1
|
Oka M, Nakajima S, Suzuki E, Yamamoto S, Ando K. Glucose uptake in pigment glia suppresses Tau-induced inflammation and photoreceptor degeneration. Dis Model Mech 2025; 18:dmm052057. [PMID: 40151148 PMCID: PMC12067088 DOI: 10.1242/dmm.052057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
Brain inflammation contributes to the pathogenesis of neurodegenerative diseases, such as Alzheimer's disease (AD). Glucose hypometabolism and glial activation are pathological features seen in AD brains; however, the connection between the two is not fully understood. Using a Drosophila model of AD, we identified that glucose metabolism in glia plays a critical role in neuroinflammation under disease conditions. Expression of human MATP (hereafter referred to as Tau) in the retinal cells, including photoreceptor neurons and pigment glia, causes photoreceptor degeneration accompanied by the formation of dark-stained round inclusion-like structures and swelling of the lamina cortex. We found that inclusion-like structures are formed by glial phagocytosis, and swelling of the laminal cortex correlates with the expression of antimicrobial peptides. Coexpression of human glucose transporter 3 (SLC2A3, hereafter referred to as GLUT3) with Tau in the retina does not affect Tau levels but suppresses these inflammatory responses and photoreceptor degeneration. We also found that expression of GLUT3, specifically in the pigment glia, is sufficient to suppress inflammatory phenotypes and mitigate photoreceptor degeneration in the Tau-expressing retina. Our results suggest that glial glucose metabolism contributes to inflammatory responses and neurodegeneration in tauopathy.
Collapse
Affiliation(s)
- Mikiko Oka
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute for Texas Children's Hospital, Houston, TX 77030, USA
| | - Sho Nakajima
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Emiko Suzuki
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Shinya Yamamoto
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute for Texas Children's Hospital, Houston, TX 77030, USA
| | - Kanae Ando
- Department of Biological Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| |
Collapse
|
2
|
Oka M, Nakajima S, Suzuki E, Yamamoto S, Ando K. Glucose uptake in pigment glia suppresses tau-induced inflammation and photoreceptor degeneration in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.14.607919. [PMID: 39229232 PMCID: PMC11370381 DOI: 10.1101/2024.08.14.607919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Brain inflammation contributes to the pathogenesis of neurodegenerative diseases such as Alzheimer's disease (AD). Glucose hypometabolism and glial activation are pathological features seen in AD brains; however, the connection between the two is not fully understood. Using a Drosophila model of AD, we identified that glucose metabolism in glia plays a critical role in neuroinflammation under disease conditions. Expression of human Tau in the retinal cells, including photoreceptor neurons and pigment glia, causes photoreceptor degeneration accompanied by inclusion formation and swelling of the lamina cortex. We found that inclusions are formed by glial phagocytosis, and swelling of the laminal cortex correlates with the expression of antimicrobial peptides. Co-expression of human glucose transporter 3 ( GLUT3 ) with Tau in the retina does not affect tau levels but suppresses these inflammatory responses and photoreceptor degeneration. We also found that expression of GLUT3 , specifically in the pigment glia, is sufficient to suppress inflammatory phenotypes and mitigate photoreceptor degeneration in the tau-expressing retina. Our results suggest that glial glucose metabolism contributes to inflammatory responses and neurodegeneration in tauopathy. Summary Statement Glucose uptake into pigment glia suppresses inflammatory responses and photoreceptor degeneration in the fly model of tauopathy.
Collapse
|
3
|
Parambath S, Selvraj NR, Venugopal P, Aradhya R. Notch Signaling: An Emerging Paradigm in the Pathogenesis of Reproductive Disorders and Diverse Pathological Conditions. Int J Mol Sci 2024; 25:5423. [PMID: 38791461 PMCID: PMC11121885 DOI: 10.3390/ijms25105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
The highly conserved Notch pathway, a pillar of juxtacrine signaling, orchestrates intricate intercellular communication, governing diverse developmental and homeostatic processes through a tightly regulated cascade of proteolytic cleavages. This pathway, culminating in the migration of the Notch intracellular domain (NICD) to the nucleus and the subsequent activation of downstream target genes, exerts a profound influence on a plethora of molecular processes, including cell cycle progression, lineage specification, cell-cell adhesion, and fate determination. Accumulating evidence underscores the pivotal role of Notch dysregulation, encompassing both gain and loss-of-function mutations, in the pathogenesis of numerous human diseases. This review delves deep into the multifaceted roles of Notch signaling in cellular dynamics, encompassing proliferation, differentiation, polarity maintenance, epithelial-mesenchymal transition (EMT), tissue regeneration/remodeling, and its intricate interplay with other signaling pathways. We then focus on the emerging landscape of Notch aberrations in gynecological pathologies predisposing individuals to infertility. By highlighting the exquisite conservation of Notch signaling in Drosophila and its power as a model organism, we pave the way for further dissection of disease mechanisms and potential therapeutic interventions through targeted modulation of this master regulatory pathway.
Collapse
Affiliation(s)
| | | | | | - Rajaguru Aradhya
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam 690525, Kerala, India; (S.P.); (N.R.S.); (P.V.)
| |
Collapse
|
4
|
Gazsó-Gerhát G, Gombos R, Tóth K, Kaltenecker P, Szikora S, Bíró J, Csapó E, Asztalos Z, Mihály J. FRL and DAAM are required for lateral adhesion of interommatidial cells and patterning of the retinal floor. Development 2023; 150:dev201713. [PMID: 37997920 PMCID: PMC10690107 DOI: 10.1242/dev.201713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/17/2023] [Indexed: 11/25/2023]
Abstract
Optical insulation of the unit eyes (ommatidia) is an important prerequisite of precise sight with compound eyes. Separation of the ommatidia is ensured by pigment cells that organize into a hexagonal lattice in the Drosophila eye, forming thin walls between the facets. Cell adhesion, mediated by apically and latero-basally located junctional complexes, is crucial for stable attachment of these cells to each other and the basal lamina. Whereas former studies have focused on the formation and remodelling of the cellular connections at the apical region, here, we report a specific alteration of the lateral adhesion of the lattice cells, leaving the apical junctions largely unaffected. We found that DAAM and FRL, two formin-type cytoskeleton regulatory proteins, play redundant roles in lateral adhesion of the interommatidial cells and patterning of the retinal floor. We show that formin-dependent cortical actin assembly is crucial for latero-basal sealing of the ommatidial lattice. We expect that the investigation of these previously unreported eye phenotypes will pave the way toward a better understanding of the three-dimensional aspects of compound eye development.
Collapse
Affiliation(s)
- Gabriella Gazsó-Gerhát
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged H-6726, Hungary
| | - Rita Gombos
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Krisztina Tóth
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Péter Kaltenecker
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Szilárd Szikora
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
| | - Judit Bíró
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Enikő Csapó
- Aktogen Hungary Ltd., Szeged H-6726, Hungary
| | - Zoltán Asztalos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged H-6726, Hungary
| | - József Mihály
- Institute of Genetics, HUN-REN Biological Research Centre, Temesvári krt. 62, Szeged H-6726, Hungary
- Department of Genetics, University of Szeged, Szeged H-6726, Hungary
| |
Collapse
|
5
|
Yost PP, Al-Nouman A, Curtiss J. The Rap1 small GTPase affects cell fate or survival and morphogenetic patterning during Drosophila melanogaster eye development. Differentiation 2023; 133:12-24. [PMID: 37437447 PMCID: PMC10528170 DOI: 10.1016/j.diff.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/14/2023]
Abstract
The Drosophila melanogaster eye has been instrumental for determining both how cells communicate with one another to determine cell fate, as well as cell morphogenesis and patterning. Here, we describe the effects of the small GTPase Rap1 on the development of multiple cell types in the D. melanogaster eye. Although Rap1 has previously been linked to RTK-Ras-MAPK signaling in eye development, we demonstrate that manipulation of Rap1 activity is modified by increase or decrease of Delta/Notch signaling during several events of cell fate specification in eye development. In addition, we demonstrate that manipulating Rap1 function either in primary pigment cells or in interommatidial cells affects cone cell contact switching, primary pigment cell enwrapment of the ommatidial cluster, and sorting of secondary and tertiary pigment cells. These data suggest that Rap1 has roles in both ommatidial cell recruitment/survival and in ommatidial morphogenesis in the pupal stage. They lay groundwork for future experiments on the role of Rap1 in these events.
Collapse
Affiliation(s)
- Philip P Yost
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA
| | | | - Jennifer Curtiss
- New Mexico State University, 1780 E University Ave, Las Cruces, NM, 88003, USA.
| |
Collapse
|
6
|
Ralhan I, Chang J, Moulton MJ, Goodman LD, Lee NY, Plummer G, Pasolli HA, Matthies D, Bellen HJ, Ioannou MS. Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J Cell Biol 2023; 222:e202207130. [PMID: 37036445 PMCID: PMC10098143 DOI: 10.1083/jcb.202207130] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/25/2022] [Accepted: 03/20/2023] [Indexed: 04/11/2023] Open
Abstract
During oxidative stress neurons release lipids that are internalized by glia. Defects in this coordinated process play an important role in several neurodegenerative diseases. Yet, the mechanisms of lipid release and its consequences on neuronal health are unclear. Here, we demonstrate that lipid-protein particle release by autolysosome exocytosis protects neurons from ferroptosis, a form of cell death driven by lipid peroxidation. We show that during oxidative stress, peroxidated lipids and iron are released from neurons by autolysosomal exocytosis which requires the exocytic machinery VAMP7 and syntaxin 4. We observe membrane-bound lipid-protein particles by TEM and demonstrate that these particles are released from neurons using cryoEM. Failure to release these lipid-protein particles causes lipid hydroperoxide and iron accumulation and sensitizes neurons to ferroptosis. Our results reveal how neurons protect themselves from peroxidated lipids. Given the number of brain pathologies that involve ferroptosis, defects in this pathway likely play a key role in the pathophysiology of neurodegenerative disease.
