1
|
Bowden S, Brislinger-Engelhardt MM, Hansen M, Temporal-Plo A, Weber D, Hägele S, Lorenz F, Litwin T, Kreutz C, Walentek P. Foxi1 regulates multiple steps of mucociliary development and ionocyte specification through transcriptional and epigenetic mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620464. [PMID: 39484493 PMCID: PMC11527170 DOI: 10.1101/2024.10.27.620464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Foxi1 is a master regulator of ionocytes (ISCs / INCs) across species and organs. Two subtypes of ISCs exist, and both α- and β-ISCs regulate pH- and ion-homeostasis in epithelia. Gain and loss of FOXI1 function are associated with human diseases, including Pendred syndrome, male infertility, renal acidosis and cancers. Foxi1 functions were predominantly studied in the context of ISC specification, however, reports indicate additional functions in early and ectodermal development. Here, we re-investigated the functions of Foxi1 in Xenopus laevis embryonic mucociliary epidermis development and found a novel function for Foxi1 in the generation of Notch-ligand expressing mucociliary multipotent progenitors (MPPs). We demonstrate that Foxi1 has multiple concentration-dependent functions: At low levels, Foxi1 confers ectodermal competence through transcriptional and epigenetic mechanisms, while at high levels, Foxi1 induces a multi-step process of ISC specification and differentiation. We further describe how foxi1 expression is affected through auto- and Notch-regulation, how Ubp1 and Dmrt2 regulate ISC subtype differentiation, and how this developmental program affects Notch signaling as well as mucociliary patterning. Together, we reveal novel functions for Foxi1 in Xenopus mucociliary epidermis formation, relevant to our understanding of vertebrate development and human disease.
Collapse
Affiliation(s)
- Sarah Bowden
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Magdalena Maria Brislinger-Engelhardt
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Mona Hansen
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Africa Temporal-Plo
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Damian Weber
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Sandra Hägele
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Fabian Lorenz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Tim Litwin
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Clemens Kreutz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| |
Collapse
|
2
|
Brislinger-Engelhardt MM, Lorenz F, Haas M, Bowden S, Tasca A, Kreutz C, Walentek P. Temporal Notch signaling regulates mucociliary cell fates through Hes-mediated competitive de-repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528675. [PMID: 36824900 PMCID: PMC9949065 DOI: 10.1101/2023.02.15.528675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Tissue functions are determined by the types and ratios of cells present, but little is known about self-organizing principles establishing correct cell type compositions. Mucociliary airway clearance relies on the correct balance between secretory and ciliated cells, which is regulated by Notch signaling across mucociliary systems. Using the airway-like Xenopus epidermis, we investigate how cell fates depend on signaling, how signaling levels are controlled, and how Hes transcription factors regulate cell fates. We show that four mucociliary cell types each require different Notch levels and that their specification is initiated sequentially by a temporal Notch gradient. We describe a novel role for Foxi1 in the generation of Delta-expressing multipotent progenitors through Hes7.1. Hes7.1 is a weak repressor of mucociliary genes and overcomes maternal repression by the strong repressor Hes2 to initiate mucociliary development. Increasing Notch signaling then inhibits Hes7.1 and activates first Hes4, then Hes5.10, which selectively repress cell fates. We have uncovered a self-organizing mechanism of mucociliary cell type composition by competitive de-repression of cell fates by a set of differentially acting repressors. Furthermore, we present an in silico model of this process with predictive abilities.
Collapse
Affiliation(s)
- Magdalena Maria Brislinger-Engelhardt
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Fabian Lorenz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Institute of Medicine and Medical Center Freiburg, Stefan-Meier Strasse 26, 79104 Freiburg, Germany
| | - Maximilian Haas
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Sarah Bowden
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Alexia Tasca
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Clemens Kreutz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Institute of Medicine and Medical Center Freiburg, Stefan-Meier Strasse 26, 79104 Freiburg, Germany
| | - Peter Walentek
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
3
|
Johnson K, Freedman S, Braun R, LaBonne C. Quantitative analysis of transcriptome dynamics provides novel insights into developmental state transitions. BMC Genomics 2022; 23:723. [PMID: 36273135 PMCID: PMC9588240 DOI: 10.1186/s12864-022-08953-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND During embryogenesis, the developmental potential of initially pluripotent cells becomes progressively restricted as they transit to lineage restricted states. The pluripotent cells of Xenopus blastula-stage embryos are an ideal system in which to study cell state transitions during developmental decision-making, as gene expression dynamics can be followed at high temporal resolution. RESULTS Here we use transcriptomics to interrogate the process by which pluripotent cells transit to four different lineage-restricted states: neural progenitors, epidermis, endoderm and ventral mesoderm, providing quantitative insights into the dynamics of Waddington's landscape. Our findings provide novel insights into why the neural progenitor state is the default lineage state for pluripotent cells and uncover novel components of lineage-specific gene regulation. These data reveal an unexpected overlap in the transcriptional responses to BMP4/7 and Activin signaling and provide mechanistic insight into how the timing of signaling inputs such as BMP are temporally controlled to ensure correct lineage decisions. CONCLUSIONS Together these analyses provide quantitative insights into the logic and dynamics of developmental decision making in early embryos. They also provide valuable lineage-specific time series data following the acquisition of specific lineage states during development.
Collapse
Affiliation(s)
- Kristin Johnson
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Simon Freedman
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering Sciences and Applied Math, Northwestern University, Evanston, IL, USA
| | - Rosemary Braun
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Engineering Sciences and Applied Math, Northwestern University, Evanston, IL, USA
- Northwestern Institute On Complex Systems, Northwestern University, Evanston, IL, USA
| | - Carole LaBonne
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, USA.
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
4
|
Paraiso KD, Cho JS, Yong J, Cho KWY. Early Xenopus gene regulatory programs, chromatin states, and the role of maternal transcription factors. Curr Top Dev Biol 2020; 139:35-60. [PMID: 32450966 PMCID: PMC11344482 DOI: 10.1016/bs.ctdb.2020.02.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
For decades, the early development of the Xenopus embryo has been an essential model system to study the gene regulatory mechanisms that govern cellular specification. At the top of the hierarchy of gene regulatory networks, maternally deposited transcription factors initiate this process and regulate the expression of zygotic genes that give rise to three distinctive germ layer cell types (ectoderm, mesoderm, and endoderm), and subsequent generation of organ precursors. The onset of germ layer specification is also closely coupled with changes associated with chromatin modifications. This review will examine the timing of maternal transcription factors initiating the zygotic genome activation, the epigenetic landscape of embryonic chromatin, and the network structure that governs the process.
