing reveals, all types progressively emerge by principal mechanisms of maintenance, repression and induction of phenotypes. The homeobox transcription factor HMX1 represses Tlx3 and Ret, induces TrkA and maintains tyrosine hydroxylase (Th) expression in precursors, thus driving segregation of the noradrenergic sympathetic fate. Cholinergic sympathetic neurons develop through cross-regulatory interactions between TRKC and RET in precursors, which lead to Hmx1 repression and sustained Tlx3 expression, thereby resulting in failure of TrkA induction and loss of maintenance of Th expression. Our results provide direct evidence for a model in which diversification of noradrenergic and cholinergic sympathetic neurons is based on a principle of cross-repressive functions in which the specific cell fates are directed by an active suppression of the expression of transcription factors and receptors that direct the alternative fate.
Collapse
|
33
|
Coppola E, D'autréaux F, Nomaksteinsky M, Brunet JF. Phox2b expression in the taste centers of fish. J Comp Neurol 2013; 520:3633-49. [PMID: 22473338 DOI: 10.1002/cne.23117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The homeodomain transcription factor Phox2b controls the formation of the sensory-motor reflex circuits of the viscera in vertebrates. Among Phox2b-dependent structures characterized in rodents is the nucleus of the solitary tract, the first relay for visceral sensory input, including taste. Here we show that Phox2b is expressed throughout the primary taste centers of two cyprinid fish, Danio rerio and Carassius auratus, i.e., in their vagal, glossopharyngeal, and facial lobes, providing the first molecular evidence for their homology with the nucleus of the solitary tract of mammals and suggesting that a single ancestral Phox2b-positive neuronal type evolved to give rise to both fish and mammalian structures. In zebrafish larvae, the distribution of Phox2b²⁺ neurons, combined with the expression pattern of Olig4 (a homologue of Olig3, determinant of the nucleus of the solitary tract in mice), reveals that the superficial position and sheet-like architecture of the viscerosensory column in cyprinid fish, ideally suited for the somatotopic representation of oropharyngeal and bodily surfaces, arise by radial migration from a dorsal progenitor domain, in contrast to the tangential migration observed in amniotes.
Collapse
Affiliation(s)
- Eva Coppola
- École Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Paris F-75005, France
| | | | | | | |
Collapse
|
34
|
Vincentz JW, Firulli BA, Lin A, Spicer DB, Howard MJ, Firulli AB. Twist1 controls a cell-specification switch governing cell fate decisions within the cardiac neural crest. PLoS Genet 2013; 9:e1003405. [PMID: 23555309 PMCID: PMC3605159 DOI: 10.1371/journal.pgen.1003405] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 02/07/2013] [Indexed: 01/31/2023] Open
Abstract
Neural crest cells are multipotent progenitor cells that can generate both ectodermal cell types, such as neurons, and mesodermal cell types, such as smooth muscle. The mechanisms controlling this cell fate choice are not known. The basic Helix-loop-Helix (bHLH) transcription factor Twist1 is expressed throughout the migratory and post-migratory cardiac neural crest. Twist1 ablation or mutation of the Twist-box causes differentiation of ectopic neuronal cells, which molecularly resemble sympathetic ganglia, in the cardiac outflow tract. Twist1 interacts with the pro-neural factor Sox10 via its Twist-box domain and binds to the Phox2b promoter to repress transcriptional activity. Mesodermal cardiac neural crest trans-differentiation into ectodermal sympathetic ganglia-like neurons is dependent upon Phox2b function. Ectopic Twist1 expression in neural crest precursors disrupts sympathetic neurogenesis. These data demonstrate that Twist1 functions in post-migratory neural crest cells to repress pro-neural factors and thereby regulate cell fate determination between ectodermal and mesodermal lineages. During vertebrate development, a unique population of cells, termed neural crest cells, migrates throughout the developing embryo, generating various cell types, for example, the smooth muscle that divides the aorta and pulmonary artery where they connect to the heart, and the autonomic neurons, which coordinate organ function. The distinctions between neural crest cells that will form smooth muscle and those that will become neurons are thought to occur prior to migration. Here, we show that, in mice with mutations of the transcription factor Twist1, a subpopulation of presumptive smooth muscle cells, following migration to the heart, instead mis-specify to resemble autonomic neurons. Twist1 represses transcription of the pro-neural factor Phox2b both through antagonism of its upstream effector, Sox10, and through direct binding to its promoter. Phox2b is absolutely required for autonomic neuron development, and indeed, the aberrant neurons in Twist1 mutants disappear when Phox2b is also mutated. Ectopic Twist1 expression within all neural crest cells disrupts the specification of normal autonomic neurons. Collectively, these data reveal that neural crest cells can alter their cell fate from mesoderm to ectoderm after they have migrated and that Twist1 functions to maintain neural crest cell potency during embryonic development.
