1
|
Miyaki T, Homma N, Kawasaki Y, Kishi M, Yamaguchi J, Kakuta S, Shindo T, Sugiura M, Oliva Trejo JA, Kaneda H, Omotehara T, Takechi M, Negishi-Koga T, Ishijima M, Aoto K, Iseki S, Kitamura K, Muto S, Amagasa M, Hotchi S, Ogura K, Shibata S, Sakai T, Suzuki Y, Ichimura K. Ultrastructural analysis of whole glomeruli using array tomography. J Cell Sci 2024; 137:jcs262154. [PMID: 39171439 DOI: 10.1242/jcs.262154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/09/2024] [Indexed: 08/23/2024] Open
Abstract
The renal glomerulus produces primary urine from blood plasma by ultrafiltration. The ultrastructure of the glomerulus is closely related to filtration function and disease development. The ultrastructure of glomeruli has mainly been evaluated using transmission electron microscopy; however, the volume that can be observed using transmission electron microscopy is extremely limited relative to the total volume of the glomerulus. Consequently, observing structures that exist in only one location in each glomerulus, such as the vascular pole, and evaluating low-density or localized lesions are challenging tasks. Array tomography (AT) is a technique used to analyze the ultrastructure of tissues and cells via scanning electron microscopy of serial sections. In this study, we present an AT workflow that is optimized for observing complete serial sections of the whole glomerulus, and we share several analytical examples that use the optimized AT workflow, demonstrating the usefulness of this approach. Overall, this AT workflow can be a powerful tool for structural and pathological evaluation of the glomerulus. This workflow is also expected to provide new insights into the ultrastructure of the glomerulus and its constituent cells.
Collapse
Affiliation(s)
- Takayuki Miyaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Nozomi Homma
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yuto Kawasaki
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mami Kishi
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Junji Yamaguchi
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Soichiro Kakuta
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Tomoko Shindo
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-0016, Japan
| | - Makoto Sugiura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Juan Alejandro Oliva Trejo
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Hisako Kaneda
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takuya Omotehara
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Masaki Takechi
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Takako Negishi-Koga
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Muneaki Ishijima
- Department of Medicine for Orthopedics and Motor Organ, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Department of Community Medicine and Research for Bone and Joint Diseases, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kazushi Aoto
- Central Laboratory, Graduate School of Biomedical and Health Sciences , Hiroshima University, Hiroshima 734-8551, Japan
| | - Sachiko Iseki
- Department of Molecular Craniofacial Embryology and Oral Histology, Graduate School of Medical and Dental Sciences , Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kosuke Kitamura
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Satoru Muto
- Department of Urology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Mao Amagasa
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shiori Hotchi
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Kanako Ogura
- Department of Human Pathology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Shinsuke Shibata
- Electron Microscope Laboratory, Keio University School of Medicine, Tokyo 160-0016, Japan
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences , Niigata University, Niigata City 951-8510, Japan
| | - Tatsuo Sakai
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Yusuke Suzuki
- Department of Nephrology, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| | - Koichiro Ichimura
- Department of Anatomy and Life Structure, Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
- Laboratory of Morphology and Image Analysis, Research Core Facilities , Juntendo University Graduate School of Medicine, Tokyo 113-8421, Japan
| |
Collapse
|
2
|
Durant-Vesga J, Suzuki N, Ochi H, Le Bouffant R, Eschstruth A, Ogino H, Umbhauer M, Riou JF. Retinoic acid control of pax8 during renal specification of Xenopus pronephros involves hox and meis3. Dev Biol 2023; 493:17-28. [PMID: 36279927 DOI: 10.1016/j.ydbio.2022.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022]
Abstract
Development of the Xenopus pronephros relies on renal precursors grouped at neurula stage into a specific region of dorso-lateral mesoderm called the kidney field. Formation of the kidney field at early neurula stage is dependent on retinoic (RA) signaling acting upstream of renal master transcriptional regulators such as pax8 or lhx1. Although lhx1 might be a direct target of RA-mediated transcriptional activation in the kidney field, how RA controls the emergence of the kidney field remains poorly understood. In order to better understand RA control of renal specification of the kidney field, we have performed a transcriptomic profiling of genes affected by RA disruption in lateral mesoderm explants isolated prior to the emergence of the kidney field and cultured at different time points until early neurula stage. Besides genes directly involved in pronephric development (pax8, lhx1, osr2, mecom), hox (hoxa1, a3, b3, b4, c5 and d1) and the hox co-factor meis3 appear as a prominent group of genes encoding transcription factors (TFs) downstream of RA. Supporting the idea of a role of meis3 in the kidney field, we have observed that meis3 depletion results in a severe inhibition of pax8 expression in the kidney field. Meis3 depletion only marginally affects expression of lhx1 and aldh1a2 suggesting that meis3 principally acts upstream of pax8. Further arguing for a role of meis3 and hox in the control of pax8, expression of a combination of meis3, hoxb4 and pbx1 in animal caps induces pax8 expression, but not that of lhx1. The same combination of TFs is also able to transactivate a previously identified pax8 enhancer, Pax8-CNS1. Mutagenesis of potential PBX-Hox binding motifs present in Pax8-CNS1 further allows to identify two of them that are necessary for transactivation. Finally, we have tested deletions of regulatory sequences in reporter assays with a previously characterized transgene encompassing 36.5 kb of the X. tropicalis pax8 gene that allows expression of a truncated pax8-GFP fusion protein recapitulating endogenous pax8 expression. This transgene includes three conserved pax8 enhancers, Pax8-CNS1, Pax8-CNS2 and Pax8-CNS3. Deletion of Pax8-CNS1 alone does not affect reporter expression, but deletion of a 3.5 kb region encompassing Pax8-CNS1 and Pax8-CNS2 results in a severe inhibition of reporter expression both in the otic placode and kidney field domains.
Collapse
Affiliation(s)
- Jennifer Durant-Vesga
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Nanoka Suzuki
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan; Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, 2-2-2 Iida-Nishi, Yamagata, 990-9585, Japan
| | - Ronan Le Bouffant
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Alexis Eschstruth
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Hajime Ogino
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Muriel Umbhauer
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France
| | - Jean-François Riou
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine, IBPS, Laboratoire de Biologie Du Développement, UMR7622, 9, Quai Saint-Bernard, 75252, Paris, Cedex05, France.
| |
Collapse
|
3
|
Morito N, Usui T, Ishibashi S, Yamagata K. Podocyte-specific Transcription Factors: Could MafB Become a Therapeutic Target for Kidney Disease? Intern Med 2023; 62:11-19. [PMID: 35249929 PMCID: PMC9876710 DOI: 10.2169/internalmedicine.9336-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The increasing number of patients with chronic kidney disease (CKD) is being recognized as an emerging global health problem. Recently, it has become clear that injury and loss of glomerular visceral epithelial cells, known as podocytes, is a common early event in many forms of CKD. Podocytes are highly specialized epithelial cells that cover the outer layer of the glomerular basement membrane. They serve as the final barrier to urinary protein loss through the formation and maintenance of specialized foot-processes and an interposed slit-diaphragm. We previously reported that the transcription factor MafB regulates the podocyte slit diaphragm protein production and transcription factor Tcf21. We showed that the forced expression of MafB was able to prevent CKD. In this review, we discuss recent advances and offer an updated overview of the functions of podocyte-specific transcription factors in kidney biology, aiming to present new perspectives on the progression of CKD and respective therapeutic strategies.
Collapse
Affiliation(s)
- Naoki Morito
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Toshiaki Usui
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Shun Ishibashi
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| | - Kunihiro Yamagata
- Department of Nephrology, Faculty of Medicine, University of Tsukuba, Japan
| |
Collapse
|
4
|
Yang J, Zhang D, Motojima M, Kume T, Hou Q, Pan Y, Duan A, Zhang M, Jiang S, Hou J, Shi J, Qin Z, Liu Z. Super-Enhancer-Associated Transcription Factors Maintain Transcriptional Regulation in Mature Podocytes. J Am Soc Nephrol 2021; 32:1323-1337. [PMID: 33771836 PMCID: PMC8259645 DOI: 10.1681/asn.2020081177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 01/30/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Transcriptional programs control cell fate, and identifying their components is critical for understanding diseases caused by cell lesion, such as podocytopathy. Although many transcription factors (TFs) are necessary for cell-state maintenance in glomeruli, their roles in transcriptional regulation are not well understood. METHODS The distribution of H3K27ac histones in human glomerulus cells was analyzed to identify superenhancer-associated TFs, and ChIP-seq and transcriptomics were performed to elucidate the regulatory roles of the TFs. Transgenic animal models of disease were further investigated to confirm the roles of specific TFs in podocyte maintenance. RESULTS Superenhancer distribution revealed a group of potential TFs in core regulatory circuits in human glomerulus cells, including FOXC1/2, WT1, and LMX1B. Integration of transcriptome and cistrome data of FOXC1/2 in mice resolved transcriptional regulation in podocyte maintenance. FOXC1/2 regulated differentiation-associated transcription in mature podocytes. In both humans and animal models, mature podocyte injury was accompanied by deregulation of FOXC1/2 expression, and FOXC1/2 overexpression could protect podocytes in zebrafish. CONCLUSIONS FOXC1/2 maintain podocyte differentiation through transcriptional stabilization. The genome-wide chromatin resources support further investigation of TFs' regulatory roles in glomeruli transcription programs.
