1
|
Uribe RA. Genetic regulation of enteric nervous system development in zebrafish. Biochem Soc Trans 2024; 52:177-190. [PMID: 38174765 PMCID: PMC10903509 DOI: 10.1042/bst20230343] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024]
Abstract
The enteric nervous system (ENS) is a complex series of interconnected neurons and glia that reside within and along the entire length of the gastrointestinal tract. ENS functions are vital to gut homeostasis and digestion, including local control of peristalsis, water balance, and intestinal cell barrier function. How the ENS develops during embryological development is a topic of great concern, as defects in ENS development can result in various diseases, the most common being Hirschsprung disease, in which variable regions of the infant gut lack ENS, with the distal colon most affected. Deciphering how the ENS forms from its progenitor cells, enteric neural crest cells, is an active area of research across various animal models. The vertebrate animal model, zebrafish, has been increasingly leveraged to understand early ENS formation, and over the past 20 years has contributed to our knowledge of the genetic regulation that underlies enteric development. In this review, I summarize our knowledge regarding the genetic regulation of zebrafish enteric neuronal development, and based on the most current literature, present a gene regulatory network inferred to underlie its construction. I also provide perspectives on areas for future zebrafish ENS research.
Collapse
Affiliation(s)
- Rosa A. Uribe
- Biosciences Department, Rice University, Houston, TX 77005, U.S.A
- Laboratory of Neural Crest and Enteric Nervous System Development, Rice University, Houston, TX 77005, U.S.A
| |
Collapse
|
2
|
Saunders LM, Srivatsan SR, Duran M, Dorrity MW, Ewing B, Linbo TH, Shendure J, Raible DW, Moens CB, Kimelman D, Trapnell C. Embryo-scale reverse genetics at single-cell resolution. Nature 2023; 623:782-791. [PMID: 37968389 PMCID: PMC10665197 DOI: 10.1038/s41586-023-06720-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
The maturation of single-cell transcriptomic technologies has facilitated the generation of comprehensive cellular atlases from whole embryos1-4. A majority of these data, however, has been collected from wild-type embryos without an appreciation for the latent variation that is present in development. Here we present the 'zebrafish single-cell atlas of perturbed embryos': single-cell transcriptomic data from 1,812 individually resolved developing zebrafish embryos, encompassing 19 timepoints, 23 genetic perturbations and a total of 3.2 million cells. The high degree of replication in our study (eight or more embryos per condition) enables us to estimate the variance in cell type abundance organism-wide and to detect perturbation-dependent deviance in cell type composition relative to wild-type embryos. Our approach is sensitive to rare cell types, resolving developmental trajectories and genetic dependencies in the cranial ganglia neurons, a cell population that comprises less than 1% of the embryo. Additionally, time-series profiling of individual mutants identified a group of brachyury-independent cells with strikingly similar transcriptomes to notochord sheath cells, leading to new hypotheses about early origins of the skull. We anticipate that standardized collection of high-resolution, organism-scale single-cell data from large numbers of individual embryos will enable mapping of the genetic dependencies of zebrafish cell types, while also addressing longstanding challenges in developmental genetics, including the cellular and transcriptional plasticity underlying phenotypic diversity across individuals.
Collapse
Affiliation(s)
- Lauren M Saunders
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Sanjay R Srivatsan
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Madeleine Duran
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Michael W Dorrity
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Brent Ewing
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Tor H Linbo
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - David W Raible
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biological Structure, University of Washington, Seattle, WA, USA
| | | | - David Kimelman
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Cole Trapnell
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
3
|
Xia Z, Bi X, Yang S, Yang X, Song Z, Wei J, Xu P, Rink L, Min J, Wang F. Metal transporter Slc30a1 controls pharyngeal neural crest differentiation via the zinc-Snai2-Jag1 cascade. MedComm (Beijing) 2021; 2:778-797. [PMID: 34977877 PMCID: PMC8706747 DOI: 10.1002/mco2.91] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The pharyngeal arch (PA) is a neural crest (NC)-derived organ that is transiently developed during embryogenesis and is required for the subsequent development of various tissues. However, the role of zinc during PA differentiation from NC progenitor cells is unknown. Here, we found that the metal transporters Slc30a1a and Slc30a1b mediate zinc homeostasis during PA differentiation. Slc30a1-deficient zebrafish develop zinc accumulation in NC cells, with increased expression of stemness markers and PA dorsal genes, and SMART-seq analyses revealed that the genes snai2 and jag1b may serve as downstream targets. Furthermore, functional studies showed that knocking down either snai2 or jag1b rescues PA development in Slc30a1-deficient zebrafish. Notably, we identified the double zinc-finger domain in the transcription factor Snai2 as a zinc-responsive element that regulates jag1b expression. Our findings indicate that the Slc30a1/zinc-snai2-jag1b axis is an essential regulatory network controlling PA differentiation, shedding new light on the function of zinc homeostasis in maintaining NC cell stemness and multipotency in vertebrates.
Collapse
Affiliation(s)
- Zhidan Xia
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xinying Bi
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| | - Sisi Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Xiu Yang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Zijun Song
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Jiayu Wei
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Pengfei Xu
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Lothar Rink
- Faculty of MedicineInstitute of ImmunologyRWTH Aachen UniversityAachenGermany
| | - Junxia Min
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
| | - Fudi Wang
- The First Affiliated HospitalSchool of Public HealthInstitute of Translational MedicineInstitute of GeneticsZhejiang University School of MedicineHangzhouChina
- The First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangChina
| |
Collapse
|
4
|
Gene coexpression networks reveal molecular interactions underlying cichlid jaw modularity. BMC Ecol Evol 2021; 21:62. [PMID: 33888061 PMCID: PMC8061045 DOI: 10.1186/s12862-021-01787-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/08/2021] [Indexed: 12/29/2022] Open
Abstract
Background The oral and pharyngeal jaw of cichlid fishes are a classic example of evolutionary modularity as their functional decoupling boosted trophic diversification and contributed to the success of cichlid adaptive radiations. Most studies until now have focused on the functional, morphological, or genetic aspects of cichlid jaw modularity. Here we extend this concept to include transcriptional modularity by sequencing whole transcriptomes of the two jaws and comparing their gene coexpression networks. Results We show that transcriptional decoupling of gene expression underlies the functional decoupling of cichlid oral and pharyngeal jaw apparatus and the two units are evolving independently in recently diverged cichlid species from Lake Tanganyika. Oral and pharyngeal jaw coexpression networks reflect the common origin of the jaw regulatory program as there is high preservation of gene coexpression modules between the two sets of jaws. However, there is substantial rewiring of genetic architecture within those modules. We define a global jaw coexpression network and highlight jaw-specific and species-specific modules within it. Furthermore, we annotate a comprehensive in silico gene regulatory network linking the Wnt and AHR signalling pathways to jaw morphogenesis and response to environmental cues, respectively. Components of these pathways are significantly differentially expressed between the oral and pharyngeal jaw apparatus. Conclusion This study describes the concerted expression of many genes in cichlid oral and pharyngeal jaw apparatus at the onset of the independent life of cichlid fishes. Our findings suggest that – on the basis of an ancestral gill arch network—transcriptional rewiring may have driven the modular evolution of the oral and pharyngeal jaws, highlighting the evolutionary significance of gene network reuse. The gene coexpression and in silico regulatory networks presented here are intended as resource for future studies on the genetics of vertebrate jaw morphogenesis and trophic adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12862-021-01787-9.
Collapse
|
5
|
Petratou K, Spencer SA, Kelsh RN, Lister JA. The MITF paralog tfec is required in neural crest development for fate specification of the iridophore lineage from a multipotent pigment cell progenitor. PLoS One 2021; 16:e0244794. [PMID: 33439865 PMCID: PMC7806166 DOI: 10.1371/journal.pone.0244794] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/29/2020] [Indexed: 12/12/2022] Open
Abstract
Understanding how fate specification of distinct cell-types from multipotent progenitors occurs is a fundamental question in embryology. Neural crest stem cells (NCSCs) generate extraordinarily diverse derivatives, including multiple neural, skeletogenic and pigment cell fates. Key transcription factors and extracellular signals specifying NCSC lineages remain to be identified, and we have only a little idea of how and when they function together to control fate. Zebrafish have three neural crest-derived pigment cell types, black melanocytes, light-reflecting iridophores and yellow xanthophores, which offer a powerful model for studying the molecular and cellular mechanisms of fate segregation. Mitfa has been identified as the master regulator of melanocyte fate. Here, we show that an Mitf-related transcription factor, Tfec, functions as master regulator of the iridophore fate. Surprisingly, our phenotypic analysis of tfec mutants demonstrates that Tfec also functions in the initial specification of all three pigment cell-types, although the melanocyte and xanthophore lineages recover later. We show that Mitfa represses tfec expression, revealing a likely mechanism contributing to the decision between melanocyte and iridophore fate. Our data are consistent with the long-standing proposal of a tripotent progenitor restricted to pigment cell fates. Moreover, we investigate activation, maintenance and function of tfec in multipotent NCSCs, demonstrating for the first time its role in the gene regulatory network forming and maintaining early neural crest cells. In summary, we build on our previous work to characterise the gene regulatory network governing iridophore development, establishing Tfec as the master regulator driving iridophore specification from multipotent progenitors, while shedding light on possible cellular mechanisms of progressive fate restriction.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - Samantha A. Spencer
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| |
Collapse
|
6
|
Greenberg RS, Long HK, Swigut T, Wysocka J. Single Amino Acid Change Underlies Distinct Roles of H2A.Z Subtypes in Human Syndrome. Cell 2020; 178:1421-1436.e24. [PMID: 31491386 DOI: 10.1016/j.cell.2019.08.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 03/27/2019] [Accepted: 08/01/2019] [Indexed: 12/31/2022]
Abstract
The developmental disorder Floating-Harbor syndrome (FHS) is caused by heterozygous truncating mutations in SRCAP, a gene encoding a chromatin remodeler mediating incorporation of histone variant H2A.Z. Here, we demonstrate that FHS-associated mutations result in loss of SRCAP nuclear localization, alter neural crest gene programs in human in vitro models and Xenopus embryos, and cause craniofacial defects. These defects are mediated by one of two H2A.Z subtypes, H2A.Z.2, whose knockdown mimics and whose overexpression rescues the FHS phenotype. Selective rescue by H2A.Z.2 is conferred by one of the three amino acid differences between the H2A.Z subtypes, S38/T38. We further show that H2A.Z.1 and H2A.Z.2 genomic occupancy patterns are qualitatively similar, but quantitatively distinct, and H2A.Z.2 incorporation at AT-rich enhancers and expression of their associated genes are both sensitized to SRCAP truncations. Altogether, our results illuminate the mechanism underlying a human syndrome and uncover selective functions of H2A.Z subtypes during development.