Collapse
Affiliation(s)
- Joshua W Vincentz
- Riley Heart Research Center, Herman B Wells Center for Pediatric Research, Division of Pediatrics Cardiology, Departments of Anatomy, Indiana University Medical School, Indianapolis, Indiana, United States of America
| | | | | | | | | | | |
Collapse
|
35
|
Roach G, Heath Wallace R, Cameron A, Emrah Ozel R, Hongay CF, Baral R, Andreescu S, Wallace KN. Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of distal intestinal motility. Dev Biol 2013; 376:171-86. [PMID: 23353550 DOI: 10.1016/j.ydbio.2013.01.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Revised: 01/05/2013] [Accepted: 01/08/2013] [Indexed: 02/07/2023]
Abstract
The vertebrate intestinal epithelium is renewed continuously from stem cells at the base of the crypt in mammals or base of the fold in fish over the life of the organism. As stem cells divide, newly formed epithelial cells make an initial choice between a secretory or enterocyte fate. This choice has previously been demonstrated to involve Notch signaling as well as Atonal and Her transcription factors in both embryogenesis and adults. Here, we demonstrate that in contrast to the atoh1 in mammals, ascl1a is responsible for formation of secretory cells in zebrafish. ascl1a-/- embryos lack all intestinal epithelial secretory cells and instead differentiate into enterocytes. ascl1a-/- embryos also fail to induce intestinal epithelial expression of deltaD suggesting that ascl1a plays a role in initiation of Notch signaling. Inhibition of Notch signaling increases the number of ascl1a and deltaD expressing intestinal epithelial cells as well as the number of developing secretory cells during two specific time periods: between 30 and 34hpf and again between 64 and 74hpf. Loss of enteroendocrine products results in loss of anterograde motility in ascl1a-/- embryos. 5HT produced by enterochromaffin cells is critical in motility and secretion within the intestine. We find that addition of exogenous 5HT to ascl1a-/- embryos at near physiological levels (measured by differential pulse voltammetry) induce anterograde motility at similar levels to wild type velocity, distance, and frequency. Removal or doubling the concentration of 5HT in WT embryos does not significantly affect anterograde motility, suggesting that the loss of additional enteroendocrine products in ascl1a-/- embryos also contributes to intestinal motility. Thus, zebrafish intestinal epithelial cells appear to have a common secretory progenitor from which all subtypes form. Loss of enteroendocrine cells reveals the critical need for enteroendocrine products in maintenance of normal intestinal motility.
Collapse
Affiliation(s)
- Gillian Roach
- Department of Biology, Clarkson University, 8 Clarkson Ave., Potsdam, NY 13699, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Flasse LC, Stern DG, Pirson JL, Manfroid I, Peers B, Voz ML. The bHLH transcription factor Ascl1a is essential for the specification of the intestinal secretory cells and mediates Notch signaling in the zebrafish intestine. Dev Biol 2013; 376:187-97. [PMID: 23352790 DOI: 10.1016/j.ydbio.2013.01.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 11/24/2022]
Abstract
Notch signaling has a fundamental role in stem cell maintenance and in cell fate choice in the intestine of different species. Canonically, Notch signaling represses the expression of transcription factors of the achaete-scute like (ASCL) or atonal related protein (ARP) families. Identifying the ARP/ASCL genes expressed in the gastrointestinal tract is essential to build the regulatory cascade controlling the differentiation of gastrointestinal progenitors into the different intestinal cell types. The expression of the ARP/ASCL factors was analyzed in zebrafish to identify, among all the ARP/ASCL factors found in the zebrafish genome, those expressed in the gastrointestinal tract. ascl1a was found to be the earliest factor detected in the intestine. Loss-of-function analyses using the pia/ascl1a mutant, revealed that ascl1a is crucial for the differentiation of all secretory cells. Furthermore, we identify a battery of transcription factors expressed during secretory cell differentiation and downstream of ascl1a. Finally, we show that the repression of secretory cell fate by Notch signaling is mediated by the inhibition of ascl1a expression. In conclusion, this work identifies Ascl1a as a key regulator of the secretory cell lineage in the zebrafish intestine, playing the same role as Atoh1 in the mouse intestine. This highlights the diversity in the ARP/ASCL family members acting as cell fate determinants downstream from Notch signaling.