Collapse
Affiliation(s)
- Kitt D Paraiso
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States
| | - Jin S Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Junseok Yong
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States; Center for Complex Biological Systems, University of California, Irvine, CA, United States.
| |
Collapse
|
5
|
Reich S, Weinstein DC. Repression of Inappropriate Gene Expression in the Vertebrate Embryonic Ectoderm. Genes (Basel) 2019; 10:E895. [PMID: 31698780 PMCID: PMC6895975 DOI: 10.3390/genes10110895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/28/2019] [Accepted: 11/04/2019] [Indexed: 01/01/2023] Open
Abstract
During vertebrate embryogenesis, precise regulation of gene expression is crucial for proper cell fate determination. Much of what we know about vertebrate development has been gleaned from experiments performed on embryos of the amphibian Xenopus laevis; this review will focus primarily on studies of this model organism. An early critical step during vertebrate development is the formation of the three primary germ layers-ectoderm, mesoderm, and endoderm-which emerge during the process of gastrulation. While much attention has been focused on the induction of mesoderm and endoderm, it has become clear that differentiation of the ectoderm involves more than the simple absence of inductive cues; rather, it additionally requires the inhibition of mesendoderm-promoting genes. This review aims to summarize our current understanding of the various inhibitors of inappropriate gene expression in the presumptive ectoderm.
Collapse
Affiliation(s)
- Shoshana Reich
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
| | - Daniel C. Weinstein
- PhD Program in Biology, The Graduate Center, The City University of New York, New York, NY 10016, USA
- Department of Biology, Queens College, The City University of New York, Queens, NY 11367, USA
| |
Collapse
|
6
|
Sittewelle M, Monsoro-Burq AH. AKT signaling displays multifaceted functions in neural crest development. Dev Biol 2018; 444 Suppl 1:S144-S155. [PMID: 29859890 DOI: 10.1016/j.ydbio.2018.05.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/24/2018] [Accepted: 05/29/2018] [Indexed: 12/23/2022]
Abstract
AKT signaling is an essential intracellular pathway controlling cell homeostasis, cell proliferation and survival, as well as cell migration and differentiation in adults. Alterations impacting the AKT pathway are involved in many pathological conditions in human disease. Similarly, during development, multiple transmembrane molecules, such as FGF receptors, PDGF receptors or integrins, activate AKT to control embryonic cell proliferation, migration, differentiation, and also cell fate decisions. While many studies in mouse embryos have clearly implicated AKT signaling in the differentiation of several neural crest derivatives, information on AKT functions during the earliest steps of neural crest development had remained relatively scarce until recently. However, recent studies on known and novel regulators of AKT signaling demonstrate that this pathway plays critical roles throughout the development of neural crest progenitors. Non-mammalian models such as fish and frog embryos have been instrumental to our understanding of AKT functions in neural crest development, both in neural crest progenitors and in the neighboring tissues. This review combines current knowledge acquired from all these different vertebrate animal models to describe the various roles of AKT signaling related to neural crest development in vivo. We first describe the importance of AKT signaling in patterning the tissues involved in neural crest induction, namely the dorsal mesoderm and the ectoderm. We then focus on AKT signaling functions in neural crest migration and differentiation.
Collapse
Affiliation(s)
- Méghane Sittewelle
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France
| | - Anne H Monsoro-Burq
- Univ. Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Centre Universitaire, 15, rue Georges Clémenceau, F-91405 Orsay, France; Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, F-91405 Orsay, France; Institut Universitaire de France, F-75005 Paris, France.
| |
Collapse
|
7
|
Sindelka R, Abaffy P, Qu Y, Tomankova S, Sidova M, Naraine R, Kolar M, Peuchen E, Sun L, Dovichi N, Kubista M. Asymmetric distribution of biomolecules of maternal origin in the Xenopus laevis egg and their impact on the developmental plan. Sci Rep 2018; 8:8315. [PMID: 29844480 PMCID: PMC5974320 DOI: 10.1038/s41598-018-26592-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/24/2022] Open
Abstract
Asymmetric cell division is a ubiquitous feature during the development of higher organisms. Asymmetry is achieved by differential localization or activities of biological molecules such as proteins, and coding and non-coding RNAs. Here, we present subcellular transcriptomic and proteomic analyses along the animal-vegetal axis of Xenopus laevis eggs. More than 98% of the maternal mRNAs could be categorized into four localization profile groups: animal, vegetal, extremely vegetal, and a newly described group of mRNAs that we call extremely animal, which are mRNAs enriched in the animal cortex region. 3′UTRs of localized mRNAs were analyzed for localization motifs. Several putative motifs were discovered for vegetal and extremely vegetal mRNAs, while no distinct conserved motifs for the extremely animal mRNAs were identified, suggesting different localization mechanisms. Asymmetric profiles were also found for proteins, with correlation to those of corresponding mRNAs. Based on unexpected observation of the profiles of the homoeologous genes exd2 we propose a possible mechanism of genetic evolution.
Collapse
Affiliation(s)
- Radek Sindelka
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.
| | - Pavel Abaffy
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Yanyan Qu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Silvie Tomankova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Monika Sidova
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Ravindra Naraine
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic
| | - Michal Kolar
- Institute of Molecular Genetics, Videnska 1083, 142 20, Prague 4, Czech Republic
| | - Elizabeth Peuchen
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Liangliang Sun
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA.,Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Norman Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Mikael Kubista
- Institute of Biotechnology of the Czech Academy of Sciences - BIOCEV, Prumyslova 595, Vestec, 252 50, Czech Republic.,TATAA Biocenter, Odinsgatan 28, Göteborg, 411 03, Sweden
| |
Collapse
|
8
|
Teegala S, Chauhan R, Lei E, Weinstein DC. Tbx2 is required for the suppression of mesendoderm during early Xenopus development. Dev Dyn 2018; 247:903-913. [PMID: 29633424 DOI: 10.1002/dvdy.24633] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/14/2018] [Accepted: 03/31/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND T-box family proteins are DNA-binding transcriptional regulators that play crucial roles during germ layer formation in the early vertebrate embryo. Well-characterized members of this family, including the transcriptional activators Brachyury and VegT, are essential for the proper formation of mesoderm and endoderm, respectively. To date, T-box proteins have not been shown to play a role in the promotion of the third primary germ layer, ectoderm. RESULTS Here, we report that the T-box factor Tbx2 is both sufficient and necessary for ectodermal differentiation in the frog Xenopus laevis. Tbx2 is expressed zygotically in the presumptive ectoderm, during blastula and gastrula stages. Ectopic expression of Tbx2 represses mesoderm and endoderm, while loss of Tbx2 leads to inappropriate expression of mesoderm- and endoderm-specific genes in the region fated to give rise to ectoderm. Misexpression of Tbx2 also promotes neural tissue in animal cap explants, suggesting that Tbx2 plays a role in both the establishment of ectodermal fate and its dorsoventral patterning. CONCLUSIONS Our studies demonstrate that Tbx2 functions as a transcriptional repressor during germ layer formation, and suggest that this activity is mediated in part through repression of target genes that are stimulated, in the mesendoderm, by transactivating T-box proteins. Taken together, our results point to a critical role for Tbx2 in limiting the potency of blastula-stage progenitor cells during vertebrate germ layer differentiation. Developmental Dynamics 247:903-913, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Sushma Teegala