Collapse
Affiliation(s)
- Isha Ralhan
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | - Jinlan Chang
- Department of Physiology, University of Alberta, Edmonton, Canada
| | - Matthew J. Moulton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Lindsey D. Goodman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
| | - Nathanael Y.J. Lee
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
| | - Greg Plummer
- Faculty of Medicine & Dentistry Cell Imaging Core, University of Alberta, Edmonton, Canada
| | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Doreen Matthies
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Hugo J. Bellen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Maria S. Ioannou
- Department of Physiology, University of Alberta, Edmonton, Canada
- Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Canada
- Department of Cell Biology, University of Alberta, Edmonton, Canada
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| |
Collapse
|
7
|
Ready DF, Chang HC. Interommatidial cells build a tensile collagen network during Drosophila retinal morphogenesis. Curr Biol 2023; 33:2223-2234.e3. [PMID: 37209679 PMCID: PMC10247444 DOI: 10.1016/j.cub.2023.04.066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 03/27/2023] [Accepted: 04/27/2023] [Indexed: 05/22/2023]
Abstract
Drosophila compound eye morphogenesis transforms a simple epithelium into an approximate hollow hemisphere comprised of ∼700 ommatidia, packed as tapering hexagonal prisms between a rigid external array of cuticular lenses and a parallel, rigid internal floor, the fenestrated membrane (FM). Critical to vision, photosensory rhabdomeres are sprung between these two surfaces, grading their length and shape accurately across the eye and aligning them to the optical axis. Using fluorescently tagged collagen and laminin, we show that that the FM assembles sequentially, emerging in the larval eye disc in the wake of the morphogenetic furrow as the original collagen-containing basement membrane (BM) separates from the epithelial floor and is replaced by a new, laminin-rich BM, which advances around axon bundles of newly differentiated photoreceptors as they exit the retina, forming fenestrae in this new, laminin-rich BM. In mid-pupal development, the interommatidial cells (IOCs) autonomously deposit collagen at fenestrae, forming rigid, tension-resisting grommets. In turn, stress fibers assemble in the IOC basal endfeet, where they contact grommets at anchorages mediated by integrin linked kinase (ILK). The hexagonal network of IOC endfeet tiling the retinal floor couples nearest-neighbor grommets into a supracellular tri-axial tension network. Late in pupal development, IOC stress fiber contraction folds pliable BM into a hexagonal grid of collagen-stiffened ridges, concomitantly decreasing the area of convex FM and applying essential morphogenetic longitudinal tension to rapidly growing rhabdomeres. Together, our results reveal an orderly program of sequential assembly and activation of a supramolecular tensile network that governs Drosophila retinal morphogenesis.
Collapse
Affiliation(s)
- Donald F Ready
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA
| | - Henry C Chang
- Department of Biological Sciences, Purdue University, 915 West State Street, West Lafayette, IN 47907-2054, USA.
| |
Collapse
|
8
|
Rathore S, Meece M, Charlton-Perkins M, Cook TA, Buschbeck EK. Probing the conserved roles of cut in the development and function of optically different insect compound eyes. Front Cell Dev Biol 2023; 11:1104620. [PMID: 37065850 PMCID: PMC10102356 DOI: 10.3389/fcell.2023.1104620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Astonishing functional diversity exists among arthropod eyes, yet eye development relies on deeply conserved genes. This phenomenon is best understood for early events, whereas fewer investigations have focused on the influence of later transcriptional regulators on diverse eye organizations and the contribution of critical support cells, such as Semper cells (SCs). As SCs in Drosophila melanogaster secrete the lens and function as glia, they are critical components of ommatidia. Here, we perform RNAi-based knockdowns of the transcription factor cut (CUX in vertebrates), a marker of SCs, the function of which has remained untested in these cell types. To probe for the conserved roles of cut, we investigate two optically different compound eyes: the apposition optics of D. melanogaster and the superposition optics of the diving beetle Thermonectus marmoratus. In both cases, we find that multiple aspects of ocular formation are disrupted, including lens facet organization and optics as well as photoreceptor morphogenesis. Together, our findings support the possibility of a generalized role for SCs in arthropod ommatidial form and function and introduces Cut as a central player in mediating this role.
Collapse
Affiliation(s)
- Shubham Rathore
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Michael Meece
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Mark Charlton-Perkins
- Division of Developmental Biology and Department of Pediatric Ophthalmology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genetics, Department of Ophthalmological, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, United States
- *Correspondence: Tiffany A. Cook, ; Elke K. Buschbeck,
| | - Elke K. Buschbeck
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Tiffany A. Cook, ; Elke K. Buschbeck,
| |
Collapse
|
9
|
Zhao H, Moberg KH, Veraksa A. Hippo pathway and Bonus control developmental cell fate decisions in the Drosophila eye. Dev Cell 2023; 58:416-434.e12. [PMID: 36868234 PMCID: PMC10023510 DOI: 10.1016/j.devcel.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 08/10/2022] [Accepted: 02/06/2023] [Indexed: 03/05/2023]
Abstract
The canonical function of the Hippo signaling pathway is the regulation of organ growth. How this pathway controls cell-fate determination is less well understood. Here, we identify a function of the Hippo pathway in cell-fate decisions in the developing Drosophila eye, exerted through the interaction of Yorkie (Yki) with the transcriptional regulator Bonus (Bon), an ortholog of mammalian transcriptional intermediary factor 1/tripartite motif (TIF1/TRIM) family proteins. Instead of controlling tissue growth, Yki and Bon promote epidermal and antennal fates at the expense of the eye fate. Proteomic, transcriptomic, and genetic analyses reveal that Yki and Bon control these cell-fate decisions by recruiting transcriptional and post-transcriptional co-regulators and by repressing Notch target genes and activating epidermal differentiation genes. Our work expands the range of functions and regulatory mechanisms under Hippo pathway control.
Collapse
Affiliation(s)
- Heya Zhao
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA
| | - Kenneth H Moberg
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alexey Veraksa
- Department of Biology, University of Massachusetts Boston, Boston, MA 02125, USA.
| |
Collapse
|
10
|
Lavin R, Rathore S, Bauer B, Disalvo J, Mosley N, Shearer E, Elia Z, Cook TA, Buschbeck EK. EyeVolve, a modular PYTHON based model for simulating developmental eye type diversification. Front Cell Dev Biol 2022; 10:964746. [PMID: 36092740 PMCID: PMC9459020 DOI: 10.3389/fcell.2022.964746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Vision is among the oldest and arguably most important sensory modalities for animals to interact with their external environment. Although many different eye types exist within the animal kingdom, mounting evidence indicates that the genetic networks required for visual system formation and function are relatively well conserved between species. This raises the question as to how common developmental programs are modified in functionally different eye types. Here, we approached this issue through EyeVolve, an open-source PYTHON-based model that recapitulates eye development based on developmental principles originally identified in Drosophila melanogaster. Proof-of-principle experiments showed that this program’s animated timeline successfully simulates early eye tissue expansion, neurogenesis, and pigment cell formation, sequentially transitioning from a disorganized pool of progenitor cells to a highly organized lattice of photoreceptor clusters wrapped with support cells. Further, tweaking just five parameters (precursor pool size, founder cell distance and placement from edge, photoreceptor subtype number, and cell death decisions) predicted a multitude of visual system layouts, reminiscent of the varied eye types found in larval and adult arthropods. This suggests that there are universal underlying mechanisms that can explain much of the existing arthropod eye diversity. Thus, EyeVolve sheds light on common principles of eye development and provides a new computational system for generating specific testable predictions about how development gives rise to diverse visual systems from a commonly specified neuroepithelial ground plan.
Collapse
Affiliation(s)
- Ryan Lavin
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Shubham Rathore
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Brian Bauer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Joe Disalvo
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Nick Mosley
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Evan Shearer
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Zachary Elia
- Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Tiffany A. Cook
- Center of Molecular Medicine and Genomics, Wayne State University School of Medicine, Detroit, MI, United States
| | - Elke K. Buschbeck
- Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
- *Correspondence: Elke K. Buschbeck,
| |
Collapse
|
11
|
Wang L, Lin G, Zuo Z, Li Y, Byeon SK, Pandey A, Bellen HJ. Neuronal activity induces glucosylceramide that is secreted via exosomes for lysosomal degradation in glia. SCIENCE ADVANCES 2022; 8:eabn3326. [PMID: 35857503 PMCID: PMC9278864 DOI: 10.1126/sciadv.abn3326] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 05/27/2022] [Indexed: 05/06/2023]
Abstract
Recessive variants in GBA1 cause Gaucher disease, a prevalent form of lysosome storage disease. GBA1 encodes a lysosomal enzyme that hydrolyzes glucosylceramide (GlcCer) into glucose and ceramide. Its loss causes lysosomal dysfunction and increased levels of GlcCer. We generated a null allele of the Drosophila ortholog Gba1b by inserting the Gal4 using CRISPR-Cas9. Here, we show that Gba1b is expressed in glia but not in neurons. Glial-specific knockdown recapitulates the defects found in Gba1b mutants, and these can be rescued by glial expression of human GBA1. We show that GlcCer is synthesized upon neuronal activity, and it is transported from neurons to glia through exosomes. Furthermore, we found that glial TGF-β/BMP induces the transfer of GlcCer from neurons to glia and that the White protein, an ABCG transporter, promotes GlcCer trafficking to glial lysosomes for degradation.
Collapse
Affiliation(s)
- Liping Wang
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
| | - Guang Lin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhongyuan Zuo
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yarong Li
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Seul Kee Byeon
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Manipal Academy of Higher Education, Manipal, Karnataka 576 104, India
| | - Hugo J. Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX 77030, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
12
|
Spratford CM, Goins LM, Chi F, Girard JR, Macias SN, Ho VW, Banerjee U. Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development 2021; 148:273785. [PMID: 34918741 PMCID: PMC8722385 DOI: 10.1242/dev.200216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Genetic and genomic analysis in Drosophila suggests that hematopoietic progenitors likely transition into terminal fates via intermediate progenitors (IPs) with some characteristics of either, but perhaps maintaining IP-specific markers. In the past, IPs have not been directly visualized and investigated owing to lack of appropriate genetic tools. Here, we report a Split GAL4 construct, CHIZ-GAL4, that identifies IPs as cells physically juxtaposed between true progenitors and differentiating hemocytes. IPs are a distinct cell type with a unique cell-cycle profile and they remain multipotent for all blood cell fates. In addition, through their dynamic control of the Notch ligand Serrate, IPs specify the fate of direct neighbors. The Ras pathway controls the number of IP cells and promotes their transition into differentiating cells. This study suggests that it would be useful to characterize such intermediate populations of cells in mammalian hematopoietic systems.
Collapse
Affiliation(s)
- Carrie M Spratford
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Lauren M Goins
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Fangtao Chi
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, USA
| | - Juliet R Girard
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA
| | - Savannah N Macias
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA
| | - Vivien W Ho
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA
| | - Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, USA.,Molecular Biology Institute, University of California, Los Angeles, USA.,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, USA.,Department of Biological Chemistry, University of California, Los Angeles, USA
| |
Collapse
|
13
|
Perez-Vale KZ, Yow KD, Johnson RI, Byrnes AE, Finegan TM, Slep KC, Peifer M. Multivalent interactions make adherens junction-cytoskeletal linkage robust during morphogenesis. J Cell Biol 2021; 220:e202104087. [PMID: 34762121 PMCID: PMC8590279 DOI: 10.1083/jcb.202104087] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 10/04/2021] [Indexed: 12/15/2022] Open
Abstract
Embryogenesis requires cells to change shape and move without disrupting epithelial integrity. This requires robust, responsive linkage between adherens junctions and the actomyosin cytoskeleton. Using Drosophila morphogenesis, we define molecular mechanisms mediating junction-cytoskeletal linkage and explore the role of mechanosensing. We focus on the junction-cytoskeletal linker Canoe, a multidomain protein. We engineered the canoe locus to define how its domains mediate its mechanism of action. To our surprise, the PDZ and FAB domains, which we thought connected junctions and F-actin, are not required for viability or mechanosensitive recruitment to junctions under tension. The FAB domain stabilizes junctions experiencing elevated force, but in its absence, most cells recover, suggesting redundant interactions. In contrast, the Rap1-binding RA domains are critical for all Cno functions and enrichment at junctions under tension. This supports a model in which junctional robustness derives from a large protein network assembled via multivalent interactions, with proteins at network nodes and some node connections more critical than others.