Collapse
Affiliation(s)
- Lydie C Flasse
- Unit of Molecular Biology and Genetic Engineering, Giga-Research, University of Liège, 1 avenue de l'Hôpital B34, B-4000 Sart-Tilman (Liège), Belgium
| | | | | | | | | | | |
Collapse
|
37
|
Vincentz JW, Rubart M, Firulli AB. Ontogeny of cardiac sympathetic innervation and its implications for cardiac disease. Pediatr Cardiol 2012; 33:923-8. [PMID: 22395650 PMCID: PMC3391355 DOI: 10.1007/s00246-012-0248-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 02/15/2012] [Indexed: 12/16/2022]
Abstract
The vertebrate heart is innervated by the sympathetic and parasympathetic components of the peripheral autonomic nervous system, which regulates its contractile rate and force. Understanding the mechanisms that control sympathetic neuronal growth, differentiation, and innervation of the heart may provide insight into the etiology of cardiac arrhythmogenesis. This review provides an overview of the cell signaling pathways and transcriptional effectors that regulate both the noradrenergic gene program during sympathetic neurogenesis and regional nerve density during cardiac innervation. Recent studies exploring transcriptional regulation of the bHLH transcription factor Hand1 in developing sympathetic neurons are explored, and how the Hand1 sympathetic neuron-specific cis-regulatory element may be used further to assess the contribution of altered sympathetic innervation to human cardiac disease is discussed.
Collapse
|
38
|
A Phox2- and Hand2-dependent Hand1 cis-regulatory element reveals a unique gene dosage requirement for Hand2 during sympathetic neurogenesis. J Neurosci 2012; 32:2110-20. [PMID: 22323723 DOI: 10.1523/jneurosci.3584-11.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neural crest cell specification and differentiation to a sympathetic neuronal fate serves as an important model for neurogenesis and depends upon the function of both bHLH transcription factors, notably Hand2, and homeodomain transcription factors, including Phox2b. Here, we define a 1007 bp cis-regulatory element 5' of the Hand1 gene sufficient to drive reporter expression within the sympathetic chain of transgenic mice. Comparative genomic analyses uncovered evolutionarily conserved consensus-binding sites within this element, which chromatin immunoprecipitation and electrophoretic mobility shift assays confirm are bound by Hand2 and Phox2b. Mutational analyses revealed that the conserved Phox2 and E-box binding sites are necessary for proper cis-regulatory element activity, and expression analyses on both Hand2 conditionally null and hypomorphic backgrounds demonstrate that Hand2 is required for reporter activation in a gene dosage-dependent manner. We demonstrate that Hand2 and Hand1 differentially bind the E-boxes in this cis-regulatory element, establishing molecular differences between these two factors. Finally, we demonstrate that Hand1 is dispensable for normal tyrosine hydroxylase (TH) and dopamine β-hydroxylase (DBH) expression in sympathetic neurons, even when Hand2 gene dosage is concurrently reduced by half. Together, these data define a tissue-specific Hand1 cis-regulatory element controlled by two factors essential for the development of the sympathetic nervous system and provide in vivo regulatory evidence to support previous findings that Hand2, rather than Hand1, is predominantly responsible for regulating TH, DBH, and Hand1 expression in developing sympathetic neurons.
