1
|
Rozema D, Maître JL. Forces Shaping the Blastocyst. Cold Spring Harb Perspect Biol 2025; 17:a041519. [PMID: 38951024 PMCID: PMC12047664 DOI: 10.1101/cshperspect.a041519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The blastocyst forms during the first days of mammalian development. The structure of the blastocyst is conserved among placental mammals and is paramount to the establishment of the first mammalian lineages. The blastocyst is composed of an extraembryonic epithelium, the trophectoderm (TE), that envelopes a fluid-filled lumen and the inner cell mass (ICM). To shape the blastocyst, embryos transit through three stages driven by forces that have been characterized in the mouse embryo over the past decade. The morphogenetically quiescent cleavage stages mask dynamic cytoskeletal remodeling. Then, during the formation of the morula, cells pull themselves together and the strongest ones internalize. Finally, the blastocyst forms after the pressurized lumen breaks the radial symmetry of the embryo before expanding in cycles of collapses and regrowth. In this review, we delineate the force patterns sculpting the blastocyst, based on our knowledge on the mouse and, to some extent, human embryos.
Collapse
Affiliation(s)
- David Rozema
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, Université PSL, CNRS UMR3215, INSERM U934, 75005 Paris, France
| |
Collapse
|
2
|
Meyer K, Huang B, Weiner OD. Emerging roles of transcriptional condensates as temporal signal integrators. Nat Rev Genet 2025:10.1038/s41576-025-00837-y. [PMID: 40240649 DOI: 10.1038/s41576-025-00837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/18/2025]
Abstract
Transcription factors relay information from the external environment to gene regulatory networks that control cell physiology. To confer signalling specificity, robustness and coordination, these signalling networks use temporal communication codes, such as the amplitude, duration or frequency of signals. Although much is known about how temporal information is encoded, a mechanistic understanding of how gene regulatory networks decode signalling dynamics is lacking. Recent advances in our understanding of phase separation of transcriptional condensates provide new biophysical frameworks for both temporal encoding and decoding mechanisms. In this Perspective, we summarize the mechanisms by which transcriptional condensates could enable temporal decoding through signal adaptation, memory and persistence. We further outline methods to probe and manipulate dynamic communication codes of transcription factors and condensates to rationally control gene activation.
Collapse
Affiliation(s)
- Kirstin Meyer
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | - Bo Huang
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Orion D Weiner
- Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Canizo JR, Zhao C, Petropoulos S. The guinea pig serves as an alternative model to study human preimplantation development. Nat Cell Biol 2025; 27:696-710. [PMID: 40185949 PMCID: PMC11991919 DOI: 10.1038/s41556-025-01642-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 02/20/2025] [Indexed: 04/07/2025]
Abstract
Preimplantation development is an important window of human embryogenesis. However, ethical constraints and the limitations involved in studying human embryos often necessitate the use of alternative model systems. Here we identify the guinea pig as a promising small animal model to study human preimplantation development. Using single-cell RNA-sequencing, we generated an atlas of guinea pig preimplantation development, revealing its close resemblance to early human embryogenesis in terms of the timing of compaction, early-, mid- and late-blastocyst formation, and implantation, and the spatio-temporal expression of key lineage markers. We also show conserved roles of Hippo, MEK-ERK and JAK-STAT signalling. Furthermore, multi-species analysis highlights the spatio-temporal expression of conserved and divergent genes during preimplantation development and pluripotency. The guinea pig serves as a valuable animal model for advancing preimplantation development and stem cell research, and can be leveraged to better understand the longer-term impact of early exposures on offspring outcomes.
Collapse
Affiliation(s)
- Jesica Romina Canizo
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada
| | - Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Sophie Petropoulos
- Centre de Recherche du Centre Hospitalier, Université de Montréal, Montréal, Canada.
- Département de Médecine, Molecular Biology Programme, Université de Montréal, Montréal, Canada.
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, Stockholm, Sweden.
- Department of Gynecology and Reproductive Medicine, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
4
|
Sozen B, Tam PPL, Pera MF. Pluripotent cell states and fates in human embryo models. Development 2025; 152:dev204565. [PMID: 40171916 PMCID: PMC11993252 DOI: 10.1242/dev.204565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Pluripotency, the capacity to generate all cells of the body, is a defining property of a transient population of epiblast cells found in pre-, peri- and post-implantation mammalian embryos. As development progresses, the epiblast cells undergo dynamic transitions in pluripotency states, concurrent with the specification of extra-embryonic and embryonic lineages. Recently, stem cell-based models of pre- and post-implantation human embryonic development have been developed using stem cells that capture key properties of the epiblast at different developmental stages. Here, we review early primate development, comparing pluripotency states of the epiblast in vivo with cultured pluripotent cells representative of these states. We consider how the pluripotency status of the starting cells influences the development of human embryo models and, in turn, what we can learn about the human pluripotent epiblast. Finally, we discuss the limitations of these models and questions arising from the pioneering studies in this emerging field.
Collapse
Affiliation(s)
- Berna Sozen
- Department of Genetics, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
- Yale Stem Cell Center, Yale University, New Haven, CT 06520, USA
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, CT 06501, USA
| | - Patrick P. L. Tam
- Embryology Research Unit, Children's Medical Research Institute and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Martin F. Pera
- The Jackson Laboratory, Mammalian Genetics, Bar Harbor, ME 04609, USA
| |
Collapse
|
5
|
Guo Z, Yao J, Zheng X, Cao J, Lv X, Gao Z, Guo S, Li H, Guan D, Li L, Qin D, Li D, Wang X, Tan M, Zhang J, Zhang Y, Wang B, Bu W, Li J, Zhao X, Meng F, Feng Y, Li L, Du J, Fan Y. Cavity oscillation drives pattern formation in early mammalian embryos. Cell Rep 2025; 44:115342. [PMID: 39985766 DOI: 10.1016/j.celrep.2025.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 10/02/2024] [Accepted: 01/31/2025] [Indexed: 02/24/2025] Open
Abstract
During the second cell fate in mouse embryos, the inner cell mass (ICM) segregates into the spatially distinct epiblast (EPI) and primitive endoderm (PrE) layers. The mechanism driving this pattern formation, however, remains unresolved. Here, we report that, concomitant with the segregation process of EPI/PrE precursors starting from mid-blastocyst, the blastocyst cavity begins to oscillate cyclically with rapid contraction yet slow expansion, triggering a phase transition in the ICM to a fluid-like state. This asymmetric oscillation of the blastocyst cavity facilitates EPI/PrE segregation by enhancing cell-cell contact fluctuations within the ICM and initiating convergent cell flows, which induce movement of these two cell types in opposite directions, wherein PrE precursors move toward the ICM-lumen interface, whereas EPI precursors move toward the trophectoderm. Last, we found that both PDGFRα expression and YAP nuclear accumulation in PrE precursors increase in response to blastocyst cavity oscillation. This study reveals the foundational role of physical oscillation in driving embryonic pattern formation during early mammalian embryonic development.
Collapse
Affiliation(s)
- Zheng Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jie Yao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xu Zheng
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Jialing Cao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xinxin Lv
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Zheng Gao
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Key Laboratory for Major Obstetric Diseases of Guangdong Province, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Shuyu Guo
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Hangyu Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongshi Guan
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Long Li
- State Key Laboratory of Nonlinear Mechanics, Beijing Key Laboratory of Engineered Construction and Mechanobiology, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China
| | - Dandan Qin
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dong Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoxiao Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Tan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jing Zhang
- Laboratory Animal Research Center, Tsinghua University, Beijing 100084, China
| | - Yanli Zhang
- Imaging Core Facility, Technology Center for Protein Science, Tsinghua University, Beijing 100084, China
| | - Bo Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xi'ning 810008, China
| | - Wanjuan Bu
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Jianwen Li
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Xinbin Zhao
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Fanzhe Meng
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Yue Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Key Laboratory of Bioprocess, State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Lei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jing Du
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| | - Yubo Fan
- Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China.
| |
Collapse
|
6
|
Simon CS, Hur W, Garg V, Kuo YY, Niakan KK, Hadjantonakis AK. ETV4 and ETV5 orchestrate FGF-mediated lineage specification and epiblast maturation during early mouse development. Development 2025; 152:dev204278. [PMID: 40007475 PMCID: PMC12050069 DOI: 10.1242/dev.204278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025]
Abstract
Cell fate decisions in early mammalian embryos are tightly regulated processes crucial for proper development. While FGF signalling plays key roles in early embryo patterning, its downstream effectors remain poorly understood. Our study demonstrates that the transcription factors Etv4 and Etv5 are crucial mediators of FGF signalling in cell lineage specification and maturation in mouse embryos. We show that loss of Etv5 compromises primitive endoderm formation at pre-implantation stages. Furthermore, Etv4 and Etv5 (Etv4/5) deficiency delays naïve pluripotency exit and epiblast maturation, leading to elevated NANOG and reduced OTX2 expression within the blastocyst epiblast. As a consequence of delayed pluripotency progression, Etv4/Etv5-deficient embryos exhibit anterior visceral endoderm migration defects post-implantation, a process essential for coordinated embryonic patterning and gastrulation initiation. Our results demonstrate the successive roles of these FGF signalling effectors in early lineage specification and embryonic body plan establishment, providing new insights into the molecular control of mammalian development.
Collapse
Affiliation(s)
- Claire S. Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Woonyung Hur
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Studies in Physics and Biology, the Rockefeller University, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
7
|
Moghe P, Belousov R, Ichikawa T, Iwatani C, Tsukiyama T, Erzberger A, Hiiragi T. Coupling of cell shape, matrix and tissue dynamics ensures embryonic patterning robustness. Nat Cell Biol 2025; 27:408-423. [PMID: 39966670 PMCID: PMC11906357 DOI: 10.1038/s41556-025-01618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/20/2024] [Indexed: 02/20/2025]
Abstract
Tissue patterning coordinates morphogenesis, cell dynamics and fate specification. Understanding how precision in patterning is robustly achieved despite inherent developmental variability during mammalian embryogenesis remains a challenge. Here, based on cell dynamics quantification and simulation, we show how salt-and-pepper epiblast and primitive endoderm (PrE) cells pattern the inner cell mass of mouse blastocysts. Coupling cell fate and dynamics, PrE cells form apical polarity-dependent actin protrusions required for RAC1-dependent migration towards the surface of the fluid cavity, where PrE cells are trapped due to decreased tension. Concomitantly, PrE cells deposit an extracellular matrix gradient, presumably breaking the tissue-level symmetry and collectively guiding their own migration. Tissue size perturbations of mouse embryos and their comparison with monkey and human blastocysts further demonstrate that the fixed proportion of PrE/epiblast cells is optimal with respect to embryo size and tissue geometry and, despite variability, ensures patterning robustness during early mammalian development.