Collapse
Affiliation(s)
- Jingping Yang
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Difei Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Masaru Motojima
- Department of Clinical Pharmacology, Tokai University School of Medicine, Isehara, Japan
| | - Tsutomu Kume
- Feinberg Cardiovascular Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Qing Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Yu Pan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Aiping Duan
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Mingchao Zhang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Song Jiang
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jinhua Hou
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jingsong Shi
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhaohui Qin
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Zhihong Liu
- Medical School of Nanjing University, Nanjing, China
- National Clinical Research Center of Kidney Diseases, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
5
|
Blackburn ATM, Miller RK. Modeling congenital kidney diseases in Xenopus laevis. Dis Model Mech 2019; 12:12/4/dmm038604. [PMID: 30967415 PMCID: PMC6505484 DOI: 10.1242/dmm.038604] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Congenital anomalies of the kidney and urinary tract (CAKUT) occur in ∼1/500 live births and are a leading cause of pediatric kidney failure. With an average wait time of 3-5 years for a kidney transplant, the need is high for the development of new strategies aimed at reducing the incidence of CAKUT and preserving renal function. Next-generation sequencing has uncovered a significant number of putative causal genes, but a simple and efficient model system to examine the function of CAKUT genes is needed. Xenopus laevis (frog) embryos are well-suited to model congenital kidney diseases and to explore the mechanisms that cause these developmental defects. Xenopus has many advantages for studying the kidney: the embryos develop externally and are easily manipulated with microinjections, they have a functional kidney in ∼2 days, and 79% of identified human disease genes have a verified ortholog in Xenopus. This facilitates high-throughput screening of candidate CAKUT-causing genes. In this Review, we present the similarities between Xenopus and mammalian kidneys, highlight studies of CAKUT-causing genes in Xenopus and describe how common kidney diseases have been modeled successfully in this model organism. Additionally, we discuss several molecular pathways associated with kidney disease that have been studied in Xenopus and demonstrate why it is a useful model for studying human kidney diseases. Summary: Understanding how congenital kidney diseases arise is imperative to their treatment. Using Xenopus as a model will aid in elucidating kidney development and congenital kidney diseases.
Collapse
Affiliation(s)
- Alexandria T M Blackburn
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA
| | - Rachel K Miller
- Pediatric Research Center, Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA .,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Genetics and Epigenetics, Houston, TX 77030, USA.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Program in Biochemistry and Cell Biology Houston, Houston, TX 77030, USA.,Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Sieber KB, Batorsky A, Siebenthall K, Hudkins KL, Vierstra JD, Sullivan S, Sur A, McNulty M, Sandstrom R, Reynolds A, Bates D, Diegel M, Dunn D, Nelson J, Buckley M, Kaul R, Sampson MG, Himmelfarb J, Alpers CE, Waterworth D, Akilesh S. Integrated Functional Genomic Analysis Enables Annotation of Kidney Genome-Wide Association Study Loci. J Am Soc Nephrol 2019; 30:421-441. [PMID: 30760496 PMCID: PMC6405142 DOI: 10.1681/asn.2018030309] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 12/26/2018] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Linking genetic risk loci identified by genome-wide association studies (GWAS) to their causal genes remains a major challenge. Disease-associated genetic variants are concentrated in regions containing regulatory DNA elements, such as promoters and enhancers. Although researchers have previously published DNA maps of these regulatory regions for kidney tubule cells and glomerular endothelial cells, maps for podocytes and mesangial cells have not been available. METHODS We generated regulatory DNA maps (DNase-seq) and paired gene expression profiles (RNA-seq) from primary outgrowth cultures of human glomeruli that were composed mainly of podocytes and mesangial cells. We generated similar datasets from renal cortex cultures, to compare with those of the glomerular cultures. Because regulatory DNA elements can act on target genes across large genomic distances, we also generated a chromatin conformation map from freshly isolated human glomeruli. RESULTS We identified thousands of unique regulatory DNA elements, many located close to transcription factor genes, which the glomerular and cortex samples expressed at different levels. We found that genetic variants associated with kidney diseases (GWAS) and kidney expression quantitative trait loci were enriched in regulatory DNA regions. By combining GWAS, epigenomic, and chromatin conformation data, we functionally annotated 46 kidney disease genes. CONCLUSIONS We demonstrate a powerful approach to functionally connect kidney disease-/trait-associated loci to their target genes by leveraging unique regulatory DNA maps and integrated epigenomic and genetic analysis. This process can be applied to other kidney cell types and will enhance our understanding of genome regulation and its effects on gene expression in kidney disease.
Collapse
Affiliation(s)
| | - Anna Batorsky
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | | | - Jeff D Vierstra
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | | | - Aakash Sur
- Phase Genomics Inc., Seattle, Washington
- Department of Biomedical and Health Informatics, and
| | - Michelle McNulty
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | | | - Alex Reynolds
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Daniel Bates
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Morgan Diegel
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Douglass Dunn
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Jemma Nelson
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Michael Buckley
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Rajinder Kaul
- Altius Institute for Biomedical Sciences, Seattle, Washington
| | - Matthew G Sampson
- Division of Pediatric Nephrology, Department of Pediatrics, University of Michigan School of Medicine, Ann Arbor, Michigan; and
| | - Jonathan Himmelfarb
- Division of Nephrology, Department of Medicine, University of Washington, Seattle, Washington
- Kidney Research Institute, Seattle, Washington
| | - Charles E Alpers
- Department of Anatomic Pathology
- Kidney Research Institute, Seattle, Washington
| | | | - Shreeram Akilesh
- Department of Anatomic Pathology,
- Kidney Research Institute, Seattle, Washington
| |
Collapse
|
7
|
Asfahani RI, Tahoun MM, Miller-Hodges EV, Bellerby J, Virasami AK, Sampson RD, Moulding D, Sebire NJ, Hohenstein P, Scambler PJ, Waters AM. Activation of podocyte Notch mediates early Wt1 glomerulopathy. Kidney Int 2018; 93:903-920. [PMID: 29398135 PMCID: PMC6169130 DOI: 10.1016/j.kint.2017.11.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 11/07/2017] [Accepted: 11/09/2017] [Indexed: 01/26/2023]
Abstract
The Wilms' tumor suppressor gene, WT1, encodes a zinc finger protein that regulates podocyte development and is highly expressed in mature podocytes. Mutations in the WT1 gene are associated with the development of renal failure due to the formation of scar tissue within glomeruli, the mechanisms of which are poorly understood. Here, we used a tamoxifen-based CRE-LoxP system to induce deletion of Wt1 in adult mice to investigate the mechanisms underlying evolution of glomerulosclerosis. Podocyte apoptosis was evident as early as the fourth day post-induction and increased during disease progression, supporting a role for Wt1 in mature podocyte survival. Podocyte Notch activation was evident at disease onset with upregulation of Notch1 and its transcriptional targets, including Nrarp. There was repression of podocyte FoxC2 and upregulation of Hey2 supporting a role for a Wt1/FoxC2/Notch transcriptional network in mature podocyte injury. The expression of cleaved Notch1 and HES1 proteins in podocytes of mutant mice was confirmed in early disease. Furthermore, induction of podocyte HES1 expression was associated with upregulation of genes implicated in epithelial mesenchymal transition, thereby suggesting that HES1 mediates podocyte EMT. Lastly, early pharmacological inhibition of Notch signaling ameliorated glomerular scarring and albuminuria. Thus, loss of Wt1 in mature podocytes modulates podocyte Notch activation, which could mediate early events in WT1-related glomerulosclerosis.
Collapse
Affiliation(s)
- Rowan I Asfahani
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Mona M Tahoun
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK; Clinical and Chemical Pathology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Eve V Miller-Hodges
- MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, Scotland
| | - Jack Bellerby
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Alex K Virasami
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - Robert D Sampson
- Institute of Ophthalmology, University College of London, London, UK
| | - Dale Moulding
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Neil J Sebire
- Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | | | - Peter J Scambler
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK
| | - Aoife M Waters
- Programme of Developmental Biology of Birth Defects, Great Ormond Street Institute of Child Health, University College of London, London, UK; Great Ormond Street Hospital NHS Foundation Trust, London, UK.
| |
Collapse
|
8
|
Zhang B, Tran U, Wessely O. Polycystin 1 loss of function is directly linked to an imbalance in G-protein signaling in the kidney. Development 2018. [PMID: 29530879 DOI: 10.1242/dev.158931] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of the kidney relies on the establishment and maintenance of a precise tubular diameter of its functional units, the nephrons. This process is disrupted in polycystic kidney disease (PKD), resulting in dilations of the nephron and renal cyst formation. In the course of exploring G-protein-coupled signaling in the Xenopus pronephric kidney, we discovered that loss of the G-protein α subunit, Gnas, results in a PKD phenotype. Polycystin 1, one of the genes mutated in human PKD, encodes a protein resembling a G-protein-coupled receptor. Furthermore, deletion of the G-protein-binding domain present in the intracellular C terminus of polycystin 1 impacts functionality. A comprehensive analysis of all the G-protein α subunits expressed in the Xenopus pronephric kidney demonstrates that polycystin 1 recruits a select subset of G-protein α subunits and that their knockdown - as in the case of Gnas - results in a PKD phenotype. Mechanistically, the phenotype is caused by increased endogenous G-protein β/γ signaling and can be reversed by pharmacological inhibitors as well as knocking down Gnb1. Together, our data support the hypothesis that G proteins are recruited to the intracellular domain of PKD1 and that this interaction is crucial for its function in the kidney.