Collapse
Affiliation(s)
- Kia Z. Perez-Vale
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Kristi D. Yow
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Amy E. Byrnes
- Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Tara M. Finegan
- Department of Physics and BioInspired Syracuse, Syracuse University, Syracuse, NY
| | - Kevin C. Slep
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Mark Peifer
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| |
Collapse
|
14
|
Charlton-Perkins MA, Friedrich M, Cook TA. Semper's cells in the insect compound eye: Insights into ocular form and function. Dev Biol 2021; 479:126-138. [PMID: 34343526 PMCID: PMC8410683 DOI: 10.1016/j.ydbio.2021.07.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/26/2021] [Accepted: 07/28/2021] [Indexed: 11/28/2022]
Abstract
The arthropod compound eye represents one of two major eye types in the animal kingdom and has served as an essential experimental paradigm for defining fundamental mechanisms underlying sensory organ formation, function, and maintenance. One of the most distinguishing features of the compound eye is the highly regular array of lens facets that define individual eye (ommatidial) units. These lens facets are produced by a deeply conserved quartet of cuticle-secreting cells, called Semper cells (SCs). Also widely known as cone cells, SCs were originally identified for their secretion of the dioptric system, i.e. the corneal lens and underlying crystalline cones. Additionally, SCs are now known to execute a diversity of patterning and glial functions in compound eye development and maintenance. Here, we present an integrated account of our current knowledge of SC multifunctionality in the Drosophila compound eye, highlighting emerging gene regulatory modules that may drive the diverse roles for these cells. Drawing comparisons with other deeply conserved retinal glia in the vertebrate single lens eye, this discussion speaks to glial cell origins and opens new avenues for understanding sensory system support programs.
Collapse
Affiliation(s)
- Mark A Charlton-Perkins
- Department of Paediatrics, Wellcome-MRC Stem Cell Institute, Jeffrey Cheah Biomedical Centre, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, United Kingdom
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, 5047 Gullen Mall, Detroit, MI, 48202, USA; Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA
| | - Tiffany A Cook
- Department of Ophthalmological, Visual, and Anatomical Sciences, Wayne State University, School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA; Center of Molecular Medicine and Genetics, Wayne State University School of Medicine, 540 East Canfield Avenue, Detroit, MI, 48201, USA.
| |
Collapse
|
15
|
Kuang Y, Pyo A, Eafergan N, Cain B, Gutzwiller LM, Axelrod O, Gagliani EK, Weirauch MT, Kopan R, Kovall RA, Sprinzak D, Gebelein B. Enhancers with cooperative Notch binding sites are more resistant to regulation by the Hairless co-repressor. PLoS Genet 2021; 17:e1009039. [PMID: 34559800 PMCID: PMC8494340 DOI: 10.1371/journal.pgen.1009039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/06/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022] Open
Abstract
Notch signaling controls many developmental processes by regulating gene expression. Notch-dependent enhancers recruit activation complexes consisting of the Notch intracellular domain, the Cbf/Su(H)/Lag1 (CSL) transcription factor (TF), and the Mastermind co-factor via two types of DNA sites: monomeric CSL sites and cooperative dimer sites called Su(H) paired sites (SPS). Intriguingly, the CSL TF can also bind co-repressors to negatively regulate transcription via these same sites. Here, we tested how synthetic enhancers with monomeric CSL sites versus dimeric SPSs bind Drosophila Su(H) complexes in vitro and mediate transcriptional outcomes in vivo. Our findings reveal that while the Su(H)/Hairless co-repressor complex similarly binds SPS and CSL sites in an additive manner, the Notch activation complex binds SPSs, but not CSL sites, in a cooperative manner. Moreover, transgenic reporters with SPSs mediate stronger, more consistent transcription and are more resistant to increased Hairless co-repressor expression compared to reporters with the same number of CSL sites. These findings support a model in which SPS containing enhancers preferentially recruit cooperative Notch activation complexes over Hairless repression complexes to ensure consistent target gene activation. Cell signaling provides a basic means of communication during development. Many signaling pathways, including the Notch pathway, convert extracellular signals into changes in gene expression via transcription factors that bind specific DNA sequences. Importantly, the Notch pathway transcription factor can either form activating complexes upon Notch activation to stimulate gene expression or repression complexes with co-repressors to inhibit gene expression. Prior studies showed that the Notch activation complex binds DNA as either an independent complex on monomer binding sites or as two cooperative complexes (dimer) on paired binding sites. In this study, we used synthetic biology to examine how these two types of DNA sites impact the binding of Notch activation versus repression complexes and the output of Notch target gene expression. Our studies reveal that unlike the Notch activation complex, the repression complex does not cooperatively bind dimer sites. Moreover, our findings support the model that the enhanced stability of the Notch activation complex on dimer sites makes target genes with dimer sites less sensitive to the repression complex than target genes with only monomer sites. Thus, our studies reveal how target genes with different binding sites differ in sensitivity to the ratio of Notch activation to repression complexes.
Collapse
Affiliation(s)
- Yi Kuang
- Graduate Program in Molecular and Developmental Biology, Cincinnati Children’s Hospital Research Foundation, Cincinnati, Ohio, United States of America
| | - Anna Pyo
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Natanel Eafergan
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brittany Cain
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa M. Gutzwiller
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
| | - Ofri Axelrod
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Ellen K. Gagliani
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Matthew T. Weirauch
- Divisions of Biomedical Informatics and Developmental Biology, Center for Autoimmune Genomics and Etiology (CAGE), Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Raphael Kopan
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Rhett A. Kovall
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - David Sprinzak
- School of Neurobiology, Biochemistry and Biophysics, George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Brian Gebelein
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, United States of America
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
16
|
Johnson RI. Hexagonal patterning of the Drosophila eye. Dev Biol 2021; 478:173-182. [PMID: 34245727 DOI: 10.1016/j.ydbio.2021.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/24/2022]
Abstract
A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.
Collapse
Affiliation(s)
- Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
17
|
DeAngelis MW, Coolon JD, Johnson RI. Comparative transcriptome analyses of the Drosophila pupal eye. G3-GENES GENOMES GENETICS 2021; 11:5995320. [PMID: 33561221 PMCID: PMC8043229 DOI: 10.1093/g3journal/jkaa003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/08/2020] [Indexed: 12/04/2022]
Abstract
Tissue function is dependent on correct cellular organization and behavior. As a result, the identification and study of genes that contribute to tissue morphogenesis is of paramount importance to the fields of cell and developmental biology. Many of the genes required for tissue patterning and organization are highly conserved between phyla. This has led to the emergence of several model organisms and developmental systems that are used to study tissue morphogenesis. One such model is the Drosophila melanogaster pupal eye that has a highly stereotyped arrangement of cells. In addition, the pupal eye is postmitotic that allows for the study of tissue morphogenesis independent from any effects of proliferation. While the changes in cell morphology and organization that occur throughout pupal eye development are well documented, less is known about the corresponding transcriptional changes that choreograph these processes. To identify these transcriptional changes, we dissected wild-type Canton S pupal eyes and performed RNA-sequencing. Our analyses identified differential expression of many loci that are documented regulators of pupal eye morphogenesis and contribute to multiple biological processes including signaling, axon projection, adhesion, and cell survival. We also identified differential expression of genes not previously implicated in pupal eye morphogenesis such as components of the Toll pathway, several non-classical cadherins, and components of the muscle sarcomere, which could suggest these loci function as novel patterning factors.
Collapse
Affiliation(s)
- Miles W DeAngelis
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Joseph D Coolon
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| | - Ruth I Johnson
- Department of Biology, Wesleyan University, 52 Lawn Avenue, Middletown, CT 06459, USA
| |
Collapse
|
18
|
Tare M, Chimata AV, Gogia N, Narwal S, Deshpande P, Singh A. An E3 ubiquitin ligase, cullin-4 regulates retinal differentiation in Drosophila eye. Genesis 2020; 58:e23395. [PMID: 32990387 PMCID: PMC9277906 DOI: 10.1002/dvg.23395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 08/26/2020] [Indexed: 11/12/2022]
Abstract
During organogenesis, cell proliferation is followed by the differentiation of specific cell types to form an organ. Any aberration in differentiation can result in developmental defects, which can result in a partial to a near-complete loss of an organ. We employ the Drosophila eye model to understand the genetic and molecular mechanisms involved in the process of differentiation. In a forward genetic screen, we identified, cullin-4 (cul-4), which encodes an E3 ubiquitin ligase, to play an important role in retinal differentiation. During development, cul-4 is known to be involved in protein degradation, regulation of genomic stability, and regulation of cell cycle. Previously, we have reported that cul-4 regulates cell death during eye development by downregulating Wingless (Wg)/Wnt signaling pathway. We found that loss-of-function of cul-4 results in a reduced eye phenotype, which can be due to onset of cell death. However, we found that loss-of-function of cul-4 also affects retinal development by downregulating retinal determination (RD) gene expression. Early markers of retinal differentiation are dysregulated in cul-4 loss of function conditions, indicating that cul-4 is necessary for differentiation. Furthermore, loss-of-function of cul-4 ectopically induces expression of negative regulators of eye development like Wg and Homothorax (Hth). During eye development, Wg is known to block the progression of a synchronous wave of differentiation referred to as Morphogenetic furrow (MF). In cul-4 loss-of-function background, expression of dpp-lacZ, a MF marker, is significantly downregulated. Our data suggest a new role of cul-4 in retinal differentiation. These studies may have significant bearings on our understanding of early eye development.
Collapse
Affiliation(s)
- Meghana Tare
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, India
| | | | - Neha Gogia
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
| | - Sonia Narwal
- Department of Biological Sciences, Birla Institute of Technology and Science, Pilani, Pilani, Rajasthan, India
| | - Prajakta Deshpande
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
| | - Amit Singh
- Department of Biology, University of Dayton, 300 College Park Drive, Dayton, OH, USA
- Premedical Program, University of Dayton, 300 College Park Drive, Dayton, OH, USA
- Center for Tissue Regeneration & Engineering (TREND), University of Dayton, 300 College Park Drive, Dayton, OH, USA
- The Integrative Science and Engineering Center, University of Dayton, Dayton, OH, USA
- Center for Genomic Advocacy (TCGA), Indiana State University, Terre Haute, IN, USA
| |
Collapse
|
19
|
Morrison CA, Chen H, Cook T, Brown S, Treisman JE. Glass promotes the differentiation of neuronal and non-neuronal cell types in the Drosophila eye. PLoS Genet 2018; 14:e1007173. [PMID: 29324767 PMCID: PMC5783423 DOI: 10.1371/journal.pgen.1007173] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 01/24/2018] [Accepted: 12/29/2017] [Indexed: 11/18/2022] Open
Abstract
Transcriptional regulators can specify different cell types from a pool of equivalent progenitors by activating distinct developmental programs. The Glass transcription factor is expressed in all progenitors in the developing Drosophila eye, and is maintained in both neuronal and non-neuronal cell types. Glass is required for neuronal progenitors to differentiate as photoreceptors, but its role in non-neuronal cone and pigment cells is unknown. To determine whether Glass activity is limited to neuronal lineages, we compared the effects of misexpressing it in neuroblasts of the larval brain and in epithelial cells of the wing disc. Glass activated overlapping but distinct sets of genes in these neuronal and non-neuronal contexts, including markers of photoreceptors, cone cells and pigment cells. Coexpression of other transcription factors such as Pax2, Eyes absent, Lozenge and Escargot enabled Glass to induce additional genes characteristic of the non-neuronal cell types. Cell type-specific glass mutations generated in cone or pigment cells using somatic CRISPR revealed autonomous developmental defects, and expressing Glass specifically in these cells partially rescued glass mutant phenotypes. These results indicate that Glass is a determinant of organ identity that acts in both neuronal and non-neuronal cells to promote their differentiation into functional components of the eye.