Collapse
Grants
- The Hiiragi laboratory was supported by the EMBL, and currently by the Hubrecht Institute, the European Research Council (ERC Advanced Grant “SelforganisingEmbryo” grant agreement 742732, ERC Advanced Grant “COORDINATION” grant agreement 101055287), Stichting LSH-TKI (LSHM21020), and Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP21H05038 and JP22H05166. The Erzberger laboratory is supported by the EMBL.
- European Molecular Biology Laboratory (EMBL Heidelberg)
- MEXT | Japan Society for the Promotion of Science (JSPS)
- T.I. was supported by the JSPS Overseas Research Fellowship
- The Erzberger laboratory is supported by the EMBL.
- The Hiiragi laboratory was supported by the EMBL, and currently by the Hubrecht Institute, the European Research Council (ERC Advanced Grant “SelforganisingEmbryo” grant agreement 742732, ERC Advanced Grant “COORDINATION” grant agreement 101055287), Stichting LSH-TKI (LSHM21020), and Japan Society for the Promotion of Science (JSPS) KAKENHI grant numbers JP21H05038 and JP22H05166.
Collapse
Affiliation(s)
- Prachiti Moghe
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands
- Developmental Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Collaboration for joint PhD degree between EMBL and Heidelberg University, Faculty of Biosciences, Heidelberg, Germany
| | - Roman Belousov
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Takafumi Ichikawa
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Chizuru Iwatani
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Tomoyuki Tsukiyama
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan
- Research Center for Animal Life Science, Shiga University of Medical Science, Shiga, Japan
| | - Anna Erzberger
- Cell Biology and Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | - Takashi Hiiragi
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, Netherlands.
- Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.
- Department of Developmental Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| |
Collapse
|
8
|
Athanasouli P, Vanhessche T, Lluis F. Divergent destinies: insights into the molecular mechanisms underlying EPI and PE fate determination. Life Sci Alliance 2025; 8:e202403091. [PMID: 39779220 PMCID: PMC11711469 DOI: 10.26508/lsa.202403091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/21/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
Mammalian pre-implantation development is entirely devoted to the specification of extra-embryonic lineages, which are fundamental for embryo morphogenesis and support. The second fate decision is taken just before implantation, as defined by the epiblast (EPI) and the primitive endoderm (PE) specification. Later, EPI forms the embryo proper and PE contributes to the formation of the yolk sac. The formation of EPI and PE as molecularly and morphologically distinct lineages is the final step of a multistage process, which begins when bipotent progenitor cells diverge into separate fates. Despite advances in uncovering the molecular mechanisms underlying the differential transcriptional patterns that dictate how apparently identical cells make fate decisions and how lineage integrity is maintained, a detailed overview of these mechanisms is still lacking. In this review, we dissect the EPI and PE formation process into four stages (initiation, specification, segregation, and maintenance) and we provide a comprehensive understanding of the molecular mechanisms involved in lineage establishment in the mouse. In addition, we discuss the conservation of key processes in humans, based on the most recent findings.
Collapse
Affiliation(s)
- Paraskevi Athanasouli
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Tijs Vanhessche
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Frederic Lluis
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Avdeeva M, Chalifoux M, Joyce B, Shvartsman SY, Posfai E. Generative model for the first cell fate bifurcation in mammalian development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639895. [PMID: 40060535 PMCID: PMC11888292 DOI: 10.1101/2025.02.24.639895] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The first cell fate bifurcation in mammalian development directs cells toward either the trophectoderm (TE) or inner cell mass (ICM) compartments in preimplantation embryos. This decision is regulated by the subcellular localization of a transcriptional co-activator YAP and takes place over several progressively asynchronous cleavage divisions. As a result of this asynchrony and variable arrangement of blastomeres, reconstructing the dynamics of the TE/ICM cell specification from fixed embryos is extremely challenging. To address this, we developed a live imaging approach and applied it to measure pairwise dynamics of nuclear YAP and its direct target genes, CDX2 and SOX2, key transcription factors of TE and ICM, respectively. Using these datasets, we constructed a generative model of the first cell fate bifurcation, which reveals the time-dependent statistics of the TE and ICM cell allocation. In addition to making testable predictions for the joint dynamics of the full YAP/CDX2/SOX2 motif, the model revealed the stochastic nature of the induction timing of the key cell fate determinants and identified the features of YAP dynamics that are necessary or sufficient for this induction. Notably, temporal heterogeneity was particularly prominent for SOX2 expression among ICM cells. As heterogeneities within the ICM have been linked to the initiation of the second cell fate decision in the embryo, understanding the origins of this variability is of key significance. The presented approach reveals the dynamics of the first cell fate choice and lays the groundwork for dissecting the next cell fate bifurcations in mouse development.
Collapse
Affiliation(s)
- Maria Avdeeva
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Madeleine Chalifoux
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Stanislav Y Shvartsman
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Department of Molecular Biology, Princeton, New Jersey, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton, New Jersey, USA
| |
Collapse
|
10
|
Geiselmann A, Micouin A, Vandormael-Pournin S, Laville V, Chervova A, Mella S, Navarro P, Cohen-Tannoudji M. PI3K/AKT signaling controls ICM maturation and proper epiblast and primitive endoderm specification in mice. Dev Cell 2025; 60:204-219.e6. [PMID: 39461340 DOI: 10.1016/j.devcel.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 05/07/2024] [Accepted: 10/03/2024] [Indexed: 10/29/2024]
Abstract
The inner cell mass (ICM) of early mouse embryos is specified into epiblast (Epi) and primitive endoderm (PrE) lineages during blastocyst formation. The antagonistic transcription factors (TFs) NANOG and GATA-binding protein 6 (GATA6) in combination with fibroblast growth factor (FGF)/extracellular-signal-regulated kinase (ERK) signaling are central actors in ICM fate choice. However, what initiates the specification of ICM progenitors into Epi or PrE and whether other factors are involved in this process has not been fully understood yet. Here, we show that phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) is constitutively active during preimplantation development. Using pharmacological inhibition, we demonstrate that PI3K/AKT enables the formation of a functional ICM capable of giving rise to both the Epi and the PrE: it maintains the expression of the TF NANOG, which specifies the Epi, and confers responsiveness to FGF4, which is essential for PrE specification. Our work thus identifies PI3K/AKT signaling as an upstream regulator controlling the molecular events required for both Epi and PrE specification.
Collapse
Affiliation(s)
- Anna Geiselmann
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Sorbonne Université, Complexité du Vivant, 75005 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Adèle Micouin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France; Université Paris Cité, BioSPC, 75013 Paris, France
| | - Sandrine Vandormael-Pournin
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France
| | - Vincent Laville
- Department of Developmental and Stem Cell Biology, Institut Pasteur, CNRS UMR 3738, 75015 Paris, France; Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Almira Chervova
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Sébastien Mella
- Institut Pasteur, Université Paris Cité, Bioinformatics and Biostatistics Hub, 75015 Paris, France
| | - Pablo Navarro
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France
| | - Michel Cohen-Tannoudji
- Institut Pasteur, Université Paris Cité, CNRS UMR 3738, Epigenomics, Proliferation, and the Identity of Cells, Department of Developmental and Stem Cell Biology, 75015 Paris, France; Institut Pasteur, Université Paris Cité, CNRS UMR3738, Early Mammalian Development and Stem Cell Biology, 75015 Paris, France.
| |
Collapse
|
11
|
Srinivas S, Watanabe T. Establishment of early embryonic lineages and the basic body plan. KAUFMAN’S ATLAS OF MOUSE DEVELOPMENT SUPPLEMENT 2025:67-77. [DOI: 10.1016/b978-0-443-23739-3.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Hirono N, Hashimoto M, Shimojo H, Sasaki H. Fate specification triggers a positive feedback loop of TEAD-YAP and NANOG to promote epiblast formation in preimplantation embryos. Development 2025; 152:dev203091. [PMID: 39629521 DOI: 10.1242/dev.203091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
In preimplantation embryos, epiblast (EPI) fate specification from the inner cell mass is controlled by the segregation of NANOG and GATA6 expression. TEAD-YAP interaction is activated during EPI formation and is required for pluripotency factor expression. These events occur asynchronously with similar timing during EPI formation, and their relationship remains elusive. Here, we examined the relationship between NANOG-GATA6 and TEAD-YAP. The nuclear accumulation of YAP takes place only in EPI-specified cells, and a positive feedback loop operates between NANOG and TEAD-YAP. The effects of TEAD-YAP on SOX2 upregulation in EPI-specified cells are likely indirect. EPI fate specification also alters the response of Nanog, Sox2 and Cdx2 to TEAD-YAP. These results suggest that EPI-fate specification alters the transcriptional network from the morula-like to the EPI-specified state and activates TEAD-YAP to trigger a positive feedback loop with NANOG, which stabilizes the EPI fate. The coordinated occurrence of these processes in individual cells likely supports proper EPI formation under the condition of asynchronous EPI-fate specification.
Collapse
Affiliation(s)
- Naoki Hirono
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Saitama 332-0012, Japan
| | - Hiromi Shimojo
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
13
|
Smith A. Propagating pluripotency - The conundrum of self-renewal. Bioessays 2024; 46:e2400108. [PMID: 39180242 PMCID: PMC11589686 DOI: 10.1002/bies.202400108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 08/26/2024]
Abstract
The discovery of mouse embryonic stem cells in 1981 transformed research in mammalian developmental biology and functional genomics. The subsequent generation of human pluripotent stem cells (PSCs) and the development of molecular reprogramming have opened unheralded avenues for drug discovery and cell replacement therapy. Here, I review the history of PSCs from the perspective that long-term self-renewal is a product of the in vitro signaling environment, rather than an intrinsic feature of embryos. I discuss the relationship between pluripotent states captured in vitro to stages of epiblast in the embryo and suggest key considerations for evaluation of PSCs. A remaining fundamental challenge is to determine whether naïve pluripotency can be propagated from the broad range of mammals by exploiting common principles in gene regulatory architecture.