Collapse
Affiliation(s)
- Bo Zhang
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA.,LSU Health Sciences Center, Department of Cell Biology and Anatomy, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Uyen Tran
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Oliver Wessely
- Cleveland Clinic Foundation, Lerner Research Institute, Department of Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Drummond BE, Wingert RA. Scaling up to study brca2: the zeppelin zebrafish mutant reveals a role for brca2 in embryonic development of kidney mesoderm. CANCER CELL & MICROENVIRONMENT 2018; 5:e1630. [PMID: 29707605 PMCID: PMC5922780 DOI: 10.14800/ccm.1630] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Specialized renal epithelial cells known as podocytes are essential components of the filtering structures within the kidney that coordinate the process of removing waste from the bloodstream. Podocyte loss initiates many human kidney diseases as it triggers subsequent damage to the kidney, leading to progressive loss of function that culminates with end stage renal failure. Podocyte morphology, function and gene expression profiles are well conserved between zebrafish and humans, making the former a relevant model to study podocyte development and model kidney diseases. Recently, we reported that whole genome sequencing of the zeppelin (zep) zebrafish mutant, which exhibits podocyte abrogation, revealed that the causative lesion for this defect was a splicing mutation in the breast cancer 2, early onset (brca2) gene. This was a surprising and novel discovery, as previous research on brca2/BRCA2 in a number of vertebrate animal models had not implicated an explicit role for this gene in kidney mesoderm development. Interestingly, the abrogation of the podocyte lineage in zep mutants was also accompanied by the formation of a larger interrenal (IR) gland, which is analogous to the adrenal gland in mammals, and suggested a fate switch between the renal and inter renal mesodermal derivatives. Mirroring these findings, knockdown of brca2 also recapitulated the loss of podocytes and increased IR population. In addition, brca2 overexpression was sufficient to partially rescue podocytes in zep mutants, and induced ectopic podocyte formation in wild-type embryos. Interestingly, immunofluorescence studies indicated that zep mutants had elevated P-h2A.X levels, suggesting that DNA repair is dysfunctional in these animals and contributes to the zep phenotype. Moving forward, this unique zebrafish mutant provides a new model to further explore how brca2 contributes to the development of tissues including the kidney mesoderm-roles which may have implications for renal diseases as well.
Collapse
Affiliation(s)
- Bridgette E Drummond
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Rebecca A Wingert
- Department of Biological Sciences, Center for Stem Cells and Regenerative Medicine, Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN, 46556, USA
| |
Collapse
|
10
|
Toolbox in a tadpole: Xenopus for kidney research. Cell Tissue Res 2017; 369:143-157. [PMID: 28401306 DOI: 10.1007/s00441-017-2611-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 03/09/2017] [Indexed: 01/14/2023]
Abstract
Xenopus is a versatile model organism increasingly used to study organogenesis and genetic diseases. The rapid embryonic development, targeted injections, loss- and gain-of-function experiments and an increasing supply of tools for functional in vivo analysis are unique advantages of the Xenopus system. Here, we review the vast array of methods available that have facilitated its transition into a translational model. We will focus primarily on how these methods have been employed in the study of kidney development, renal function and kidney disease. Future advances in the fields of genome editing, imaging and quantitative 'omics approaches are likely to enable exciting and novel applications for Xenopus to deepen our understanding of core principles of renal development and molecular mechanisms of human kidney disease. Thus, using Xenopus in clinically relevant research diversifies the narrowing pool of "standard" model organisms and provides unique opportunities for translational research.
Collapse
|
11
|
A biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction. Sci Rep 2017; 7:43934. [PMID: 28262745 PMCID: PMC5338254 DOI: 10.1038/srep43934] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 01/12/2023] Open
Abstract
Using a gelatin microbial transglutaminase (gelatin-mTG) cell culture platform tuned to exhibit stiffness spanning that of healthy and diseased glomeruli, we demonstrate that kidney podocytes show marked stiffness sensitivity. Podocyte-specific markers that are critical in the formation of the renal filtration barrier are found to be regulated in association with stiffness-mediated cellular behaviors. While podocytes typically de-differentiate in culture and show diminished physiological function in nephropathies characterized by altered tissue stiffness, we show that gelatin-mTG substrates with Young’s modulus near that of healthy glomeruli elicit a pro-differentiation and maturation response in podocytes better than substrates either softer or stiffer. The pro-differentiation phenotype is characterized by upregulation of gene and protein expression associated with podocyte function, which is observed for podocytes cultured on gelatin-mTG gels of physiological stiffness independent of extracellular matrix coating type and density. Signaling pathways involved in stiffness-mediated podocyte behaviors are identified, revealing the interdependence of podocyte mechanotransduction and maintenance of their physiological function. This study also highlights the utility of the gelatin-mTG platform as an in vitro system with tunable stiffness over a range relevant for recapitulating mechanical properties of soft tissues, suggesting its potential impact on a wide range of research in cellular biophysics.
Collapse
|
12
|
RNA sequencing analysis of human podocytes reveals glucocorticoid regulated gene networks targeting non-immune pathways. Sci Rep 2016; 6:35671. [PMID: 27774996 PMCID: PMC5075905 DOI: 10.1038/srep35671] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/29/2016] [Indexed: 12/12/2022] Open
Abstract
Glucocorticoids are steroids that reduce inflammation and are used as immunosuppressive drugs for many diseases. They are also the mainstay for the treatment of minimal change nephropathy (MCN), which is characterised by an absence of inflammation. Their mechanisms of action remain elusive. Evidence suggests that immunomodulatory drugs can directly act on glomerular epithelial cells or ‘podocytes’, the cell type which is the main target of injury in MCN. To understand the nature of glucocorticoid effects on non-immune cell functions, we generated RNA sequencing data from human podocyte cell lines and identified the genes that are significantly regulated in dexamethasone-treated podocytes compared to vehicle-treated cells. The upregulated genes are of functional relevance to cytoskeleton-related processes, whereas the downregulated genes mostly encode pro-inflammatory cytokines and growth factors. We observed a tendency for dexamethasone-upregulated genes to be downregulated in MCN patients. Integrative analysis revealed gene networks composed of critical signaling pathways that are likely targeted by dexamethasone in podocytes.
Collapse
|
13
|
Mallipattu SK, Guo Y, Revelo MP, Roa-Peña L, Miller T, Ling J, Shankland SJ, Bialkowska AB, Ly V, Estrada C, Jain MK, Lu Y, Ma'ayan A, Mehrotra A, Yacoub R, Nord EP, Woroniecki RP, Yang VW, He JC. Krüppel-Like Factor 15 Mediates Glucocorticoid-Induced Restoration of Podocyte Differentiation Markers. J Am Soc Nephrol 2016; 28:166-184. [PMID: 27288011 DOI: 10.1681/asn.2015060672] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 04/05/2016] [Indexed: 12/18/2022] Open
Abstract
Podocyte injury is the inciting event in primary glomerulopathies, such as minimal change disease and primary FSGS, and glucocorticoids remain the initial and often, the primary treatment of choice for these glomerulopathies. Because inflammation is not readily apparent in these diseases, understanding the direct effects of glucocorticoids on the podocyte, independent of the immunomodulatory effects, may lead to the identification of targets downstream of glucocorticoids that minimize toxicity without compromising efficacy. Several studies showed that treatment with glucocorticoids restores podocyte differentiation markers and normal ultrastructure and improves cell survival in murine podocytes. We previously determined that Krüppel-like factor 15 (KLF15), a kidney-enriched zinc finger transcription factor, is required for restoring podocyte differentiation markers in mice and human podocytes under cell stress. Here, we show that in vitro treatment with dexamethasone induced a rapid increase of KLF15 expression in human and murine podocytes and enhanced the affinity of glucocorticoid receptor binding to the promoter region of KLF15 In three independent proteinuric murine models, podocyte-specific loss of Klf15 abrogated dexamethasone-induced podocyte recovery. Furthermore, knockdown of KLF15 reduced cell survival and destabilized the actin cytoskeleton in differentiated human podocytes. Conversely, overexpression of KLF15 stabilized the actin cytoskeleton under cell stress in human podocytes. Finally, the level of KLF15 expression in the podocytes and glomeruli from human biopsy specimens correlated with glucocorticoid responsiveness in 35 patients with minimal change disease or primary FSGS. Thus, these studies identify the critical role of KLF15 in mediating the salutary effects of glucocorticoids in the podocyte.