Collapse
Affiliation(s)
- Carolyn A. Morrison
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Hao Chen
- Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Tiffany Cook
- Center of Molecular Medicine and Genomics and Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Stuart Brown
- Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
| | - Jessica E. Treisman
- Skirball Institute for Biomolecular Medicine and Department of Cell Biology, NYU School of Medicine, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kushnir T, Mezuman S, Bar-Cohen S, Lange R, Paroush Z, Helman A. Novel interplay between JNK and Egfr signaling in Drosophila dorsal closure. PLoS Genet 2017. [PMID: 28628612 PMCID: PMC5495517 DOI: 10.1371/journal.pgen.1006860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Dorsal closure (DC) is a developmental process in which two contralateral epithelial sheets migrate to seal a large hole in the dorsal ectoderm of the Drosophila embryo. Two signaling pathways act sequentially to orchestrate this dynamic morphogenetic process. First, c-Jun N-terminal kinase (JNK) signaling activity in the dorsal-most leading edge (LE) cells of the epidermis induces expression of decapentaplegic (dpp). Second, Dpp, a secreted TGF-β homolog, triggers cell shape changes in the adjacent, ventrally located lateral epidermis, that guide the morphogenetic movements and cell migration mandatory for DC. Here we uncover a cell non-autonomous requirement for the Epidermal growth factor receptor (Egfr) pathway in the lateral epidermis for sustained dpp expression in the LE. Specifically, we demonstrate that Egfr pathway activity in the lateral epidermis prevents expression of the gene scarface (scaf), encoding a secreted antagonist of JNK signaling. In embryos with compromised Egfr signaling, upregulated Scaf causes reduction of JNK activity in LE cells, thereby impeding completion of DC. Our results identify a new developmental role for Egfr signaling in regulating epithelial plasticity via crosstalk with the JNK pathway.
Collapse
Affiliation(s)
- Tatyana Kushnir
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Sharon Mezuman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Shaked Bar-Cohen
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Rotem Lange
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Ze'ev Paroush
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- * E-mail:
| | - Aharon Helman
- Department of Developmental Biology and Cancer Research, IMRIC, Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
21
|
Fraguas S, Umesono Y, Agata K, Cebrià F. Analyzing pERK Activation During Planarian Regeneration. Methods Mol Biol 2017; 1487:303-315. [PMID: 27924577 DOI: 10.1007/978-1-4939-6424-6_23] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Planarians are an ideal model in which to study stem cell-based regeneration. After amputation, planarian pluripotent stem cells surrounding the wound proliferate to produce the regenerative blastema, in which they differentiate into the missing tissues and structures. Recent independent studies in planarians have shown that Smed-egfr-3, a gene encoding a homologue of epidermal growth factor (EGF) receptors, and DjerkA, which encodes an extracellular signal-regulated kinase (ERK), may control cell differentiation and blastema growth. However, because these studies were carried in two different planarian species, the relationship between these two genes remains unclear. We have optimized anti-pERK immunostaining in Schmidtea mediterranea using the original protocol developed in Dugesia japonica. Both protocols are reported here as most laboratories worldwide work with one of these two species. Using this protocol we have determined that Smed-egfr-3 appears to be necessary for pERK activation during planarian regeneration.
Collapse
Affiliation(s)
- Susanna Fraguas
- Departament de Genètica i Institut de Biomedicina de la Universitat de Barcelona (IBUB), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Edifici Prevosti, Planta 1, 08028, Barcelona, Catalunya, Spain
| | - Yoshihiko Umesono
- Graduate School of Life Science, University of Hyogo, Ako-gun, Hyogo, Japan
| | - Kiyokazu Agata
- Department of Biophysics, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Francesc Cebrià
- Departament de Genètica i Institut de Biomedicina de la Universitat de Barcelona (IBUB), Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, Edifici Prevosti, Planta 1, 08028, Barcelona, Catalunya, Spain.
| |
Collapse
|
22
|
Cullin-4 regulates Wingless and JNK signaling-mediated cell death in the Drosophila eye. Cell Death Dis 2016; 7:e2566. [PMID: 28032862 PMCID: PMC5261020 DOI: 10.1038/cddis.2016.338] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/08/2016] [Accepted: 09/09/2016] [Indexed: 12/28/2022]
Abstract
In all multicellular organisms, the fundamental processes of cell proliferation and cell death are crucial for growth regulation during organogenesis. Strict regulation of cell death is important to maintain tissue homeostasis by affecting processes like regulation of cell number, and elimination of unwanted/unfit cells. The developing Drosophila eye is a versatile model to study patterning and growth, where complex signaling pathways regulate growth and cell survival. However, the molecular mechanisms underlying regulation of these processes is not fully understood. In a gain-of-function screen, we found that misexpression of cullin-4 (cul-4), an ubiquitin ligase, can rescue reduced eye mutant phenotypes. Previously, cul-4 has been shown to regulate chromatin remodeling, cell cycle and cell division. Genetic characterization of cul-4 in the developing eye revealed that loss-of-function of cul-4 exhibits a reduced eye phenotype. Analysis of twin-spots showed that in comparison with their wild-type counterparts, the cul-4 loss-of-function clones fail to survive. Here we show that cul-4 clones are eliminated by induction of cell death due to activation of caspases. Aberrant activation of signaling pathways is known to trigger cell death in the developing eye. We found that Wingless (Wg) and c-Jun-amino-terminal-(NH2)-Kinase (JNK) signaling are ectopically induced in cul-4 mutant clones, and these signals co-localize with the dying cells. Modulating levels of Wg and JNK signaling by using agonists and antagonists of these pathways demonstrated that activation of Wg and JNK signaling enhances cul-4 mutant phenotype, whereas downregulation of Wg and JNK signaling rescues the cul-4 mutant phenotypes of reduced eye. Here we present evidences to demonstrate that cul-4 is involved in restricting Wg signaling and downregulation of JNK signaling-mediated cell death during early eye development. Overall, our studies provide insights into a novel role of cul-4 in promoting cell survival in the developing Drosophila eye.
Collapse
|
23
|
Malartre M. Regulatory mechanisms of EGFR signalling during Drosophila eye development. Cell Mol Life Sci 2016; 73:1825-43. [PMID: 26935860 PMCID: PMC11108404 DOI: 10.1007/s00018-016-2153-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 01/20/2016] [Accepted: 02/01/2016] [Indexed: 01/14/2023]
Abstract
EGFR signalling is a well-conserved signalling pathway playing major roles during development and cancers. This review explores what studying the EGFR pathway during Drosophila eye development has taught us in terms of the diversity of its regulatory mechanisms. This model system has allowed the identification of numerous positive and negative regulators acting at specific time and place, thus participating to the tight control of signalling. EGFR signalling regulation is achieved by a variety of mechanisms, including the control of ligand processing, the availability of the receptor itself and the transduction of the cascade in the cytoplasm. Ultimately, the transcriptional responses contribute to the establishment of positive and negative feedback loops. The combination of these multiple mechanisms employed to regulate the EGFR pathway leads to specific cellular outcomes involved in functions as diverse as the acquisition of cell fate, proliferation, survival, adherens junction remodelling and morphogenesis.
Collapse
Affiliation(s)
- Marianne Malartre
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198, Gif-sur-Yvette Cedex, France.
| |
Collapse
|
24
|
FOXO regulates RNA interference in Drosophila and protects from RNA virus infection. Proc Natl Acad Sci U S A 2015; 112:14587-92. [PMID: 26553999 DOI: 10.1073/pnas.1517124112] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Small RNA pathways are important players in posttranscriptional regulation of gene expression. These pathways play important roles in all aspects of cellular physiology from development to fertility to innate immunity. However, almost nothing is known about the regulation of the central genes in these pathways. The forkhead box O (FOXO) family of transcription factors is a conserved family of DNA-binding proteins that responds to a diverse set of cellular signals. FOXOs are crucial regulators of cellular homeostasis that have a conserved role in modulating organismal aging and fitness. Here, we show that Drosophila FOXO (dFOXO) regulates the expression of core small RNA pathway genes. In addition, we find increased dFOXO activity results in an increase in RNA interference (RNAi) efficacy, establishing a direct link between cellular physiology and RNAi. Consistent with these findings, dFOXO activity is stimulated by viral infection and is required for effective innate immune response to RNA virus infection. Our study reveals an unanticipated connection among dFOXO, stress responses, and the efficacy of small RNA-mediated gene silencing and suggests that organisms can tune their gene silencing in response to environmental and metabolic conditions.
Collapse
|
25
|
Chou MH, Hsieh YC, Huang CW, Chen PH, Chan SP, Tsao YP, Lee HH, Wu JT, Chen SL. BCAS2 Regulates Delta-Notch Signaling Activity through Delta Pre-mRNA Splicing in Drosophila Wing Development. PLoS One 2015; 10:e0130706. [PMID: 26091239 PMCID: PMC4475048 DOI: 10.1371/journal.pone.0130706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 05/23/2015] [Indexed: 11/19/2022] Open
Abstract
Previously, we showed that BCAS2 is essential for Drosophila viability and functions in pre-mRNA splicing. In this study, we provide strong evidence that BCAS2 regulates the activity of Delta-Notch signaling via Delta pre-mRNA splicing. Depletion of dBCAS2 reduces Delta mRNA expression and leads to accumulation of Delta pre-mRNA, resulting in diminished transcriptions of Delta-Notch signaling target genes, such as cut and E(spl)m8. Furthermore, ectopic expression of human BCAS2 (hBCAS2) and Drosophila BCAS2 (dBCAS2) in a dBCAS2-deprived fly can rescue dBCAS2 depletion-induced wing damage to the normal phenotypes. These rescued phenotypes are correlated with the restoration of Delta pre-mRNA splicing, which affects Delta-Notch signaling activity. Additionally, overexpression of Delta can rescue the wing deformation by deprivation of dBCAS2; and the depletion of dBCAS2 can restore the aberrant eye associated with Delta-overexpressing retinas; providing supporting evidence for the regulation of Delta-Notch signaling by dBCAS2. Taken together, dBCAS2 participates in Delta pre-mRNA splicing that affects the regulation of Delta-Notch signaling in Drosophila wing development.