Collapse
Affiliation(s)
- Rachel S Greenberg
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hannah K Long
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology and Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
7
|
Bryan CD, Casey MA, Pfeiffer RL, Jones BW, Kwan KM. Optic cup morphogenesis requires neural crest-mediated basement membrane assembly. Development 2020; 147:dev181420. [PMID: 31988185 PMCID: PMC7044464 DOI: 10.1242/dev.181420] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/13/2020] [Indexed: 12/21/2022]
Abstract
Organogenesis requires precise interactions between a developing tissue and its environment. In vertebrates, the developing eye is surrounded by a complex extracellular matrix as well as multiple mesenchymal cell populations. Disruptions to either the matrix or periocular mesenchyme can cause defects in early eye development, yet in many cases the underlying mechanism is unknown. Here, using multidimensional imaging and computational analyses in zebrafish, we establish that cell movements in the developing optic cup require neural crest. Ultrastructural analysis reveals that basement membrane formation around the developing eye is also dependent on neural crest, but only specifically around the retinal pigment epithelium. Neural crest cells produce the extracellular matrix protein nidogen: impairing nidogen function disrupts eye development, and, strikingly, expression of nidogen in the absence of neural crest partially restores optic cup morphogenesis. These results demonstrate that eye formation is regulated in part by extrinsic control of extracellular matrix assembly.This article has an associated 'The people behind the papers' interview.
Collapse
Affiliation(s)
- Chase D Bryan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Macaulie A Casey
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Rebecca L Pfeiffer
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Bryan W Jones
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Kristen M Kwan
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| |
Collapse
|
8
|
Jurynec MJ, Bai X, Bisgrove BW, Jackson H, Nechiporuk A, Palu RAS, Grunwald HA, Su YC, Hoshijima K, Yost HJ, Zon LI, Grunwald DJ. The Paf1 complex and P-TEFb have reciprocal and antagonist roles in maintaining multipotent neural crest progenitors. Development 2019; 146:dev.180133. [PMID: 31784460 DOI: 10.1242/dev.180133] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Multipotent progenitor populations are necessary for generating diverse tissue types during embryogenesis. We show the RNA polymerase-associated factor 1 complex (Paf1C) is required to maintain multipotent progenitors of the neural crest (NC) lineage in zebrafish. Mutations affecting each Paf1C component result in near-identical NC phenotypes; alyron mutant embryos carrying a null mutation in paf1 were analyzed in detail. In the absence of zygotic paf1 function, definitive premigratory NC progenitors arise but fail to maintain expression of the sox10 specification gene. The mutant NC progenitors migrate aberrantly and fail to differentiate appropriately. Blood and germ cell progenitor development is affected similarly. Development of mutant NC could be rescued by additional loss of positive transcription elongation factor b (P-TEFb) activity, a key factor in promoting transcription elongation. Consistent with the interpretation that inhibiting/delaying expression of some genes is essential for maintaining progenitors, mutant embryos lacking the CDK9 kinase component of P-TEFb exhibit a surfeit of NC progenitors and their derivatives. We propose Paf1C and P-TEFb act antagonistically to regulate the timing of the expression of genes needed for NC development.
Collapse
Affiliation(s)
- Michael J Jurynec
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Xiaoying Bai
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Brent W Bisgrove
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Haley Jackson
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Alex Nechiporuk
- Department of Cell and Developmental Biology, School of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rebecca A S Palu
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Hannah A Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi-Chu Su
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - H Joseph Yost
- Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
Hoshijima K, Jurynec MJ, Klatt Shaw D, Jacobi AM, Behlke MA, Grunwald DJ. Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. Dev Cell 2019; 51:645-657.e4. [PMID: 31708433 DOI: 10.1016/j.devcel.2019.10.004] [Citation(s) in RCA: 161] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 11/24/2022]
Abstract
Inconsistent activity limits the use of CRISPR-Cas9 in zebrafish. We show supernumerary guanine nucleotides at the 5' ends of single guide RNAs (sgRNAs) account for diminished CRISPR-Cas9 activity in zebrafish embryos. Genomic sequences can be targeted consistently with extremely high efficiency using Cas9 ribonucleoproteins (RNPs) containing either a sgRNA molecule or a synthetic crRNA:tracrRNA duplex that perfectly matches the protospacer target site. Following injection of zebrafish eggs with such RNPs, virtually every copy of a targeted locus harbors an induced indel mutation. Loss of gene function is often complete, as F0 embryos closely resemble true null mutants without detectable non-specific effects. Mosaicism is sufficiently low in F0 embryos that cell non-autonomous gene functions can be probed effectively and redundant activities of genes can be uncovered when two genes are targeted simultaneously. Finally, heritable deletion mutations of at least 50 kbp can be readily induced using pairs of duplex guide RNPs targeted to a single chromosome.
Collapse
Affiliation(s)
- Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael J Jurynec
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Ashley M Jacobi
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Mark A Behlke
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - David Jonah Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
10
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
11
|
Dooley CM, Wali N, Sealy IM, White RJ, Stemple DL, Collins JE, Busch-Nentwich EM. The gene regulatory basis of genetic compensation during neural crest induction. PLoS Genet 2019; 15:e1008213. [PMID: 31199790 PMCID: PMC6594659 DOI: 10.1371/journal.pgen.1008213] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/26/2019] [Accepted: 05/27/2019] [Indexed: 12/15/2022] Open
Abstract
The neural crest (NC) is a vertebrate-specific cell type that contributes to a wide range of different tissues across all three germ layers. The gene regulatory network (GRN) responsible for the formation of neural crest is conserved across vertebrates. Central to the induction of the NC GRN are AP-2 and SoxE transcription factors. NC induction robustness is ensured through the ability of some of these transcription factors to compensate loss of function of gene family members. However the gene regulatory events underlying compensation are poorly understood. We have used gene knockout and RNA sequencing strategies to dissect NC induction and compensation in zebrafish. We genetically ablate the NC using double mutants of tfap2a;tfap2c or remove specific subsets of the NC with sox10 and mitfa knockouts and characterise genome-wide gene expression levels across multiple time points. We find that compensation through a single wild-type allele of tfap2c is capable of maintaining early NC induction and differentiation in the absence of tfap2a function, but many target genes have abnormal expression levels and therefore show sensitivity to the reduced tfap2 dosage. This separation of morphological and molecular phenotypes identifies a core set of genes required for early NC development. We also identify the 15 somites stage as the peak of the molecular phenotype which strongly diminishes at 24 hpf even as the morphological phenotype becomes more apparent. Using gene knockouts, we associate previously uncharacterised genes with pigment cell development and establish a role for maternal Hippo signalling in melanocyte differentiation. This work extends and refines the NC GRN while also uncovering the transcriptional basis of genetic compensation via paralogues. Embryonic development is an intricate process that requires genes to be active at the right time and place. Organisms have evolved mechanisms that ensure faithful execution of developmental programmes even if genes fail to function. For example, in a process called genetic compensation, one or more genes become activated in response to loss of function of another. In this work we use the zebrafish model to investigate how two related genes, tfap2a and tfap2c, interact to ensure establishment of the neural crest, a vertebrate-specific cell type that contributes to many different tissues. Losing tfap2a activity causes mild morphological defects and losing tfap2c has no visible effect. Yet when both are inactive, embryos are severely abnormal due to lack of neural crest-derived tissues. Here we show that loss of tfap2a triggers upregulation of tfap2c which prevents the loss of neural crest tissue. However, the genes normally regulated by tfap2a respond differently to tfap2c allowing us to identify the first tier of the Ap2 network and new players in neural crest biology. Our work demonstrates that the expression signature of partial, but morphologically sufficient, genetic compensation provides an opportunity to dissect gene regulatory networks.
Collapse
Affiliation(s)
| | - Neha Wali
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Ian M. Sealy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Richard J. White
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Derek L. Stemple
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - John E. Collins
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Elisabeth M. Busch-Nentwich
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Saunders LM, Mishra AK, Aman AJ, Lewis VM, Toomey MB, Packer JS, Qiu X, McFaline-Figueroa JL, Corbo JC, Trapnell C, Parichy DM. Thyroid hormone regulates distinct paths to maturation in pigment cell lineages. eLife 2019; 8:e45181. [PMID: 31140974 PMCID: PMC6588384 DOI: 10.7554/elife.45181] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Thyroid hormone (TH) regulates diverse developmental events and can drive disparate cellular outcomes. In zebrafish, TH has opposite effects on neural crest derived pigment cells of the adult stripe pattern, limiting melanophore population expansion, yet increasing yellow/orange xanthophore numbers. To learn how TH elicits seemingly opposite responses in cells having a common embryological origin, we analyzed individual transcriptomes from thousands of neural crest-derived cells, reconstructed developmental trajectories, identified pigment cell-lineage specific responses to TH, and assessed roles for TH receptors. We show that TH promotes maturation of both cell types but in distinct ways. In melanophores, TH drives terminal differentiation, limiting final cell numbers. In xanthophores, TH promotes accumulation of orange carotenoids, making the cells visible. TH receptors act primarily to repress these programs when TH is limiting. Our findings show how a single endocrine factor integrates very different cellular activities during the generation of adult form.