Collapse
Affiliation(s)
| | - Yiqing Guo
- Division of Nephrology, Departments of Medicine and
| | - Monica P Revelo
- Department of Pathology, University of Utah, Salt Lake City, Utah
| | | | | | - Jason Ling
- Division of Nephrology, Departments of Medicine and
| | - Stuart J Shankland
- Division of Nephrology, Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | - Agnieszka B Bialkowska
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - Victoria Ly
- Division of Nephrology, Departments of Medicine and
| | | | - Mukesh K Jain
- Case Cardiovascular Institute Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Yuan Lu
- Case Cardiovascular Institute Research Institute, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| | - Avi Ma'ayan
- Department of Pharmacology and Systems Therapeutics and
| | - Anita Mehrotra
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | - Rabi Yacoub
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and
| | | | | | - Vincent W Yang
- Division of Gastroenterology, Department of Medicine, Stony Brook University, Stony Brook, New York
| | - John C He
- Department of Pharmacology and Systems Therapeutics and.,Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York; and.,Renal Section, James J. Peters Veterans Affairs Medical Center, New York, New York
| |
Collapse
|
14
|
Lienkamp SS. Using Xenopus to study genetic kidney diseases. Semin Cell Dev Biol 2016; 51:117-24. [PMID: 26851624 DOI: 10.1016/j.semcdb.2016.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Modern sequencing technology is revolutionizing our knowledge of inherited kidney disease. However, the molecular role of genes affected by the rapidly rising number of identified mutations is lagging behind. Xenopus is a highly useful, but underutilized model organism with unique properties excellently suited to decipher the molecular mechanisms of kidney development and disease. The embryonic kidney (pronephros) can be manipulated on only one side of the animal and its formation observed directly through the translucent skin. The moderate evolutionary distance between Xenopus and humans is a huge advantage for studying basic principles of kidney development, but still allows us to analyze the function of disease related genes. Optogenetic manipulations and genome editing by CRISPR/Cas are exciting additions to the toolbox for disease modelling and will facilitate the use of Xenopus in translational research. Therefore, the future of Xenopus in kidney research is bright.
Collapse
Affiliation(s)
- Soeren S Lienkamp
- Renal Division, Department of Medicine, University of Freiburg Medical Center, Hugstetter Straße 55, 79106 Freiburg, Germany; Center for Biological Signaling Studies (BIOSS), Albertstraße 19, 79104 Freiburg, Germany.
| |
Collapse
|
15
|
Nephron Patterning: Lessons from Xenopus, Zebrafish, and Mouse Studies. Cells 2015; 4:483-99. [PMID: 26378582 PMCID: PMC4588047 DOI: 10.3390/cells4030483] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/14/2022] Open
Abstract
The nephron is the basic structural and functional unit of the vertebrate kidney. To ensure kidney functions, the nephrons possess a highly segmental organization where each segment is specialized for the secretion and reabsorption of particular solutes. During embryogenesis, nephron progenitors undergo a mesenchymal-to-epithelial transition (MET) and acquire different segment-specific cell fates along the proximo-distal axis of the nephron. Even if the morphological changes occurring during nephrogenesis are characterized, the regulatory networks driving nephron segmentation are still poorly understood. Interestingly, several studies have shown that the pronephric nephrons in Xenopus and zebrafish are segmented in a similar fashion as the mouse metanephric nephrons. Here we review functional and molecular aspects of nephron segmentation with a particular interest on the signaling molecules and transcription factors recently implicated in kidney development in these three different vertebrate model organisms. A complete understanding of the mechanisms underlying nephrogenesis in different model organisms will provide novel insights on the etiology of several human renal diseases.
Collapse
|
16
|
Sazonova O, Zhao Y, Nürnberg S, Miller C, Pjanic M, Castano VG, Kim JB, Salfati EL, Kundaje AB, Bejerano G, Assimes T, Yang X, Quertermous T. Characterization of TCF21 Downstream Target Regions Identifies a Transcriptional Network Linking Multiple Independent Coronary Artery Disease Loci. PLoS Genet 2015; 11:e1005202. [PMID: 26020271 PMCID: PMC4447360 DOI: 10.1371/journal.pgen.1005202] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Accepted: 04/09/2015] [Indexed: 01/18/2023] Open
Abstract
To functionally link coronary artery disease (CAD) causal genes identified by genome wide association studies (GWAS), and to investigate the cellular and molecular mechanisms of atherosclerosis, we have used chromatin immunoprecipitation sequencing (ChIP-Seq) with the CAD associated transcription factor TCF21 in human coronary artery smooth muscle cells (HCASMC). Analysis of identified TCF21 target genes for enrichment of molecular and cellular annotation terms identified processes relevant to CAD pathophysiology, including “growth factor binding,” “matrix interaction,” and “smooth muscle contraction.” We characterized the canonical binding sequence for TCF21 as CAGCTG, identified AP-1 binding sites in TCF21 peaks, and by conducting ChIP-Seq for JUN and JUND in HCASMC confirmed that there is significant overlap between TCF21 and AP-1 binding loci in this cell type. Expression quantitative trait variation mapped to target genes of TCF21 was significantly enriched among variants with low P-values in the GWAS analyses, suggesting a possible functional interaction between TCF21 binding and causal variants in other CAD disease loci. Separate enrichment analyses found over-representation of TCF21 target genes among CAD associated genes, and linkage disequilibrium between TCF21 peak variation and that found in GWAS loci, consistent with the hypothesis that TCF21 may affect disease risk through interaction with other disease associated loci. Interestingly, enrichment for TCF21 target genes was also found among other genome wide association phenotypes, including height and inflammatory bowel disease, suggesting a functional profile important for basic cellular processes in non-vascular tissues. Thus, data and analyses presented here suggest that study of GWAS transcription factors may be a highly useful approach to identifying disease gene interactions and thus pathways that may be relevant to complex disease etiology. While coronary artery disease (CAD) is due in part to environmental and metabolic factors, about half of the risk is genetically predetermined. Genome-wide association studies in human populations have identified approximately 150 sites in the genome that appear to be associated with CAD. The mechanisms by which mutations in these regions are responsible for predisposition to CAD remain largely unknown. To begin to explore how disease-specific gene sequences and disease gene function promotes pathology, we have mapped the loci and genes that are downstream of the transcription factor TCF21, which is strongly associated with CAD. By identifying genes that are regulated by TCF21 we have been able to link together multiple other CAD associated genes and begin to identify the critical molecular processes that mediate atherosclerosis in the blood vessel wall and contribute to the genesis of ischemic cardiovascular events.
Collapse
Affiliation(s)
- Olga Sazonova
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Sylvia Nürnberg
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Clint Miller
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Milos Pjanic
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Victor G. Castano
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
| | - Juyong B. Kim
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Elias L. Salfati
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Anshul B. Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Gill Bejerano
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Computer Science, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Themistocles Assimes
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
17
|
Glomerular development--shaping the multi-cellular filtration unit. Semin Cell Dev Biol 2014; 36:39-49. [PMID: 25153928 DOI: 10.1016/j.semcdb.2014.07.016] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 01/09/2023]
Abstract
The glomerulus represents a highly structured filtration unit, composed of glomerular endothelial cells, mesangial cells, podocytes and parietal epithelial cells. During glomerulogenesis an intricate network of signaling pathways involving transcription factors, secreted factors and cell-cell communication is required to guarantee accurate evolvement of a functional, complex 3-dimensional glomerular architecture. Here, we want to provide an overview on the critical steps and relevant signaling cascades of glomerular development.
Collapse
|
18
|
Cerqueira DM, Tran U, Romaker D, Abreu JG, Wessely O. Sterol carrier protein 2 regulates proximal tubule size in the Xenopus pronephric kidney by modulating lipid rafts. Dev Biol 2014; 394:54-64. [PMID: 25127994 DOI: 10.1016/j.ydbio.2014.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 05/29/2014] [Accepted: 07/30/2014] [Indexed: 11/29/2022]
Abstract
The kidney is a homeostatic organ required for waste excretion and reabsorption of water, salts and other macromolecules. To this end, a complex series of developmental steps ensures the formation of a correctly patterned and properly proportioned organ. While previous studies have mainly focused on the individual signaling pathways, the formation of higher order receptor complexes in lipid rafts is an equally important aspect. These membrane platforms are characterized by differences in local lipid and protein compositions. Indeed, the cells in the Xenopus pronephric kidney were positive for the lipid raft markers ganglioside GM1 and Caveolin-1. To specifically interfere with lipid raft function in vivo, we focused on the Sterol Carrier Protein 2 (scp2), a multifunctional protein that is an important player in remodeling lipid raft composition. In Xenopus, scp2 mRNA was strongly expressed in differentiated epithelial structures of the pronephric kidney. Knockdown of scp2 did not interfere with the patterning of the kidney along its proximo-distal axis, but dramatically decreased the size of the kidney, in particular the proximal tubules. This phenotype was accompanied by a reduction of lipid rafts, but was independent of the peroxisomal or transcriptional activities of scp2. Finally, disrupting lipid micro-domains by inhibiting cholesterol synthesis using Mevinolin phenocopied the defects seen in scp2 morphants. Together these data underscore the importance for localized signaling platforms in the proper formation of the Xenopus kidney.