Collapse
Affiliation(s)
- Meng-Hsuan Chou
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yi-Chen Hsieh
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Chu-Wei Huang
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Po-Han Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Shih-Peng Chan
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - Yeou-Ping Tsao
- Department of Ophthalmology, Mackay Memorial Hospital, Taipei, 104, Taiwan
| | - Hsiu-Hsiang Lee
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
| | - June-Tai Wu
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- Department of Medical Research, National Taiwan University Hospital, Taipei, 100, Taiwan
- * E-mail: (SLC); (JTW)
| | - Show-Li Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, 100, Taiwan
- * E-mail: (SLC); (JTW)
| |
Collapse
|
26
|
Takeuchi T, Suzuki M, Fujikake N, Popiel HA, Kikuchi H, Futaki S, Wada K, Nagai Y. Intercellular chaperone transmission via exosomes contributes to maintenance of protein homeostasis at the organismal level. Proc Natl Acad Sci U S A 2015; 112:E2497-506. [PMID: 25918398 PMCID: PMC4434695 DOI: 10.1073/pnas.1412651112] [Citation(s) in RCA: 142] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The heat shock response (HSR), a transcriptional response that up-regulates molecular chaperones upon heat shock, is necessary for cell survival in a stressful environment to maintain protein homeostasis (proteostasis). However, there is accumulating evidence that the HSR does not ubiquitously occur under stress conditions, but largely depends on the cell types. Despite such imbalanced HSR among different cells and tissues, molecular mechanisms by which multicellular organisms maintain their global proteostasis have remained poorly understood. Here, we report that proteostasis can be maintained by molecular chaperones not only in a cell-autonomous manner but also in a non-cell-autonomous manner. We found that elevated expression of molecular chaperones, such as Hsp40 and Hsp70, in a group of cells improves proteostasis in other groups of cells, both in cultured cells and in Drosophila expressing aggregation-prone polyglutamine proteins. We also found that Hsp40, as well as Hsp70 and Hsp90, is physiologically secreted from cells via exosomes, and that the J domain at the N terminus is responsible for its exosome-mediated secretion. Addition of Hsp40/Hsp70-containing exosomes to the culture medium of the polyglutamine-expressing cells results in efficient suppression of inclusion body formation, indicating that molecular chaperones non-cell autonomously improve the protein-folding environment via exosome-mediated transmission. Our study reveals that intercellular chaperone transmission mediated by exosomes is a novel molecular mechanism for non-cell-autonomous maintenance of organismal proteostasis that could functionally compensate for the imbalanced state of the HSR among different cells, and also provides a novel physiological role of exosomes that contributes to maintenance of organismal proteostasis.
Collapse
Affiliation(s)
- Toshihide Takeuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan; Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; and
| | - Mari Suzuki
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Nobuhiro Fujikake
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - H Akiko Popiel
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Hisae Kikuchi
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Shiroh Futaki
- Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; and
| | - Keiji Wada
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan
| | - Yoshitaka Nagai
- Department of Degenerative Neurological Diseases, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Tokyo 187-8502, Japan; Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan
| |
Collapse
|
27
|
Martín-Bermudo MD, Bardet PL, Bellaïche Y, Malartre M. The vav oncogene antagonises EGFR signalling and regulates adherens junction dynamics during Drosophila eye development. Development 2015; 142:1492-501. [PMID: 25813543 DOI: 10.1242/dev.110585] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Accepted: 03/02/2015] [Indexed: 12/13/2022]
Abstract
Organ shaping and patterning depends on the coordinated regulation of multiple processes. The Drosophila compound eye provides an excellent model to study the coordination of cell fate and cell positioning during morphogenesis. Here, we find that loss of vav oncogene function during eye development is associated with a disorganised retina characterised by the presence of additional cells of all types. We demonstrate that these defects result from two distinct roles of Vav. First, and in contrast to its well-established role as a positive effector of the EGF receptor (EGFR), we show that readouts of the EGFR pathway are upregulated in vav mutant larval eye disc and pupal retina, indicating that Vav antagonises EGFR signalling during eye development. Accordingly, decreasing EGFR signalling in vav mutant eyes restores retinal organisation and rescues most vav mutant phenotypes. Second, using live imaging in the pupal retina, we observe that vav mutant cells do not form stable adherens junctions, causing various defects, such as recruitment of extra primary pigment cells. In agreement with this role in junction dynamics, we observe that these phenotypes can be exacerbated by lowering DE-Cadherin or Cindr levels. Taken together, our findings establish that Vav acts at multiple times during eye development to prevent excessive cell recruitment by limiting EGFR signalling and by regulating junction dynamics to ensure the correct patterning and morphogenesis of the Drosophila eye.
Collapse
Affiliation(s)
| | - Pierre-Luc Bardet
- Institut Curie, CNRS UMR3215, INSERM U934, Paris Cedex 05 75248, France
| | - Yohanns Bellaïche
- Institut Curie, CNRS UMR3215, INSERM U934, Paris Cedex 05 75248, France
| | - Marianne Malartre
- Centro Andaluz de Biología del Desarrollo CSIC-Univ. Pablo de Olavide, Sevilla 41013, Spain Université Paris-Sud, INSERM UMR-S757, Orsay 91405, France Centre de Génétique Moléculaire (UPR3404), CNRS, 1 avenue de la Terrasse, Gif-Sur-Yvette 91198, France
| |
Collapse
|
28
|
Nagel AC, Preiss A. Mutation of potential MAPK phosphorylation sites in the Notch antagonist Hairless. Hereditas 2014; 151:102-8. [PMID: 25363277 DOI: 10.1111/hrd2.00066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 08/31/2014] [Indexed: 01/05/2023] Open
Abstract
Cellular differentiation during eumetazoan development is based on highly conserved signalling pathways. Two of them, the Notch and the EGFR signalling pathways, are closely intertwined. We have identified two potential target sites of the Mitogen activated kinase (MAPK), the downstream effector kinase of EGFR, within Hairless (H), the major antagonist of Notch signalling in Drosophila. Assuming that phosphorylation of these sites modulates H activity, a direct influence of EGFR signalling on Notch pathway regulation might be possible. This hypothesis was tested by generating a phospho-deficient and a phospho-mimetic H isoform and by assaying for their biological activity. We first addressed the binding of known H interaction partners Su(H), Gro, CtBP and Pros26.4 which was similar between mutant and wild type H. Next we assayed eye, wing and bristle development which are strongly affected by the overexpression of H due to the inhibition of Notch signalling. Overexpression of the mutant constructs resulted in phenotypes similar to wildtype H overexpression, yet with subtle differences in phenotypic severity. However, large variations suggest that the mutated residues may be critical for the overall structure or stability of H. Albeit of minor impact, EGFR may fine tune Notch signalling via MAPK dependent phosphorylation of H.
Collapse
Affiliation(s)
- Anja C Nagel
- Universität Hohenheim, Institut für Genetik (240), Garbenstr. 30, DE-70599, Stuttgart, Germany.
| | | |
Collapse
|
29
|
Kang J, Yeom E, Lim J, Choi KW. Bar represses dPax2 and decapentaplegic to regulate cell fate and morphogenetic cell death in Drosophila eye. PLoS One 2014; 9:e88171. [PMID: 24505414 PMCID: PMC3914906 DOI: 10.1371/journal.pone.0088171] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2013] [Accepted: 01/04/2014] [Indexed: 02/08/2023] Open
Abstract
The coordinated regulation of cell fate and cell survival is crucial for normal pattern formation in developing organisms. In Drosophila compound eye development, crystalline arrays of hexagonal ommatidia are established by precise assembly of diverse cell types, including the photoreceptor cells, cone cells and interommatidial (IOM) pigment cells. The molecular basis for controlling the number of cone and IOM pigment cells during ommatidial pattern formation is not well understood. Here we present evidence that BarH1 and BarH2 homeobox genes are essential for eye patterning by inhibiting excess cone cell differentiation and promoting programmed death of IOM cells. Specifically, we show that loss of Bar from the undifferentiated retinal precursor cells leads to ectopic expression of Prospero and dPax2, two transcription factors essential for cone cell specification, resulting in excess cone cell differentiation. We also show that loss of Bar causes ectopic expression of the TGFβ homolog Decapentaplegic (Dpp) posterior to the morphogenetic furrow in the larval eye imaginal disc. The ectopic Dpp expression is not responsible for the formation of excess cone cells in Bar loss-of-function mutant eyes. Instead, it causes reduction in IOM cell death in the pupal stage by antagonizing the function of pro-apoptotic gene reaper. Taken together, this study suggests a novel regulatory mechanism in the control of developmental cell death in which the repression of Dpp by Bar in larval eye disc is essential for IOM cell death in pupal retina.
Collapse
Affiliation(s)
- Jongkyun Kang
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, Korea
| | - Eunbyul Yeom
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, Korea
| | - Janghoo Lim
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Kwang-Wook Choi
- Department of Biological Sciences, Korea Advanced Institute of Science & Technology, Daejeon, Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science & Technology, Daejeon, Korea
- * E-mail:
| |
Collapse
|
30
|
Abstract
Sporadic evidence suggests Notch is involved in cell adhesion. However, the underlying mechanism is unknown. Here I have investigated an epithelial remodeling process in the Drosophila eye in which two primary pigment cells (PPCs) with a characteristic ‘kidney’ shape enwrap and eventually isolate a group of cone cells from inter-ommatidial cells (IOCs). This paper shows that in the developing Drosophila eye the ligand Delta was transcribed in cone cells and Notch was activated in the adjacent PPC precursors. In the absence of Notch, emerging PPCs failed to enwrap cone cells, and hibris (hbs) and sns, two genes coding for adhesion molecules of the Nephrin group that mediate preferential adhesion, were not transcribed in PPC precursors. Conversely, activation of Notch in single IOCs led to ectopic expression of hbs and sns. By contrast, in a single IOC that normally transcribes rst, a gene coding for an adhesion molecule of the Neph1 group that binds Hbs and Sns, activation of Notch led to a loss of rst transcription. In addition, in a Notch mutant where two emerging PPCs failed to enwrap cone cells, expression of hbs in PPC precursors restored the ability of these cells to surround cone cells. Further, expression of hbs or rst in a single rst- or hbs-expressing cell, respectively, led to removal of the counterpart from the membrane within the same cell through cis-interaction and forced expression of Rst in all hbs-expressing PPCs strongly disrupted the remodeling process. Finally, a loss of both hbs and sns in single PPC precursors led to constriction of the apical surface that compromised the ‘kidney’ shape of PPCs. Taken together, these results indicate that cone cells utilize Notch signaling to instruct neighboring PPC precursors to surround them and Notch controls the remodeling process by differentially regulating four adhesion genes. In developing tissues, one way to isolate a group of cells from the rest of the tissue is to induce a few neighboring cells to surround them. How centrally localized cells communicate with neighboring cells and how neighboring cells respond to signaling is not well understood. This work describes a mechanism underlying an epithelial remodeling process in the Drosophila eye in which two primary pigment cells (PPCs) with a characteristic ‘kidney’ shape enwrap and isolate a group of cone cells from inter-ommatidial cells (IOCs). This paper shows that cone cells utilize Notch signaling to communicate with neighboring PPC precursors. In response to Notch signaling, PPC precursors activate transcription of hbs and sns, two genes coding for adhesion molecules of the Nephrin group that bind Rst and Kirre, adhesion molecules of the Neph1 group. At the same time, PPC precursors inactivate transcription of rst and kirre genes. In addition, binding of Hbs or Rst to its counterpart from the same cell (cis-interaction) destabilizes the protein complex and promotes removal of the counterparts from the membrane, leading to complementary distribution of four adhesion molecules within two populations of cells. Thus, Notch controls epithelial remodeling by differentially regulating four adhesion genes.