Collapse
Affiliation(s)
- Austin Smith
- Living Systems InstituteUniversity of ExeterExeterUK
| |
Collapse
|
14
|
Wong KW, Zeng Y, Tay E, Teo JHJ, Cipta NO, Hamashima K, Yi Y, Liu H, Warrier T, Le MTN, Ng SC, Li QJ, Li H, Loh YH. Nuclear receptor-SINE B1 network modulates expanded pluripotency in blastoids and blastocysts. Nat Commun 2024; 15:10011. [PMID: 39562549 PMCID: PMC11577042 DOI: 10.1038/s41467-024-54381-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Embryonic stem cells possess the remarkable ability to self-organize into blastocyst-like structures upon induction. These stem cell-based embryo models serve as invaluable platforms for studying embryogenesis and therapeutic developments. Nevertheless, the specific intrinsic regulators that govern this potential for blastoid formation remain unknown. Here we demonstrate an intrinsic program that plays a crucial role in both blastoids and blastocysts across multiple species. We first establish metrics for grading the resemblance of blastoids to mouse blastocysts, and identify the differential activation of gene regulons involved in lineage specification among various blastoid grades. Notably, abrogation of nuclear receptor subfamily 1, group H, member 2 (Nr1h2) drastically reduces blastoid formation. Nr1h2 activation alone is sufficient to rewire conventional ESC into a distinct pluripotency state, enabling them to form blastoids with enhanced implantation capacity in the uterus and contribute to both embryonic and extraembryonic lineages in vivo. Through integrative multi-omics analyses, we uncover the broad regulatory role of Nr1h2 in the transcriptome, chromatin accessibility and epigenome, targeting genes associated with embryonic lineage and the transposable element SINE-B1. The Nr1h2-centred intrinsic program governs and drives the development of both blastoids and early embryos.
Collapse
Grants
- R03 OD038392 NIH HHS
- U19 AG074879 NIA NIH HHS
- P30 CA015083 NCI NIH HHS
- P30 DK084567 NIDDK NIH HHS
- P50 CA136393 NCI NIH HHS
- National Research Foundation, Singapore (NRF) Investigatorship award [NRFI2018- 02]; National Medical Research Council [NMRC/OFIRG21nov-0088]; Singapore Food Story (SFS) R&D Programme [W22W3D0007]; A*STAR Biomedical Research Council, Central Research Fund, Use-Inspired Basic Research (CRF UIBR); Competitive Research Programme (CRP) [NRF-CRP29-2022-0005]; Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0095, H23J2a0097].
- NMRC grant MOH-000937-00 and A*STAR grant C210812003
- M.T.N.L. was supported by the Industry Alignment Fund - Prepositioning (IAF-PP) [H23J2a0097].
- H.L. was supported by grants from the Mayo Clinic Center for Biomedical Discovery, Center for Individualized Medicine, the Mayo Clinic Comprehensive Cancer Center (NIH; P30CA015083), the Mayo Clinic Center for Cell Signaling in Gastroenterology (NIH: P30DK084567), the Mayo Clinic Nutrition Obesity Research Program, the Glenn Foundation for Medical Research, the Eric & Wendy Schmidt Fund for AI Research & Innovation and the National Institutes of Health (NIH; U19AG74879, P50CA136393, R03OD038392).
Collapse
Affiliation(s)
- Ka Wai Wong
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yingying Zeng
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | - Edison Tay
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Jia Hao Jackie Teo
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Nadia Omega Cipta
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Kiyofumi Hamashima
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Yao Yi
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Haijun Liu
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Tushar Warrier
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Minh T N Le
- Department of Pharmacology and Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
| | - Soon Chye Ng
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Department of Obstetrics & Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore
- Sincere Healthcare Group, Singapore, Republic of Singapore
| | - Qi-Jing Li
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore, 138648, Republic of Singapore
| | - Hu Li
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN, USA
| | - Yuin-Han Loh
- Cell Fate Engineering and Therapeutics Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Endangered Species Conservation via Assisted Reproduction (ESCAR) Lab, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Republic of Singapore.
- Department of Biological Sciences, National University of Singapore, Singapore, Republic of Singapore.
- NUS Graduate School's Integrative Sciences and Engineering Programme, National University of Singapore, Singapore, Republic of Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Republic of Singapore.
| |
Collapse
|
15
|
He XD, Taylor LF, Miao X, Shi Y, Lin X, Yang Z, Liu X, Miao YL, Alfandari D, Cui W, Tremblay KD, Mager J. Overlapping peri-implantation phenotypes of ZNHIT1 and ZNHIT2 despite distinct functions during early mouse development†. Biol Reprod 2024; 111:1017-1029. [PMID: 39194072 PMCID: PMC11565232 DOI: 10.1093/biolre/ioae128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/10/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024] Open
Abstract
Mammalian preimplantation development culminates in the formation of a blastocyst that undergoes extensive gene expression regulation to successfully implant into the maternal endometrium. Zinc-finger HIT domain-containing (ZNHIT) 1 and 2 are members of a highly conserved family, yet they have been identified as subunits of distinct complexes. Here, we report that knockout of either Znhit1 or Znhit2 results in embryonic lethality during peri-implantation stages. Znhit1 and Znhit2 mutant embryos have overlapping phenotypes, including reduced proportion of SOX2-positive inner cell mass cells, a lack of Fgf4 expression, and aberrant expression of NANOG and SOX17. Furthermore, we find that the similar phenotypes are caused by distinct mechanisms. Specifically, embryos lacking ZNHIT1 likely fail to incorporate sufficient H2A.Z at the promoter region of Fgf4 and other genes involved in cell projection organization resulting in impaired invasion of trophoblast cells during implantation. In contrast, Znhit2 mutant embryos display a complete lack of nuclear EFTUD2, a key component of U5 spliceosome, indicating a global splicing deficiency. Our findings unveil the indispensable yet distinct roles of ZNHIT1 and ZNHIT2 in early mammalian embryonic development.
Collapse
Affiliation(s)
- Xinjian Doris He
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Louis F Taylor
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Xiaosu Miao
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Yingchao Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, China
| | - Xinhua Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhongzhou Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Medical School of Nanjing University, Nanjing, China
- MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Medical School of Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Xin Liu
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yi-Liang Miao
- Institute of Stem Cell and Regenerative Biology, College of Animal Science and Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Dominique Alfandari
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Wei Cui
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
16
|
Nunley H, Shao B, Denberg D, Grover P, Singh J, Avdeeva M, Joyce B, Kim-Yip R, Kohrman A, Biswas A, Watters A, Gal Z, Kickuth A, Chalifoux M, Shvartsman SY, Brown LM, Posfai E. Nuclear instance segmentation and tracking for preimplantation mouse embryos. Development 2024; 151:dev202817. [PMID: 39373366 PMCID: PMC11574361 DOI: 10.1242/dev.202817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/23/2024] [Indexed: 10/08/2024]
Abstract
For investigations into fate specification and morphogenesis in time-lapse images of preimplantation embryos, automated 3D instance segmentation and tracking of nuclei are invaluable. Low signal-to-noise ratio, high voxel anisotropy, high nuclear density, and variable nuclear shapes can limit the performance of segmentation methods, while tracking is complicated by cell divisions, low frame rates, and sample movements. Supervised machine learning approaches can radically improve segmentation accuracy and enable easier tracking, but they often require large amounts of annotated 3D data. Here, we first report a previously unreported mouse line expressing near-infrared nuclear reporter H2B-miRFP720. We then generate a dataset (termed BlastoSPIM) of 3D images of H2B-miRFP720-expressing embryos with ground truth for nuclear instances. Using BlastoSPIM, we benchmark seven convolutional neural networks and identify Stardist-3D as the most accurate instance segmentation method. With our BlastoSPIM-trained Stardist-3D models, we construct a complete pipeline for nuclear instance segmentation and lineage tracking from the eight-cell stage to the end of preimplantation development (>100 nuclei). Finally, we demonstrate the usefulness of BlastoSPIM as pre-train data for related problems, both for a different imaging modality and for different model systems.
Collapse
Affiliation(s)
- Hayden Nunley
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Binglun Shao
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - David Denberg
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Prateek Grover
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Jaspreet Singh
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Maria Avdeeva
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Rebecca Kim-Yip
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abraham Kohrman
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Abhishek Biswas
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
- Research Computing, Princeton University, Princeton, NJ 08544, USA
| | - Aaron Watters
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Zsombor Gal
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Alison Kickuth
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Madeleine Chalifoux
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Stanislav Y Shvartsman
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Lisa M Brown
- Center for Computational Biology, Flatiron Institute - Simons Foundation, New York, NY 10010, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| |
Collapse
|
17
|
Perera M, Brickman JM. Common modes of ERK induction resolve into context-specific signalling via emergent networks and cell-type-specific transcriptional repression. Development 2024; 151:dev202842. [PMID: 39465321 DOI: 10.1242/dev.202842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 08/22/2024] [Indexed: 10/29/2024]
Abstract
Fibroblast Growth Factor signalling via ERK exerts diverse roles in development and disease. In mammalian preimplantation embryos and naïve pluripotent stem cells ERK promotes differentiation, whereas in primed pluripotent states closer to somatic differentiation ERK sustains self-renewal. How can the same pathway produce different outcomes in two related cell types? To explore context-dependent ERK signalling we generated cell and mouse lines that allow for tissue- and time-specific ERK activation. Using these tools, we find that specificity in ERK response is mostly mediated by repression of transcriptional targets that occur in tandem with reductions in chromatin accessibility at regulatory regions. Furthermore, immediate early ERK responses are largely shared by different cell types but produce cell-specific programmes as these responses interface with emergent networks in the responding cells. Induction in naïve pluripotency is accompanied by chromatin changes, whereas in later stages it is not, suggesting that chromatin context does not shape signalling response. Altogether, our data suggest that cell-type-specific responses to ERK signalling exploit the same immediate early response, but then sculpt it to specific lineages via repression of distinct cellular programmes.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200, Copenhagen N, Denmark
| |
Collapse
|
18
|
Shahbazi MN, Pasque V. Early human development and stem cell-based human embryo models. Cell Stem Cell 2024; 31:1398-1418. [PMID: 39366361 PMCID: PMC7617107 DOI: 10.1016/j.stem.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/18/2024] [Accepted: 09/02/2024] [Indexed: 10/06/2024]
Abstract
The use of stem cells to model the early human embryo promises to transform our understanding of developmental biology and human reproduction. In this review, we present our current knowledge of the first 2 weeks of human embryo development. We first focus on the distinct cell lineages of the embryo and the derivation of stem cell lines. We then discuss the intercellular crosstalk that guides early embryo development and how this crosstalk is recapitulated in vitro to generate stem cell-based embryo models. We highlight advances in this fast-developing field, discuss current limitations, and provide a vision for the future.