Collapse
Affiliation(s)
- Débora M Cerqueira
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA; Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas-CCS, Av. Carlos Chagas Filho, 373 bloco F2 sala 15, Rio de Janeiro 21949-590, Brazil
| | - Uyen Tran
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA
| | - Daniel Romaker
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA
| | - José G Abreu
- Universidade Federal do Rio de Janeiro, Instituto de Ciências Biomédicas-CCS, Av. Carlos Chagas Filho, 373 bloco F2 sala 15, Rio de Janeiro 21949-590, Brazil
| | - Oliver Wessely
- Cleveland Clinic Foundation, Lerner Research Institute, Department Cellular and Molecular Medicine, 9500 Euclid Avenue/NC10 Cleveland, OH 44195, USA.
| |
Collapse
|
19
|
Kroeger PT, Wingert RA. Using zebrafish to study podocyte genesis during kidney development and regeneration. Genesis 2014; 52:771-92. [PMID: 24920186 DOI: 10.1002/dvg.22798] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 06/08/2014] [Accepted: 06/09/2014] [Indexed: 12/21/2022]
Abstract
During development, vertebrates form a progression of up to three different kidneys that are comprised of functional units termed nephrons. Nephron composition is highly conserved across species, and an increasing appreciation of the similarities between zebrafish and mammalian nephron cell types has positioned the zebrafish as a relevant genetic system for nephrogenesis studies. A key component of the nephron blood filter is a specialized epithelial cell known as the podocyte. Podocyte research is of the utmost importance as a vast majority of renal diseases initiate with the dysfunction or loss of podocytes, resulting in a condition known as proteinuria that causes nephron degeneration and eventually leads to kidney failure. Understanding how podocytes develop during organogenesis may elucidate new ways to promote nephron health by stimulating podocyte replacement in kidney disease patients. In this review, we discuss how the zebrafish model can be used to study kidney development, and how zebrafish research has provided new insights into podocyte lineage specification and differentiation. Further, we discuss the recent discovery of podocyte regeneration in adult zebrafish, and explore how continued basic research using zebrafish can provide important knowledge about podocyte genesis in embryonic and adult environments. genesis 52:771-792, 2014. © 2014 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Paul T Kroeger
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, Indiana, 46556
| | | |
Collapse
|
20
|
He B, Ebarasi L, Zhao Z, Guo J, Ojala JRM, Hultenby K, De Val S, Betsholtz C, Tryggvason K. Lmx1b and FoxC combinatorially regulate podocin expression in podocytes. J Am Soc Nephrol 2014; 25:2764-77. [PMID: 24854274 DOI: 10.1681/asn.2012080823] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Podocin is a key protein of the kidney podocyte slit diaphragm protein complex, an important part of the glomerular filtration barrier. Mutations in the human podocin gene NPHS2 cause familial or sporadic forms of renal disease owing to the disruption of filtration barrier integrity. The exclusive expression of NPHS2 in podocytes reflects its unique function and raises interesting questions about its transcriptional regulation. Here, we further define a 2.5-kb zebrafish nphs2 promoter fragment previously described and identify a 49-bp podocyte-specific transcriptional enhancer using Tol2-mediated G0 transgenesis in zebrafish. Within this enhancer, we identified a cis-acting element composed of two adjacent DNA-binding sites (FLAT-E and forkhead) bound by transcription factors Lmx1b and FoxC. In zebrafish, double knockdown of Lmx1b and FoxC orthologs using morpholino doses that caused no or minimal phenotypic changes upon individual knockdown completely disrupted podocyte development in 40% of injected embryos. Co-overexpression of the two genes potently induced endogenous nphs2 expression in zebrafish podocytes. We found that the NPHS2 promoter also contains a cis-acting Lmx1b-FoxC motif that binds LMX1B and FoxC2. Furthermore, a genome-wide search identified several genes that carry the Lmx1b-FoxC motif in their promoter regions. Among these candidates, motif-driven podocyte enhancer activity of CCNC and MEIS2 was functionally analyzed in vivo. Our results show that podocyte expression of some genes is combinatorially regulated by two transcription factors interacting synergistically with a common enhancer. This finding provides insights into transcriptional mechanisms required for normal and pathologic podocyte functions.
Collapse
Affiliation(s)
- Bing He
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, and
| | - Lwaki Ebarasi
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, and Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Zhe Zhao
- Ludwig Institute for Cancer Research, Oxford University, Oxford, United Kingdom; and
| | - Jing Guo
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, and
| | - Juha R M Ojala
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, and
| | - Kjell Hultenby
- Department of Laboratory Medicine, Division of Clinical Research Centre, Karolinska Institute, Stockholm, Sweden
| | - Sarah De Val
- Ludwig Institute for Cancer Research, Oxford University, Oxford, United Kingdom; and
| | - Christer Betsholtz
- Department of Medical Biochemistry and Biophysics, Division of Vascular Biology, and Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl Tryggvason
- Department of Medical Biochemistry and Biophysics, Division of Matrix Biology, and Cardiovascular & Metabolic Disorders Program, Duke-NUS, Singapore
| |
Collapse
|
21
|
MicroRNAs are critical regulators of tuberous sclerosis complex and mTORC1 activity in the size control of the Xenopus kidney. Proc Natl Acad Sci U S A 2014; 111:6335-40. [PMID: 24733901 DOI: 10.1073/pnas.1320577111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MicroRNAs (miRNAs) are major posttranscriptional regulators of a wide variety of biological processes. However, redundancy among most miRNAs has made it difficult to identify their in vivo functions. We previously demonstrated that global inhibition of miRNA biogenesis in Xenopus resulted in a dramatically smaller pronephric kidney. This suggested that microRNAs play a pivotal role in organ size control. Here we now provide a detailed mechanistic explanation for this phenotype. We identified that the activation of the mechanistic target of rapamycin complex 1 (mTORC1) by Insulin and insulin-like growth factor (Igf) 2 is an important regulator in kidney growth, which in turn is modulated by microRNAs. Molecular analyses demonstrate that microRNAs set a threshold for mTORC1 signaling by down-regulating one of its core negative regulators, tuberous sclerosis 1 (Tsc1). Most importantly, this rheostat can be reprogrammed experimentally. Whereas knockdown of miRNAs causes growth arrest, concomitant knockdown of Tsc1 restores mTORC1 activity and proximal tubular size. Together, these data establish a previously unidentified in vivo paradigm for the importance of posttranscriptional regulation in organ size control.
Collapse
|
22
|
Tomar R, Mudumana SP, Pathak N, Hukriede NA, Drummond IA. osr1 is required for podocyte development downstream of wt1a. J Am Soc Nephrol 2014; 25:2539-45. [PMID: 24722440 DOI: 10.1681/asn.2013121327] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Odd-skipped related 1 (Osr1) encodes a zinc finger transcription factor required for kidney development. Osr1 deficiency in mice results in metanephric kidney agenesis, whereas knockdown or mutation studies in zebrafish revealed that pronephric nephrons require osr1 for proximal tubule and podocyte development. osr1-deficient pronephric podocyte progenitors express the Wilms' tumor suppressor wt1a but do not undergo glomerular morphogenesis or express the foot process junctional markers nephrin and podocin. The function of osr1 in podocyte differentiation remains unclear, however. Here, we found by double fluorescence in situ hybridization that podocyte progenitors coexpress osr1 and wt1a. Knockdown of wt1a disrupted podocyte differentiation and prevented expression of osr1. Blocking retinoic acid signaling, which regulates wt1a, also prevented osr1 expression in podocyte progenitors. Furthermore, unlike the osr1-deficient proximal tubule phenotype, which can be rescued by manipulation of endoderm development, podocyte differentiation was not affected by altered endoderm development, as assessed by nephrin and podocin expression in double osr1/sox32-deficient embryos. These results suggest a different, possibly cell- autonomous requirement for osr1 in podocyte differentiation downstream of wt1a. Indeed, osr1-deficient embryos did not exhibit podocyte progenitor expression of the transcription factor lhx1a, and forced expression of activated forms of the lhx1a gene product rescued nephrin expression in osr1-deficient podocytes. Our results place osr1 in a framework of transcriptional regulators that control the expression of podocin and nephrin and thereby mediate podocyte differentiation.