Collapse
Affiliation(s)
- Sujin Bao
- Saint James School of Medicine, Bonaire, Netherlands Antilles
- * E-mail:
| |
Collapse
|
31
|
Chu WC, Lee YM, Henry Sun Y. FGF /FGFR signal induces trachea extension in the drosophila visual system. PLoS One 2013; 8:e73878. [PMID: 23991208 PMCID: PMC3753266 DOI: 10.1371/journal.pone.0073878] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/24/2013] [Indexed: 11/29/2022] Open
Abstract
The Drosophila compound eye is a large sensory organ that places a high demand on oxygen supplied by the tracheal system. Although the development and function of the Drosophila visual system has been extensively studied, the development and contribution of its tracheal system has not been systematically examined. To address this issue, we studied the tracheal patterns and developmental process in the Drosophila visual system. We found that the retinal tracheae are derived from air sacs in the head, and the ingrowth of retinal trachea begin at mid-pupal stage. The tracheal development has three stages. First, the air sacs form near the optic lobe in 42-47% of pupal development (pd). Second, in 47-52% pd, air sacs extend branches along the base of the retina following a posterior-to-anterior direction and further form the tracheal network under the fenestrated membrane (TNUFM). Third, the TNUFM extend fine branches into the retina following a proximal-to-distal direction after 60% pd. Furthermore, we found that the trachea extension in both retina and TNUFM are dependent on the FGF(Bnl)/FGFR(Btl) signaling. Our results also provided strong evidence that the photoreceptors are the source of the Bnl ligand to guide the trachea ingrowth. Our work is the first systematic study of the tracheal development in the visual system, and also the first study demonstrating the interactions of two well-studied systems: the eye and trachea.
Collapse
Affiliation(s)
- Wei-Chen Chu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Yi Henry Sun
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Life Sciences and Institute of Genome Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
32
|
Das S, Chen QB, Saucier JD, Drescher B, Zong Y, Morgan S, Forstall J, Meriwether A, Toranzo R, Leal SM. The Drosophila T-box transcription factor Midline functions within the Notch-Delta signaling pathway to specify sensory organ precursor cell fates and regulates cell survival within the eye imaginal disc. Mech Dev 2013; 130:577-601. [PMID: 23962751 DOI: 10.1016/j.mod.2013.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 07/30/2013] [Accepted: 08/03/2013] [Indexed: 12/20/2022]
Abstract
We report that the T-box transcription factor Midline (Mid), an evolutionary conserved homolog of the vertebrate Tbx20 protein, functions within the Notch-Delta signaling pathway essential for specifying the fates of sensory organ precursor (SOP) cells. These findings complement an established history of research showing that Mid regulates the cell-fate specification of diverse cell types within the developing heart, epidermis and central nervous system. Tbx20 has been detected in unique neuronal and epithelial cells of embryonic eye tissues in both mice and humans. However, the mechanisms by which either Mid or Tbx20 function to regulate cell-fate specification or other critical aspects of eye development including cell survival have not yet been elucidated. We have also gathered preliminary evidence suggesting that Mid may play an indirect, but vital role in selecting SOP cells within the third-instar larval eye disc by regulating the expression of the proneural gene atonal. During subsequent pupal stages, Mid specifies SOP cell fates as a member of the Notch-Delta signaling hierarchy and is essential for maintaining cell viability by inhibiting apoptotic pathways. We present several new hypotheses that seek to understand the role of Mid in regulating developmental processes downstream of the Notch receptor that are critical for specifying unique cell fates, patterning the adult eye and maintaining cellular homeostasis during eye disc morphogenesis.
Collapse
Affiliation(s)
- Sudeshna Das
- The Department of Biological Sciences, University of Southern Mississippi, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Treisman JE. Retinal differentiation in Drosophila. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:545-57. [PMID: 24014422 DOI: 10.1002/wdev.100] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Drosophila eye development has been extensively studied, due to the ease of genetic screens for mutations disrupting this process. The eye imaginal disc is specified during embryonic and larval development by the Pax6 homolog Eyeless and a network of downstream transcription factors. Expression of these factors is regulated by signaling molecules and also indirectly by growth of the eye disc. Differentiation of photoreceptor clusters initiates in the third larval instar at the posterior of the eye disc and progresses anteriorly, driven by the secreted protein Hedgehog. Within each cluster, the combined activities of Hedgehog signaling and Notch-mediated lateral inhibition induce and refine the expression of the transcription factor Atonal, which specifies the founding R8 photoreceptor of each ommatidium. Seven additional photoreceptors, followed by cone and pigment cells, are successively recruited by the signaling molecules Spitz, Delta, and Bride of sevenless. Combinations of these signals and of intrinsic transcription factors give each ommatidial cell its specific identity. During the pupal stages, rhodopsins are expressed, and the photoreceptors and accessory cells take on their final positions and morphologies to form the adult retina. Over the past few decades, the genetic analysis of this small number of cell types arranged in a repetitive structure has allowed a remarkably detailed understanding of the basic mechanisms controlling cell differentiation and morphological rearrangement.
Collapse
Affiliation(s)
- Jessica E Treisman
- Department of Cell Biology and Kimmel Center for Biology and Medicine of the Skirball Institute, NYU School of Medicine, New York, NY, USA.
| |
Collapse
|
34
|
Abstract
Since the discovery of a single white-eyed male in a population of red eyed flies over 100 years ago (Morgan, 1910), the compound eye of the fruit fly, Drosophila melanogaster, has been a favorite experimental system for identifying genes that regulate various aspects of development. For example, a fair amount of what we know today about enzymatic pathways and vesicular transport is due to the discovery and subsequent characterization of eye color mutants such as white. Likewise, our present day understanding of organogenesis has been aided considerably by studies of mutations, such as eyeless, that either reduce or eliminate the compound eyes. But by far the phenotype that has provided levers into the greatest number of experimental fields has been the humble "rough" eye. The fly eye is composed of several hundred unit-eyes that are also called ommatidia. These unit eyes are packed into a hexagonal array of remarkable precision. The structure of the eye is so precise that it has been compared with that of a crystal (Ready et al., 1976). Even the slightest perturbations to the structure of the ommatidium can be visually detected by light or electron microscopy. The cause for this is two-fold: (1) any defect that affects the hexagonal geometry of a single ommatidium can and will disrupt the positioning of surrounding unit eyes thereby propagating structural flaws and (2) disruptions in genes that govern the development of even a single cell within an ommatidium will affect all unit eyes. In both cases, the effect is the visual magnification of even the smallest imperfection. Studies of rough eye mutants have provided key insights into the areas of cell fate specification, lateral inhibition, signal transduction, transcription factor networks, planar cell polarity, cell proliferation, and programmed cell death just to name a few. This review will attempt to summarize the key steps that are required to assemble each ommatidium.
Collapse
Affiliation(s)
- Justin P Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| |
Collapse
|
35
|
The lens in focus: a comparison of lens development in Drosophila and vertebrates. Mol Genet Genomics 2011; 286:189-213. [PMID: 21877135 DOI: 10.1007/s00438-011-0643-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Accepted: 08/04/2011] [Indexed: 12/24/2022]
Abstract
The evolution of the eye has been a major subject of study dating back centuries. The advent of molecular genetics offered the surprising finding that morphologically distinct eyes rely on conserved regulatory gene networks for their formation. While many of these advances often stemmed from studies of the compound eye of the fruit fly, Drosophila melanogaster, and later translated to discoveries in vertebrate systems, studies on vertebrate lens development far outnumber those in Drosophila. This may be largely historical, since Spemann and Mangold's paradigm of tissue induction was discovered in the amphibian lens. Recent studies on lens development in Drosophila have begun to define molecular commonalities with the vertebrate lens. Here, we provide an overview of Drosophila lens development, discussing intrinsic and extrinsic factors controlling lens cell specification and differentiation. We then summarize key morphological and molecular events in vertebrate lens development, emphasizing regulatory factors and networks strongly associated with both systems. Finally, we provide a comparative analysis that highlights areas of research that would help further clarify the degree of conservation between the formation of dioptric systems in invertebrates and vertebrates.
Collapse
|
36
|
Lapan SW, Reddien PW. dlx and sp6-9 Control optic cup regeneration in a prototypic eye. PLoS Genet 2011; 7:e1002226. [PMID: 21852957 PMCID: PMC3154955 DOI: 10.1371/journal.pgen.1002226] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2011] [Accepted: 06/18/2011] [Indexed: 12/01/2022] Open
Abstract
Optic cups are a structural feature of diverse eyes, from simple pit eyes to camera eyes of vertebrates and cephalopods. We used the planarian prototypic eye as a model to study the genetic control of optic cup formation and regeneration. We identified two genes encoding transcription factors, sp6-9 and dlx, that were expressed in the eye specifically in the optic cup and not the photoreceptor neurons. RNAi of these genes prevented formation of visible optic cups during regeneration. Planarian regeneration requires an adult proliferative cell population with stem cell-like properties called the neoblasts. We found that optic cup formation occurred only after migration of progressively differentiating progenitor cells from the neoblast population. The eye regeneration defect caused by dlx and sp6-9 RNAi can be explained by a failure to generate these early optic cup progenitors. Dlx and Sp6-9 genes function as a module during the development of diverse animal appendages, including vertebrate and insect limbs. Our work reveals a novel function for this gene pair in the development of a fundamental eye component, and it utilizes these genes to demonstrate a mechanism for total organ regeneration in which extensive cell movement separates new cell specification from organ morphogenesis. Some invertebrates, such as planarians and Hydra, can regenerate fully after amputations that remove large parts of the body. We investigated how cells in the body of planarians provide new cells for eye regeneration after complete head removal. Planarians possess highly potent regenerative cells (neoblasts) in a compartment inside the worm, and these cells must be present in a body fragment for it to regenerate. We identify a pair of transcription factors, sp6-9 and dlx, that are expressed in the optic cup, and use expression of these genes as markers to demonstrate that lineage restriction of eye cells during regeneration begins within the neoblast compartment. dlx and sp6-9 are essential for formation of optic cup progenitors, and inhibition of these genes with RNA interference results in eyes that lack optic cups after regeneration. During eye development in both flies and vertebrates, progenitors form within a patterned epithelium. Interestingly, planarian eye precursors only aggregate once they have stopped cycling and undergone extensive migration. At this stage they already express markers of the terminally differentiated state. Therefore, we identify a mechanism for eye formation during regeneration and a novel function for a conserved gene pair in eye regeneration.