Collapse
Affiliation(s)
- Lauren M Saunders
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Abhishek K Mishra
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Andrew J Aman
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Victor M Lewis
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| | - Matthew B Toomey
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Jonathan S Packer
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - Xiaojie Qiu
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | | | - Joseph C Corbo
- Department of Pathology and ImmunologyWashington University School of MedicineSt. LouisUnited States
| | - Cole Trapnell
- Department of Genome SciencesUniversity of WashingtonSeattleUnited States
| | - David M Parichy
- Department of BiologyUniversity of VirginiaCharlottesvilleUnited States
- Department of Cell BiologyUniversity of VirginiaCharlottesvilleUnited States
| |
Collapse
|
13
|
Petratou K, Subkhankulova T, Lister JA, Rocco A, Schwetlick H, Kelsh RN. A systems biology approach uncovers the core gene regulatory network governing iridophore fate choice from the neural crest. PLoS Genet 2018; 14:e1007402. [PMID: 30286071 PMCID: PMC6191144 DOI: 10.1371/journal.pgen.1007402] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/16/2018] [Accepted: 08/22/2018] [Indexed: 12/29/2022] Open
Abstract
Multipotent neural crest (NC) progenitors generate an astonishing array of derivatives, including neuronal, skeletal components and pigment cells (chromatophores), but the molecular mechanisms allowing balanced selection of each fate remain unknown. In zebrafish, melanocytes, iridophores and xanthophores, the three chromatophore lineages, are thought to share progenitors and so lend themselves to investigating the complex gene regulatory networks (GRNs) underlying fate segregation of NC progenitors. Although the core GRN governing melanocyte specification has been previously established, those guiding iridophore and xanthophore development remain elusive. Here we focus on the iridophore GRN, where mutant phenotypes identify the transcription factors Sox10, Tfec and Mitfa and the receptor tyrosine kinase, Ltk, as key players. Here we present expression data, as well as loss and gain of function results, guiding the derivation of an initial iridophore specification GRN. Moreover, we use an iterative process of mathematical modelling, supplemented with a Monte Carlo screening algorithm suited to the qualitative nature of the experimental data, to allow for rigorous predictive exploration of the GRN dynamics. Predictions were experimentally evaluated and testable hypotheses were derived to construct an improved version of the GRN, which we showed produced outputs consistent with experimentally observed gene expression dynamics. Our study reveals multiple important regulatory features, notably a sox10-dependent positive feedback loop between tfec and ltk driving iridophore specification; the molecular basis of sox10 maintenance throughout iridophore development; and the cooperation between sox10 and tfec in driving expression of pnp4a, a key differentiation gene. We also assess a candidate repressor of mitfa, a melanocyte-specific target of sox10. Surprisingly, our data challenge the reported role of Foxd3, an established mitfa repressor, in iridophore regulation. Our study builds upon our previous systems biology approach, by incorporating physiologically-relevant parameter values and rigorous evaluation of parameter values within a qualitative data framework, to establish for the first time the core GRN guiding specification of the iridophore lineage.
Collapse
Affiliation(s)
- Kleio Petratou
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Tatiana Subkhankulova
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| | - James A. Lister
- Department of Human and Molecular Genetics and Massey Cancer Center, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Andrea Rocco
- Department of Microbial and Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Hartmut Schwetlick
- Department of Mathematical Sciences, Faculty of Science, University of Bath, Bath, United Kingdom
| | - Robert N. Kelsh
- Department of Biology and Biochemistry and Centre for Regenerative Medicine, Faculty of Science, University of Bath, Bath, United Kingdom
| |
Collapse
|
14
|
Perineurial Glial Plasticity and the Role of TGF-β in the Development of the Blood-Nerve Barrier. J Neurosci 2017; 37:4790-4807. [PMID: 28389474 DOI: 10.1523/jneurosci.2875-16.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/28/2022] Open
Abstract
Precisely orchestrated interactions between spinal motor axons and their ensheathing glia are vital for forming and maintaining functional spinal motor nerves. Following perturbations to peripheral myelinating glial cells, centrally derived oligodendrocyte progenitor cells (OPCs) ectopically exit the spinal cord and myelinate peripheral nerves in myelin with CNS characteristics. However, whether remaining peripheral ensheathing glia, such as perineurial glia, properly encase the motor nerve despite this change in glial cell and myelin composition, remains unknown. Using zebrafish mutants in which OPCs migrate out of the spinal cord and myelinate peripheral motor axons, we assayed perineurial glial development, maturation, and response to injury. Surprisingly, in the presence of OPCs, perineurial glia exited the CNS normally. However, aspects of their development, response to injury, and function were altered compared with wildtype larvae. In an effort to better understand the plasticity of perineurial glia in response to myelin perturbations, we identified transforming growth factor-β1 as a partial mediator of perineurial glial development. Together, these results demonstrate the incredible plasticity of perineurial glia in the presence of myelin perturbations.SIGNIFICANCE STATEMENT Peripheral neuropathies can result from damage or dysregulation of the insulating myelin sheath surrounding spinal motor axons, causing pain, inefficient nerve conduction, and the ectopic migration of oligodendrocyte progenitor cells (OPCs), the resident myelinating glial cell of the CNS, into the periphery. How perineurial glia, the ensheathing cells that form the protective blood-nerve barrier, are impacted by this myelin composition change is unknown. Here, we report that certain aspects of perineurial glial development and injury responses are mostly unaffected in the presence of ectopic OPCs. However, perineurial glial function is disrupted along nerves containing centrally derived myelin, demonstrating that, although perineurial glial cells display plasticity despite myelin perturbations, the blood-nerve barrier is compromised in the presence of ectopic OPCs.
Collapse
|
15
|
Xu L, Xu QH, Zhou XY, Yin LY, Guan PP, Zhang T, Liu JX. Mechanisms of silver_nanoparticles induced hypopigmentation in embryonic zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 184:49-60. [PMID: 28104549 DOI: 10.1016/j.aquatox.2017.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 01/07/2017] [Accepted: 01/09/2017] [Indexed: 06/06/2023]
Abstract
Silver_nanoparticles (AgNPs) have been reported to inhibit specification of erythroid cells and to induce spinal cord deformities and cardiac arrhythmia in vertebrates, but have not been implicated in development of neural crest (NC) and pigment cells in an in vivo model yet. In current study, down-regulated expressions of NC genes pax7 and foxd3, melanophore genes mitfa and dct, and xanthophore gene gch2 in AgNPs-exposed embryos were revealed by microarray, qRT-PCR and whole-mount in situ hybridization (WISH). Then, the down-regulated expressions of melanophore genes mitfa and dct but not xanthophore gene gch2 in AgNPs-exposed embryos were found to be recovered by melanogenesis agonists palmitic acid and dibutyryl cyclic AMP (dbcAMP). Finally, Ag+ chelating and AgNPs coating compound l-cysteine was found to neutralize AgNPs-induced hypopigmentation in AgNPs-exposed embryos, and to recover the down-regulated expressions of both dct and gch2 to nearly normal level in embryos, suggesting that AgNPs-releasing Ag+ might mediate their biological effects on zebrafish pigmentation mostly. This study was firstly to unveil that AgNPs might specifically act up-stream of mitfa and pax7 genes to suppress specification and differentiation of melanophore and xanthophore lineages respectively by their releasing Ag+ during vertebrate embryogenesis.
Collapse
Affiliation(s)
- Lian Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Qin-Han Xu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xin-Ying Zhou
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Li-Yan Yin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, Hainan University, HaiKou, 570228, China.
| | - Peng-Peng Guan
- College of Informatics, Agricultural Bioinformatics Key Laboratory of Hubei Province, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ting Zhang
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Jing-Xia Liu
- College of Fisheries, Key Laboratory of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, 430070, China; Collaborative Innovation Center for Efficient and Health Production of Fisheries in Hunan Province, Hunan, Changde, 415000, China.
| |
Collapse
|
16
|
Boer EF, Jette CA, Stewart RA. Neural Crest Migration and Survival Are Susceptible to Morpholino-Induced Artifacts. PLoS One 2016; 11:e0167278. [PMID: 28005909 PMCID: PMC5179070 DOI: 10.1371/journal.pone.0167278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 10/11/2016] [Indexed: 01/07/2023] Open
Abstract
The neural crest (NC) is a stem cell-like embryonic population that is essential for generating and patterning the vertebrate body, including the craniofacial skeleton and peripheral nervous system. Defects in NC development underlie many birth defects and contribute to formation of some of the most malignant cancers in humans, such as melanoma and neuroblastoma. For these reasons, significant research efforts have been expended to identify genes that control NC development, as it is expected to lead to a deeper understanding of the genetic mechanisms controlling vertebrate development and identify new treatments for NC-derived diseases and cancers. However, a number of inconsistencies regarding gene function during NC development have emerged from comparative analyses of gene function between mammalian and non-mammalian systems (chick, frog, zebrafish). This poses a significant barrier to identification of single genes and/or redundant pathways to target in NC diseases. Here, we determine whether technical differences, namely morpholino-based approaches used in non-mammalian systems, could contribute to these discrepancies, by examining the extent to which NC phenotypes in fascin1a (fscn1a) morphant embryos are similar to or different from fscn1a null mutants in zebrafish. Analysis of fscn1a morphants showed that they mimicked early NC phenotypes observed in fscn1a null mutants; however, these embryos also displayed NC migration and derivative phenotypes not observed in null mutants, including accumulation of p53-independent cell death. These data demonstrate that morpholinos can cause seemingly specific NC migration and derivative phenotypes, and thus have likely contributed to the inconsistencies surrounding NC gene function between species. We suggest that comparison of genetic mutants between different species is the most rigorous method for identifying conserved genetic mechanisms controlling NC development and is critical to identify new treatments for NC diseases.