Collapse
Affiliation(s)
- Ritu Tomar
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Sudha P Mudumana
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Narendra Pathak
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Neil A Hukriede
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, Pennsylvania; and
| | - Iain A Drummond
- Nephrology Division, Massachusetts General Hospital, Charlestown, Massachusetts; Department of Genetics, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Potter SS, Brunskill EW. Building an atlas of gene expression driving kidney development: pushing the limits of resolution. Pediatr Nephrol 2014; 29:581-8. [PMID: 23996451 PMCID: PMC7540944 DOI: 10.1007/s00467-013-2602-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 07/18/2013] [Accepted: 07/18/2013] [Indexed: 02/06/2023]
Abstract
Changing gene expression patterns is the essential driver of developmental processes. Growth factors, micro-RNAs, long intergenic noncoding RNAs, and epigenetic marks, such as DNA methylation and histone modifications, all work by impacting gene expression. The key features of developing cells, including their ability to communicate with others, are defined primarily by their gene-expression profiles. It is therefore clear that a gene-expression atlas of the developing kidney can provide a useful tool for the developmental nephrology research community. Toward this end, the GenitoUrinary Development Molecular Anatomy Project (GUDMAP) consortium has worked to create an atlas of the changing gene-expression patterns that drive kidney development. In this article, the global gene-expression profiling strategies of GUDMAP are reviewed. The initial work used laser-capture microdissection to purify multiple compartments of the developing kidney, including cap mesenchyme, renal vesicle, S-shaped bodies, proximal tubules, and more, which were then gene-expression profiled using microarrays. Resolution of the atlas was then improved by using transgenic mice with specific cell types labeled with green fluorescent protein (GFP), allowing their purification and profiling. In addition, RNA-Seq replaced microarrays. Currently, the atlas is being pushed to the single-cell resolution using microfluidic approaches that allow high-throughput RNA-Seq analysis of hundreds of individual cells. Results can identify novel types of cells and define interesting heterogeneities present within cell populations.
Collapse
Affiliation(s)
- S Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Ave, Cincinnati, OH, 45229, USA,
| | | |
Collapse
|
24
|
Miller CL, Haas U, Diaz R, Leeper NJ, Kundu RK, Patlolla B, Assimes TL, Kaiser FJ, Perisic L, Hedin U, Maegdefessel L, Schunkert H, Erdmann J, Quertermous T, Sczakiel G. Coronary heart disease-associated variation in TCF21 disrupts a miR-224 binding site and miRNA-mediated regulation. PLoS Genet 2014; 10:e1004263. [PMID: 24676100 PMCID: PMC3967965 DOI: 10.1371/journal.pgen.1004263] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 02/11/2014] [Indexed: 01/28/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified chromosomal loci that affect risk of coronary heart disease (CHD) independent of classical risk factors. One such association signal has been identified at 6q23.2 in both Caucasians and East Asians. The lead CHD-associated polymorphism in this region, rs12190287, resides in the 3′ untranslated region (3′-UTR) of TCF21, a basic-helix-loop-helix transcription factor, and is predicted to alter the seed binding sequence for miR-224. Allelic imbalance studies in circulating leukocytes and human coronary artery smooth muscle cells (HCASMC) showed significant imbalance of the TCF21 transcript that correlated with genotype at rs12190287, consistent with this variant contributing to allele-specific expression differences. 3′ UTR reporter gene transfection studies in HCASMC showed that the disease-associated C allele has reduced expression compared to the protective G allele. Kinetic analyses in vitro revealed faster RNA-RNA complex formation and greater binding of miR-224 with the TCF21 C allelic transcript. In addition, in vitro probing with Pb2+ and RNase T1 revealed structural differences between the TCF21 variants in proximity of the rs12190287 variant, which are predicted to provide greater access to the C allele for miR-224 binding. miR-224 and TCF21 expression levels were anti-correlated in HCASMC, and miR-224 modulates the transcriptional response of TCF21 to transforming growth factor-β (TGF-β) and platelet derived growth factor (PDGF) signaling in an allele-specific manner. Lastly, miR-224 and TCF21 were localized in human coronary artery lesions and anti-correlated during atherosclerosis. Together, these data suggest that miR-224 interaction with the TCF21 transcript contributes to allelic imbalance of this gene, thus partly explaining the genetic risk for coronary heart disease associated at 6q23.2. These studies implicating rs12190287 in the miRNA-dependent regulation of TCF21, in conjunction with previous studies showing that this variant modulates transcriptional regulation through activator protein 1 (AP-1), suggests a unique bimodal level of complexity previously unreported for disease-associated variants. Both genetic and environmental factors cumulatively contribute to coronary heart disease risk in human populations. Large-scale meta-analyses of genome-wide association studies have now leveraged common genetic variation to identify multiple sites of disease susceptibility; however, the causal mechanisms for these associations largely remain elusive. One of these disease-associated variants, rs12190287, resides in the 3′untranslated region of the vascular developmental transcription factor, TCF21. Intriguingly, this variant is shown to disrupt the seed binding sequence for microRNA-224, and through altered RNA secondary structure and binding kinetics, leads to dysregulated TCF21 gene expression in response to disease-relevant stimuli. Importantly TCF21 and miR-224 expression levels were perturbed in human atherosclerotic lesions. Along with our previous reports on the transcriptional regulatory mechanisms altered by this variant, these studies shed new light on the complex heritable mechanisms of coronary heart disease risk that are amenable to therapeutic intervention.
Collapse
Affiliation(s)
- Clint L. Miller
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (CLM); (TQ); (GS)
| | - Ulrike Haas
- Institut für Molekulare Medizin, Universität zu Lübeck, Lübeck, Germany
| | - Roxanne Diaz
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicholas J. Leeper
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ramendra K. Kundu
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Bhagat Patlolla
- Department of Medicine, Division of Cardiothoracic Surgery, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Themistocles L. Assimes
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Frank J. Kaiser
- Institut für Humangenetik, Universität zu Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lubeck/Kiel, Lubeck, Germany
| | - Ljubica Perisic
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulf Hedin
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lars Maegdefessel
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Heribert Schunkert
- Deutsches Herzzentrum München, Technische Universität München, Munich, DZHK, partner site Munich Heart Alliance, Munich, Germany
| | - Jeanette Erdmann
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lubeck/Kiel, Lubeck, Germany
- Institut für Integrative und Experimentelle Genomik, Universität zu Lübeck, Lübeck, Germany
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (CLM); (TQ); (GS)
| | - Georg Sczakiel
- Institut für Molekulare Medizin, Universität zu Lübeck, Lübeck, Germany
- DZHK (German Research Centre for Cardiovascular Research), partner site Hamburg/Lubeck/Kiel, Lubeck, Germany
- * E-mail: (CLM); (TQ); (GS)
| |
Collapse
|
25
|
Miceli R, Kroeger P, Wingert R. Molecular Mechanisms of Podocyte Development Revealed by Zebrafish Kidney Research. ACTA ACUST UNITED AC 2014; 3. [PMID: 25485314 PMCID: PMC4254692 DOI: 10.4172/2168-9296.1000138] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Elucidating the gene regulatory networks that control kidney development can provide information about the origins of renal birth defects and kidney disease, as well as insights relevant to the design of clinical interventions for these conditions. The kidney is composed of functional units termed nephrons. Renal malfunction often arises from damage to cells known as podocytes, which are highly specialized epithelial cells that comprise the blood filter, or glomerulus, located on each nephron. Podocytes interact with the vasculature to create an elaborate sieve that collects circulatory fluid, and this filtrate enters the nephron where it is modified to produce urine and balance water homeostasis. Podocytes are an essential cellular component of the glomerular filtration barrier, helping to protect nephrons from the entry of large proteins and circulatory cells. Podocyte loss has catastrophic consequences for renal function and overall health, as podocyte destruction leads to nephron damage and pathological conditions like chronic kidney disease. Despite their importance, there is still a rather limited understanding about the molecular pathways that control podocyte formation. In recent years, however, studies of podocyte development using the zebrafish embryonic kidney, or pronephros, have been an expanding area of nephrology research. Zebrafish form an anatomically simple pronephros comprised of two nephrons that share a single blood filter, and podocyte progenitors can be easily visualized throughout the process of glomerular development. The zebrafish is an especially useful system for studying the mechanisms that are essential for formation of nephron cell types like podocytes due to the high genetic conservation between vertebrate species, including humans. In this review, we discuss how research using the zebrafish has provided new insights into the molecular regulation of the podocyte lineage during kidney ontogeny, complementing contemporary research in other animal models.
Collapse
Affiliation(s)
- R Miceli
- Department of Biological Sciences and Center for Zebrafish Research, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Pt Kroeger
- Department of Biological Sciences, University of Notre, Dame, 100 Galvin Life Sciences, Notre Dame, USA
| | | |
Collapse
|
26
|
Miller CL, Anderson DR, Kundu RK, Raiesdana A, Nürnberg ST, Diaz R, Cheng K, Leeper NJ, Chen CH, Chang IS, Schadt EE, Hsiung CA, Assimes TL, Quertermous T. Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. PLoS Genet 2013; 9:e1003652. [PMID: 23874238 PMCID: PMC3715442 DOI: 10.1371/journal.pgen.1003652] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Accepted: 06/04/2013] [Indexed: 11/18/2022] Open
Abstract
Coronary heart disease (CHD) is the leading cause of mortality in both developed and developing countries worldwide. Genome-wide association studies (GWAS) have now identified 46 independent susceptibility loci for CHD, however, the biological and disease-relevant mechanisms for these associations remain elusive. The large-scale meta-analysis of GWAS recently identified in Caucasians a CHD-associated locus at chromosome 6q23.2, a region containing the transcription factor TCF21 gene. TCF21 (Capsulin/Pod1/Epicardin) is a member of the basic-helix-loop-helix (bHLH) transcription factor family, and regulates cell fate decisions and differentiation in the developing coronary vasculature. Herein, we characterize a cis-regulatory mechanism by which the lead polymorphism rs12190287 disrupts an atypical activator protein 1 (AP-1) element, as demonstrated by allele-specific transcriptional regulation, transcription factor binding, and chromatin organization, leading to altered TCF21 expression. Further, this element is shown to mediate signaling through platelet-derived growth factor receptor beta (PDGFR-β) and Wilms tumor 1 (WT1) pathways. A second disease allele identified in East Asians also appears to disrupt an AP-1-like element. Thus, both disease-related growth factor and embryonic signaling pathways may regulate CHD risk through two independent alleles at TCF21.