- Department of Biology, The Graduate Center, City University of New York, New York.,Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Riddhi Chauhan
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Emily Lei
- Department of Biology, Queens College, City University of New York, Flushing, New York
| | - Daniel C Weinstein
- Department of Biology, Queens College, City University of New York, Flushing, New York
| |
Collapse
|
9
|
Tadjuidje E, Kofron M, Mir A, Wylie C, Heasman J, Cha SW. Nodal signalling in Xenopus: the role of Xnr5 in left/right asymmetry and heart development. Open Biol 2017; 6:rsob.150187. [PMID: 27488374 PMCID: PMC5008007 DOI: 10.1098/rsob.150187] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 07/01/2016] [Indexed: 01/05/2023] Open
Abstract
Nodal class TGF-β signalling molecules play essential roles in establishing the vertebrate body plan. In all vertebrates, nodal family members have specific waves of expression required for tissue specification and axis formation. In Xenopus laevis, six nodal genes are expressed before gastrulation, raising the question of whether they have specific roles or act redundantly with each other. Here, we examine the role of Xnr5. We find it acts at the late blastula stage as a mesoderm inducer and repressor of ectodermal gene expression, a role it shares with Vg1. However, unlike Vg1, Xnr5 depletion reduces the expression of the nodal family member xnr1 at the gastrula stage. It is also required for left/right laterality by controlling the expression of the laterality genes xnr1, antivin (lefty) and pitx2 at the tailbud stage. In Xnr5-depleted embryos, the heart field is established normally, but symmetrical reduction in Xnr5 levels causes a severely stunted midline heart, first evidenced by a reduction in cardiac troponin mRNA levels, while left-sided reduction leads to randomization of the left/right axis. This work identifies Xnr5 as the earliest step in the signalling pathway establishing normal heart laterality in Xenopus.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Department of Biological Sciences, Alabama State University, 1627 Hall Street, Montgomery, AL 36101, USA
| | - Matthew Kofron
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Adnan Mir
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Christopher Wylie
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Janet Heasman
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| | - Sang-Wook Cha
- Cincinnati Children's Research Foundation, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
10
|
Plouhinec JL, Medina-Ruiz S, Borday C, Bernard E, Vert JP, Eisen MB, Harland RM, Monsoro-Burq AH. A molecular atlas of the developing ectoderm defines neural, neural crest, placode, and nonneural progenitor identity in vertebrates. PLoS Biol 2017; 15:e2004045. [PMID: 29049289 PMCID: PMC5663519 DOI: 10.1371/journal.pbio.2004045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 10/31/2017] [Accepted: 09/29/2017] [Indexed: 12/18/2022] Open
Abstract
During vertebrate neurulation, the embryonic ectoderm is patterned into lineage progenitors for neural plate, neural crest, placodes and epidermis. Here, we use Xenopus laevis embryos to analyze the spatial and temporal transcriptome of distinct ectodermal domains in the course of neurulation, during the establishment of cell lineages. In order to define the transcriptome of small groups of cells from a single germ layer and to retain spatial information, dorsal and ventral ectoderm was subdivided along the anterior-posterior and medial-lateral axes by microdissections. Principal component analysis on the transcriptomes of these ectoderm fragments primarily identifies embryonic axes and temporal dynamics. This provides a genetic code to define positional information of any ectoderm sample along the anterior-posterior and dorsal-ventral axes directly from its transcriptome. In parallel, we use nonnegative matrix factorization to predict enhanced gene expression maps onto early and mid-neurula embryos, and specific signatures for each ectoderm area. The clustering of spatial and temporal datasets allowed detection of multiple biologically relevant groups (e.g., Wnt signaling, neural crest development, sensory placode specification, ciliogenesis, germ layer specification). We provide an interactive network interface, EctoMap, for exploring synexpression relationships among genes expressed in the neurula, and suggest several strategies to use this comprehensive dataset to address questions in developmental biology as well as stem cell or cancer research. Vertebrate embryo germ layers become progressively regionalized by evolutionarily conserved molecular processes. Catching the early steps of this dynamic spatial cell diversification at the scale of the transcriptome was challenging, even with the advent of efficient RNA sequencing. We have microdissected complementary and defined areas of a single germ layer, the developing ectoderm, and explored how the transcriptome changes over time and space in the ectoderm during the differentiation of frog epidermis, neural plate, and neural crest. We have created EctoMap, a searchable interface using these regional transcriptomes, to predict the expression of the 31 thousand genes expressed in neurulae and their networks of co-expression, predictive of functional relationships. Through several examples, we illustrate how these data provide insights in development, cancer, evolution and stem cell biology.
Collapse
Affiliation(s)
- Jean-Louis Plouhinec
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
| | - Sofía Medina-Ruiz
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Caroline Borday
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
| | - Elsa Bernard
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Jean-Philippe Vert
- MINES ParisTech, PSL Research University, CBIO - Centre for Computational Biology, Paris, France
- Institut Curie, INSERM U900, Paris, France
- INSERM U900, Paris, France
| | - Michael B. Eisen
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, California, United States of America
| | - Richard M. Harland
- Department of Molecular and Cell Biology, Division of Genetics, Genomics and Development Biology, University of California, Berkeley, Berkeley, California, United States of America
| | - Anne H. Monsoro-Burq
- Université Paris Sud, Université Paris Saclay, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Curie Research Division, PSL Research University, CNRS UMR 3347, INSERM U1021, Orsay, France
- Institut Universitaire de France, Paris, France
- * E-mail:
| |
Collapse
|
11
|
Kiecker C, Bates T, Bell E. Molecular specification of germ layers in vertebrate embryos. Cell Mol Life Sci 2016; 73:923-47. [PMID: 26667903 PMCID: PMC4744249 DOI: 10.1007/s00018-015-2092-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 10/11/2015] [Accepted: 11/09/2015] [Indexed: 11/17/2022]
Abstract
In order to generate the tissues and organs of a multicellular organism, different cell types have to be generated during embryonic development. The first step in this process of cellular diversification is the formation of the three germ layers: ectoderm, endoderm and mesoderm. The ectoderm gives rise to the nervous system, epidermis and various neural crest-derived tissues, the endoderm goes on to form the gastrointestinal, respiratory and urinary systems as well as many endocrine glands, and the mesoderm will form the notochord, axial skeleton, cartilage, connective tissue, trunk muscles, kidneys and blood. Classic experiments in amphibian embryos revealed the tissue interactions involved in germ layer formation and provided the groundwork for the identification of secreted and intracellular factors involved in this process. We will begin this review by summarising the key findings of those studies. We will then evaluate them in the light of more recent genetic studies that helped clarify which of the previously identified factors are required for germ layer formation in vivo, and to what extent the mechanisms identified in amphibians are conserved across other vertebrate species. Collectively, these studies have started to reveal the gene regulatory network (GRN) underlying vertebrate germ layer specification and we will conclude our review by providing examples how our understanding of this GRN can be employed to differentiate stem cells in a targeted fashion for therapeutic purposes.