Collapse
Affiliation(s)
| | - Vincent Pasque
- Department of Development and Regeneration, KU Leuven, 3000 Leuven, Belgium; Leuven Stem Cell Institute & Leuven Institute for Single-Cell Omics (LISCO), Leuven, Belgium.
| |
Collapse
|
19
|
Skory RM. Revisiting trophectoderm-inner cell mass lineage segregation in the mammalian preimplantation embryo. Hum Reprod 2024; 39:1889-1898. [PMID: 38926157 DOI: 10.1093/humrep/deae142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In the first days of life, cells of the mammalian embryo segregate into two distinct lineages, trophectoderm and inner cell mass. Unlike nonmammalian species, mammalian development does not proceed from predetermined factors in the oocyte. Rather, asymmetries arise de novo in the early embryo incorporating cues from cell position, contractility, polarity, and cell-cell contacts. Molecular heterogeneities, including transcripts and non-coding RNAs, have now been characterized as early as the 2-cell stage. However, it's debated whether these early heterogeneities bias cells toward one fate or the other or whether lineage identity arises stochastically at the 16-cell stage. This review summarizes what is known about early blastomere asymmetries and our understanding of lineage allocation in the context of historical models. Preimplantation development is reviewed coupled with what is known about changes in morphology, contractility, and transcription factor networks. The addition of single-cell atlases of human embryos has begun to reveal key differences between human and mouse, including the timing of events and core transcription factors. Furthermore, the recent generation of blastoid models will provide valuable tools to test and understand fate determinants. Lastly, new techniques are reviewed, which may better synthesize existing knowledge with emerging data sets and reconcile models with the regulative capacity unique to the mammalian embryo.
Collapse
Affiliation(s)
- Robin M Skory
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
20
|
Linneberg-Agerholm M, Sell AC, Redó-Riveiro A, Perera M, Proks M, Knudsen TE, Barral A, Manzanares M, Brickman JM. The primitive endoderm supports lineage plasticity to enable regulative development. Cell 2024; 187:4010-4029.e16. [PMID: 38917790 PMCID: PMC11290322 DOI: 10.1016/j.cell.2024.05.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 02/27/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024]
Abstract
Mammalian blastocyst formation involves the specification of the trophectoderm followed by the differentiation of the inner cell mass into embryonic epiblast and extra-embryonic primitive endoderm (PrE). During this time, the embryo maintains a window of plasticity and can redirect its cellular fate when challenged experimentally. In this context, we found that the PrE alone was sufficient to regenerate a complete blastocyst and continue post-implantation development. We identify an in vitro population similar to the early PrE in vivo that exhibits the same embryonic and extra-embryonic potency and can form complete stem cell-based embryo models, termed blastoids. Commitment in the PrE is suppressed by JAK/STAT signaling, collaborating with OCT4 and the sustained expression of a subset of pluripotency-related transcription factors that safeguard an enhancer landscape permissive for multi-lineage differentiation. Our observations support the notion that transcription factor persistence underlies plasticity in regulative development and highlight the importance of the PrE in perturbed development.
Collapse
Affiliation(s)
- Madeleine Linneberg-Agerholm
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Annika Charlotte Sell
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Alba Redó-Riveiro
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Marta Perera
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Martin Proks
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Teresa E Knudsen
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark
| | - Antonio Barral
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, 28049 Madrid, Spain
| | - Miguel Manzanares
- Centro de Biología Molecular Severo Ochoa (CBM), CSIC-UAM, 28049 Madrid, Spain
| | - Joshua M Brickman
- Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, 2200 Copenhagen N, Denmark.
| |
Collapse
|
21
|
Simon CS, Garg V, Kuo YY, Niakan KK, Hadjantonakis AK. ETV4 and ETV5 Orchestrate FGF-Mediated Lineage Specification and Epiblast Maturation during Early Mouse Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604964. [PMID: 39091858 PMCID: PMC11291132 DOI: 10.1101/2024.07.24.604964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Cell fate decisions in early mammalian embryos are tightly regulated processes crucial for proper development. While FGF signaling plays key roles in early embryo patterning, its downstream effectors remain poorly understood. Our study demonstrates that the transcription factors Etv4 and Etv5 are critical mediators of FGF signaling in cell lineage specification and maturation in mouse embryos. We show that loss of Etv5 compromises primitive endoderm formation at pre-implantation stages. Furthermore, Etv4/5 deficiency delays naïve pluripotency exit and epiblast maturation, leading to elevated NANOG and reduced OTX2 expression within the blastocyst epiblast. As a consequence of delayed pluripotency progression, Etv4/5 deficient embryos exhibit anterior visceral endoderm migration defects post-implantation, a process essential for coordinated embryonic patterning and gastrulation initiation. Our results demonstrate the successive roles of these FGF signaling effectors in early lineage specification and embryonic body plan establishment, providing new insights into the molecular control of mammalian development.
Collapse
Affiliation(s)
- Claire S. Simon
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
22
|
Dattani A, Corujo-Simon E, Radley A, Heydari T, Taheriabkenar Y, Carlisle F, Lin S, Liddle C, Mill J, Zandstra PW, Nichols J, Guo G. Naive pluripotent stem cell-based models capture FGF-dependent human hypoblast lineage specification. Cell Stem Cell 2024; 31:1058-1071.e5. [PMID: 38823388 DOI: 10.1016/j.stem.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/13/2024] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
The hypoblast is an essential extraembryonic tissue set aside within the inner cell mass in the blastocyst. Research with human embryos is challenging. Thus, stem cell models that reproduce hypoblast differentiation provide valuable alternatives. We show here that human naive pluripotent stem cell (PSC) to hypoblast differentiation proceeds via reversion to a transitional ICM-like state from which the hypoblast emerges in concordance with the trajectory in human blastocysts. We identified a window when fibroblast growth factor (FGF) signaling is critical for hypoblast specification. Revisiting FGF signaling in human embryos revealed that inhibition in the early blastocyst suppresses hypoblast formation. In vitro, the induction of hypoblast is synergistically enhanced by limiting trophectoderm and epiblast fates. This finding revises previous reports and establishes a conservation in lineage specification between mice and humans. Overall, this study demonstrates the utility of human naive PSC-based models in elucidating the mechanistic features of early human embryogenesis.
Collapse
Affiliation(s)
- Anish Dattani
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Elena Corujo-Simon
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Arthur Radley
- Living Systems Institute, University of Exeter, Exeter, UK
| | - Tiam Heydari
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Simeng Lin
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Corin Liddle
- Bioimaging Centre, University of Exeter, Exeter, UK
| | - Jonathan Mill
- Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Peter W Zandstra
- Michael Smith Laboratories, School of Biomedical Engineering, University of British Columbia, Vancouver, BC, Canada
| | - Jennifer Nichols
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Western General Hospital, Edinburgh, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Exeter, UK; Department of Clinical & Biomedical Sciences, University of Exeter Medical School, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK.
| |
Collapse
|
23
|
Wu H, Zhai J, Wang H. Unraveling the function of FGF signaling in human hypoblast specialization. Cell Stem Cell 2024; 31:945-946. [PMID: 38971145 DOI: 10.1016/j.stem.2024.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/08/2024]
Abstract
Dattani et al.1 developed a method for inducing hypoblast-like cells from human naive pluripotent stem cells. They elucidated the requirement for FGF signaling in human hypoblast specialization at a specific time window, which was previously controversial.
Collapse
Affiliation(s)
- Hao Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinglei Zhai
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
24
|
Soszyńska A, Krawczyk K, Szpila M, Winek E, Szpakowska A, Suwińska A. Exposure of chimaeric embryos to exogenous FGF4 leads to the production of pure ESC-derived mice. Theriogenology 2024; 222:10-21. [PMID: 38603966 DOI: 10.1016/j.theriogenology.2024.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/28/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
Producing chimaeras constitutes the most reliable method of verifying the pluripotency of newly established cells. Moreover, forming chimaeras by injecting genetically modified embryonic stem cells (ESCs) or induced pluripotent stem cells (iPSCs) into the embryo is part of the procedure for generating transgenic mice, which are used for understanding gene function. Conventional methods for generating transgenic mice, including the breeding of chimaeras and tetraploid complementation, are time-consuming and cost-inefficient, with significant limitations that hinder their effectiveness and widespread applications. In the present study, we modified the traditional method of chimaera generation to significantly speed up this process by generating mice exclusively derived from ESCs. This study aimed to assess whether fully ESC-derived mice could be obtained by modulating fibroblast growth factor 4 (FGF4) levels in the culture medium and changing the direction of cell differentiation in the chimaeric embryo. We found that exogenous FGF4 directs all host blastomeres to the primitive endoderm fate, but does not affect the localisation of ESCs in the epiblast of the chimaeric embryos. Consequently, all FGF4-treated chimaeric embryos contained an epiblast composed exclusively of ESCs, and following transfer into recipient mice, these embryos developed into fully ESC-derived newborns. Collectively, this simple approach could accelerate the generation of ESC-derived animals and thus optimise ESC-mediated transgenesis and the verification of cell pluripotency. Compared to traditional methods, it could speed up functional studies by several weeks and significantly reduce costs related to maintaining and breeding chimaeras. Moreover, since the effect of stimulating the FGF signalling pathway is universal across different animal species, our approach can be applied not only to rodents but also to other animals, offering its utility beyond laboratory settings.