Collapse
Affiliation(s)
- Elena F. Boer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
17
|
Square T, Jandzik D, Cattell M, Hansen A, Medeiros DM. Embryonic expression of endothelins and their receptors in lamprey and frog reveals stem vertebrate origins of complex Endothelin signaling. Sci Rep 2016; 6:34282. [PMID: 27677704 PMCID: PMC5039696 DOI: 10.1038/srep34282] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 09/09/2016] [Indexed: 12/19/2022] Open
Abstract
Neural crest cells (NCCs) are highly patterned embryonic cells that migrate along stereotyped routes to give rise to a diverse array of adult tissues and cell types. Modern NCCs are thought to have evolved from migratory neural precursors with limited developmental potential and patterning. How this occurred is poorly understood. Endothelin signaling regulates several aspects of NCC development, including their migration, differentiation, and patterning. In jawed vertebrates, Endothelin signaling involves multiple functionally distinct ligands (Edns) and receptors (Ednrs) expressed in various NCC subpopulations. To test the potential role of endothelin signaling diversification in the evolution of modern, highly patterned NCC, we analyzed the expression of the complete set of endothelin ligands and receptors in the jawless vertebrate, the sea lamprey (Petromyzon marinus). To better understand ancestral features of gnathostome edn and ednr expression, we also analyzed all known Endothelin signaling components in the African clawed frog (Xenopus laevis). We found that the sea lamprey has a gnathsotome-like complement of edn and ednr duplicates, and these genes are expressed in patterns highly reminiscent of their gnathostome counterparts. Our results suggest that the duplication and specialization of vertebrate Endothelin signaling coincided with the appearance of highly patterned and multipotent NCCs in stem vertebrates.
Collapse
Affiliation(s)
- Tyler Square
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - David Jandzik
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, 84215, Slovakia
| | - Maria Cattell
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Andrew Hansen
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | | |
Collapse
|
18
|
Morrison MA, Zimmerman MW, Look AT, Stewart RA. Studying the peripheral sympathetic nervous system and neuroblastoma in zebrafish. Methods Cell Biol 2016; 134:97-138. [PMID: 27312492 DOI: 10.1016/bs.mcb.2015.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The zebrafish serves as an excellent model to study vertebrate development and disease. Optically clear embryos, combined with tissue-specific fluorescent reporters, permit direct visualization and measurement of peripheral nervous system formation in real time. Additionally, the model is amenable to rapid cellular, molecular, and genetic approaches to determine how developmental mechanisms contribute to disease states, such as cancer. In this chapter, we describe the development of the peripheral sympathetic nervous system (PSNS) in general, and our current understanding of genetic pathways important in zebrafish PSNS development specifically. We also illustrate how zebrafish genetics is used to identify new mechanisms controlling PSNS development and methods for interrogating the potential role of PSNS developmental pathways in neuroblastoma pathogenesis in vivo using the zebrafish MYCN-driven neuroblastoma model.
Collapse
Affiliation(s)
- M A Morrison
- University of Utah, Salt Lake City, UT, United States
| | | | - A T Look
- Harvard Medical School, Boston, MA, United States
| | - R A Stewart
- University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
19
|
Abstract
The formation of the face and skull involves a complex series of developmental events mediated by cells derived from the neural crest, endoderm, mesoderm, and ectoderm. Although vertebrates boast an enormous diversity of adult facial morphologies, the fundamental signaling pathways and cellular events that sculpt the nascent craniofacial skeleton in the embryo have proven to be highly conserved from fish to man. The zebrafish Danio rerio, a small freshwater cyprinid fish from eastern India, has served as a popular model of craniofacial development since the 1990s. Unique strengths of the zebrafish model include a simplified skeleton during larval stages, access to rapidly developing embryos for live imaging, and amenability to transgenesis and complex genetics. In this chapter, we describe the anatomy of the zebrafish craniofacial skeleton; its applications as models for the mammalian jaw, middle ear, palate, and cranial sutures; the superior imaging technology available in fish that has provided unprecedented insights into the dynamics of facial morphogenesis; the use of the zebrafish to decipher the genetic underpinnings of craniofacial biology; and finally a glimpse into the most promising future applications of zebrafish craniofacial research.
Collapse
|
20
|
Uribe RA, Bronner ME. Meis3 is required for neural crest invasion of the gut during zebrafish enteric nervous system development. Mol Biol Cell 2015; 26:3728-40. [PMID: 26354419 PMCID: PMC4626059 DOI: 10.1091/mbc.e15-02-0112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 09/02/2015] [Indexed: 01/02/2023] Open
Abstract
Loss of Meis3 leads to defects in enteric neural crest cell migration, number, and proliferation during colonization of the gut. This leads to colonic aganglionosis, in which the hindgut is devoid of neurons, identifying it as a novel candidate factor in the etiology of Hirschsprung’s disease during enteric nervous system development. During development, vagal neural crest cells fated to contribute to the enteric nervous system migrate ventrally away from the neural tube toward and along the primitive gut. The molecular mechanisms that regulate their early migration en route to and entry into the gut remain elusive. Here we show that the transcription factor meis3 is expressed along vagal neural crest pathways. Meis3 loss of function results in a reduction in migration efficiency, cell number, and the mitotic activity of neural crest cells in the vicinity of the gut but has no effect on neural crest or gut specification. Later, during enteric nervous system differentiation, Meis3-depleted embryos exhibit colonic aganglionosis, a disorder in which the hindgut is devoid of neurons. Accordingly, the expression of Shh pathway components, previously shown to have a role in the etiology of Hirschsprung’s disease, was misregulated within the gut after loss of Meis3. Taken together, these findings support a model in which Meis3 is required for neural crest proliferation, migration into, and colonization of the gut such that its loss leads to severe defects in enteric nervous system development.
Collapse
Affiliation(s)
- Rosa A Uribe
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Marianne E Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
21
|
Tfap2a promotes specification and maturation of neurons in the inner ear through modulation of Bmp, Fgf and notch signaling. PLoS Genet 2015; 11:e1005037. [PMID: 25781991 PMCID: PMC4364372 DOI: 10.1371/journal.pgen.1005037] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 01/28/2015] [Indexed: 11/23/2022] Open
Abstract
Neurons of the statoacoustic ganglion (SAG) transmit auditory and vestibular information from the inner ear to the hindbrain. SAG neuroblasts originate in the floor of the otic vesicle. New neuroblasts soon delaminate and migrate towards the hindbrain while continuing to proliferate, a phase known as transit amplification. SAG cells eventually come to rest between the ear and hindbrain before terminally differentiating. Regulation of these events is only partially understood. Fgf initiates neuroblast specification within the ear. Subsequently, Fgf secreted by mature SAG neurons exceeds a maximum threshold, serving to terminate specification and delay maturation of transit-amplifying cells. Notch signaling also limits SAG development, but how it is coordinated with Fgf is unknown. Here we show that transcription factor Tfap2a coordinates multiple signaling pathways to promote neurogenesis in the zebrafish inner ear. In both zebrafish and chick, Tfap2a is expressed in a ventrolateral domain of the otic vesicle that includes neurogenic precursors. Functional studies were conducted in zebrafish. Loss of Tfap2a elevated Fgf and Notch signaling, thereby inhibiting SAG specification and slowing maturation of transit-amplifying cells. Conversely, overexpression of Tfap2a inhibited Fgf and Notch signaling, leading to excess and accelerated SAG production. However, most SAG neurons produced by Tfap2a overexpression died soon after maturation. Directly blocking either Fgf or Notch caused less dramatic acceleration of SAG development without neuronal death, whereas blocking both pathways mimicked all observed effects of Tfap2a overexpression, including apoptosis of mature neurons. Analysis of genetic mosaics showed that Tfap2a acts non-autonomously to inhibit Fgf. This led to the discovery that Tfap2a activates expression of Bmp7a, which in turn inhibits both Fgf and Notch signaling. Blocking Bmp signaling reversed the effects of overexpressing Tfap2a. Together, these data support a model in which Tfap2a, acting through Bmp7a, modulates Fgf and Notch signaling to control the duration, amount and speed of SAG neural development. Neurons of the statoacoustic ganglion (SAG) transmit impulses from the inner ear necessary for hearing and balance. SAG cells exhibit a complex pattern of development, regulation of which remains poorly understood. Here we show that transcription factor Tfap2a coordinates multiple cell signaling pathways needed to regulate the quantity and pace of SAG neuron production. SAG progenitors originate within the developing inner ear and then migrate out of the ear towards the hindbrain before forming mature neurons. We showed previously that Fgf initiates formation of SAG progenitors in the inner ear, but rising levels of Fgf signaling eventually terminate this process. Elevated Fgf also stimulates proliferation of SAG progenitors outside the ear and delays their maturation. Notch signaling is also known to limit SAG development. Tfap2a governs the strength of Fgf and Notch signaling by activating expression of Bmp7a, which inhibits Fgf and Notch. Together these signals stabilize the pool of SAG progenitors outside the ear by equalizing rates of maturation and proliferation. This balance is critical for sustained accumulation of SAG neurons during larval growth as well as regeneration following neural damage. These findings could inform development of stem cell therapies to correct auditory neuropathies in humans.
Collapse
|
22
|
Boer EF, Howell ED, Schilling TF, Jette CA, Stewart RA. Fascin1-dependent Filopodia are required for directional migration of a subset of neural crest cells. PLoS Genet 2015; 11:e1004946. [PMID: 25607881 PMCID: PMC4301650 DOI: 10.1371/journal.pgen.1004946] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 12/09/2014] [Indexed: 12/03/2022] Open
Abstract
Directional migration of neural crest (NC) cells is essential for patterning the vertebrate embryo, including the craniofacial skeleton. Extensive filopodial protrusions in NC cells are thought to sense chemo-attractive/repulsive signals that provide directionality. To test this hypothesis, we generated null mutations in zebrafish fascin1a (fscn1a), which encodes an actin-bundling protein required for filopodia formation. Homozygous fscn1a zygotic null mutants have normal NC filopodia due to unexpected stability of maternal Fscn1a protein throughout NC development and into juvenile stages. In contrast, maternal/zygotic fscn1a null mutant embryos (fscn1a MZ) have severe loss of NC filopodia. However, only a subset of NC streams display migration defects, associated with selective loss of craniofacial elements and peripheral neurons. We also show that fscn1a-dependent NC migration functions through cxcr4a/cxcl12b chemokine signaling to ensure the fidelity of directional cell migration. These data show that fscn1a-dependent filopodia are required in a subset of NC cells to promote cell migration and NC derivative formation, and that perdurance of long-lived maternal proteins can mask essential zygotic gene functions during NC development. During vertebrate embryogenesis, neural crest (NC) cells migrate extensively along stereotypical migration routes and differentiate into diverse derivatives, including the craniofacial skeleton and peripheral nervous system. While defects in NC migration underlie many human birth defects and may be coopted during cancer metastasis, the genetic pathways controlling directional NC migration remain incompletely understood. Filopodia protrusions are thought to act as “cellular antennae” that explore the environment for directional cues to ensure NC cells reach their correct location. To test this idea, we generated zebrafish fascin1a (fscn1a) mutants that have severe loss of filopodia. Surprisingly, we found that most NC cells migrate to their correct locations without robust filopodial protrusions. We found that fscn1a embryos have directional migration defects in a subset of NC cells, resulting in loss of specific craniofacial elements and peripheral neurons. Interestingly, these defects were only observed in ∼20% of fscn1a embryos, but were significantly enhanced by partial loss of the chemokine receptor Cxcr4a or disruption of the localized expression of its ligand Cxcl12b. Our data show that subsets of skeletal and neurogenic NC cells require filopodia to migrate and that fscn1a-dependent filopodia cooperate with chemokine signaling to promote directional migration of a subset of NC cells.