Collapse
Affiliation(s)
- Clemens Kiecker
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Thomas Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Esther Bell
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK.
| |
Collapse
|
12
|
Gao Y, Cao Q, Lu L, Zhang X, Zhang Z, Dong X, Jia W, Cao Y. Kruppel-like factor family genes are expressed during Xenopus embryogenesis and involved in germ layer formation and body axis patterning. Dev Dyn 2015. [PMID: 26198170 DOI: 10.1002/dvdy.24310] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Kruppel-like factors (Klfs) are a family of transcription factors consisting of 17 members in mammals, Klf1-Klf17, which are involved in fundamental cellular physiological procedures, such as cell proliferation, differentiation, and apoptosis. However, their functions in embryonic development have been poorly understood. Our previous study has demonstrated that the pluripotency factor Klf4 participates in germ layer formation and axis patterning of Xenopus embryos by means of the regulation of key developmental signals. In the present study, we further investigated comprehensively the expression and functions of the klf family genes, klf2, klf5, klf6, klf7, klf8, klf11, klf15, and klf17, during the embryogenesis of Xenopus laevis. RESULTS Spatio-temporal expression analyses demonstrate that these genes are transcribed both maternally and zygotically in Xenopus embryos, and during organogenesis and tissue differentiation, they are localized to a variety of placodes and tissues. Gain and loss of function studies manifest that Klf factors play different roles in germ layer formation and body axis patterning. Moreover, each Klf factor exhibits distinct regulatory effects on the expression of genes that are essential for germ layer formation and body axis patterning. CONCLUSIONS These results suggest that Klf factors are involved in the fine-tuning of these genes during early embryogenesis.
Collapse
Affiliation(s)
- Yan Gao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Qing Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Lei Lu
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Xuena Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Zan Zhang
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Xiaohua Dong
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Wenshuang Jia
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| | - Ying Cao
- Model Animal Research Center of Nanjing University and MOE Key Laboratory of Model Animals for Disease Study, Pukou High-Tech Zone, Nanjing, China
| |
Collapse
|
13
|
Katz Imberman S, Kolpakova A, Keren A, Bengal E. Myocyte enhancer factor 2D regulates ectoderm specification and adhesion properties of animal cap cells in the early Xenopus embryo. FEBS J 2015; 282:2930-47. [PMID: 26038288 DOI: 10.1111/febs.13331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/21/2015] [Accepted: 05/29/2015] [Indexed: 11/28/2022]
Abstract
In Xenopus, animal cap (AC) cells give rise to ectoderm and its derivatives: epidermis and the central nervous system. Ectoderm has long been considered a default pathway of embryonic development, with cells that are not under the influence of vegetal Nodal signaling adopting an ectodermal program of gene expression. In the present study, we describe the involvement of the animally-localized maternal transcription factor myocyte enhancer factor (Mef) 2D in regulating the identity of AC cells. We find that Mef2D is required for the formation of both ectodermal lineages: neural and epidermis. Gain and loss of function experiments indicate that Mef2D regulates early gastrula expression of key ectodermal/epidermal genes in the animal region. Mef2D controls the activity of zygotic bone morphogenetic protein (BMP) signaling known to dictate the epidermal differentiation program. Exogenous expression of Mef2D in vegetal blastomeres was sufficient to induce ectopic expression of ectoderm/epidermal genes in the vegetal half of the embryo, when Nodal signaling was inhibited. Depletion of Mef2D caused a loss of AC cell adhesion that was rescued by the expression of E-cadherin or bone morphogenetic protein 4. In addition, expression of Mef2D in the prospective endoderm caused unusual aggregation of vegetal cells with animal cells in vitro and inappropriate segregation to other germ layers in vivo. Mef2D cooperates with another animally-expressed transcription factor, FoxI1e. Together, they regulate the expression of genes encoding signaling proteins and the transcription factors that control the regional identity of animal cells. Therefore, we describe a new role for the animally-localized Mef2D protein in early ectoderm specification, which is similar to that of the vegetally-localized VegT in endoderm and mesoderm formation.
Collapse
Affiliation(s)
- Sandra Katz Imberman
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Alina Kolpakova
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Aviad Keren
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Eyal Bengal
- Department of Biochemistry, Rappaport Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
14
|
PFKFB4 controls embryonic patterning via Akt signalling independently of glycolysis. Nat Commun 2015; 6:5953. [PMID: 25601028 DOI: 10.1038/ncomms6953] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 11/26/2014] [Indexed: 12/25/2022] Open
Abstract
How metabolism regulators play roles during early development remains elusive. Here we show that PFKFB4 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 4), a glycolysis regulator, is critical for controlling dorsal ectoderm global patterning in gastrulating frog embryos via a non-glycolytic function. PFKFB4 is required for dorsal ectoderm progenitors to proceed towards more specified fates including neural and non-neural ectoderm, neural crest or placodes. This function is mediated by Akt signalling, a major pathway that integrates cell homeostasis and survival parameters. Restoring Akt signalling rescues the loss of PFKFB4 in vivo. In contrast, glycolysis is not essential for frog development at this stage. Our study reveals the existence of a PFKFB4-Akt checkpoint that links cell homeostasis to the ability of progenitor cells to undergo differentiation, and uncovers glycolysis-independent functions of PFKFB4.
Collapse
|
15
|
Takahashi C, Kusakabe M, Suzuki T, Miyatake K, Nishida E. mab21-l3 regulates cell fate specification of multiciliate cells and ionocytes. Nat Commun 2015; 6:6017. [DOI: 10.1038/ncomms7017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 12/02/2014] [Indexed: 01/26/2023] Open
|
16
|
Castillo-Briceno P, Kodjabachian L. Xenopus embryonic epidermis as a mucociliary cellular ecosystem to assess the effect of sex hormones in a non-reproductive context. Front Zool 2014; 11:9. [PMID: 24502321 PMCID: PMC4015847 DOI: 10.1186/1742-9994-11-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/28/2014] [Indexed: 12/15/2022] Open
Abstract
Background How important are sexual hormones beyond their function in reproductive biology has yet to be understood. In this study, we analyzed the effects of sex steroids on the biology of the embryonic amphibian epidermis, which represents an easily amenable model of non-reproductive mucociliary epithelia (MCE). MCE are integrated systems formed by multiciliated (MC), mucus-secreting (MS) and mitochondrion-rich (MR) cell populations that are shaped by their microenvironment. Therefore, MCE could be considered as ecosystems at the cellular scale, found in a wide array of contexts from mussel gills to mammalian oviduct. Results We showed that the natural estrogen (estradiol, E2) and androgen (testosterone, T) as well as the synthetic estrogen (ethinyl-estradiol, EE2), all induced a significant enhancement of MC cell numbers. The effect of E2, T and EE2 extended to the MS and MR cell populations, to varying degrees. They also modified the expression profile of RNA MCE markers, and induced a range of “non-typical” cellular phenotypes, with mixed identities and aberrant morphologies, as revealed by imaging analysis through biomarker confocal detection and scanning electron microscopy. Finally, these hormones also affected tadpole pigmentation, revealing an effect on the entire cellular ecosystem of the Xenopus embryonic skin. Conclusions This study reveals the impact in vivo, at the molecular, cellular, tissue and organism levels, of sex steroids on non-reproductive mucociliary epithelium biogenesis, and validates the use of Xenopus as a relevant model system in this field.