Collapse
|
39
|
Zhu S, Lee JS, Guo F, Shin J, Perez-Atayde AR, Kutok JL, Rodig SJ, Neuberg DS, Helman D, Feng H, Stewart RA, Wang W, George RE, Kanki JP, Look AT. Activated ALK collaborates with MYCN in neuroblastoma pathogenesis. Cancer Cell 2012; 21:362-73. [PMID: 22439933 PMCID: PMC3315700 DOI: 10.1016/j.ccr.2012.02.010] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 11/23/2011] [Accepted: 02/07/2012] [Indexed: 12/14/2022]
Abstract
Amplification of the MYCN oncogene in childhood neuroblastoma is often accompanied by mutational activation of ALK (anaplastic lymphoma kinase), suggesting their pathogenic cooperation. We generated a transgenic zebrafish model of neuroblastoma in which MYCN-induced tumors arise from a subpopulation of neuroblasts that migrate into the adrenal medulla analog following organogenesis. Coexpression of activated ALK with MYCN in this model triples the disease penetrance and markedly accelerates tumor onset. MYCN overexpression induces adrenal sympathetic neuroblast hyperplasia, blocks chromaffin cell differentiation, and ultimately triggers a developmentally-timed apoptotic response in the hyperplastic sympathoadrenal cells. Coexpression of activated ALK with MYCN provides prosurvival signals that block this apoptotic response and allow continued expansion and oncogenic transformation of hyperplastic neuroblasts, thus promoting progression to neuroblastoma.
Collapse
Affiliation(s)
- Shizhen Zhu
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Jeong-Soo Lee
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Feng Guo
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Jimann Shin
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Antonio R. Perez-Atayde
- Department of Pathology, Children's Hospital Boston, Harvard Medical School, Boston MA, 02115, USA
| | - Jeffery L. Kutok
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA, 02115, USA
| | - Scott J. Rodig
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA, 02115, USA
| | - Donna S. Neuberg
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Daniel Helman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Hui Feng
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Rodney A. Stewart
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Wenchao Wang
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - Rani E. George
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - John P. Kanki
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
| | - A. Thomas Look
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston MA, 02115, USA
- Correspondence: (A.T.L.)
| |
Collapse
|
40
|
Abstract
Autonomic neuron development is controlled by a network of transcription factors, which is induced by bone morphogenetic protein signalling in neural crest progenitor cells. This network intersects with a transcriptional program in migratory neural crest cells that pre-specifies autonomic neuron precursor cells. Recent findings demonstrate that the transcription factors acting in the initial specification and differentiation of sympathetic neurons are also important for the proliferation of progenitors and immature neurons during neurogenesis. Elimination of Phox2b, Hand2 and Gata3 in differentiated neurons affects the expression of subtype-specific and/or generic neuronal properties or neuron survival. Taken together, transcription factors previously shown to act in initial neuron specification and differentiation display a much broader spectrum of functions, including control of neurogenesis and the maintenance of subtype characteristics and survival of mature neurons.
Collapse
Affiliation(s)
- Hermann Rohrer
- Research Group Developmental Neurobiology, Max-Planck-Institute for Brain Research, 60528 Frankfurt/Main, Germany.
| |
Collapse
|
41
|
Reiff T, Huber L, Kramer M, Delattre O, Janoueix-Lerosey I, Rohrer H. Midkine and Alk signaling in sympathetic neuron proliferation and neuroblastoma predisposition. Development 2011; 138:4699-708. [PMID: 21989914 DOI: 10.1242/dev.072157] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor in childhood and arises from cells of the developing sympathoadrenergic lineage. Activating mutations in the gene encoding the ALK tyrosine kinase receptor predispose for NB. Here, we focus on the normal function of Alk signaling in the control of sympathetic neuron proliferation, as well as on the effects of mutant ALK. Forced expression of wild-type ALK and NB-related constitutively active ALK mutants in cultures of proliferating immature sympathetic neurons results in a strong proliferation increase, whereas Alk knockdown and pharmacological inhibition of Alk activity decrease proliferation. Alk activation upregulates NMyc and trkB and maintains Alk expression by an autoregulatory mechanism involving Hand2. The Alk-ligand Midkine (Mk) is expressed in immature sympathetic neurons and in vivo inhibition of Alk signaling by virus-mediated shRNA knockdown of Alk and Mk leads to strongly reduced sympathetic neuron proliferation. Taken together, these results demonstrate that the extent and timing of sympathetic neurogenesis is controlled by Mk/Alk signaling. The predisposition for NB caused by activating ALK mutations may thus be explained by aberrations of normal neurogenesis, i.e. elevated and sustained Alk signaling and increased NMyc expression.