Collapse
Affiliation(s)
- Elena F. Boer
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Elizabeth D. Howell
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Thomas F. Schilling
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, United States of America
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, United States of America
- * E-mail:
| |
Collapse
|
23
|
Powder KE, Cousin H, McLinden GP, Craig Albertson R. A nonsynonymous mutation in the transcriptional regulator lbh is associated with cichlid craniofacial adaptation and neural crest cell development. Mol Biol Evol 2014; 31:3113-24. [PMID: 25234704 DOI: 10.1093/molbev/msu267] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Since the time of Darwin, biologists have sought to understand the origins and maintenance of life's diversity of form. However, the nature of the exact DNA mutations and molecular mechanisms that result in morphological differences between species remains unclear. Here, we characterize a nonsynonymous mutation in a transcriptional coactivator, limb bud and heart homolog (lbh), which is associated with adaptive variation in the lower jaw of cichlid fishes. Using both zebrafish and Xenopus, we demonstrate that lbh mediates migration of cranial neural crest cells, the cellular source of the craniofacial skeleton. A single amino acid change that is alternatively fixed in cichlids with differing facial morphologies results in discrete shifts in migration patterns of this multipotent cell type that are consistent with both embryological and adult craniofacial phenotypes. Among animals, this polymorphism in lbh represents a rare example of a coding change that is associated with continuous morphological variation. This work offers novel insights into the development and evolution of the craniofacial skeleton, underscores the evolutionary potential of neural crest cells, and extends our understanding of the genetic nature of mutations that underlie divergence in complex phenotypes.
Collapse
Affiliation(s)
- Kara E Powder
- Department of Biology, University of Massachusetts, Amherst
| | - Hélène Cousin
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst
| | - Gretchen P McLinden
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst
| | | |
Collapse
|
24
|
Abstract
Despite the importance of tendons and ligaments for transmitting movement and providing stability to the musculoskeletal system, their development is considerably less well understood than that of the tissues they serve to connect. Zebrafish have been widely used to address questions in muscle and skeletal development, yet few studies describe their tendon and ligament tissues. We have analyzed in zebrafish the expression of several genes known to be enriched in mammalian tendons and ligaments, including scleraxis (scx), collagen 1a2 (col1a2) and tenomodulin (tnmd), or in the tendon-like myosepta of the zebrafish (xirp2a). Co-expression studies with muscle and cartilage markers demonstrate the presence of scxa, col1a2 and tnmd at sites between the developing muscle and cartilage, and xirp2a at the myotendinous junctions. We determined that the zebrafish craniofacial tendon and ligament progenitors are neural crest derived, as in mammals. Cranial and fin tendon progenitors can be induced in the absence of differentiated muscle or cartilage, although neighboring muscle and cartilage are required for tendon cell maintenance and organization, respectively. By contrast, myoseptal scxa expression requires muscle for its initiation. Together, these data suggest a conserved role for muscle in tendon development. Based on the similarities in gene expression, morphology, collagen ultrastructural arrangement and developmental regulation with that of mammalian tendons, we conclude that the zebrafish tendon populations are homologous to their force-transmitting counterparts in higher vertebrates. Within this context, the zebrafish model can be used to provide new avenues for studying tendon biology in a vertebrate genetic system.
Collapse
Affiliation(s)
- Jessica W Chen
- Center for Regenerative Medicine, Harvard Stem Cell Institute, Department of Orthopaedic Surgery, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114, USA
| | | |
Collapse
|
25
|
|
26
|
Hong CS, Devotta A, Lee YH, Park BY, Saint-Jeannet JP. Transcription factor AP2 epsilon (Tfap2e) regulates neural crest specification in Xenopus. Dev Neurobiol 2014; 74:894-906. [PMID: 24616412 DOI: 10.1002/dneu.22173] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 01/24/2014] [Accepted: 02/13/2014] [Indexed: 02/01/2023]
Abstract
Transcription factors Pax3 and Zic1 are two important regulators of cell fate decision at the neural plate border, where they act synergistically to promote neural crest (NC) formation. To understand the role of these factors in NC development, we performed a microarray analysis to identify downstream targets of Pax3 and Zic1 in Xenopus embryos. Among the genes identified was a member of transcription factor activator protein 2 (Tfap2) family, Tfap2 epsilon (Tfap2e). Tfap2e is first expressed at early neurula stage in NC progenitors and Rohon-Beard sensory neurons, and persists in a subset of migrating cranial NC cells as they populate the pharyngeal arches. This is in contrast to other species in which Tfap2e is not detected in the early NC lineage. Tfap2e morpholino-mediated knockdown results in a loss of NC progenitors and an expansion of the neural plate. Tfap2e is also sufficient to activate NC-specific genes in animal cap explants, and gain-of-function experiments in the whole embryo indicate that Tfap2e can promote NC formation. We propose that Tfap2e is a novel player in the gene regulatory network controlling NC specification in Xenopus downstream of Pax3 and Zic1.
Collapse
Affiliation(s)
- Chang-Soo Hong
- Department of Biological Sciences, College of Natural Sciences, Daegu University, Gyeongsan, Republic of Korea; Department of Basic Science and Craniofacial Biology, College of Dentistry, New York University, New York, New York
| | | | | | | | | |
Collapse
|
27
|
Powell DR, Hernandez-Lagunas L, LaMonica K, Artinger KB. Prdm1a directly activates foxd3 and tfap2a during zebrafish neural crest specification. Development 2013; 140:3445-55. [PMID: 23900542 DOI: 10.1242/dev.096164] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The neural crest comprises multipotent precursor cells that are induced at the neural plate border by a series of complex signaling and genetic interactions. Several transcription factors, termed neural crest specifiers, are necessary for early neural crest development; however, the nature of their interactions and regulation is not well understood. Here, we have established that the PR/SET domain-containing transcription factor Prdm1a is co-expressed with two essential neural crest specifiers, foxd3 and tfap2a, at the neural plate border. Through rescue experiments, chromatin immunoprecipitation and reporter assays, we have determined that Prdm1a directly binds to and transcriptionally activates enhancers for foxd3 and tfap2a and that they are functional, direct targets of Prdm1a at the neural plate border. Additionally, analysis of dominant activator and dominant repressor Prdm1a constructs suggests that Prdm1a is required both as a transcriptional activator and transcriptional repressor for neural crest development in zebrafish embryos.
Collapse
Affiliation(s)
- Davalyn R Powell
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | |
Collapse
|
28
|
Nitzan E, Krispin S, Pfaltzgraff ER, Klar A, Labosky PA, Kalcheim C. A dynamic code of dorsal neural tube genes regulates the segregation between neurogenic and melanogenic neural crest cells. Development 2013; 140:2269-79. [PMID: 23615280 DOI: 10.1242/dev.093294] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Understanding when and how multipotent progenitors segregate into diverse fates is a key question during embryonic development. The neural crest (NC) is an exemplary model system with which to investigate the dynamics of progenitor cell specification, as it generates a multitude of derivatives. Based on 'in ovo' lineage analysis, we previously suggested an early fate restriction of premigratory trunk NC to generate neural versus melanogenic fates, yet the timing of fate segregation and the underlying mechanisms remained unknown. Analysis of progenitors expressing a Foxd3 reporter reveals that prospective melanoblasts downregulate Foxd3 and have already segregated from neural lineages before emigration. When this downregulation is prevented, late-emigrating avian precursors fail to upregulate the melanogenic markers Mitf and MC/1 and the guidance receptor Ednrb2, generating instead glial cells that express P0 and Fabp. In this context, Foxd3 lies downstream of Snail2 and Sox9, constituting a minimal network upstream of Mitf and Ednrb2 to link melanogenic specification with migration. Consistent with the gain-of-function data in avians, loss of Foxd3 function in mouse NC results in ectopic melanogenesis in the dorsal tube and sensory ganglia. Altogether, Foxd3 is part of a dynamically expressed gene network that is necessary and sufficient to regulate fate decisions in premigratory NC. Their timely downregulation in the dorsal neural tube is thus necessary for the switch between neural and melanocytic phases of NC development.