Collapse
Affiliation(s)
- Patricia Castillo-Briceno
- Aix-Marseille Université, CNRS UMR 7288, IBDM, Campus de Luminy Case 907, 13288 Marseille Cedex 9, France.
| | | |
Collapse
|
17
|
Par6b regulates the dynamics of apicobasal polarity during development of the stratified Xenopus epidermis. PLoS One 2013; 8:e76854. [PMID: 24204686 PMCID: PMC3800127 DOI: 10.1371/journal.pone.0076854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Accepted: 08/28/2013] [Indexed: 11/30/2022] Open
Abstract
During early vertebrate development, epithelial cells establish and maintain apicobasal polarity, failure of which can cause developmental defects or cancer metastasis. This process has been mostly studied in simple epithelia that have only one layer of cells, but is poorly understood in stratified epithelia. In this paper we address the role of the polarity protein Partitioning defective-6 homolog beta (Par6b) in the developing stratified epidermis of Xenopus laevis. At the blastula stage, animal blastomeres divide perpendicularly to the apicobasal axis to generate partially polarized superficial cells and non-polarized deep cells. Both cell populations modify their apicobasal polarity during the gastrula stage, before differentiating into the superficial and deep layers of epidermis. Early differentiation of the epidermis is normal in Par6b-depleted embryos; however, epidermal cells dissociate and detach from embryos at the tailbud stage. Par6b-depleted epidermal cells exhibit a significant reduction in basolaterally localized E-cadherin. Examination of the apical marker Crumbs homolog 3 (Crb3) and the basolateral marker Lethal giant larvae 2 (Lgl2) after Par6b depletion reveals that Par6b cell-autonomously regulates the dynamics of apicobasal polarity in both superficial and deep epidermal layers. Par6b is required to maintain the “basolateral” state in both epidermal layers, which explains the reduction of basolateral adhesion complexes and epidermal cells shedding.
Collapse
|
18
|
Bates TJD, Vonica A, Heasman J, Brivanlou AH, Bell E. Coco regulates dorsoventral specification of germ layers via inhibition of TGFβ signalling. Development 2013; 140:4177-81. [PMID: 24026124 DOI: 10.1242/dev.095521] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
One of the earliest steps in embryonic development is the specification of the germ layers, the subdivision of the blastula embryo into endoderm, mesoderm and ectoderm. Maternally expressed members of the Transforming Growth Factor β (TGFβ) family influence all three germ layers; the ligands are required to induce endoderm and mesoderm, whereas inhibitors are required for formation of the ectoderm. Here, we demonstrate a vital role for maternal Coco, a secreted antagonist of TGFβ signalling, in this process. We show that Coco is required to prevent Activin and Nodal signals in the dorsal marginal side of the embryo from invading the prospective ectoderm, thereby restricting endoderm- and mesoderm-inducing signals to the vegetal and marginal zones of the pre-gastrula Xenopus laevis embryo.
Collapse
Affiliation(s)
- Thomas J D Bates
- MRC Centre for Developmental Neurobiology, King's College London, Guy's Campus, London SE1 1UL, UK
| | | | | | | | | |
Collapse
|
19
|
Bertocchini F, Stern CD. Gata2 provides an early anterior bias and uncovers a global positioning system for polarity in the amniote embryo. Development 2013; 139:4232-8. [PMID: 23093427 DOI: 10.1242/dev.081901] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The first axis to be specified during vertebrate development is that between the site where gastrulation will begin and the opposite pole of the embryo (dorsoventral axis in amphibians and fish, anteroposterior in amniotes). This relies on Nodal activity, but different vertebrates differ in how this activity is positioned. In chick, the earliest known asymmetry is posterior expression of the TGFβ-related factor Vg1, close to the future Nodal expression domain. Here we show that the transcription factor Gata2 is expressed anteriorly before this stage. Gata2 influences the site of primitive streak formation and its role is independent from, and upstream of, Vg1 and Wnt. However, although Vg1 is required for streak formation, Gata2 does not act as an absolute anterior specifier, but provides an anterior bias. These findings point to previously unsuspected global determinants of polarity of the early amniote embryo.
Collapse
Affiliation(s)
- Federica Bertocchini
- Department of Cell and Developmental Biology, University College London, Gower Street, London, UK.
| | | |
Collapse
|
20
|
Abstract
The Wnt pathway is a major embryonic signaling pathway that controls cell proliferation, cell fate, and body-axis determination in vertebrate embryos. Soon after egg fertilization, Wnt pathway components play a role in microtubule-dependent dorsoventral axis specification. Later in embryogenesis, another conserved function of the pathway is to specify the anteroposterior axis. The dual role of Wnt signaling in Xenopus and zebrafish embryos is regulated at different developmental stages by distinct sets of Wnt target genes. This review highlights recent progress in the discrimination of different signaling branches and the identification of specific pathway targets during vertebrate axial development.
Collapse
Affiliation(s)
- Hiroki Hikasa
- Division of Cancer Genetics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | | |
Collapse
|
21
|
Abstract
Despite its complexity in the adult, during development the inner ear arises from a simple epithelium, the otic placode. Placode specification is a multistep process that involves the integration of various signalling pathways and downstream transcription factors in time and space. Here we review the molecular events that successively commit multipotent ectodermal precursors to the otic lineage. The first step in this hierarchy is the specification of sensory progenitor cells, which can contribute to all sensory placodes, followed by the induction of a common otic-epibranchial field and finally the establishment the otic territory. In recent years, some of the molecular components that control this process have been identified, and begin to reveal complex interactions. Future studies will need to unravel how this information is integrated and encoded in the genome. This will form the blueprint for stem cell differentiation towards otic fates and generate a predictive gene regulatory network that models the earliest steps of otic specification.
Collapse
Affiliation(s)
- Jingchen Chen
- Department of Craniofacial Development and Stem Cell Biology, King's College London, Guy's Tower Wing, Floor 27, London SE1 9RT, UK
| | | |
Collapse
|
22
|
Kim K, Lake BB, Haremaki T, Weinstein DC, Sokol SY. Rab11 regulates planar polarity and migratory behavior of multiciliated cells in Xenopus embryonic epidermis. Dev Dyn 2012; 241:1385-95. [PMID: 22778024 PMCID: PMC4009926 DOI: 10.1002/dvdy.23826] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2012] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Xenopus embryonic skin is composed of the superficial layer with defined apicobasal polarity and the inner layer lacking the apical domain. Multiciliated cells (MCCs) originate in the inner layer of the epidermal ectoderm and subsequently migrate to the surface. How MCCs acquire the apicobasal polarity and intercalate into the superficial layer during neurulation is largely unknown. As Rab11-dependent vesicle trafficking has been implicated in ciliary membrane assembly and in apical domain formation in epithelial cells, we assessed the involvement of Rab11 in MCC development. RESULTS Here we report that Rab11 is specifically enriched and becomes apically polarized in skin MCCs. Interference with Rab11 function by overexpression of a dominant negative mutant or injection of a specific morpholino oligonucleotide inhibited MCC intercalation into the superficial layer. Dominant negative Rab11-expressing MCC precursors revealed intrinsic apicobasal polarity, characterized by the apical domain, which is not normally observed in inner layer cells. Despite the presence of the apical domain, the cells with inhibited Rab11 function were randomly oriented relative to the plane of the tissue, thereby demonstrating a defect in planar polarity. CONCLUSIONS These results establish a requirement for Rab11 in MCC development and support a two-step model, in which the initial polarization of MCC precursors is critical for their integration into the superficial cell layer.