Collapse
Affiliation(s)
- Anna Soszyńska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Katarzyna Krawczyk
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Marcin Szpila
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Eliza Winek
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Anna Szpakowska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| | - Aneta Suwińska
- Department of Embryology, Institute of Developmental Biology and Biomedical Sciences, Faculty of Biology, University of Warsaw, Warsaw, Poland.
| |
Collapse
|
25
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential before implantation. Development 2024; 151:dev202377. [PMID: 38752427 PMCID: PMC11190579 DOI: 10.1242/dev.202377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 05/03/2024] [Indexed: 05/28/2024]
Abstract
Bone morphogenic protein (BMP) signaling plays an essential and highly conserved role in embryo axial patterning in animal species. However, in mammalian embryos, which develop inside the mother, early development includes a preimplantation stage, which does not occur in externally developing embryos. During preimplantation, the epiblast is segregated from extra-embryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling is imprecisely defined in mouse early embryos. Here, we show that, in contrast to previous reports, BMP signaling (SMAD1/5/9 phosphorylation) is not detectable until implantation when it is detected in the primitive endoderm - an extra-embryonic lineage. Moreover, preimplantation development appears to be normal following deletion of maternal and zygotic Smad4, an essential effector of canonical BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extra-embryonic cell types drives epiblast morphogenesis postimplantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute,London NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
26
|
Chander A, Mager J. Loss of KANSL3 leads to defective inner cell mass and early embryonic lethality. Mol Reprod Dev 2024; 91:e23760. [PMID: 38769918 PMCID: PMC11244731 DOI: 10.1002/mrd.23760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024]
Abstract
e-Lysine acetylation is a prominent histone mark found at transcriptionally active loci. Among many lysine acetyl transferases, nonspecific lethal complex (NSL) members are known to mediate the modification of histone H4. In addition to histone modifications, the KAT8 regulatory complex subunit 3 gene (Kansl3), a core member of NSL complex, has been shown to be involved in several other cellular processes such as mitosis and mitochondrial activity. Although functional studies have been performed on NSL complex members, none of the four core proteins, including Kansl3, have been studied during early mouse development. Here we show that homozygous knockout Kansl3 embryos are lethal at peri-implantation stages, failing to hatch out of the zona pellucida. When the zona pellucida is removed in vitro, Kansl3 null embryos form an abnormal outgrowth with significantly disrupted inner cell mass (ICM) morphology. We document lineage-specific defects at the blastocyst stage with significantly reduced ICM cell number but no difference in trophectoderm cell numbers. Both epiblast and primitive endoderm lineages are altered with reduced cell numbers in null mutants. These results show that Kansl3 is indispensable during early mouse embryonic development and with defects in both ICM and trophectoderm lineages.
Collapse
Affiliation(s)
- Ashmita Chander
- Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, 661 North Pleasant Street, Amherst, Massachusetts, USA
| | - Jesse Mager
- Department of Veterinary & Animal Sciences, University of Massachusetts Amherst, Amherst, Massachusetts, USA
- Department of Veterinary and Animal Sciences, University of Massachusetts-Amherst, 661 North Pleasant Street, Amherst, Massachusetts, USA
| |
Collapse
|
27
|
Rossant J. Why study human embryo development? Dev Biol 2024; 509:43-50. [PMID: 38325560 DOI: 10.1016/j.ydbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/31/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Understanding the processes and mechanisms underlying early human embryo development has become an increasingly active and important area of research. It has potential for insights into important clinical issues such as early pregnancy loss, origins of congenital anomalies and developmental origins of adult disease, as well as fundamental insights into human biology. Improved culture systems for preimplantation embryos, combined with the new tools of single cell genomics and live imaging, are providing new insights into the similarities and differences between human and mouse development. However, access to human embryo material is still restricted and extended culture of early embryos has regulatory and ethical concerns. Stem cell-derived models of different phases of human development can potentially overcome these limitations and provide a scalable source of material to explore the early postimplantation stages of human development. To date, such models are clearly incomplete replicas of normal development but future technological improvements can be envisaged. The ethical and regulatory environment for such studies remains to be fully resolved.
Collapse
Affiliation(s)
- Janet Rossant
- The Gairdner Foundation and the Hospital for Sick Children, University of Toronto, MaRS Centre, Heritage Building, 101 College Street, Suite 335, Toronto, Ontario, M5G 1L7, Canada.
| |
Collapse
|
28
|
Dupont C. A comprehensive review: synergizing stem cell and embryonic development knowledge in mouse and human integrated stem cell-based embryo models. Front Cell Dev Biol 2024; 12:1386739. [PMID: 38715920 PMCID: PMC11074781 DOI: 10.3389/fcell.2024.1386739] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 01/06/2025] Open
Abstract
Mammalian stem cell-based embryo models have emerged as innovative tools for investigating early embryogenesis in both mice and primates. They not only reduce the need for sacrificing mice but also overcome ethical limitations associated with human embryo research. Furthermore, they provide a platform to address scientific questions that are otherwise challenging to explore in vivo. The usefulness of a stem cell-based embryo model depends on its fidelity in replicating development, efficiency and reproducibility; all essential for addressing biological queries in a quantitative manner, enabling statistical analysis. Achieving such fidelity and efficiency requires robust systems that demand extensive optimization efforts. A profound understanding of pre- and post-implantation development, cellular plasticity, lineage specification, and existing models is imperative for making informed decisions in constructing these models. This review aims to highlight essential differences in embryo development and stem cell biology between mice and humans, assess how these variances influence the formation of partially and fully integrated stem cell models, and identify critical challenges in the field.
Collapse
Affiliation(s)
- Cathérine Dupont
- Department of Developmental Biology, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
29
|
Raju A, Siggia ED. A geometrical model of cell fate specification in the mouse blastocyst. Development 2024; 151:dev202467. [PMID: 38563517 PMCID: PMC11112346 DOI: 10.1242/dev.202467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
The lineage decision that generates the epiblast and primitive endoderm from the inner cell mass (ICM) is a paradigm for cell fate specification. Recent mathematics has formalized Waddington's landscape metaphor and proven that lineage decisions in detailed gene network models must conform to a small list of low-dimensional stereotypic changes called bifurcations. The most plausible bifurcation for the ICM is the so-called heteroclinic flip that we define and elaborate here. Our re-analysis of recent data suggests that there is sufficient cell movement in the ICM so the FGF signal, which drives the lineage decision, can be treated as spatially uniform. We thus extend the bifurcation model for a single cell to the entire ICM by means of a self-consistently defined time-dependent FGF signal. This model is consistent with available data and we propose additional dynamic experiments to test it further. This demonstrates that simplified, quantitative and intuitively transparent descriptions are possible when attention is shifted from specific genes to lineages. The flip bifurcation is a very plausible model for any situation where the embryo needs control over the relative proportions of two fates by a morphogen feedback.
Collapse
Affiliation(s)
- Archishman Raju
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560065, India
| | - Eric D. Siggia
- Center for Studies in Physics and Biology, Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
30
|
Oke A, Manohar SM. Dynamic Roles of Signaling Pathways in Maintaining Pluripotency of Mouse and Human Embryonic Stem Cells. Cell Reprogram 2024; 26:46-56. [PMID: 38635924 DOI: 10.1089/cell.2024.0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024] Open
Abstract
Culturing of mouse and human embryonic stem cells (ESCs) in vitro was a major breakthrough in the field of stem cell biology. These models gained popularity very soon mainly due to their pluripotency. Evidently, the ESCs of mouse and human origin share typical phenotypic responses due to their pluripotent nature, such as self-renewal capacity and potency. The conserved network of core transcription factors regulates these responses. However, significantly different signaling pathways and upstream transcriptional networks regulate expression and activity of these core pluripotency factors in ESCs of both the species. In fact, ample evidence shows that a pathway, which maintains pluripotency in mouse ESCs, promotes differentiation in human ESCs. In this review, we discuss the role of canonical signaling pathways implicated in regulation of pluripotency and differentiation particularly in mouse and human ESCs. We believe that understanding these distinct and at times-opposite mechanisms-is critical for the progress in the field of stem cell biology and regenerative medicine.
Collapse
Affiliation(s)
- Anagha Oke
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-Be) University, Mumbai, Maharashtra, India
| | - Sonal M Manohar
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS (Deemed-to-Be) University, Mumbai, Maharashtra, India
| |
Collapse
|
31
|
Kruger RE, Frum T, Brumm AS, Hickey SL, Niakan KK, Aziz F, Shammami MA, Roberts JG, Ralston A. Smad4 is essential for epiblast scaling and morphogenesis after implantation, but nonessential prior to implantation in the mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576717. [PMID: 38328075 PMCID: PMC10849569 DOI: 10.1101/2024.01.23.576717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Bone Morphogenic Protein (BMP) signaling plays an essential and highly conserved role in axial patterning in embryos of many externally developing animal species. However, in mammalian embryos, which develop inside the mother, early development includes an additional stage known as preimplantation. During preimplantation, the epiblast lineage is segregated from the extraembryonic lineages that enable implantation and development in utero. Yet, the requirement for BMP signaling in mouse preimplantation is imprecisely defined. We show that, in contrast to prior reports, BMP signaling (as reported by SMAD1/5/9 phosphorylation) is not detectable until implantation, when it is detected in the primitive endoderm - an extraembryonic lineage. Moreover, preimplantation development appears normal following deletion of maternal and zygotic Smad4, an essential effector of BMP signaling. In fact, mice lacking maternal Smad4 are viable. Finally, we uncover a new requirement for zygotic Smad4 in epiblast scaling and cavitation immediately after implantation, via a mechanism involving FGFR/ERK attenuation. Altogether, our results demonstrate no role for BMP4/SMAD4 in the first lineage decisions during mouse development. Rather, multi-pathway signaling among embryonic and extraembryonic cell types drives epiblast morphogenesis post-implantation.