Collapse
Affiliation(s)
- Erez Nitzan
- Department of Medical Neurobiology, IMRIC and ELSC, Hebrew University, Hadassah Medical School, Jerusalem 91120, PO Box 12272, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Hall BK, Gillis JA. Incremental evolution of the neural crest, neural crest cells and neural crest-derived skeletal tissues. J Anat 2013; 222:19-31. [PMID: 22414251 PMCID: PMC3552412 DOI: 10.1111/j.1469-7580.2012.01495.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2012] [Indexed: 01/15/2023] Open
Abstract
Urochordates (ascidians) have recently supplanted cephalochordates (amphioxus) as the extant sister taxon of vertebrates. Given that urochordates possess migratory cells that have been classified as 'neural crest-like'- and that cephalochordates lack such cells--this phylogenetic hypothesis may have significant implications with respect to the origin of the neural crest and neural crest-derived skeletal tissues in vertebrates. We present an overview of the genes and gene regulatory network associated with specification of the neural crest in vertebrates. We then use these molecular data--alongside cell behaviour, cell fate and embryonic context--to assess putative antecedents (latent homologues) of the neural crest or neural crest cells in ascidians and cephalochordates. Ascidian migratory mesenchymal cells--non-pigment-forming trunk lateral line cells and pigment-forming 'neural crest-like cells' (NCLC)--are unlikely latent neural crest cell homologues. Rather, Snail-expressing cells at the neural plate of border of urochordates and cephalochordates likely represent the extent of neural crest elaboration in non-vertebrate chordates. We also review evidence for the evolutionary origin of two neural crest-derived skeletal tissues--cartilage and dentine. Dentine is a bona fide vertebrate novelty, and dentine-secreting odontoblasts represent a cell type that is exclusively derived from the neural crest. Cartilage, on the other hand, likely has a much deeper origin within the Metazoa. The mesodermally derived cellular cartilages of some protostome invertebrates are much more similar to vertebrate cartilage than is the acellular 'cartilage-like' tissue in cephalochordate pharyngeal arches. Cartilage, therefore, is not a vertebrate novelty, and a well-developed chondrogenic program was most likely co-opted from mesoderm to the neural crest along the vertebrate stem. We conclude that the neural crest is a vertebrate novelty, but that neural crest cells and their derivatives evolved and diversified in a step-wise fashion--first by elaboration of neural plate border cells, then by the innovation or co-option of new or ancient metazoan cell fates.
Collapse
Affiliation(s)
- Brian K Hall
- Department of Biology, Dalhousie University, Halifax, NS, Canada.
| | | |
Collapse
|
30
|
Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013; 10:43-57. [PMID: 23229326 DOI: 10.1038/nrgastro.2012.234] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The enteric nervous system (ENS) arises from neural crest-derived cells that migrate into and along the gut, leading to the formation of a complex network of neurons and glial cells that regulates motility, secretion and blood flow. This Review summarizes the progress made in the past 5 years in our understanding of ENS development, including the migratory pathways of neural crest-derived cells as they colonize the gut. The importance of interactions between neural crest-derived cells, between signalling pathways and between developmental processes (such as proliferation and migration) in ensuring the correct development of the ENS is also presented. The signalling pathways involved in ENS development that were determined using animal models are also described, as is the evidence for the involvement of the genes encoding these molecules in Hirschsprung disease-the best characterized paediatric enteric neuropathy. Finally, the aetiology and treatment of Hirschsprung disease in the clinic and the potential involvement of defects in ENS development in other paediatric motility disorders are outlined.
Collapse
Affiliation(s)
- Florian Obermayr
- Department of Pediatric Surgery, University Children's Hospital, University of Tübingen, Hoppe-Seyler Straße 3, Tübingen 72076, Germany
| | | | | | | |
Collapse
|
31
|
Kague E, Gallagher M, Burke S, Parsons M, Franz-Odendaal T, Fisher S. Skeletogenic fate of zebrafish cranial and trunk neural crest. PLoS One 2012; 7:e47394. [PMID: 23155370 PMCID: PMC3498280 DOI: 10.1371/journal.pone.0047394] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022] Open
Abstract
The neural crest (NC) is a major contributor to the vertebrate craniofacial skeleton, detailed in model organisms through embryological and genetic approaches, most notably in chick and mouse. Despite many similarities between these rather distant species, there are also distinct differences in the contribution of the NC, particularly to the calvariae of the skull. Lack of information about other vertebrate groups precludes an understanding of the evolutionary significance of these differences. Study of zebrafish craniofacial development has contributed substantially to understanding of cartilage and bone formation in teleosts, but there is currently little information on NC contribution to the zebrafish skeleton. Here, we employ a two-transgene system based on Cre recombinase to genetically label NC in the zebrafish. We demonstrate NC contribution to cells in the cranial ganglia and peripheral nervous system known to be NC-derived, as well as to a subset of myocardial cells. The indelible labeling also enables us to determine NC contribution to late-forming bones, including the calvariae. We confirm suspected NC origin of cartilage and bones of the viscerocranium, including cartilages such as the hyosymplectic and its replacement bones (hymandibula and symplectic) and membranous bones such as the opercle. The cleithrum develops at the border of NC and mesoderm, and as an ancestral component of the pectoral girdle was predicted to be a hybrid bone composed of both NC and mesoderm tissues. However, we find no evidence of a NC contribution to the cleithrum. Similarly, in the vault of the skull, the parietal bones and the caudal portion of the frontal bones show no evidence of NC contribution. We also determine a NC origin for caudal fin lepidotrichia; the presumption is that these are derived from trunk NC, demonstrating that these cells have the ability to form bone during normal vertebrate development.
Collapse
Affiliation(s)
- Erika Kague
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Michael Gallagher
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Sally Burke
- Biology Department, Mount Saint Vincent University, Halifax, Nova Scotia, Canada
| | - Michael Parsons
- McCusick–Nathans Institute of Genetic Medicine and Department of Surgery, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | | | - Shannon Fisher
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
32
|
A gene network that coordinates preplacodal competence and neural crest specification in zebrafish. Dev Biol 2012; 373:107-17. [PMID: 23078916 DOI: 10.1016/j.ydbio.2012.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Revised: 09/23/2012] [Accepted: 10/09/2012] [Indexed: 11/20/2022]
Abstract
Preplacodal ectoderm (PPE) and neural crest (NC) are specified at the interface of neural and nonneural ectoderm and together contribute to the peripheral nervous system in all vertebrates. Bmp activates early steps for both fates during late blastula stage. Low Bmp activates expression of transcription factors Tfap2a and Tfap2c in the lateral neural plate, thereby specifying neural crest fate. Elevated Bmp establishes preplacodal competence throughout the ventral ectoderm by coinducing Tfap2a, Tfap2c, Foxi1 and Gata3. PPE specification occurs later at the end of gastrulation and requires complete attenuation of Bmp, yet expression of PPE competence factors continues well past gastrulation. Here we show that competence factors positively regulate each other's expression during gastrulation, forming a self-sustaining network that operates independently of Bmp. Misexpression of Tfap2a in embryos blocked for Bmp from late blastula stage can restore development of both PPE and NC. However, Tfap2a alone is not sufficient to activate any other competence factors nor does it rescue individual placodes. On the other hand, misexpression of any two competence factors in Bmp-blocked embryos can activate the entire transcription factor network and support the development of NC, PPE and some individual placodes. We also show that while these factors are partially redundant with respect to PPE specification, they later provide non-redundant functions needed for development of specific placodes. Thus, we have identified a gene regulatory network that coordinates development of NC, PPE and individual placodes in zebrafish.
Collapse
|
33
|
Arduini BL, Brivanlou AH. Modulation of FOXD3 Activity in Human Embryonic Stem Cells Directs Pluripotency and Paraxial Mesoderm Fates. Stem Cells 2012; 30:2188-98. [DOI: 10.1002/stem.1200] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
34
|
Cox SG, Kim H, Garnett AT, Medeiros DM, An W, Crump JG. An essential role of variant histone H3.3 for ectomesenchyme potential of the cranial neural crest. PLoS Genet 2012; 8:e1002938. [PMID: 23028350 PMCID: PMC3447937 DOI: 10.1371/journal.pgen.1002938] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/18/2012] [Indexed: 12/20/2022] Open
Abstract
The neural crest (NC) is a vertebrate-specific cell population that exhibits remarkable multipotency. Although derived from the neural plate border (NPB) ectoderm, cranial NC (CNC) cells contribute not only to the peripheral nervous system but also to the ectomesenchymal precursors of the head skeleton. To date, the developmental basis for such broad potential has remained elusive. Here, we show that the replacement histone H3.3 is essential during early CNC development for these cells to generate ectomesenchyme and head pigment precursors. In a forward genetic screen in zebrafish, we identified a dominant D123N mutation in h3f3a, one of five zebrafish variant histone H3.3 genes, that eliminates the CNC–derived head skeleton and a subset of pigment cells yet leaves other CNC derivatives and trunk NC intact. Analyses of nucleosome assembly indicate that mutant D123N H3.3 interferes with H3.3 nucleosomal incorporation by forming aberrant H3 homodimers. Consistent with CNC defects arising from insufficient H3.3 incorporation into chromatin, supplying exogenous wild-type H3.3 rescues head skeletal development in mutants. Surprisingly, embryo-wide expression of dominant mutant H3.3 had little effect on embryonic development outside CNC, indicating an unexpectedly specific sensitivity of CNC to defects in H3.3 incorporation. Whereas previous studies had implicated H3.3 in large-scale histone replacement events that generate totipotency during germ line development, our work has revealed an additional role of H3.3 in the broad potential of the ectoderm-derived CNC, including the ability to make the mesoderm-like ectomesenchymal precursors of the head skeleton. The evolution of the vertebrate head was made possible in large part by the emergence of a new cell population, the cranial neural crest. These cells contribute to diverse structures of the head, including most of the skull, yet how neural crest cells acquire such broad potential during development has remained a mystery. By studying mutant zebrafish that lack the neural-crest-derived skull, we find that the unusual potential of these cells depends on an “H3.3” version of one of the histone proteins that package their DNA. We propose then that a dramatic change in the packaging of DNA is a key step in allowing crest cells to make a wide range of new cell types in the vertebrate head.
Collapse
Affiliation(s)
- Samuel G. Cox
- Department of Cell and Neurobiology, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Hyunjung Kim
- Department of Biochemistry, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - Aaron Timothy Garnett
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Daniel Meulemans Medeiros
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, Colorado, United States of America
| | - Woojin An
- Department of Biochemistry, Norris Comprehensive Cancer Center, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
| | - J. Gage Crump
- Department of Cell and Neurobiology, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, University of Southern California Keck School of Medicine, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
35
|
Castillo SD, Sanchez-Cespedes M. The SOX family of genes in cancer development: biological relevance and opportunities for therapy. Expert Opin Ther Targets 2012; 16:903-19. [DOI: 10.1517/14728222.2012.709239] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Weiner AMJ, Sdrigotti MA, Kelsh RN, Calcaterra NB. Deciphering the cellular and molecular roles of cellular nucleic acid binding protein during cranial neural crest development. Dev Growth Differ 2012; 53:934-47. [PMID: 21999883 DOI: 10.1111/j.1440-169x.2011.01298.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cellular nucleic acid binding protein (Cnbp) is a highly conserved single-stranded nucleic acid binding protein required for rostral head development. The use of a morpholino that inhibits Cnbp mRNA translation previously revealed a role of Cnbp in balancing neural crest cell apoptosis and proliferation in the developing zebrafish. Here, we report the use of another morpholino that specifically modifies the splicing of Cnbp pre-mRNA resulting in a reduction of full-length mRNA levels along with the generation of a novel transcript coding for an isoform that may act as dominant negative proteins. The use of this morpholino resulted in more severe phenotypes that enabled us to demonstrate that Cnbp loss-of-function adversely affects the formation and survival of craniofacial cartilaginous structures not only controlling the ratio of cell proliferation and apoptosis but also defining skeletogenic neural crest cell fate.