Collapse
Affiliation(s)
- Kyeongmi Kim
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | | | | | |
Collapse
|
23
|
Cao JM, Li SQ, Zhang HW, Shi DL. High mobility group B proteins regulate mesoderm formation and dorsoventral patterning during zebrafish and Xenopus early development. Mech Dev 2012; 129:263-74. [DOI: 10.1016/j.mod.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 06/29/2012] [Accepted: 07/02/2012] [Indexed: 10/28/2022]
|
24
|
Cha SW, McAdams M, Kormish J, Wylie C, Kofron M. Foxi2 is an animally localized maternal mRNA in Xenopus, and an activator of the zygotic ectoderm activator Foxi1e. PLoS One 2012; 7:e41782. [PMID: 22848601 PMCID: PMC3407068 DOI: 10.1371/journal.pone.0041782] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/25/2012] [Indexed: 01/27/2023] Open
Abstract
Foxi1e is a zygotic transcription factor that is essential for the expression of early ectodermal genes. It is expressed in a highly specific pattern, only in the deep cell layers of the animal hemisphere, and in a mosaic pattern in which expressing cells are interspersed with non-expressing cells. Previous work has shown that several signals in the blastula control this expression pattern, including nodals, the TGFβ family member Vg1, and Notch. However, these are all inhibitory, which raises the question of what activates Foxi1e. In this work, we show that a related Forkhead family protein, Foxi2, is a maternal activator of Foxi1e. Foxi2 mRNA is maternally encoded, and highly enriched in animal hemisphere cells of the blastula. ChIP assays show that it acts directly on upstream regulatory elements of Foxi1e. Its effect is specific, since animal cells depleted of Foxi2 are able to respond normally to mesoderm inducing signals from vegetal cells. Foxi2 thus acts as a link between the oocyte and the early pathway to ectoderm, in a similar fashion to the vegetally localized VegT acts to initiate endoderm and mesoderm formation.
Collapse
Affiliation(s)
- Sang-Wook Cha
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Meredith McAdams
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Jay Kormish
- University of Calgary, Calgary, Alberta, Canada
| | - Christopher Wylie
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Matthew Kofron
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, United States of America
| |
Collapse
|
25
|
Xmab21l3 mediates dorsoventral patterning in Xenopus laevis. Mech Dev 2012; 129:136-46. [PMID: 22609272 DOI: 10.1016/j.mod.2012.05.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Revised: 05/04/2012] [Accepted: 05/07/2012] [Indexed: 02/05/2023]
Abstract
Specification of the dorsoventral (DV) axis is critical for the subsequent differentiation of regional fate in the primary germ layers of the vertebrate embryo. We have identified a novel factor that is essential for dorsal development in embryos of the frog Xenopus laevis. Misexpression of Xenopus mab21-like 3 (Xmab21l3) dorsalizes gastrula-stage mesoderm and neurula-stage ectoderm, while morpholino-mediated knockdown of Xmab21l3 inhibits dorsal differentiation of these embryonic germ layers. Xmab21l3 is a member of a chordate-specific subclass of a recently characterized gene family, all members of which contain a conserved, but as yet ill-defined, Mab21 domain. Our studies suggest that Xmab21l3 functions to repress ventralizing activity in the early vertebrate embryo, via regulation of BMP/Smad and Ras/ERK signaling.
Collapse
|
26
|
Bentaya S, Ghogomu SM, Vanhomwegen J, Van Campenhout C, Thelie A, Dhainaut M, Bellefroid EJ, Souopgui J. The RNA-binding protein XSeb4R regulates maternal Sox3 at the posttranscriptional level during maternal-zygotic transition in Xenopus. Dev Biol 2012; 363:362-72. [PMID: 22261149 DOI: 10.1016/j.ydbio.2011.12.040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 12/14/2011] [Accepted: 12/23/2011] [Indexed: 01/17/2023]
Abstract
The maternal-zygotic transition (MZT) is an embryonic event that overlaps with and plays key roles in primary germ layer specification in vertebrates. During MZT, maternally supplied mRNAs are degraded while zygotic transcripts are synthesized to either reinforce the already specified cell fate or to trigger new cell identity. Here, we show that forced expression of the RNA-binding protein, XSeb4R, in animal pole blastomeres of Xenopus embryos, inappropriately stabilizes transcripts there, including maternal Sox3. This leads to the impaired ability of the ectodermal progenitors to respond to factors regulating brain patterning and their eventual loss by apoptosis. XSeb4R protein binds specifically to the 3'UTR of Sox3 mRNA. XSeb4R gain-of-function in ectodermal explants reveals increased stability of the maternal Sox3 transcripts, associated with a robust Sox3 protein production. Conversely, whereas XSeb4R depletion abolishes VegT expression, the amount of the maternal Sox3 mRNA is rather increased but without augmentation in the amount of Sox3 protein. Moreover, XSeb4R protein knockdown leads to the modification of the ectoderm-mesoderm boundary, marked by expanded/shifted expression of the mesodermal marker genes such as Xbra and Apod, followed by an expression inhibition of Epi. K., an ectodermal marker. Overall, our data suggest XSeb4R as a novel player in gene expression regulation, acting at the posttranscriptional level during ectoderm specification in Xenopus.
Collapse
Affiliation(s)
- Souhila Bentaya
- Laboratoire de Génétique du Développement, Université Libre de Bruxelles, Institut de Biologie et de Médecine Moléculaires (IBMM), rue des Profs. Jeener et Brachet 12, B-6041 Gosselies, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Yoshii S, Yamaguchi M, Oogata Y, Tazaki A, Mochii M, Suzuki S, Kinoshita T. The Analysis of the Expression of a Novel Gene,Xenopus Polka Dots, which was Expressed in the Embryonic and Larval Epidermis during Early Development. Zoolog Sci 2011; 28:809-16. [DOI: 10.2108/zsj.28.809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Tadjuidje E, Cha SW, Louza M, Wylie C, Heasman J. The functions of maternal Dishevelled 2 and 3 in the early Xenopus embryo. Dev Dyn 2011; 240:1727-36. [PMID: 21618643 DOI: 10.1002/dvdy.22671] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2011] [Indexed: 02/03/2023] Open
Abstract
Of the three Dishevelled (Dvl) genes, only Dvl2 and Dvl3 are maternally encoded in the frog, Xenopus laevis. We show here by loss of function analysis that single depletion of either Dvl2 or Dvl3 from the oocyte causes the same embryonic phenotype. We find that the effects of loss of function of Dvl2 and 3 together are additive, and that the proteins physically interact, suggesting that both are required in the same complex. We show that maternal Dvl2 and 3 are required for convergence extension movements downstream of the dorsally localized signaling pathway activated by Xnr3, but not downstream of the pathway activated by activin. Also, depletion of maternal Dvl2 and 3 mRNAs causes the up-regulation of a subset of zygotic ectodermal genes, including Foxi1e, with surprisingly no significant effect on the canonical Wnt direct target genes Siamois and Xnr3. We suggest that the likely reason for continued expression of the Wnt target genes in Dvl2/3-depleted embryos is that maternal Dvl mRNA depletion is insufficient to deplete stored punctae of Dvl protein in the oocyte cortex, which may transduce dorsal signaling after fertilization.