Collapse
Affiliation(s)
- Clint L. Miller
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (CLM); (TQ)
| | - D. Ryan Anderson
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ramendra K. Kundu
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Azad Raiesdana
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Sylvia T. Nürnberg
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Roxanne Diaz
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Karen Cheng
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nicholas J. Leeper
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Surgery, Division of Vascular Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Chung-Hsing Chen
- Division of Biostatistics and Bioinformatics, National Health Research Institutes, Zhunan, Taiwan
| | - I-Shou Chang
- Division of Biostatistics and Bioinformatics, National Health Research Institutes, Zhunan, Taiwan
| | - Eric E. Schadt
- Institute for Genomics and Multiscale Biology, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Chao Agnes Hsiung
- Division of Biostatistics and Bioinformatics, National Health Research Institutes, Zhunan, Taiwan
| | - Themistocles L. Assimes
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas Quertermous
- Department of Medicine, Division of Cardiovascular Medicine, and Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail: (CLM); (TQ)
| |
Collapse
|
27
|
Gerlach GF, Wingert RA. Kidney organogenesis in the zebrafish: insights into vertebrate nephrogenesis and regeneration. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:559-85. [PMID: 24014448 DOI: 10.1002/wdev.92] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Vertebrates form a progressive series of up to three kidney organs during development-the pronephros, mesonephros, and metanephros. Each kidney derives from the intermediate mesoderm and is comprised of conserved excretory units called nephrons. The zebrafish is a powerful model for vertebrate developmental genetics, and recent studies have illustrated that zebrafish and mammals share numerous similarities in nephron composition and physiology. The zebrafish embryo forms an architecturally simple pronephros that has two nephrons, and these eventually become a scaffold onto which a mesonephros of several hundred nephrons is constructed during larval stages. In adult zebrafish, the mesonephros exhibits ongoing nephrogenesis, generating new nephrons from a local pool of renal progenitors during periods of growth or following kidney injury. The characteristics of the zebrafish pronephros and mesonephros make them genetically tractable kidney systems in which to study the functions of renal genes and address outstanding questions about the mechanisms of nephrogenesis. Here, we provide an overview of the formation and composition of these zebrafish kidney organs, and discuss how various zebrafish mutants, gene knockdowns, and transgenic models have created frameworks in which to further delineate nephrogenesis pathways.
Collapse
Affiliation(s)
- Gary F Gerlach
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | | |
Collapse
|
28
|
A comparative analysis of glomerulus development in the pronephros of medaka and zebrafish. PLoS One 2012; 7:e45286. [PMID: 23028906 PMCID: PMC3445478 DOI: 10.1371/journal.pone.0045286] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 08/15/2012] [Indexed: 11/19/2022] Open
Abstract
The glomerulus of the vertebrate kidney links the vasculature to the excretory system and produces the primary urine. It is a component of every single nephron in the complex mammalian metanephros and also in the primitive pronephros of fish and amphibian larvae. This systematic work highlights the benefits of using teleost models to understand the pronephric glomerulus development. The morphological processes forming the pronephric glomerulus are astoundingly different between medaka and zebrafish. (1) The glomerular primordium of medaka - unlike the one of zebrafish - exhibits a C-shaped epithelial layer. (2) The C-shaped primordium contains a characteristic balloon-like capillary, which is subsequently divided into several smaller capillaries. (3) In zebrafish, the bilateral pair of pronephric glomeruli is fused at the midline to form a glomerulus, while in medaka the two parts remain unmerged due to the interposition of the interglomerular mesangium. (4) Throughout pronephric development the interglomerular mesangial cells exhibit numerous cytoplasmic granules, which are reminiscent of renin-producing (juxtaglomerular) cells in the mammalian afferent arterioles. Our systematic analysis of medaka and zebrafish demonstrates that in fish, the morphogenesis of the pronephric glomerulus is not stereotypical. These differences need be taken into account in future analyses of medaka mutants with glomerulus defects.
Collapse
|
29
|
Mallipattu SK, Liu R, Zheng F, Narla G, Ma'ayan A, Dikman S, Jain MK, Saleem M, D'Agati V, Klotman P, Chuang PY, He JC. Kruppel-like factor 15 (KLF15) is a key regulator of podocyte differentiation. J Biol Chem 2012; 287:19122-35. [PMID: 22493483 DOI: 10.1074/jbc.m112.345983] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Podocyte injury resulting from a loss of differentiation is the hallmark of many glomerular diseases. We previously showed that retinoic acid (RA) induces podocyte differentiation via stimulation of the cAMP pathway. However, many podocyte maturity markers lack binding sites for RA-response element or cAMP-response element (CREB) in their promoter regions. We hypothesized that transcription factors induced by RA and downstream of CREB mediate podocyte differentiation. We performed microarray gene expression studies in human podocytes treated with and without RA to identify differentially regulated genes. In comparison with known CREB target genes, we identified Krüppel-like factor 15 (KLF15), a kidney-enriched nuclear transcription factor, that has been previously shown to mediate cell differentiation. We confirmed that RA increased KLF15 expression in both murine and human podocytes. Overexpression of KLF15 stimulated expression of differentiation markers in both wild-type and HIV-1-infected podocytes. Also, KLF15 binding to the promoter regions of nephrin and podocin was increased in RA-treated podocytes. Although KLF15(-/-) mice at base line had minimal phenotype, lipopolysaccharide- or adriamycin-treated KLF15(-/-) mice had a significant increase in proteinuria and podocyte foot process effacement with a reduction in the expression of podocyte differentiation markers as compared with the wild-type treated mice. Finally, KLF15 expression was reduced in glomeruli isolated from HIV transgenic mice as well as in kidney biopsies from patients with HIV-associated nephropathy and idiopathic focal segmental glomerulosclerosis. These results indicate a critical role of KLF15 in mediating podocyte differentiation and in protecting podocytes against injury.
Collapse
Affiliation(s)
- Sandeep K Mallipattu
- Division of Nephrology, Department of Medicine, Mount Sinai School of Medicine, New York, New York 10029-6574, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Physiological and morphological aspects of Aedes aegypti developing larvae: effects of the chitin synthesis inhibitor novaluron. PLoS One 2012; 7:e30363. [PMID: 22291942 PMCID: PMC3265478 DOI: 10.1371/journal.pone.0030363] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/15/2011] [Indexed: 11/23/2022] Open
Abstract
Population control of the dengue vector mosquito, Aedes aegypti, is difficult due to many reasons, one being the development of resistance to neurotoxic insecticides employed. The biosynthesis of chitin, a major constituent of insect cuticle, is a novel target for population control. Novaluron is a benzoylphenylurea (BPU) that acts as a chitin synthesis inhibitor, already used against mosquitoes. However, information regarding BPU effects on immature mosquito stages and physiological parameters related with mosquito larval development are scarce. A set of physiological parameters were recorded in control developing larvae and novaluron was administered continuously to Ae. aegypti larvae, since early third instar. Larval instar period duration was recorded from third instar until pupation. Chitin content was measured during third and fourth instars. Fourth instars were processed histochemically at the mesothorax region, stained with hematoxylin and eosin (HE) for assessment of internal tissues, and labeled with WGA-FITC to reveal chitinized structures. In control larvae: i) there is a chitin content increase during both third and fourth instars where late third instars contain more chitin than early fourth instars; ii) thoracic organs and a continuous cuticle, closely associated with the underlying epidermis were observed; iii) chitin was continuously present throughout integument cuticle. Novaluron treatment inhibited adult emergence, induced immature mortality, altered adult sex ratio and caused delay in larval development. Moreover, novaluron: i) significantly affected chitin content during larval development; ii) induced a discontinuous and altered cuticle in some regions while epidermis was often thinner or missing; iii) rendered chitin cuticle presence discontinuous and less evident. In both control and novaluron larvae, chitin was present in the peritrophic matrix. This study showed quantitatively and qualitatively evidences of novaluron effects on Ae. aegypti larval development. To our knowledge, this is the first report describing histological alterations produced by a BPU in immature vector mosquitoes.