Collapse
Affiliation(s)
- Andrea M J Weiner
- Molecular and Cellular Biology Institute (IBR), National Council of Scientific and Technological Research (CONICET)-Biology Area, Department of Biological Sciences, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario, Suipacha 531, Rosario, S2002LRK, Argentina
| | | | | | | |
Collapse
|
37
|
Van Otterloo E, Li W, Garnett A, Cattell M, Medeiros DM, Cornell RA. Novel Tfap2-mediated control of soxE expression facilitated the evolutionary emergence of the neural crest. Development 2012; 139:720-30. [PMID: 22241841 DOI: 10.1242/dev.071308] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene duplication has been proposed to drive the evolution of novel morphologies. After gene duplication, it is unclear whether changes in the resulting paralogs' coding-regions, or in their cis-regulatory elements, contribute most significantly to the assembly of novel gene regulatory networks. The Transcription Factor Activator Protein 2 (Tfap2) was duplicated in the chordate lineage and is essential for development of the neural crest, a tissue that emerged with vertebrates. Using a tfap2-depleted zebrafish background, we test the ability of available gnathostome, agnathan, cephalochordate and insect tfap2 paralogs to drive neural crest development. With the exception of tfap2d (lamprey and zebrafish), all are able to do so. Together with expression analyses, these results indicate that sub-functionalization has occurred among Tfap2 paralogs, but that neo-functionalization of the Tfap2 protein did not drive the emergence of the neural crest. We investigate whether acquisition of novel target genes for Tfap2 might have done so. We show that in neural crest cells Tfap2 directly activates expression of sox10, which encodes a transcription factor essential for neural crest development. The appearance of this regulatory interaction is likely to have coincided with that of the neural crest, because AP2 and SoxE are not co-expressed in amphioxus, and because neural crest enhancers are not detected proximal to amphioxus soxE. We find that sox10 has limited ability to restore the neural crest in Tfap2-deficient embryos. Together, these results show that mutations resulting in novel Tfap2-mediated regulation of sox10 and other targets contributed to the evolution of the neural crest.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, IA 52242, USA
| | | | | | | | | | | |
Collapse
|
38
|
An M, Henion PD. The zebrafish sf3b1b460 mutant reveals differential requirements for the sf3b1 pre-mRNA processing gene during neural crest development. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2012; 56:223-37. [PMID: 22562198 PMCID: PMC3750977 DOI: 10.1387/ijdb.113383ma] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The functions of gene regulatory networks that control embryonic cell diversification occur on a background of constitutively active molecular machinery necessary for the elaboration of genetic interactions. The essential roles of subsets of such "housekeeping" genes in the regulation of specific aspects of development have become increasingly clear. Pre-mRNA processing is essential for production of functional transcripts by, for example, excision of introns. We have cloned the zebrafish toast(b460) locus and found that it encodes splicing factor 3b, subunit 1 (sf3b1). The sf3b1(b460) mutation causes aberrant splicing of sf3b1 resulting in functional and predicted non-functional transcripts and a 90% reduction in full-length Sf3b1 protein. The sf3b1(b460) mutation was isolated in a mutagenesis screen based on the absence of neural crest-derived melanophores. Further analysis revealed specific earlier defects in neural crest development, whereas the early development of other ectodermal populations appears unaffected. The expression of essential transcriptional regulators of neural crest development are severely disrupted in sf3b1(b460) mutants, due in part to defects in pre-mRNA processing of a subset of these factors, leading to defects in neural crest sublineage specification, survival and migration. Misexpression of a subset of these factors rescues aspects of neural crest development in mutant embryos. Our results indicate that although sf3b1 is a ubiquitously essential gene, the degree to which it is required exhibits tissue-type specificity during early embryogenesis. Further, the developmental defects caused by the sf3b1(b460) mutation provide insights into genetic interactions among members of the gene regulatory network controlling neural crest development.
Collapse
Affiliation(s)
- Min An
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| | - Paul D. Henion
- Department of Neuroscience, Ohio State University, Columbus, OH, USA
| |
Collapse
|
39
|
Wang WD, Melville DB, Montero-Balaguer M, Hatzopoulos AK, Knapik EW. Tfap2a and Foxd3 regulate early steps in the development of the neural crest progenitor population. Dev Biol 2011; 360:173-85. [PMID: 21963426 PMCID: PMC3236700 DOI: 10.1016/j.ydbio.2011.09.019] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 08/24/2011] [Accepted: 09/15/2011] [Indexed: 01/18/2023]
Abstract
The neural crest is a stem cell-like population exclusive to vertebrates that gives rise to many different cell types including chondrocytes, neurons and melanocytes. Arising from the neural plate border at the intersection of Wnt and Bmp signaling pathways, the complexity of neural crest gene regulatory networks has made the earliest steps of induction difficult to elucidate. Here, we report that tfap2a and foxd3 participate in neural crest induction and are necessary and sufficient for this process to proceed. Double mutant tfap2a (mont blanc, mob) and foxd3 (mother superior, mos) mob;mos zebrafish embryos completely lack all neural crest-derived tissues. Moreover, tfap2a and foxd3 are expressed during gastrulation prior to neural crest induction in distinct, complementary, domains; tfap2a is expressed in the ventral non-neural ectoderm and foxd3 in the dorsal mesendoderm and ectoderm. We further show that Bmp signaling is expanded in mob;mos embryos while expression of dkk1, a Wnt signaling inhibitor, is increased and canonical Wnt targets are suppressed. These changes in Bmp and Wnt signaling result in specific perturbations of neural crest induction rather than general defects in neural plate border or dorso-ventral patterning. foxd3 overexpression, on the other hand, enhances the ability of tfap2a to ectopically induce neural crest around the neural plate, overriding the normal neural plate border limit of the early neural crest territory. Although loss of either Tfap2a or Foxd3 alters Bmp and Wnt signaling patterns, only their combined inactivation sufficiently alters these signaling gradients to abort neural crest induction. Collectively, our results indicate that tfap2a and foxd3, in addition to their respective roles in the differentiation of neural crest derivatives, also jointly maintain the balance of Bmp and Wnt signaling in order to delineate the neural crest induction domain.
Collapse
Affiliation(s)
- Wen-Der Wang
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - David B. Melville
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | | | - Antonis K. Hatzopoulos
- Division of Cardiovascular Medicine, Department of Medicine and Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
| | - Ela W. Knapik
- Division of Genetic Medicine, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA
- Developmental Biology, Institute Biology I, University of Freiburg, Freiburg, Germany
| |
Collapse
|
40
|
Schmidt M, Huber L, Majdazari A, Schütz G, Williams T, Rohrer H. The transcription factors AP-2β and AP-2α are required for survival of sympathetic progenitors and differentiated sympathetic neurons. Dev Biol 2011; 355:89-100. [DOI: 10.1016/j.ydbio.2011.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/13/2011] [Accepted: 04/14/2011] [Indexed: 11/26/2022]
|
41
|
Reiterative AP2a activity controls sequential steps in the neural crest gene regulatory network. Proc Natl Acad Sci U S A 2010; 108:155-60. [PMID: 21169220 DOI: 10.1073/pnas.1010740107] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The neural crest (NC) emerges from combinatorial inductive events occurring within its progenitor domain, the neural border (NB). Several transcription factors act early at the NB, but the initiating molecular events remain elusive. Recent data from basal vertebrates suggest that ap2 might have been critical for NC emergence; however, the role of AP2 factors at the NB remains unclear. We show here that AP2a initiates NB patterning and is sufficient to elicit a NB-like pattern in neuralized ectoderm. In contrast, the other early regulators do not participate in ap2a initiation at the NB, but cooperate to further establish a robust NB pattern. The NC regulatory network uses a multistep cascade of secreted inducers and transcription factors, first at the NB and then within the NC progenitors. Here we report that AP2a acts at two distinct steps of this cascade. As the earliest known NB specifier, AP2a mediates Wnt signals to initiate the NB and activate pax3; as a NC specifier, AP2a regulates further NC development independent of and downstream of NB patterning. Our findings reconcile conflicting observations from various vertebrate organisms. AP2a provides a paradigm for the reiterated use of multifunctional molecules, thereby facilitating emergence of the NC in vertebrates.
Collapse
|
42
|
Betancur P, Bronner-Fraser M, Sauka-Spengler T. Assembling neural crest regulatory circuits into a gene regulatory network. Annu Rev Cell Dev Biol 2010; 26:581-603. [PMID: 19575671 DOI: 10.1146/annurev.cellbio.042308.113245] [Citation(s) in RCA: 218] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The neural crest is a multipotent stem cell–like population that gives rise to a wide range of derivatives in the vertebrate embryo including elements of the craniofacial skeleton and peripheral nervous system as well as melanocytes. The neural crest forms in a series of regulatory steps that include induction and specification of the prospective neural crest territory–neural plate border, specification of bona fide neural crest progenitors, and differentiation into diverse derivatives. These individual processes during neural crest ontogeny are controlled by regulatory circuits that can be assembled into a hierarchical gene regulatory network (GRN). Here we present an overview of the GRN that orchestrates the formation of cranial neural crest cells. Formulation of this network relies on information largely inferred from gene perturbation studies performed in several vertebrate model organisms. Our representation of the cranial neural crest GRN also includes information about direct regulatory interactions obtained from the cis-regulatory analyses performed to date, which increases the resolution of the architectural circuitry within the network.