Collapse
Affiliation(s)
- Emmanuel Tadjuidje
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | | | |
Collapse
|
29
|
Quigley IK, Stubbs JL, Kintner C. Specification of ion transport cells in the Xenopus larval skin. Development 2011; 138:705-14. [PMID: 21266406 DOI: 10.1242/dev.055699] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Specialized epithelial cells in the amphibian skin play important roles in ion transport, but how they arise developmentally is largely unknown. Here we show that proton-secreting cells (PSCs) differentiate in the X. laevis larval skin soon after gastrulation, based on the expression of a `kidney-specific' form of the H(+)v-ATPase that localizes to the plasma membrane, orthologs of the Cl(-)/HCO(-)(3) antiporters ae1 and pendrin, and two isoforms of carbonic anhydrase. Like PSCs in other species, we show that the expression of these genes is likely to be driven by an ortholog of foxi1, which is also sufficient to promote the formation of PSC precursors. Strikingly, the PSCs form in the skin as two distinct subtypes that resemble the alpha- and beta-intercalated cells of the kidney. The alpha-subtype expresses ae1 and localizes H(+)v-ATPases to the apical plasma membrane, whereas the beta-subtype expresses pendrin and localizes the H(+)v-ATPase cytosolically or basolaterally. These two subtypes are specified during early PSC differentiation by a binary switch that can be regulated by Notch signaling and by the expression of ubp1, a transcription factor of the grainyhead family. These results have implications for how PSCs are specified in vertebrates and become functionally heterogeneous.
Collapse
Affiliation(s)
- Ian K Quigley
- The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
30
|
Dubaissi E, Papalopulu N. Embryonic frog epidermis: a model for the study of cell-cell interactions in the development of mucociliary disease. Dis Model Mech 2010; 4:179-92. [PMID: 21183475 PMCID: PMC3046089 DOI: 10.1242/dmm.006494] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Specialised epithelia such as mucociliary, secretory and transporting epithelia line all major organs, including the lung, gut and kidney. Malfunction of these epithelia is associated with many human diseases. The frog embryonic epidermis possesses mucus-secreting and multiciliated cells, and has served as an excellent model system for the biogenesis of cilia. However, ionic regulation is important for the function of all specialised epithelia and it is not clear how this is achieved in the embryonic frog epidermis. Here, we show that a third cell type develops alongside ciliated and mucus-secreting cells in the tadpole skin. These cells express high levels of ion channels and transporters; therefore, we suggest that they are analogous to ionocytes found in transporting epithelia such as the mammalian kidney. We show that frog ionocytes express the transcription factor foxi1e, which is required for the development of these cells. Depletion of ionocytes by foxi1e knockdown has detrimental effects on the development of multiciliated cells, which show fewer and aberrantly beating cilia. These results reveal a newly identified role for ionocytes and suggest that the frog embryonic skin is a model system that is particularly suited to studying the interactions of different cell types in mucociliary, as well as in secretory and transporting, epithelia.
Collapse
Affiliation(s)
- Eamon Dubaissi
- Faculty of Life Sciences, University of Manchester, Manchester, UK
| | | |
Collapse
|
31
|
Abstract
Nodal signals belong to the TGF-beta superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left-right axis. Nodal signals can act as morphogens-they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction-diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-beta signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.
Collapse
|
32
|
Luxardi G, Marchal L, Thomé V, Kodjabachian L. Distinct Xenopus Nodal ligands sequentially induce mesendoderm and control gastrulation movements in parallel to the Wnt/PCP pathway. Development 2010; 137:417-26. [PMID: 20056679 DOI: 10.1242/dev.039735] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vertebrate body plan is established in two major steps. First, mesendoderm induction singles out prospective endoderm, mesoderm and ectoderm progenitors. Second, these progenitors are spatially rearranged during gastrulation through numerous and complex movements to give rise to an embryo comprising three concentric germ layers, polarised along dorsoventral, anteroposterior and left-right axes. Although much is known about the molecular mechanisms of mesendoderm induction, signals controlling gastrulation movements are only starting to be revealed. In vertebrates, Nodal signalling is required to induce the mesendoderm, which has precluded an analysis of its potential role during the later process of gastrulation. Using time-dependent inhibition, we show that in Xenopus, Nodal signalling plays sequential roles in mesendoderm induction and gastrulation movements. Nodal activity is necessary for convergent extension in axial mesoderm and for head mesoderm migration. Using morpholino-mediated knockdown, we found that the Nodal ligands Xnr5 and Xnr6 are together required for mesendoderm induction, whereas Xnr1 and Xnr2 act later to control gastrulation movements. This control is operated via the direct regulation of key movement-effector genes, such as papc, has2 and pdgfralpha. Interestingly, however, Nodal does not appear to mobilise the Wnt/PCP pathway, which is known to control cell and tissue polarity. This study opens the way to the analysis of the genetic programme and cell behaviours that are controlled by Nodal signalling during vertebrate gastrulation. It also provides a good example of the sub-functionalisation that results from the expansion of gene families in evolution.
Collapse
Affiliation(s)
- Guillaume Luxardi
- Institut de Biologie du Développement de Marseille Luminy, UMR 6216, CNRS-Université de la Méditerranée, Case 907, 13288 Marseille Cedex 09, France
| | | | | | | |
Collapse
|
33
|
Schlosser G. Making senses development of vertebrate cranial placodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 283:129-234. [PMID: 20801420 DOI: 10.1016/s1937-6448(10)83004-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Cranial placodes (which include the adenohypophyseal, olfactory, lens, otic, lateral line, profundal/trigeminal, and epibranchial placodes) give rise to many sense organs and ganglia of the vertebrate head. Recent evidence suggests that all cranial placodes may be developmentally related structures, which originate from a common panplacodal primordium at neural plate stages and use similar regulatory mechanisms to control developmental processes shared between different placodes such as neurogenesis and morphogenetic movements. After providing a brief overview of placodal diversity, the present review summarizes current evidence for the existence of a panplacodal primordium and discusses the central role of transcription factors Six1 and Eya1 in the regulation of processes shared between different placodes. Upstream signaling events and transcription factors involved in early embryonic induction and specification of the panplacodal primordium are discussed next. I then review how individual placodes arise from the panplacodal primordium and present a model of multistep placode induction. Finally, I briefly summarize recent advances concerning how placodal neurons and sensory cells are specified, and how morphogenesis of placodes (including delamination and migration of placode-derived cells and invagination) is controlled.