Collapse
Affiliation(s)
- Tobias Reiff
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Deutschordenstr. 46, 60528, Frankfurt/M, Germany
| | | | | | | | | | | |
Collapse
|
42
|
Huber L, Ferdin M, Holzmann J, Stubbusch J, Rohrer H. HoxB8 in noradrenergic specification and differentiation of the autonomic nervous system. Dev Biol 2011; 363:219-33. [PMID: 22236961 DOI: 10.1016/j.ydbio.2011.12.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 12/14/2011] [Accepted: 12/15/2011] [Indexed: 10/25/2022]
Abstract
Different prespecification of mesencephalic and trunk neural crest cells determines their response to environmental differentiation signals and contributes to the generation of different autonomic neuron subtypes, parasympathetic ciliary neurons in the head and trunk noradrenergic sympathetic neurons. The differentiation of ciliary and sympathetic neurons shares many features, including the initial BMP-induced expression of noradrenergic characteristics that is, however, subsequently lost in ciliary but maintained in sympathetic neurons. The molecular basis of specific prespecification and differentiation patterns has remained unclear. We show here that HoxB gene expression in trunk neural crest is maintained in sympathetic neurons. Ectopic expression of a single HoxB gene, HoxB8, in mesencephalic neural crest results in a strongly increased expression of sympathetic neuron characteristics like the transcription factor Hand2, tyrosine hydroxylase (TH) and dopamine-beta-hydroxylase (DBH) in ciliary neurons. Other subtype-specific properties like RGS4 and RCad are not induced. HoxB8 has only minor effects in postmitotic ciliary neurons and is unable to induce TH and DBH in the enteric nervous system. Thus, we conclude that HoxB8 acts by maintaining noradrenergic properties transiently expressed in ciliary neuron progenitors during normal development. HoxC8, HoxB9, HoxB1 and HoxD10 elicit either small and transient or no effects on noradrenergic differentiation, suggesting a selective effect of HoxB8. These results implicate that Hox genes contribute to the differential development of autonomic neuron precursors by maintaining noradrenergic properties in the trunk sympathetic neuron lineage.
Collapse
Affiliation(s)
- Leslie Huber
- Research Group Developmental Neurobiology, Max Planck Institute for Brain Research, Frankfurt/Main, Germany
| | | | | | | | | |
Collapse
|
43
|
Flames N, Hobert O. Transcriptional Control of the Terminal Fate of Monoaminergic Neurons. Annu Rev Neurosci 2011; 34:153-84. [DOI: 10.1146/annurev-neuro-061010-113824] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nuria Flames
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
- Genes & Disease Program, Center for Genomic Regulation (CRG), Barcelona, Spain E-08003;
- Present address: Instituto de Biomedicina de Valencia IBV-CSIC, E-46010 Valencia, Spain
| | - Oliver Hobert
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University Medical Center, New York, New York 10032;
| |
Collapse
|
44
|
Schmidt M, Huber L, Majdazari A, Schütz G, Williams T, Rohrer H. The transcription factors AP-2β and AP-2α are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol 2011; 355:89-100. [DOI: 10.1016/j.ydbio.2011.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/26/2022]
|
45
|
Zakhary SM, Ayubcha D, Ansari F, Kamran K, Karim M, Leheste JR, Horowitz JM, Torres G. A behavioral and molecular analysis of ketamine in zebrafish. Synapse 2011; 65:160-7. [PMID: 20623473 DOI: 10.1002/syn.20830] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ketamine exerts powerful anesthetic, psychotic, and antidepressant effects in both healthy volunteers and clinically depressed patients. Although ketamine targets particular glutamate receptors, there is a dearth of evidence for additional, alternative molecular substrates for the behavioral actions of this N-methyl-D-aspartate (NMDA) receptor antagonist drug. Here, we provide behavioral and molecular evidence for the actions of ketamine using a new vertebrate model for psychiatric disorders: the zebrafish. Subanesthetic doses of ketamine produced a variety of abnormal behaviors in zebrafish that were qualitatively analogous to those previously measured in humans and rodents treated with drugs that produce transient psychosis. In addition, we revealed that the transcription factor Phox2b is a molecular substrate for the actions of ketamine, particularly during periods of hypoxic stress. Finally, we also show that SIRT1, a histone deacetylase widely recognized for its link to cell survival is also affected by hypoxia crises. These results establish a relevant assay system in which the effects of psychotomimetic drugs can rapidly be assessed, and provide a plausible and novel neuronal mechanism through which ketamine affects critical sensory circuits that monitor breathing behavior.