Collapse
Affiliation(s)
- Sylvain W. Lapan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Peter W. Reddien
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Swanson CI, Schwimmer DB, Barolo S. Rapid evolutionary rewiring of a structurally constrained eye enhancer. Curr Biol 2011; 21:1186-96. [PMID: 21737276 PMCID: PMC3143281 DOI: 10.1016/j.cub.2011.05.056] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 04/18/2011] [Accepted: 05/27/2011] [Indexed: 12/20/2022]
Abstract
BACKGROUND Enhancers are genomic cis-regulatory sequences that integrate spatiotemporal signals to control gene expression. Enhancer activity depends on the combination of bound transcription factors as well as-in some cases-the arrangement and spacing of binding sites for these factors. Here, we examine evolutionary changes to the sequence and structure of sparkling, a Notch/EGFR/Runx-regulated enhancer that activates the dPax2 gene in cone cells of the developing Drosophila eye. RESULTS Despite functional and structural constraints on its sequence, sparkling has undergone major reorganization in its recent evolutionary history. Our data suggest that the relative strengths of the various regulatory inputs into sparkling change rapidly over evolutionary time, such that reduced input from some factors is compensated by increased input from different regulators. These gains and losses are at least partly responsible for the changes in enhancer structure that we observe. Furthermore, stereotypical spatial relationships between certain binding sites ("grammar elements") can be identified in all sparkling orthologs-although the sites themselves are often recently derived. We also find that low binding affinity for the Notch-regulated transcription factor Su(H), a conserved property of sparkling, is required to prevent ectopic responses to Notch in noncone cells. CONCLUSIONS Rapid DNA sequence turnover does not imply either the absence of critical cis-regulatory information or the absence of structural rules. Our findings demonstrate that even a severely constrained cis-regulatory sequence can be significantly rewired over a short evolutionary timescale.
Collapse
Affiliation(s)
| | - David B. Schwimmer
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Scott Barolo
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
38
|
Gemp IM, Carthew RW, Hilgenfeldt S. Cadherin-dependent cell morphology in an epithelium: constructing a quantitative dynamical model. PLoS Comput Biol 2011; 7:e1002115. [PMID: 21814505 PMCID: PMC3140965 DOI: 10.1371/journal.pcbi.1002115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 05/23/2011] [Indexed: 01/22/2023] Open
Abstract
Cells in the Drosophila retina have well-defined morphologies that are attained during tissue morphogenesis. We present a computer simulation of the epithelial tissue in which the global interfacial energy between cells is minimized. Experimental data for both normal cells and mutant cells either lacking or misexpressing the adhesion protein N-cadherin can be explained by a simple model incorporating salient features of morphogenesis that include the timing of N-cadherin expression in cells and its temporal relationship to the remodeling of cell-cell contacts. The simulations reproduce the geometries of wild-type and mutant cells, distinguish features of cadherin dynamics, and emphasize the importance of adhesion protein biogenesis and its timing with respect to cell remodeling. The simulations also indicate that N-cadherin protein is recycled from inactive interfaces to active interfaces, thereby modulating adhesion strengths between cells. Tissues are intricate, heterogeneous systems, consisting of individual cells whose shapes and relative positions are of great importance to the tissue's function, as well as to its formation during morphogenesis. To make progress in our understanding of the formation of organs, their malfunction, and their therapeutic replacement in regenerative medicine, it is crucial to elucidate the connection between shape and function. We have developed a quantitative mechanical model of an epithelial tissue, the retina of Drosophila, and compare the modeling results with experimental data. The model successfully predicts shape changes induced by different expression levels of cell-cell adhesion molecules. Furthermore, the model gives new insight into the changes a tissue undergoes during morphogenesis. Comparing simulations and experiments, we are able to accept or reject different hypotheses about morphogenetic dynamics. In this way, we can identify the time course of adhesion molecule synthesis and of cell-cell contact, as well as gain new insight into the regulation of adhesion strength. Given the prominent role of adhesion in wound healing, cancer research, and many other fields, our fundamental work introduces a novel modeling tool of universal applicability and importance.
Collapse
Affiliation(s)
- Ian M. Gemp
- Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, Illinois, United States of America
| | - Richard W. Carthew
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Sascha Hilgenfeldt
- Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Charlton-Perkins M, Whitaker SL, Fei Y, Xie B, Li-Kroeger D, Gebelein B, Cook T. Prospero and Pax2 combinatorially control neural cell fate decisions by modulating Ras- and Notch-dependent signaling. Neural Dev 2011; 6:20. [PMID: 21539742 PMCID: PMC3123624 DOI: 10.1186/1749-8104-6-20] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/03/2011] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The concept of an equivalence group, a cluster of cells with equal potential to adopt the same specific fate, has served as a useful paradigm to understand neural cell type specification. In the Drosophila eye, a set of five cells, called the 'R7 equivalence group', generates a single photoreceptor neuron and four lens-secreting epithelial cells. This choice between neuronal versus non-neuronal cell fates rests on differential requirements for, and cross-talk between, Notch/Delta- and Ras/mitogen-activated protein kinase (MAPK)-dependent signaling pathways. However, many questions remain unanswered related to how downstream events of these two signaling pathways mediate distinct cell fate decisions. RESULTS Here, we demonstrate that two direct downstream targets of Ras and Notch signaling, the transcription factors Prospero and dPax2, are essential regulators of neuronal versus non-neuronal cell fate decisions in the R7 equivalence group. Prospero controls high activated MAPK levels required for neuronal fate, whereas dPax2 represses Delta expression to prevent neuronal fate. Importantly, activity from both factors is required for proper cell fate decisions to occur. CONCLUSIONS These data demonstrate that Ras and Notch signaling are integrated during cell fate decisions within the R7 equivalence group through the combinatorial and opposing activities of Pros and dPax2. Our study provides one of the first examples of how the differential expression and synergistic roles of two independent transcription factors determine cell fate within an equivalence group. Since the integration of Ras and Notch signaling is associated with many developmental and cancer models, these findings should provide new insights into how cell specificity is achieved by ubiquitously used signaling pathways in diverse biological contexts.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Fraguas S, Barberán S, Cebrià F. EGFR signaling regulates cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis. Dev Biol 2011; 354:87-101. [PMID: 21458439 DOI: 10.1016/j.ydbio.2011.03.023] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Revised: 02/14/2011] [Accepted: 03/23/2011] [Indexed: 02/08/2023]
Abstract
Similarly to development, the process of regeneration requires that cells accurately sense and respond to their external environment. Thus, intrinsic cues must be integrated with signals from the surrounding environment to ensure appropriate temporal and spatial regulation of tissue regeneration. Identifying the signaling pathways that control these events will not only provide insights into a fascinating biological phenomenon but may also yield new molecular targets for use in regenerative medicine. Among classical models to study regeneration, freshwater planarians represent an attractive system in which to investigate the signals that regulate cell proliferation and differentiation, as well as the proper patterning of the structures being regenerated. Recent studies in planarians have begun to define the role of conserved signaling pathways during regeneration. Here, we extend these analyses to the epidermal growth factor (EGF) receptor pathway. We report the characterization of three epidermal growth factor (EGF) receptors in the planarian Schmidtea mediterranea. Silencing of these genes by RNA interference (RNAi) yielded multiple defects in intact and regenerating planarians. Smed-egfr-1(RNAi) resulted in decreased differentiation of eye pigment cells, abnormal pharynx regeneration and maintenance, and the development of dorsal outgrowths. In contrast, Smed-egfr-3(RNAi) animals produced smaller blastemas associated with abnormal differentiation of certain cell types. Our results suggest important roles for the EGFR signaling in controlling cell proliferation, differentiation and morphogenesis during planarian regeneration and homeostasis.
Collapse
Affiliation(s)
- Susanna Fraguas
- Department of Genetics, Faculty of Biology, University of Barcelona and Institute of Biomedicine of the University of Barcelona (IBUB), Av. Diagonal 645, Barcelona, Catalunya, Spain
| | | | | |
Collapse
|
41
|
Ngo KT, Wang J, Junker M, Kriz S, Vo G, Asem B, Olson JM, Banerjee U, Hartenstein V. Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev Biol 2010; 346:284-95. [PMID: 20692248 PMCID: PMC3551593 DOI: 10.1016/j.ydbio.2010.07.036] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/12/2010] [Accepted: 07/30/2010] [Indexed: 11/28/2022]
Abstract
The optic lobe forms a prominent compartment of the Drosophila adult brain that processes visual input from the compound eye. Neurons of the optic lobe are produced during the larval period from two neuroepithelial layers called the outer and inner optic anlage (OOA, IOA). In the early larva, the optic anlagen grow as epithelia by symmetric cell division. Subsequently, neuroepithelial cells (NE) convert into neuroblasts (NB) in a tightly regulated spatio-temporal progression that starts at the edges of the epithelia and gradually move towards its centers. Neuroblasts divide at a much faster pace in an asymmetric mode, producing lineages of neurons that populate the different parts of the optic lobe. In this paper we have reconstructed the complex morphogenesis of the optic lobe during the larval period, and established a role for the Notch and Jak/Stat signaling pathways during the NE-NB conversion. After an early phase of complete overlap in the OOA, signaling activities sort out such that Jak/Stat is active in the lateral OOA which gives rise to the lamina, and Notch remains in the medial cells that form the medulla. During the third instar, a wave front of enhanced Notch activity progressing over the OOA from medial to lateral controls the gradual NE-NB conversion. Neuroepithelial cells at the medial edge of the OOA, shortly prior to becoming neuroblasts, express high levels of Delta, which activates the Notch pathway and thereby maintains the OOA in an epithelial state. Loss of Notch signaling, as well as Jak/Stat signaling, results in a premature NE-NB conversion of the OOA, which in turn has severe effects on optic lobe patterning. Our findings present the Drosophila optic lobe as a useful model to analyze the key signaling mechanisms controlling transitions of progenitor cells from symmetric (growth) to asymmetric (differentiative) divisions.
Collapse
Affiliation(s)
- Kathy T. Ngo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Jay Wang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Markus Junker
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Steve Kriz
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Gloria Vo
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Bobby Asem
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - John M. Olson
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| | - Utpal Banerjee
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA
| | - Volker Hartenstein
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA
| |
Collapse
|
42
|
Wang Y, Chen Z, Bergmann A. Regulation of EGFR and Notch signaling by distinct isoforms of D-cbl during Drosophila development. Dev Biol 2010; 342:1-10. [PMID: 20302857 PMCID: PMC2866751 DOI: 10.1016/j.ydbio.2010.03.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2008] [Revised: 03/08/2010] [Accepted: 03/10/2010] [Indexed: 01/25/2023]
Abstract
Cells receive and interpret extracellular signals to regulate cellular responses such as proliferation, cell survival and differentiation. However, proper inactivation of these signals is critical for appropriate homeostasis. Cbl proteins are E3-ubiquitin ligases that restrict receptor tyrosine kinase (RTK) signaling, most notably EGFR (Epidermal Growth Factor Receptor), via the endocytic pathway. Consistently, many mutant phenotypes of Drosophila cbl (D-cbl) are due to inappropriate activation of EGFR signaling. However, not all D-cbl phenotypes can be explained by increased EGFR activity. Here, we report that D-Cbl also negatively regulates Notch activity during eye and wing development. D-cbl produces two isoforms by alternative splicing. The long isoform, D-CblL, regulates the EGFR. We found that the short isoform, D-CblS, preferentially restricts Notch signaling. Specifically, our data imply that D-CblS controls the activity of the Notch ligand Delta. Taken together, these data suggest that D-Cbl controls the EGFR and Notch/Delta signaling pathways through production of two alternatively spliced isoforms during development in Drosophila.