Collapse
|
31
|
Romaker D, Zhang B, Wessely O. An immunofluorescence method to analyze the proliferation status of individual nephron segments in the Xenopus pronephric kidney. Methods Mol Biol 2012; 886:121-132. [PMID: 22639256 PMCID: PMC3425951 DOI: 10.1007/978-1-61779-851-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Organ development requires the coordination of proliferation and differentiation of various cell types. This is particularly challenging in the kidney, where up to 26 different cell types with highly specialized functions are present. Moreover, even though the nephron initially develops from a common progenitor pool, the individual nephron segments are ultimately quite different in respect to cell numbers. This suggests that some cells in the nephron have a higher proliferative index (i.e., cell cycle length) than others. Here, we describe two different immunofluorescence-based approaches to accurately quantify such growth rates in the pronephric kidney of Xenopus laevis. Rapidly dividing cells were identified with the mitosis marker phospho-Histone H3, while slowly cycling cells were labeled using the thymidine analogue EdU. In addition, individual nephron segments were marked using cell type-specific antibodies. To accurately assess the number of positively stained cells, embryos were then serially sectioned and analyzed by immunofluorescence microscopy. Growth rates were established by counting the mitosis or S-phase events in relation to the overall cells present in the nephron segment of interest. This experimental design is very reproducible and can easily be modified to fit other animal models and organ systems.
Collapse
Affiliation(s)
- Daniel Romaker
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| | - Bo Zhang
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
- LSU Health Sciences Center, Department of Cell Biology & Anatomy, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| | - Oliver Wessely
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, 9500 Euclid Avenue/NC10, Cleveland, OH 44195, USA
| |
Collapse
|
32
|
Zhang B, Tran U, Wessely O. Expression of Wnt signaling components during Xenopus pronephros development. PLoS One 2011; 6:e26533. [PMID: 22028899 PMCID: PMC3197532 DOI: 10.1371/journal.pone.0026533] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 09/28/2011] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The formation of the vertebrate kidney is tightly regulated and relies on multiple evolutionarily conserved inductive events. These are present in the complex metanephric kidney of higher vertebrates, but also in the more primitive pronephric kidney functional in the larval stages of amphibians and fish. Wnts have long been viewed as central in this process. Canonical β-Catenin-dependent Wnt signaling establishes kidney progenitors and non-canonical β-Catenin-independent Wnt signaling participate in the morphogenetic processes that form the highly sophisticated nephron structure. While some individual Wnt signaling components have been studied extensively in the kidney, the overall pathway has not yet been analyzed in depth. METHODOLOGY/PRINCIPAL FINDINGS Here we report a detailed expression analysis of all Wnt ligands, receptors and several downstream Wnt effectors during pronephros development in Xenopus laevis using in situ hybridization. Out of 19 Wnt ligands, only three, Wnt4, Wnt9a and Wnt11, are specifically expressed in the pronephros. Others such as Wnt8a are present, but in a broader domain comprising adjacent tissues in addition to the kidney. The same paradigm is observed for the Wnt receptors and its downstream signaling components. Fzd1, Fzd4, Fzd6, Fzd7, Fzd8 as well as Celsr1 and Prickle1 show distinct expression domains in the pronephric kidney, whereas the non-traditional Wnt receptors, Ror2 and Ryk, as well as the majority of the effector molecules are rather ubiquitous. In addition to this spatial regulation, the timing of expression is also tightly regulated. In particular, non-canonical Wnt signaling seems to be restricted to later stages of pronephros development. CONCLUSION/SIGNIFICANCE Together these data suggest a complex cross talk between canonical and non-canonical Wnt signaling is required to establish a functional pronephric kidney.
Collapse
Affiliation(s)
- Bo Zhang
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, Cleveland, Ohio, United States of America
- Louisiana State University (LSU) Health Sciences Center, Department of Cell Biology & Anatomy, New Orleans, Louisiana, United States of America
| | - Uyen Tran
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, Cleveland, Ohio, United States of America
| | - Oliver Wessely
- Lerner Research Institute/Cleveland Clinic, Department of Cell Biology, Cleveland, Ohio, United States of America
- * E-mail:
| |
Collapse
|
33
|
Brunskill EW, Georgas K, Rumballe B, Little MH, Potter SS. Defining the molecular character of the developing and adult kidney podocyte. PLoS One 2011; 6:e24640. [PMID: 21931791 PMCID: PMC3169617 DOI: 10.1371/journal.pone.0024640] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 08/15/2011] [Indexed: 02/01/2023] Open
Abstract
Background The podocyte is a remarkable cell type, which encases the capillaries of the kidney glomerulus. Although mesodermal in origin it sends out axonal like projections that wrap around the capillaries. These extend yet finer projections, the foot processes, which interdigitate, leaving between them the slit diaphragms, through which the glomerular filtrate must pass. The podocytes are a subject of keen interest because of their key roles in kidney development and disease. Methodology/Principal Findings In this report we identified and characterized a novel transgenic mouse line, MafB-GFP, which specifically marked the kidney podocytes from a very early stage of development. These mice were then used to facilitate the fluorescent activated cell sorting based purification of podocytes from embryos at E13.5 and E15.5, as well as adults. Microarrays were then used to globally define the gene expression states of podocytes at these different developmental stages. A remarkable picture emerged, identifying the multiple sets of genes that establish the neuronal, muscle, and phagocytic properties of podocytes. The complete combinatorial code of transcription factors that create the podocyte was characterized, and the global lists of growth factors and receptors they express were defined. Conclusions/Significance The complete molecular character of the in vivo podocyte is established for the first time. The active molecular functions and biological processes further define their unique combination of features. The results provide a resource atlas of gene expression patterns of developing and adult podocytes that will help to guide further research of these incredible cells.
Collapse
Affiliation(s)
- Eric W. Brunskill
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
| | - Kylie Georgas
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Bree Rumballe
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - Melissa H. Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Australia
| | - S. Steven Potter
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center and the University of Cincinnati School of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
34
|
Wessely O, Tran U. Xenopus pronephros development--past, present, and future. Pediatr Nephrol 2011; 26:1545-51. [PMID: 21499947 PMCID: PMC3425949 DOI: 10.1007/s00467-011-1881-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/08/2010] [Accepted: 12/14/2010] [Indexed: 11/30/2022]
Abstract
Kidney development is a multi-step process where undifferentiated mesenchyme is converted into a highly complex organ through several inductive events. The general principles regulating these events have been under intense investigation and despite extensive progress, many open questions remain. While the metanephric kidneys of mouse and rat have served as the primary model, other organisms also significantly contribute to the field. In particular, the more primitive pronephric kidney has emerged as an alternative model due to its simplicity and experimental accessibility. Many aspects of nephron development such as the patterning along its proximo-distal axis are evolutionarily conserved and are therefore directly applicable to higher vertebrates. This review will focus on the current understanding of pronephros development in Xenopus. It summarizes how signaling, transcriptional regulation, as well as post-transcriptional mechanisms contribute to the differentiation of renal epithelial cells. The data show that even in the simple pronephros the mechanisms regulating kidney organogenesis are highly complex. It also illustrates that a multifaceted analysis embracing modern genome-wide approaches combined with single gene analysis will be required to fully understand all the intricacies.
Collapse
Affiliation(s)
- Oliver Wessely
- Department of Cell Biology & Anatomy, LSU Health Sciences Center, New Orleans, LA, USA.
| | - Uyen Tran
- LSU Health Sciences Center, Department of Cell Biology & Anatomy, MEB 6A12, 1901 Perdido Street, New Orleans, LA 70112, USA
| |
Collapse
|
35
|
O'Brien LL, Grimaldi M, Kostun Z, Wingert RA, Selleck R, Davidson AJ. Wt1a, Foxc1a, and the Notch mediator Rbpj physically interact and regulate the formation of podocytes in zebrafish. Dev Biol 2011; 358:318-30. [PMID: 21871448 DOI: 10.1016/j.ydbio.2011.08.005] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2010] [Revised: 08/05/2011] [Accepted: 08/08/2011] [Indexed: 01/02/2023]
Abstract
Podocytes help form the glomerular blood filtration barrier in the kidney and their injury or loss leads to renal disease. The Wilms' tumor suppressor-1 (Wt1) and the FoxC1/2 transcription factors, as well as Notch signaling, have been implicated as important regulators of podocyte fate. It is not known whether these factors work in parallel or sequentially on different gene targets, or as higher-order transcriptional complexes on common genes. Here, we use the zebrafish to demonstrate that embryos treated with morpholinos against wt1a, foxc1a, or the Notch transcriptional mediator rbpj develop fewer podocytes, as determined by wt1b, hey1 and nephrin expression, while embryos deficient in any two of these factors completely lack podocytes. From GST-pull-downs and co-immunoprecipitation experiments we show that Wt1a, Foxc1a, and Rbpj can physically interact with each other, whereas only Rbpj binds to the Notch intracellular domain (NICD). In transactivation assays, combinations of Wt1, FoxC1/2, and NICD synergistically induce the Hey1 promoter, and have additive or repressive effects on the Podocalyxin promoter, depending on dosage. Taken together, these data suggest that Wt1, FoxC1/2, and Notch signaling converge on common target genes where they physically interact to regulate a podocyte-specific gene program. These findings further our understanding of the transcriptional circuitry responsible for podocyte formation and differentiation during kidney development.
Collapse
Affiliation(s)
- Lori L O'Brien
- Center for Regenerative Medicine and Department of Medicine, Massachusetts General Hospital, Harvard Medical School and Harvard Stem Cell Institute, Boston, MA 02114, USA
| | | | | | | | | | | |
Collapse
|