Collapse
Affiliation(s)
- Robin E. Kruger
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Tristan Frum
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Current address: Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| | - A. Sophie Brumm
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
| | - Stephanie L. Hickey
- Research Technology Support Facility, Michigan State University, East Lansing, MI, 48824, USA
| | - Kathy K. Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute; London, NW1 1AT, UK
- The Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3EG, UK
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge, CB2 0AW, UK
- Epigenetics Programme, Babraham Institute, Cambridge, CB22 3AT, UK
| | - Farina Aziz
- Cell and Molecular Biology Ph.D. Program, Michigan State University, East Lansing, MI, 48824, USA
| | - Marcelio A. Shammami
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Genetics and Genome Sciences Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Jada G. Roberts
- Molecular, Cellular, and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI 48824, USA
| | - Amy Ralston
- Reproductive and Developmental Sciences Training Program, Michigan State University, East Lansing, MI, 48824, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
32
|
Gao Y, Han W, Dong R, Wei S, Chen L, Gu Z, Liu Y, Guo W, Yan F. Efficient Reprogramming of Mouse Embryonic Stem Cells into Trophoblast Stem-like Cells via Lats Kinase Inhibition. BIOLOGY 2024; 13:71. [PMID: 38392290 PMCID: PMC10886645 DOI: 10.3390/biology13020071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 02/24/2024]
Abstract
Mouse zygotes undergo multiple rounds of cell division, resulting in the formation of preimplantation blastocysts comprising three lineages: trophectoderm (TE), epiblast (EPI), and primitive endoderm (PrE). Cell fate determination plays a crucial role in establishing a healthy pregnancy. The initial separation of lineages gives rise to TE and inner cell mass (ICM), from which trophoblast stem cells (TSC) and embryonic stem cells (ESC) can be derived in vitro. Studying lineage differentiation is greatly facilitated by the clear functional distinction between TSC and ESC. However, transitioning between these two types of cells naturally poses challenges. In this study, we demonstrate that inhibiting LATS kinase promotes the conversion of ICM to TE and also effectively reprograms ESC into stable, self-renewing TS-like cells (TSLC). Compared to TSC, TSLC exhibits similar molecular properties, including the high expression of marker genes such as Cdx2, Eomes, and Tfap2c, as well as hypomethylation of their promoters. Importantly, TSLC not only displays the ability to differentiate into mature trophoblast cells in vitro but also participates in placenta formation in vivo. These findings highlight the efficient reprogramming of ESCs into TSLCs using a small molecular inducer, which provides a new reference for understanding the regulatory network between ESCs and TSCs.
Collapse
Affiliation(s)
- Yake Gao
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
- Reproductive Medicine Center, Wuhan Women's and Children's Medical Care Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenrui Han
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Rui Dong
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Shu Wei
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Lu Chen
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Zhaolei Gu
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Yiming Liu
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Wei Guo
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Fang Yan
- State Key Laboratory of Conservation and Utilization of Bio-Resources, Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming 650500, China
| |
Collapse
|
33
|
Moauro A, Hickey SL, Halbisen MA, Parenti A, Ralston A. OCT4 is expressed in extraembryonic endoderm stem (XEN) cell progenitors during somatic cell reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.22.576724. [PMID: 38328220 PMCID: PMC10849553 DOI: 10.1101/2024.01.22.576724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
During development, progenitors of embryonic stem (ES) and extraembryonic endoderm stem (XEN) cells are concomitantly specified within the inner cell mass (ICM) of the mouse blastocyst. Similarly, XEN cells are induced (iXEN cells) alongside induced pluripotent stem (iPS) cells following overexpression of Oct4, Sox2, Klf4 and Myc (OSKM) during somatic cell reprogramming. It is unclear how or why this cocktail produces both stem cell types, but OCT4 has been associated with non-pluripotent outcomes. In this report, we show that, during OSKM reprogramming, many individual Oct4-GFP-expressing cells are fated to become iXEN cells. Interestingly, SKM alone was also sufficient to induce iXEN cell formation, likely via activation of endogenous Oct4. These observations indicate that iXEN cell formation is not strictly an artifact of Oct4 overexpression. Moreover, our results suggest that a pathway to XEN may be an integral feature of establishing pluripotency during reprogramming, as in early embryo development.
Collapse
Affiliation(s)
- Alexandra Moauro
- Molecular, Cellular and Integrative Physiology Ph.D. Program, Michigan State University, East Lansing, MI, 48824
- D.O.-Ph.D. Program, Michigan State University, East Lansing, MI, 48824
| | - Stephanie L. Hickey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824
| | - Michael A. Halbisen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824
| | - Anthony Parenti
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824
| | - Amy Ralston
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824
| |
Collapse
|
34
|
Shankar V, van Blitterswijk C, Vrij E, Giselbrecht S. Automated, High-Throughput Phenotypic Screening and Analysis Platform to Study Pre- and Post-Implantation Morphogenesis in Stem Cell-Derived Embryo-Like Structures. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304987. [PMID: 37991133 PMCID: PMC10811479 DOI: 10.1002/advs.202304987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/11/2023] [Indexed: 11/23/2023]
Abstract
Combining high-throughput generation and high-content imaging of embryo models will enable large-scale screening assays in the fields of (embryo) toxicity, drug development, embryogenesis, and reproductive medicine. This study shows the continuous culture and in situ (i.e., in microwell) imaging-based readout of a 3D stem cell-based model of peri-implantation epiblast (Epi)/extraembryonic endoderm (XEn) development with an expanded pro-amniotic cavity (PAC) (E3.5 E5.5), namely XEn/EPiCs. Automated image analysis and supervised machine learning permit the identification of embryonic morphogenesis, tissue compartmentalization, cell differentiation, and consecutive classification. Screens with signaling pathway modulators at different time windows provide spatiotemporal information on their phenotypic effect on developmental processes leading to the formation of XEn/EPiCs. Exposure of the biological model in the microwell platform to pathway modulators at two time windows, namely 0-72 h and 48-120 h, show that Wnt and Fgf/MAPK pathway modulators affect Epi differentiation and its polarization, while modulation of BMP and Tgfβ/Nodal pathway affects XEn specification and epithelialization. Further, their collective role is identified in the timing of the formation and expansion of PAC. The newly developed, scalable culture and analysis platform, thereby, provides a unique opportunity to quantitatively and systematically study effects of pathway modulators on early embryonic development.
Collapse
Affiliation(s)
- Vinidhra Shankar
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Clemens van Blitterswijk
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Erik Vrij
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| | - Stefan Giselbrecht
- MERLN Institute for Technology‐Inspired Regenerative MedicineDepartment for Instructive Biomaterials Engineering (IBE)Maastricht UniversityMaastricht6229ETThe Netherlands
| |
Collapse
|
35
|
Perera M, Brickman JM. In vitro models of human hypoblast and mouse primitive endoderm. Curr Opin Genet Dev 2023; 83:102115. [PMID: 37783145 DOI: 10.1016/j.gde.2023.102115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/28/2023] [Accepted: 08/24/2023] [Indexed: 10/04/2023]
Abstract
The primitive endoderm (PrE, also named hypoblast), a predominantly extraembryonic epithelium that arises from the inner cell mass (ICM) of the mammalian pre-implantation blastocyst, plays a fundamental role in embryonic development, giving rise to the yolk sac, establishing the anterior-posterior axis and contributing to the gut. PrE is specified from the ICM at the same time as the epiblast (Epi) that will form the embryo proper. While in vitro cell lines resembling the pluripotent Epi have been derived from a variety of conditions, only one model system currently exists for the PrE, naïve extraembryonic endoderm (nEnd). As a result, considerably more is known about the gene regulatory networks and signalling requirements of pluripotent stem cells than nEnd. In this review, we describe the ontogeny and differentiation of the PrE or hypoblast in mouse and primate and then discuss in vitro cell culture models for different extraembryonic endodermal cell types.
Collapse
Affiliation(s)
- Marta Perera
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark. https://twitter.com/@MartaPrera
| | - Joshua M Brickman
- reNEW UCPH - The Novo Nordisk Foundation Center for Stem Cell Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen N, Denmark.
| |
Collapse
|
36
|
Hajian M, Rouhollahi Varnosfaderani S, Jafarpour F, Tanhaei Vash N, Nasr-Esfahani MH. Pluripotency and embryonic lineage genes expression in the presence of small molecule inhibitors of FGF, TGFβ and GSK3 during pre-implantation development of goat embryos. Gene Expr Patterns 2023; 50:119334. [PMID: 37678700 DOI: 10.1016/j.gep.2023.119334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 08/05/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Generating stable livestock pluripotent stem cells (PSCs) can be used for complex genome editing, cellular agriculture, gamete generation, regenerative medicine and in vitro breeding schemes. Over the past decade, significant progress has been made in characterizing pluripotency markers for livestock species. In this study, we investigated embryo development and gene expression of the core pluripotency triad (OCT4, NANOG, SOX2) and cell lineage commitment markers (REX1, CDX2, GATA4) in the presence of three small molecules and their combination [PD0325901 (FGF inhibitor), SB431542 (TGFβ inhibitor), and CHIR99021 (GSK3B inhibitor)] from day 2-7 post-insemination in goat. Significant reduction in rate of blastocyst formation was observed when SB was used along with PD or CHIR and their three combinations had more sever effect. SB and CHIR decreased the expression of SOX2 while increasing the GATA4 expression. PD decrease the relative expression of NANOG, OCT4 and GATA4, while increased the expression of REX1. Among the combination of two molecules, only SB + CHIR combination significantly decreased the expression of GATA4, while the combination of the three molecules significantly decreases the expression of NANOG, SOX2 and CDX2. According to these results, the inhibition of the FGF signaling pathway, by PD may lead to blocking the hypoblast formation as observed by reduction of GATA4. OCT4 and NANOG expressions did not show signs of maintenance pluripotency. GATA4, NANOG and OCT4 in the PD group were downregulated and REX1 as EPI-marker was upregulated thus REX1 may be considered as a marker of EPI/ICM in goat.