Collapse
Affiliation(s)
- Yuan Wang
- The University of Texas M.D. Anderson Cancer Center Department of Biochemistry & Molecular Biology 1515 Holcombe Blvd. – Unit 1000 Houston, TX 77030
- The Genes & Development Graduate Program: http://www.mdanderson.org/genedev
| | - Zhihong Chen
- The University of Texas M.D. Anderson Cancer Center Department of Biochemistry & Molecular Biology 1515 Holcombe Blvd. – Unit 1000 Houston, TX 77030
| | - Andreas Bergmann
- The University of Texas M.D. Anderson Cancer Center Department of Biochemistry & Molecular Biology 1515 Holcombe Blvd. – Unit 1000 Houston, TX 77030
- The Genes & Development Graduate Program: http://www.mdanderson.org/genedev
| |
Collapse
|
43
|
Simms CL, Baillie DL. A strawberry notch homolog, let-765/nsh-1, positively regulates lin-3/egf expression to promote RAS-dependent vulval induction in C. elegans. Dev Biol 2010; 341:472-85. [DOI: 10.1016/j.ydbio.2010.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 03/02/2010] [Accepted: 03/08/2010] [Indexed: 12/26/2022]
|
44
|
Swanson CI, Evans NC, Barolo S. Structural rules and complex regulatory circuitry constrain expression of a Notch- and EGFR-regulated eye enhancer. Dev Cell 2010; 18:359-70. [PMID: 20230745 PMCID: PMC2847355 DOI: 10.1016/j.devcel.2009.12.026] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 09/27/2009] [Accepted: 12/27/2009] [Indexed: 01/13/2023]
Abstract
Enhancers integrate spatiotemporal information to generate precise patterns of gene expression. How complex is the regulatory logic of a typical developmental enhancer, and how important is its internal organization? Here, we examine in detail the structure and function of sparkling, a Notch- and EGFR/MAPK-regulated, cone cell-specific enhancer of the Drosophila Pax2 gene, in vivo. In addition to its 12 previously identified protein-binding sites, sparkling is densely populated with previously unmapped regulatory sequences, which interact in complex ways to control gene expression. One segment is essential for activation at a distance, yet dispensable for other activation functions and for cell type patterning. Unexpectedly, rearranging sparkling's regulatory sites converts it into a robust photoreceptor-specific enhancer. Our results show that a single combination of regulatory inputs can encode multiple outputs, and suggest that the enhancer's organization determines the correct expression pattern by facilitating certain short-range regulatory interactions at the expense of others.
Collapse
MESH Headings
- Animals
- Animals, Genetically Modified
- Base Sequence
- Binding Sites/genetics
- DNA/genetics
- DNA-Binding Proteins/genetics
- DNA-Binding Proteins/metabolism
- Drosophila/genetics
- Drosophila/growth & development
- Drosophila/metabolism
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Drosophila melanogaster/genetics
- Drosophila melanogaster/growth & development
- Drosophila melanogaster/metabolism
- Enhancer Elements, Genetic
- ErbB Receptors/genetics
- ErbB Receptors/metabolism
- Evolution, Molecular
- Eye/growth & development
- Eye/metabolism
- Eye Proteins/genetics
- Eye Proteins/metabolism
- Gene Expression Regulation, Developmental
- Genes, Insect
- MAP Kinase Signaling System
- Molecular Sequence Data
- Mutagenesis
- PAX2 Transcription Factor/genetics
- PAX2 Transcription Factor/metabolism
- Photoreceptor Cells, Invertebrate/cytology
- Photoreceptor Cells, Invertebrate/metabolism
- Receptors, Invertebrate Peptide/genetics
- Receptors, Invertebrate Peptide/metabolism
- Receptors, Notch/genetics
- Receptors, Notch/metabolism
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Christina I. Swanson
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Nicole C. Evans
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| | - Scott Barolo
- Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
45
|
Dziedzic K, Heaphy J, Prescott H, Kavaler J. The transcription factor D-Pax2 regulates crystallin production during eye development in Drosophila melanogaster. Dev Dyn 2010; 238:2530-9. [PMID: 19718746 DOI: 10.1002/dvdy.22082] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The generation of a functioning Drosophila eye requires the coordinated differentiation of multiple cell types and the morphogenesis of eye-specific structures. Here we show that D-Pax2 plays a significant role in lens development through regulation of the Crystallin gene and because Crystallin is also expressed in D-Pax2(+) cells in the external sensory organs. Loss of D-Pax2 function leads to loss of Crystallin expression in both eyes and bristles. A 2.3 kilobase (kb) upstream region of the Crystallin gene can drive GFP expression in the eye and is dependent on D-Pax2. In addition, D-Pax2 binds to an evolutionarily conserved site in this region that, by itself, is sufficient to drive GFP expression in the eye. However, mutation of this site does not greatly affect the regulatory region's function. The data indicate that D-Pax2 acts to promote lens development by controlling the production of the major protein component of the lens. Whether this control is direct or indirect remains unresolved.
Collapse
|
46
|
Abstract
Cells are sequentially recruited during formation of the Drosophila compound eye. A few simple rules are reiteratively utilized to control successive steps of eye assembly. Two themes emerge: the interplay between cell signaling and competence determines diversity of cell types and selective cell adhesion determines spatial patterns of cells. Cell signaling through competence creates signaling relays, which sequentially trigger differentiation of all cell types. Selective cell adhesion, on the other hand, provides forces to drive cells into energy-favored spatial configurations. Organ formation is nevertheless a complex process. The complexity lies in the spatial, temporal, and quantitative precision of gene expression. Many challenging questions remain.
Collapse
Affiliation(s)
- Sujin Bao
- Department of Pediatrics, Mount Sinai School of Medicine, New York, USA
| |
Collapse
|
47
|
Charlton-Perkins M, Cook TA. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 2010; 93:129-73. [PMID: 20959165 DOI: 10.1016/b978-0-12-385044-7.00005-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
48
|
Warner SJ, Longmore GD. Cdc42 antagonizes Rho1 activity at adherens junctions to limit epithelial cell apical tension. ACTA ACUST UNITED AC 2009; 187:119-33. [PMID: 19805632 PMCID: PMC2762093 DOI: 10.1083/jcb.200906047] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rho promotes actomyosin contractility during epithelial cell remodeling, but Cdc42 keeps the epithelium in shape by limiting RhoA activity. In epithelia, cells are arranged in an orderly pattern with a defined orientation and shape. Cadherin containing apical adherens junctions (AJs) and the associated actomyosin cytoskeleton likely contribute to epithelial cell shape by providing apical tension. The Rho guanosine triphosphatases are well known regulators of cell junction formation, maintenance, and function. Specifically, Rho promotes actomyosin activity and cell contractility; however, what controls and localizes this Rho activity as epithelia remodel is unresolved. Using mosaic clonal analysis in the Drosophila melanogaster pupal eye, we find that Cdc42 is critical for limiting apical cell tension by antagonizing Rho activity at AJs. Cdc42 localizes Par6–atypical protein kinase C (aPKC) to AJs, where this complex limits Rho1 activity and thus actomyosin contractility, independent of its effects on Wiskott-Aldrich syndrome protein and p21-activated kinase. Thus, in addition to its role in the establishment and maintenance of apical–basal polarity in forming epithelia, the Cdc42–Par6–aPKC polarity complex is required to limit Rho activity at AJs and thus modulate apical tension so as to shape the final epithelium.
Collapse
Affiliation(s)
- Stephen J Warner
- Department of Medicine, Washington University, St. Louis, MO 63110, USA
| | | |
Collapse
|
49
|
Shalaby NA, Parks AL, Morreale EJ, Osswalt MC, Pfau KM, Pierce EL, Muskavitch MAT. A screen for modifiers of notch signaling uncovers Amun, a protein with a critical role in sensory organ development. Genetics 2009; 182:1061-76. [PMID: 19448274 PMCID: PMC2728848 DOI: 10.1534/genetics.108.099986] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2009] [Accepted: 05/11/2009] [Indexed: 12/14/2022] Open
Abstract
Notch signaling is an evolutionarily conserved pathway essential for many cell fate specification events during metazoan development. We conducted a large-scale transposon-based screen in the developing Drosophila eye to identify genes involved in Notch signaling. We screened 10,447 transposon lines from the Exelixis collection for modifiers of cell fate alterations caused by overexpression of the Notch ligand Delta and identified 170 distinct modifier lines that may affect up to 274 genes. These include genes known to function in Notch signaling, as well as a large group of characterized and uncharacterized genes that have not been implicated in Notch pathway function. We further analyze a gene that we have named Amun and show that it encodes a protein that localizes to the nucleus and contains a putative DNA glycosylase domain. Genetic and molecular analyses of Amun show that altered levels of Amun function interfere with cell fate specification during eye and sensory organ development. Overexpression of Amun decreases expression of the proneural transcription factor Achaete, and sensory organ loss caused by Amun overexpression can be rescued by coexpression of Achaete. Taken together, our data suggest that Amun acts as a transcriptional regulator that can affect cell fate specification by controlling Achaete levels.
Collapse
Affiliation(s)
- Nevine A Shalaby
- Biology Department, Boston College, Chestnut Hill, Massachusetts 02467, USA
| | | | | | | | | | | | | |
Collapse
|
50
|
Pickup AT, Ming L, Lipshitz HD. Hindsight modulates Delta expression during Drosophila cone cell induction. Development 2009; 136:975-82. [PMID: 19234063 DOI: 10.1242/dev.027318] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The induction of cone cells in the Drosophila larval eye disc by the determined R1/R6 photoreceptor precursor cells requires integration of the Delta-Notch and EGF receptor signaling pathways with the activity of the Lozenge transcription factor. Here, we demonstrate that the zinc-finger transcription factor Hindsight (HNT) is required for normal cone-cell induction. R-cells in which hindsight levels are knocked down using RNAi show normal subtype specification, but these cells have lower levels of the Notch ligand Delta. We show that HNT functions in the determined R1/R6 precursor cells to allow Delta transcription to reach high enough levels at the right time to induce the cone-cell determinants Prospero and D-Pax2 in neighboring cells. The Delta signal emanating from the R1/R6 precursor cells is also required to specify the R7 precursor cell by repressing seven-up. As hindsight mutants have normal R7 cell-fate determination, we infer that there is a lower threshold of Delta required for R7 specification than for cone-cell induction.
Collapse
Affiliation(s)
- Amanda T Pickup
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children Research Institute, Department of Molecular Genetics, University of Toronto, 101 College Street, Toronto, Ontario, Canada M5G 1L7
| | | | | |
Collapse
|