Collapse
Affiliation(s)
- Sherry M Zakhary
- Department of Neuroscience and Histology, New York College of Osteopathic Medicine of New York Institute of Technology, Old Westbury, New York 11568, USA
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Hashimoto Y, Tsutsumi M, Myojin R, Maruta K, Onoda F, Tashiro F, Ohtsu M, Murakami Y. Interaction of Hand2 and E2a is important for transcription of Phox2b in sympathetic nervous system neuron differentiation. Biochem Biophys Res Commun 2011; 408:38-44. [PMID: 21453680 DOI: 10.1016/j.bbrc.2011.03.113] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 01/02/2023]
Abstract
Transcription factors play a crucial role in the development of various tissues. In particular, the transcription factors of the basic helix-loop-helix (bHLH) family are crucial regulators of neurodifferentiation. Previous studies suggested that the bHLH transcription factor Hand2 is essential for sympathetic nervous system neuron differentiation in vivo, but the molecular mechanisms involved have not been well elucidated. It is important for understanding their mode of action in cellular differentiation to clarify how these bHLH factors regulate distinct transcriptional targets in a temporally and spatially controlled manner. Recent reports on ES cell differentiation suggested that its molecular mechanism mimics that of in vivo neurogenesis. However, the diverse nature of ES cell populations has prevented efficient analysis. To address this issue, we previously established a cell line in P19 embryonal carcinoma (EC) cells. Efficient sympathetic nervous system (SNS) neuron differentiation is induced in the cell line. Using this cell line, we succeeded in showing that the interaction of bHLH transcription factor Hand2 with E2a is required for transcription of Phox2b, which is essential for autonomic nervous system neuron development, and this binding activates this expression in SNS differentiation. Moreover, we also demonstrated that Hes5 regulated the transcription of Phox2b as a negative regulator and it inhibited the SNS differentiation. These findings have enabled us to determine the novel regulatory mechanism of Phox2b in SNS differentiation.
Collapse
Affiliation(s)
- Yusuke Hashimoto
- Faculty of Industrial Science and Technology, Department of Biological Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda-shi, Chiba 278-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Cytokines inhibit norepinephrine transporter expression by decreasing Hand2. Mol Cell Neurosci 2011; 46:671-80. [PMID: 21241805 DOI: 10.1016/j.mcn.2011.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/16/2010] [Accepted: 01/08/2011] [Indexed: 11/22/2022] Open
Abstract
Functional noradrenergic transmission requires the coordinate expression of enzymes involved in norepinephrine (NE) synthesis, as well as the norepinephrine transporter (NET) which removes NE from the synapse. Inflammatory cytokines acting through gp130 can suppress the noradrenergic phenotype in sympathetic neurons. This occurs in a subset of sympathetic neurons during development and also occurs in adult neurons after injury. For example, cytokines suppress noradrenergic function in sympathetic neurons after axotomy and during heart failure. The molecular basis for suppression of noradrenergic genes is not well understood, but previous studies implicated a reduction of Phox2a in cytokine suppression of dopamine beta hydroxylase. We used sympathetic neurons and neuroblastoma cells to investigate the role of Phox2a in cytokine suppression of NET transcription. Chromatin immunoprecipitation experiments revealed that Phox2a did not bind the NET promoter, and overexpression of Phox2a did not prevent cytokine suppression of NET transcription. Hand2 and Gata3 are transcription factors that induce noradrenergic genes during development and are present in mature sympathetic neurons. Both Hand2 and Gata3 were decreased by cytokines in sympathetic neurons and neuroblastoma cells. Overexpression of either Hand2 or Gata3 was sufficient to rescue NET transcription following suppression by cytokines. We examined expression of these genes following axotomy to determine if their expression was altered following nerve injury. NET and Hand2 mRNAs decreased significantly in sympathetic neurons 48 h after axotomy, but Gata3 mRNA was unchanged. These data suggest that cytokines can inhibit NET expression through downregulation of Hand2 or Gata3 in cultured sympathetic neurons, but axotomy in adult animals selectively suppresses Hand2 expression.