Collapse
Affiliation(s)
- Gerhard Schlosser
- Zoology, School of Natural Sciences & Martin Ryan Institute, National University of Ireland, Galway, Ireland
| |
Collapse
|
34
|
Siegel D, Schuff M, Oswald F, Cao Y, Knöchel W. Functional dissection of XDppa2/4 structural domains in Xenopus development. Mech Dev 2009; 126:974-89. [DOI: 10.1016/j.mod.2009.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Revised: 09/13/2009] [Accepted: 09/15/2009] [Indexed: 10/20/2022]
|
35
|
Winklbauer R. Cell adhesion in amphibian gastrulation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 278:215-75. [PMID: 19815180 DOI: 10.1016/s1937-6448(09)78005-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The amphibian gastrula can be regarded as a single coherent tissue which folds and distorts itself in a reproducible pattern to establish the embryonic germ layers. It is held together by cadherins which provide the flexible adhesion required for the massive cell rearrangements that accompany gastrulation. Cadherin expression and adhesiveness increase as one goes from the vegetal cell mass through the anterior mesendoderm to the chordamesoderm, and then decrease again slightly in the ectoderm. Together with a basic random component of cell motility, this flexible, differentially expressed adhesiveness generates surface and interfacial tension effects which, in principle, can exert strong forces. However, conclusive evidence for an in vivo role of differential adhesion-related effects in gastrula morphogenesis is still lacking. The most important morphogenetic process in the amphibian gastrula seems to be intercellular migration, where cells crawl actively across each other's surface. The crucial aspect of this process is that cell motility is globally oriented, leading for example to mediolateral intercalation of bipolar cells during convergent extension of the chordamesoderm or to the directional migration of unipolar cells during translocation of the anterior mesendoderm on the ectodermal blastocoel roof. During these movements, the boundary between ectoderm and mesoderm is maintained by a tissue separation process.
Collapse
Affiliation(s)
- Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
36
|
Woodland HR, Zorn AM. The core endodermal gene network of vertebrates: combining developmental precision with evolutionary flexibility. Bioessays 2008; 30:757-65. [DOI: 10.1002/bies.20785] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
37
|
Ectodermal Factor Restricts Mesoderm Differentiation by Inhibiting p53. Cell 2008; 133:878-90. [DOI: 10.1016/j.cell.2008.03.035] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/31/2008] [Accepted: 03/24/2008] [Indexed: 11/18/2022]
|
38
|
Chang C, Harland RM. Neural induction requires continued suppression of both Smad1 and Smad2 signals during gastrulation. Development 2008; 134:3861-72. [PMID: 17933792 DOI: 10.1242/dev.007179] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Vertebrate neural induction requires inhibition of bone morphogenetic protein (BMP) signaling in the ectoderm. However, whether inhibition of BMP signaling is sufficient to induce neural tissues in vivo remains controversial. Here we have addressed why inhibition of BMP/Smad1 signaling does not induce neural markers efficiently in Xenopus ventral ectoderm, and show that suppression of both Smad1 and Smad2 signals is sufficient to induce neural markers. Manipulations that inhibit both Smad1 and Smad2 pathways, including a truncated type IIB activin receptor, Smad7 and Ski, induce early neural markers and inhibit epidermal genes in ventral ectoderm; and co-expression of BMP inhibitors with a truncated activin/nodal-specific type IB activin receptor leads to efficient neural induction. Conversely, stimulation of Smad2 signaling in the neural plate at gastrula stages results in inhibition of neural markers, disruption of the neural tube and reduction of head structures, with conversion of neural to neural crest and mesodermal fates. The ability of activated Smad2 to block neural induction declines by the end of gastrulation. Our results indicate that prospective neural cells are poised to respond to Smad2 and Smad1 signals to adopt mesodermal and non-neural ectodermal fates even at gastrula stages, after the conventionally assigned end of mesodermal competence, so that continued suppression of both mesoderm- and epidermis-inducing Smad signals leads to efficient neural induction.
Collapse
Affiliation(s)
- Chenbei Chang
- Department of Cell Biology, MCLM 360, University of Alabama at Birmingham, Birmingham, AL 35294-0005, USA.
| | | |
Collapse
|
39
|
Long- and short-range signals control the dynamic expression of an animal hemisphere-specific gene in Xenopus. Dev Biol 2007; 315:161-72. [PMID: 18234171 DOI: 10.1016/j.ydbio.2007.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 11/22/2022]
Abstract
Little is known of the control of gene expression in the animal hemisphere of the Xenopus embryo. Here we show that expression of FoxI1e, a gene essential for normal ectoderm formation, is expressed regionally within the animal hemisphere, in a highly dynamic fashion. In situ hybridization shows that FoxI1e is expressed in a wave-like fashion that is initiated on the dorsal side of the animal hemisphere, extends across to the ventral side by the mid-gastrula stage, and is then turned off in the dorsal ectoderm, the neural plate, at the neurula stage. It is confined to the inner layers of cells in the animal cap, and is expressed in a mosaic fashion throughout. We show that this dynamic pattern of expression is controlled by both short- and long-range signals. Notch signaling controls both the mosaic, and dorsal/ventral changes in expression, and is controlled, in turn, by Vg1 signaling from the vegetal mass. FoxI1e expression is also regulated by nodal signaling downstream of VegT. Canonical Wnt signaling contributes only to late changes in the FoxI1e expression pattern. These results provide new insights into the roles of vegetally localized mRNAs in controlling zygotic genes expressed in the animal hemisphere by long-range signaling. They also provide novel insights into the role of Notch signaling at the earliest stages of vertebrate development.
Collapse
|
40
|
Cha JY, Birsoy B, Kofron M, Mahoney E, Lang S, Wylie C, Heasman J. The role of FoxC1 in earlyXenopus development. Dev Dyn 2007; 236:2731-41. [PMID: 17705306 DOI: 10.1002/dvdy.21240] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
FoxC1 is an important transcription factor in vertebrate development since its mutation in humans results in Axenfeld-Rieger syndrome. In the mouse, disturbance of its function causes congenital hydrocephalus and abnormalities in the development of various mesodermal derivatives. In this report, we provide one mechanistic basis for the requirement for FoxC1 in vertebrate development. We find that, in Xenopus laevis embryos, FoxC1 expression is regulated by the maternal T-box transcription factor VegT, via the nodal sub-family of TGFbeta signaling transducers. We show that at the late neurula to early tailbud stage, FoxC1 depletion causes the down-regulation of adhesion molecules, EP and E cadherin, as well as members of the Ephrin/EphR signaling families in the mesoderm germ layer resulting in the loss of adhesion and apoptosis of mesodermal cells.
Collapse
Affiliation(s)
- J Y Cha
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| | | | | | | | | | | | | |
Collapse
|