Collapse
Affiliation(s)
- Paola Betancur
- Division of Biology, California Institute of Technology, Pasadena, California 91125, USA
| | | | | |
Collapse
|
43
|
Phosphatase-dependent and -independent functions of Shp2 in neural crest cells underlie LEOPARD syndrome pathogenesis. Dev Cell 2010; 18:750-62. [PMID: 20493809 DOI: 10.1016/j.devcel.2010.03.009] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2009] [Revised: 02/11/2010] [Accepted: 03/12/2010] [Indexed: 01/19/2023]
Abstract
The tyrosine phosphatase SHP2 (PTPN11) regulates cellular proliferation, survival, migration, and differentiation during development. Germline mutations in PTPN11 cause Noonan and LEOPARD syndromes, which have overlapping clinical features. Paradoxically, Noonan syndrome mutations increase SHP2 phosphatase activity, while LEOPARD syndrome mutants are catalytically impaired, raising the possibility that SHP2 has phosphatase-independent roles. By comparing shp2-deficient zebrafish embryos with those injected with mRNA encoding LEOPARD syndrome point mutations, we identify a phosphatase- and Erk-dependent role for Shp2 in neural crest specification and migration. We also identify an unexpected phosphatase- and Erk-independent function, mediated through its SH2 domains, which is evolutionarily conserved and prevents p53-mediated apoptosis in the brain and neural crest. Our results indicate that previously enigmatic aspects of LEOPARD syndrome pathogenesis can be explained by the combined effects of loss of Shp2 catalytic function and retention of an SH2 domain-mediated role that is essential for neural crest cell survival.
Collapse
|
44
|
Chang LL, Kessler DS. Foxd3 is an essential Nodal-dependent regulator of zebrafish dorsal mesoderm development. Dev Biol 2010; 342:39-50. [PMID: 20346935 DOI: 10.1016/j.ydbio.2010.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 03/12/2010] [Accepted: 03/16/2010] [Indexed: 02/05/2023]
Abstract
Establishment of the embryonic mesoderm is dependent on integration of multiple signaling and transcriptional inputs. We report that the transcriptional regulator Foxd3 is essential for dorsal mesoderm formation in zebrafish, and that this function is dependent on the Nodal pathway. Foxd3 gain-of-function results in expanded dorsal mesodermal gene expression, including the Nodal-related gene cyclops, and body axis dorsalization. Foxd3 knockdown embryos displayed reduced expression of cyclops and mesodermal genes, axial defects similar to Nodal pathway loss-of-function, and Nodal pathway activation rescued these phenotypes. In MZoep mutants inactive for Nodal signaling, Foxd3 did not rescue mesoderm formation or axial development, indicating that the mesodermal function of Foxd3 is dependent on an active downstream Nodal pathway. A previously identified foxd3 mutant, sym1, was described as a predicted null mutation with neural crest defects, but no mesodermal or axial phenotypes. We find that Sym1 protein retains activity and can induce strong mesodermal expansion and axial dorsalization. A subset of sym1 homozygotes displays axial defects and reduced cyclops and mesodermal gene expression, and penetrance of the mesodermal phenotypes is enhanced by Foxd3 knockdown. Therefore, sym1 is a hypomorphic allele, and reduced Foxd3 function results in a reduction of cyclops expression, and subsequent mesodermal and axial defects. These results demonstrate that Foxd3 is an essential upstream regulator of the Nodal pathway in zebrafish dorsal mesoderm development and establish a broadly conserved role for Foxd3 in vertebrate mesodermal development.
Collapse
Affiliation(s)
- Lisa L Chang
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, 1110 Biomedical Research Building 2/3, 421 Curie Boulevard, Philadelphia, PA 19104-6058, USA.
| | | |
Collapse
|
45
|
Young HM, Cane KN, Anderson CR. Development of the autonomic nervous system: a comparative view. Auton Neurosci 2010; 165:10-27. [PMID: 20346736 DOI: 10.1016/j.autneu.2010.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2009] [Revised: 02/27/2010] [Accepted: 03/01/2010] [Indexed: 12/15/2022]
Abstract
In this review we summarize current understanding of the development of autonomic neurons in vertebrates. The mechanisms controlling the development of sympathetic and enteric neurons have been studied in considerable detail in laboratory mammals, chick and zebrafish, and there are also limited data about the development of sympathetic and enteric neurons in amphibians. Little is known about the development of parasympathetic neurons apart from the ciliary ganglion in chicks. Although there are considerable gaps in our knowledge, some of the mechanisms controlling sympathetic and enteric neuron development appear to be conserved between mammals, avians and zebrafish. For example, some of the transcriptional regulators involved in the development of sympathetic neurons are conserved between mammals, avians and zebrafish, and the requirement for Ret signalling in the development of enteric neurons is conserved between mammals (including humans), avians and zebrafish. However, there are also differences between species in the migratory pathways followed by sympathetic and enteric neuron precursors and in the requirements for some signalling pathways.
Collapse
Affiliation(s)
- Heather M Young
- Department of Anatomy & Cell Biology, University of Melbourne, VIC Australia.
| | | | | |
Collapse
|
46
|
Cossais F, Wahlbuhl M, Kriesch J, Wegner M. SOX10 structure-function analysis in the chicken neural tube reveals important insights into its role in human neurocristopathies. Hum Mol Genet 2010; 19:2409-20. [PMID: 20308050 DOI: 10.1093/hmg/ddq124] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The HMG-domain containing transcription factor Sox10 is essential for neural crest (NC) development and for oligodendrocyte differentiation. Heterozygous SOX10 mutations in humans lead to corresponding defects in several NC-derived lineages and to leukodystrophies. Disease phenotypes range from Waardenburg syndrome and Waardenburg-Hirschsprung disease to Peripheral demyelinating neuropathy, Central dysmyelination, Waardenburg syndrome and Hirschsprung disease (PCWH). The phenotypic variability can partly be explained by the action of modifier genes, but is also influenced by the mutation that leads to haploinsufficiency in some and to mutant SOX10 proteins with altered properties in other cases. Here, we used in ovo electroporation in the developing neural tube of chicken to determine which regions and properties of SOX10 are required for early NC development. We found a strict reliance on the DNA-binding activity and the presence of the C-terminal transactivation domain and a lesser influence of the dimerization function and a conserved domain in the center of the protein. Intriguingly, dominant-negative effects on early NC development were mostly observed for truncated SOX10 proteins whose production in patients is probably prevented by nonsense-mediated decay. In contrast, mutant SOX10 proteins that occur in patients were usually inactive. Any dominant negative activity which some of these mutants undoubtedly possess must, therefore, be restricted to single NC-derived cell lineages or oligodendrocytes at later times. This contributes to the phenotypic variability of human SOX10 mutations.
Collapse
Affiliation(s)
- François Cossais
- Institut für Biochemie, Emil-Fischer-Zentrum, Universität Erlangen, Erlangen, Germany
| | | | | | | |
Collapse
|
47
|
Stewart RA, Lee JS, Lachnit M, Look AT, Kanki JP, Henion PD. Studying peripheral sympathetic nervous system development and neuroblastoma in zebrafish. Methods Cell Biol 2010; 100:127-52. [PMID: 21111216 DOI: 10.1016/b978-0-12-384892-5.00005-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The combined experimental attributes of the zebrafish model system, which accommodates cellular, molecular, and genetic approaches, make it particularly well-suited for determining the mechanisms underlying normal vertebrate development as well as disease states, such as cancer. In this chapter, we describe the advantages of the zebrafish system for identifying genes and their functions that participate in the regulation of the development of the peripheral sympathetic nervous system (PSNS). The zebrafish model is a powerful system for identifying new genes and pathways that regulate PSNS development, which can then be used to genetically dissect PSNS developmental processes, such as tissue size and cell numbers, which in the past haves proved difficult to study by mutational analysis in vivo. We provide a brief review of our current understanding of genetic pathways important in PSNS development, the rationale for developing a zebrafish model, and the current knowledge of zebrafish PSNS development. Finally, we postulate that knowledge of the genes responsible for normal PSNS development in the zebrafish will help in the identification of molecular pathways that are dysfunctional in neuroblastoma, a highly malignant cancer of the PSNS.
Collapse
Affiliation(s)
- Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kucenas S, Wang WD, Knapik EW, Appel B. A selective glial barrier at motor axon exit points prevents oligodendrocyte migration from the spinal cord. J Neurosci 2009; 29:15187-94. [PMID: 19955371 PMCID: PMC2837368 DOI: 10.1523/jneurosci.4193-09.2009] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/09/2009] [Accepted: 10/19/2009] [Indexed: 11/21/2022] Open
Abstract
Nerve roots have specialized transition zones that permit axon extension but limit cell movement between the CNS and PNS. Boundary cap cells prevent motor neuron soma from following their axons into the periphery, thereby contributing to a selective barrier. Transition zones also restrict movement of glial cells. Consequently, axons that cross the CNS-PNS interface are insulated by central and peripheral myelin. The mechanisms that prevent the migratory progenitors of oligodendrocytes and Schwann cells, the myelinating cells of the CNS and PNS, respectively, from crossing transition zones are not known. Here, we show that interactions between myelinating glial cells prevent their movements across the interface. Using in vivo time-lapse imaging in zebrafish we found that, in the absence of Schwann cells, oligodendrocyte progenitors cross ventral root transition zones and myelinate motor axons. These studies reveal that distinct mechanisms regulate the movement of axons, neurons, and glial cells across the CNS-PNS interface.
Collapse
Affiliation(s)
- Sarah Kucenas
- Department of Biological Sciences
- Vanderbilt Program in Developmental Biology, and
| | - Wen-Der Wang
- Vanderbilt Program in Developmental Biology, and
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee, 37235, and
| | - Ela W. Knapik
- Vanderbilt Program in Developmental Biology, and
- Division of Genetic Medicine, Vanderbilt University, Nashville, Tennessee, 37235, and
| | - Bruce Appel
- Department of Biological Sciences
- Department of Pediatrics, University of Colorado Denver–Anschutz Medical Campus, Aurora, Colorado 80045
| |
Collapse
|