Collapse
|
48
|
Coppola E, d'Autréaux F, Rijli FM, Brunet JF. Ongoing roles of Phox2 homeodomain transcription factors during neuronal differentiation. Development 2010; 137:4211-20. [PMID: 21068058 DOI: 10.1242/dev.056747] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Transcriptional determinants of neuronal identity often stay expressed after their downstream genetic program is launched. Whether this maintenance of expression plays a role is for the most part unknown. Here, we address this question for the paralogous paired-like homeobox genes Phox2a and Phox2b, which specify several classes of visceral neurons at the progenitor stage in the central and peripheral nervous systems. By temporally controlled inactivation of Phox2b, we find that the gene, which is required in ventral neural progenitors of the hindbrain for the production of branchio-visceral motoneuronal precursors, is also required in these post-mitotic precursors to maintain their molecular signature - including downstream transcription factors - and allow their tangential migration and the histogenesis of the corresponding nuclei. Similarly, maintenance of noradrenergic differentiation during embryogenesis requires ongoing expression of Phox2b in sympathetic ganglia, and of Phox2a in the main noradrenergic center, the locus coeruleus. These data illustrate cases where the neuronal differentiation program does not unfold as a transcriptional `cascade' whereby downstream events are irreversibly triggered by an upstream regulator, but instead require continuous transcriptional input from it.
Collapse
Affiliation(s)
- Eva Coppola
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Paris, France
| | | | | | | |
Collapse
|
49
|
The Gata3 transcription factor is required for the survival of embryonic and adult sympathetic neurons. J Neurosci 2010; 30:10833-43. [PMID: 20702712 DOI: 10.1523/jneurosci.0175-10.2010] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcription factor Gata3 is essential for the development of sympathetic neurons and adrenal chromaffin cells. As Gata3 expression is maintained up to the adult stage, we addressed its function in differentiated sympathoadrenal cells at embryonic and adult stages by conditional Gata3 elimination. Inactivation of Gata3 in embryonic DBH-expressing neurons elicits a strong reduction in neuron numbers due to apoptotic cell death and reduced proliferation. No selective effect on noradrenergic gene expression (TH and DBH) was observed. Interestingly, Gata3 elimination in DBH-expressing neurons of adult animals also results in a virtually complete loss of sympathetic neurons. In the Gata3-deficient population, the expression of anti-apoptotic genes (Bcl-2, Bcl-xL, and NFkappaB) is diminished, whereas the expression of pro-apoptotic genes (Bik, Bok, and Bmf) was increased. The expression of noradrenergic genes (TH and DBH) is not affected. These results demonstrate that Gata3 is continuously required for maintaining survival but not differentiation in the sympathetic neuron lineage up to mature neurons of adult animals.
Collapse
|
50
|
Yin C, Kikuchi K, Hochgreb T, Poss KD, Stainier DYR. Hand2 regulates extracellular matrix remodeling essential for gut-looping morphogenesis in zebrafish. Dev Cell 2010; 18:973-84. [PMID: 20627079 DOI: 10.1016/j.devcel.2010.05.009] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 02/19/2010] [Accepted: 03/24/2010] [Indexed: 12/19/2022]
Abstract
Extracellular matrix (ECM) remodeling is critical for organogenesis, yet its molecular regulation is poorly understood. In zebrafish, asymmetric migration of the epithelial lateral plate mesoderm (LPM) displaces the gut leftward, allowing correct placement of the liver and pancreas. To observe LPM migration at cellular resolution, we transgenically expressed EGFP under the control of the regulatory sequences of the bHLH transcription factor gene hand2. We found that laminin is distributed along the LPM/gut boundary during gut looping, and that it appears to become diminished by the migrating hand2-expressing cells. Laminin diminishment is necessary for LPM migration and is dependent on matrix metalloproteinase (MMP) activity. Loss of Hand2 function causes reduced MMP activity and prolonged laminin deposition at the LPM/gut boundary, leading to failed asymmetric LPM migration and gut looping. Our study reveals an unexpected role for Hand2, a key regulator of cell specification and differentiation, in modulating ECM remodeling during organogenesis.
Collapse
Affiliation(s)
- Chunyue Yin
- Department of Biochemistry and Biophysics, Programs in Developmental Biology, Genetics, and Human Genetics, Cardiovascular Research Institute, Liver Center, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|