Collapse
Affiliation(s)
- Mehdi Hajian
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Shiva Rouhollahi Varnosfaderani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Farnoosh Jafarpour
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Nima Tanhaei Vash
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad Hossein Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| |
Collapse
|
37
|
Chang Y, Hummel SN, Jung J, Jin G, Deng Q, Bao X. Engineered hematopoietic and immune cells derived from human pluripotent stem cells. Exp Hematol 2023; 127:14-27. [PMID: 37611730 PMCID: PMC10615717 DOI: 10.1016/j.exphem.2023.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
For the past decade, significant advances have been achieved in human hematopoietic stem cell (HSC) transplantation for treating various blood diseases and cancers. However, challenges remain with the quality control, amount, and cost of HSCs and HSC-derived immune cells. The advent of human pluripotent stem cells (hPSCs) may transform HSC transplantation and cancer immunotherapy by providing a cost-effective and scalable cell source for fundamental studies and translational applications. In this review, we discuss the current developments in the field of stem cell engineering for hematopoietic stem and progenitor cell (HSPC) differentiation and further differentiation of HSPCs into functional immune cells. The key advances in stem cell engineering include the generation of HSPCs from hPSCs, genetic modification of hPSCs, and hPSC-derived HSPCs for improved function, further differentiation of HPSCs into functional immune cells, and applications of cell culture platforms for hematopoietic cell manufacturing. Current challenges impeding the translation of hPSC-HSPCs and immune cells as well as further directions to address these challenges are also discussed.
Collapse
Affiliation(s)
- Yun Chang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Sydney N Hummel
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Juhyung Jung
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Gyuhyung Jin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana
| | - Qing Deng
- Purdue University Institute for Cancer Research, West Lafayette, Indiana; Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Xiaoping Bao
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana; Purdue University Institute for Cancer Research, West Lafayette, Indiana.
| |
Collapse
|
38
|
Schröter C, Stapornwongkul KS, Trivedi V. Local cellular interactions during the self-organization of stem cells. Curr Opin Cell Biol 2023; 85:102261. [PMID: 39491308 DOI: 10.1016/j.ceb.2023.102261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 11/05/2024]
Abstract
Stem cell models for early mammalian development offer new experimental opportunities to access spatio-temporal details of the cell-cell interactions that govern cell differentiation and tissue patterning. This review summarizes recent studies that have used stem cell models to investigate the spatial range of developmental cell-cell communication systems. A key message from these works is that important biochemical signals for cell differentiation in these systems, such as Nodal and fibroblast growth factors (FGFs), often act over short distances of only a few cell diameters. The formation of long-range patterns at the tissue scale associated with these signals then results from signal relays and cell rearrangements. The modular view of differentiation and patterning emerging from research on stem cell models can offer a fresh perspective on the corresponding processes in the embryo.
Collapse
Affiliation(s)
- Christian Schröter
- Department of Systemic Cell Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany.
| | - Kristina S Stapornwongkul
- Tissue Biology and Disease Modelling, European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain
| | - Vikas Trivedi
- Tissue Biology and Disease Modelling, European Molecular Biology Laboratory (EMBL) Barcelona, Dr. Aiguader 88, 08003, Barcelona, Spain; Developmental Biology Unit, European Molecular Biology Laboratory, Meyerhofstraße 1, 69117, Heidelberg, Germany
| |
Collapse
|
39
|
Pham PD, Lu H, Han H, Zhou JJ, Madan A, Wang W, Murre C, Cho KWY. Transcriptional network governing extraembryonic endoderm cell fate choice. Dev Biol 2023; 502:20-37. [PMID: 37423592 PMCID: PMC10550205 DOI: 10.1016/j.ydbio.2023.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/05/2023] [Indexed: 07/11/2023]
Abstract
The mechanism by which transcription factor (TF) network instructs cell-type-specific transcriptional programs to drive primitive endoderm (PrE) progenitors to commit to parietal endoderm (PE) versus visceral endoderm (VE) cell fates remains poorly understood. To address the question, we analyzed the single-cell transcriptional signatures defining PrE, PE, and VE cell states during the onset of the PE-VE lineage bifurcation. By coupling with the epigenomic comparison of active enhancers unique to PE and VE cells, we identified GATA6, SOX17, and FOXA2 as central regulators for the lineage divergence. Transcriptomic analysis of cXEN cells, an in vitro model for PE cells, after the acute depletion of GATA6 or SOX17 demonstrated that these factors induce Mycn, imparting the self-renewal properties of PE cells. Concurrently, they suppress the VE gene program, including key genes like Hnf4a and Ttr, among others. We proceeded with RNA-seq analysis on cXEN cells with FOXA2 knockout, in conjunction with GATA6 or SOX17 depletion. We found FOXA2 acts as a potent suppressor of Mycn while simultaneously activating the VE gene program. The antagonistic gene regulatory activities of GATA6/SOX17 and FOXA2 in promoting alternative cell fates, and their physical co-bindings at the enhancers provide molecular insights to the plasticity of the PrE lineage. Finally, we show that the external cue, BMP signaling, promotes the VE cell fate by activation of VE TFs and repression of PE TFs including GATA6 and SOX17. These data reveal a putative core gene regulatory module that underpins PE and VE cell fate choice.
Collapse
Affiliation(s)
- Paula Duyen Pham
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Hanbin Lu
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Han Han
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Jeff Jiajing Zhou
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Aarushi Madan
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Wenqi Wang
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA
| | - Cornelis Murre
- School of Biological Sciences, Department of Molecular Biology, University of California at San Diego, La Jolla, CA, 92039, USA
| | - Ken W Y Cho
- Department of Developmental and Cell Biology, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
40
|
Kim Y, Kim I, Shin K. A new era of stem cell and developmental biology: from blastoids to synthetic embryos and beyond. Exp Mol Med 2023; 55:2127-2137. [PMID: 37779144 PMCID: PMC10618288 DOI: 10.1038/s12276-023-01097-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 10/03/2023] Open
Abstract
Recent discoveries in stem cell and developmental biology have introduced a new era marked by the generation of in vitro models that recapitulate early mammalian development, providing unprecedented opportunities for extensive research in embryogenesis. Here, we present an overview of current techniques that model early mammalian embryogenesis, specifically noting models created from stem cells derived from two significant species: Homo sapiens, for its high relevance, and Mus musculus, a historically common and technically advanced model organism. We aim to provide a holistic understanding of these in vitro models by tracing the historical background of the progress made in stem cell biology and discussing the fundamental underlying principles. At each developmental stage, we present corresponding in vitro models that recapitulate the in vivo embryo and further discuss how these models may be used to model diseases. Through a discussion of these models as well as their potential applications and future challenges, we hope to demonstrate how these innovative advances in stem cell research may be further developed to actualize a model to be used in clinical practice.
Collapse
Affiliation(s)
- Yunhee Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Inha Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kunyoo Shin
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
41
|
Knudsen TE, Hamilton WB, Proks M, Lykkegaard M, Linneberg-Agerholm M, Nielsen AV, Perera M, Malzard LL, Trusina A, Brickman JM. A bipartite function of ESRRB can integrate signaling over time to balance self-renewal and differentiation. Cell Syst 2023; 14:788-805.e8. [PMID: 37633265 DOI: 10.1016/j.cels.2023.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 03/22/2023] [Accepted: 07/28/2023] [Indexed: 08/28/2023]
Abstract
Cooperative DNA binding of transcription factors (TFs) integrates the cellular context to support cell specification during development. Naive mouse embryonic stem cells are derived from early development and can sustain their pluripotent identity indefinitely. Here, we ask whether TFs associated with pluripotency evolved to directly support this state or if the state emerges from their combinatorial action. NANOG and ESRRB are key pluripotency factors that co-bind DNA. We find that when both factors are expressed, ESRRB supports pluripotency. However, when NANOG is absent, ESRRB supports a bistable culture of cells with an embryo-like primitive endoderm identity ancillary to pluripotency. The stoichiometry between NANOG and ESRRB allows quantitative titration of this differentiation, and in silico modeling of bipartite ESRRB activity suggests it safeguards plasticity in differentiation. Thus, the concerted activity of cooperative TFs can transform their effect to sustain intermediate cell identities and allow ex vivo expansion of immortal stem cells. A record of this paper's transparent peer review process is included in the supplemental information.
Collapse
Affiliation(s)
- Teresa E Knudsen
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - William B Hamilton
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
| | - Martin Proks
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Maria Lykkegaard
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Madeleine Linneberg-Agerholm
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | | | - Marta Perera
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | | | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Joshua M Brickman
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
Hassan FU, Deng T, Rehman MSU, Rehman ZU, Sarfraz S, Mushahid M, Rehman SU. Genome-wide identification and evolutionary analysis of the FGF gene family in buffalo. J Biomol Struct Dyn 2023; 42:10225-10236. [PMID: 37697717 DOI: 10.1080/07391102.2023.2256861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/02/2023] [Indexed: 09/13/2023]
Abstract
Fibroblast growth factors (FGFs) are important polypeptide growth factors that play a critical role in many developmental processes, including differentiation, cell proliferation, and migration in mammals. This study employs in silico analyses to characterize the FGF gene family in buffalo, investigating their genome-wide identification, physicochemical properties, and evolutionary patterns. For this purpose, genomic and proteomic sequences of buffalo, cattle, goat, and sheep were retrieved from NCBI database. We identified a total of 22 FGF genes in buffalo. Physicochemical properties observed through ProtParam tool showed notable features of these proteins including in-vitro instability, thermostability, hydrophilicity, and basic nature. Phylogenetic analysis grouped 22 identified genes into nine sub-families based on evolutionary relationships. Additionally, analysis of gene structure, motif patterns, and conserved domains using TBtools revealed the remarkable conservation of this gene family across selected species throughout the course of evolution. Comparative amino acid analysis performed through ClustalW demonstrated significant conservation between buffalo and cattle FGF proteins. Mutational analysis showed three non-synonymous mutations at positions R103 > G, P7 > L, and E98 > Q in FGF4, FGF6, and FGF19, respectively in buffalo. Duplication events revealed only one segmental duplication (FGF10/FGF22) in buffalo and two in cattle (FGF10/FGF22 and FGF13/FGF13-like) with Ka/Ks values <1 indicating purifying selection pressure for these duplications. Comparison of protein structures of buffalo, goat, and sheep exhibited more similarities in respective structures. In conclusion, our study highlights the conservation of the FGF gene family in buffalo during evolution. Furthermore, the identified non-synonymous mutations may have implications for the selection of animals with better performance.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Faiz-Ul Hassan
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Tingxian Deng
- Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Ministry of Agriculture and Guangxi Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Muhammad Saif-Ur Rehman
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zia-Ur Rehman
- University of Agriculture, Faisalabad-Sub Campus Toba Tek Sing, Pakistan
| | - Saad Sarfraz
- Centre for Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Mushahid
- Faculty of Animal Husbandry, Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Saif Ur Rehman
- Department of Reproductive Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Guangzhou, China
| |
Collapse
|
43
|
Schardt S, Fischer SC. Adjusting the range of cell-cell communication enables fine-tuning of cell fate patterns from checkerboard to engulfing. J Math Biol 2023; 87:54. [PMID: 37679573 PMCID: PMC10485129 DOI: 10.1007/s00285-023-01959-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/09/2023]
Abstract
During development, spatio-temporal patterns ranging from checkerboard to engulfing occur with precise proportions of the respective cell fates. Key developmental regulators are intracellular transcriptional interactions and intercellular signaling. We present an analytically tractable mathematical model based on signaling that reliably generates different cell type patterns with specified proportions. Employing statistical mechanics, We derived a cell fate decision model for two cell types. A detailed steady state analysis on the resulting dynamical system yielded necessary conditions to generate spatially heterogeneous patterns. This allows the cell type proportions to be controlled by a single model parameter. Cell-cell communication is realized by local and global signaling mechanisms. These result in different cell type patterns. A nearest neighbor signal yields checkerboard patterns. Increasing the signal dispersion, cell fate clusters and an engulfing pattern can be generated. Altogether, the presented model allows us to reliably generate heterogeneous cell type patterns of different kinds as well as desired proportions.
Collapse
Affiliation(s)
- Simon Schardt
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| | - Sabine C. Fischer
- Center for Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany
| |
Collapse
|
44
|
Liu L, Oura S, Markham Z, Hamilton JN, Skory RM, Li L, Sakurai M, Wang L, Pinzon-Arteaga CA, Plachta N, Hon GC, Wu J. Modeling post-implantation stages of human development into early organogenesis with stem-cell-derived peri-gastruloids. Cell 2023; 186:3776-3792.e16. [PMID: 37478861 DOI: 10.1016/j.cell.2023.07.018] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
In vitro stem cell models that replicate human gastrulation have been generated, but they lack the essential extraembryonic cells needed for embryonic development, morphogenesis, and patterning. Here, we describe a robust and efficient method that prompts human extended pluripotent stem cells to self-organize into embryo-like structures, termed peri-gastruloids, which encompass both embryonic (epiblast) and extraembryonic (hypoblast) tissues. Although peri-gastruloids are not viable due to the exclusion of trophoblasts, they recapitulate critical stages of human peri-gastrulation development, such as forming amniotic and yolk sac cavities, developing bilaminar and trilaminar embryonic discs, specifying primordial germ cells, initiating gastrulation, and undergoing early neurulation and organogenesis. Single-cell RNA-sequencing unveiled transcriptomic similarities between advanced human peri-gastruloids and primary peri-gastrulation cell types found in humans and non-human primates. This peri-gastruloid platform allows for further exploration beyond gastrulation and may potentially aid in the development of human fetal tissues for use in regenerative medicine.
Collapse
Affiliation(s)
- Lizhong Liu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Seiya Oura
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zachary Markham
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - James N Hamilton
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robin M Skory
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leijie Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masahiro Sakurai
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Wang
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Carlos A Pinzon-Arteaga
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nicolas Plachta
- Department of Cell and Developmental Biology, Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gary C Hon
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Gahurova L, Tomankova J, Cerna P, Bora P, Kubickova M, Virnicchi G, Kovacovicova K, Potesil D, Hruska P, Zdrahal Z, Anger M, Susor A, Bruce AW. Spatial positioning of preimplantation mouse embryo cells is regulated by mTORC1 and m 7G-cap-dependent translation at the 8- to 16-cell transition. Open Biol 2023; 13:230081. [PMID: 37553074 PMCID: PMC10409569 DOI: 10.1098/rsob.230081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023] Open
Abstract
Preimplantation mouse embryo development involves temporal-spatial specification and segregation of three blastocyst cell lineages: trophectoderm, primitive endoderm and epiblast. Spatial separation of the outer-trophectoderm lineage from the two other inner-cell-mass (ICM) lineages starts with the 8- to 16-cell transition and concludes at the 32-cell stages. Accordingly, the ICM is derived from primary and secondary contributed cells; with debated relative EPI versus PrE potencies. We report generation of primary but not secondary ICM populations is highly dependent on temporal activation of mammalian target of Rapamycin (mTOR) during 8-cell stage M-phase entry, mediated via regulation of the 7-methylguanosine-cap (m7G-cap)-binding initiation complex (EIF4F) and linked to translation of mRNAs containing 5' UTR terminal oligopyrimidine (TOP-) sequence motifs, as knockdown of identified TOP-like motif transcripts impairs generation of primary ICM founders. However, mTOR inhibition-induced ICM cell number deficits in early blastocysts can be compensated by the late blastocyst stage, after inhibitor withdrawal; compensation likely initiated at the 32-cell stage when supernumerary outer cells exhibit molecular characteristics of inner cells. These data identify a novel mechanism specifically governing initial spatial segregation of mouse embryo blastomeres, that is distinct from those directing subsequent inner cell formation, contributing to germane segregation of late blastocyst lineages.
Collapse
Affiliation(s)
- Lenka Gahurova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Jana Tomankova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Pavlina Cerna
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Pablo Bora
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Michaela Kubickova
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Giorgio Virnicchi
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| | - Kristina Kovacovicova
- Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - David Potesil
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Pavel Hruska
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Zbynek Zdrahal
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic
| | - Martin Anger
- Laboratory of Cell Division Control, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
- Department of Genetics and Reproduction, Central European Institute of Technology, Veterinary Research Institute, Hudcova 296/70, 621 00 Brno, Czech Republic
| | - Andrej Susor
- Laboratory of Biochemistry and Molecular Biology of Germ Cells, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 27721 Liběchov, Czech Republic
| | - Alexander W Bruce
- Laboratory of Early Mammalian Developmental Biology (LEMDB), Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branišovská 31, 37005 České Budějovice, Czech Republic
| |
Collapse
|
46
|
Goissis MD, Bradshaw B, Posfai E, Rossant J. Influence of FGF4 and BMP4 on FGFR2 dynamics during the segregation of epiblast and primitive endoderm cells in the pre-implantation mouse embryo. PLoS One 2023; 18:e0279515. [PMID: 37471320 PMCID: PMC10358967 DOI: 10.1371/journal.pone.0279515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/21/2023] [Indexed: 07/22/2023] Open
Abstract
Specification of the epiblast (EPI) and primitive endoderm (PE) in the mouse embryo involves fibroblast growth factor (FGF) signaling through the RAS/MAP kinase pathway. FGFR1 and FGFR2 are thought to mediate this signaling in the inner cell mass (ICM) of the mouse blastocyst and BMP signaling can also influence PE specification. In this study, we further explored the dynamics of FGFR2 expression through an enhanced green fluorescent protein (eGFP) reporter mouse line (FGFR2-eGFP). We observed that FGFR2-eGFP is present in the late 8-cell stage; however, it is absent or reduced in the ICM of early blastocysts. We then statistically correlated eGFP expression with PE and EPI markers GATA6 and NANOG, respectively. We detected that eGFP is weakly correlated with GATA6 in early blastocysts, but this correlation quickly increases as the blastocyst develops. The correlation between eGFP and NANOG decreases throughout blastocyst development. Treatment with FGF from the morula stage onwards did not affect FGFR2-eGFP presence in the ICM of early blastocysts; however, late blastocysts presented FGFR2-eGFP in all cells of the ICM. BMP treatment positively influenced FGFR2-eGFP expression and reduced the number of NANOG-positive cells in late blastocysts. In conclusion, FGFR2 is not strongly associated with PE precursors in the early blastocyst, but it is highly correlated with PE cells as blastocyst development progresses, consistent with the proposed role for FGFR2 in maintenance rather than initiating the PE lineage.
Collapse
Affiliation(s)
- Marcelo D. Goissis
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Brian Bradshaw
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Eszter Posfai
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Janet Rossant
- Program in Developmental and Stem Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Toyooka Y, Aoki K, Usami FM, Oka S, Kato A, Fujimori T. Generation of pulsatile ERK activity in mouse embryonic stem cells is regulated by Raf activity. Sci Rep 2023; 13:9465. [PMID: 37301878 PMCID: PMC10257726 DOI: 10.1038/s41598-023-36424-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
The extracellular signal-regulated kinase (ERK) is a serine/threonine kinase that is known to regulate cellular events such as cell proliferation and differentiation. The ERK signaling pathway is activated by fibroblast growth factors, and is considered to be indispensable for the differentiation of primitive endoderm cells, not only in mouse preimplantation embryos, but also in embryonic stem cell (ESC) culture. To monitor ERK activity in living undifferentiated and differentiating ESCs, we established EKAREV-NLS-EB5 ESC lines that stably express EKAREV-NLS, a biosensor based on the principle of fluorescence resonance energy transfer. Using EKAREV-NLS-EB5, we found that ERK activity exhibited pulsatile dynamics. ESCs were classified into two groups: active cells showing high-frequency ERK pulses, and inactive cells demonstrating no detectable ERK pulses during live imaging. Pharmacological inhibition of major components in the ERK signaling pathway revealed that Raf plays an important role in determining the pattern of ERK pulses.
Collapse
Affiliation(s)
- Yayoi Toyooka
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-Cho, Shogoin, Sakyo-Ku, Kyoto, 606-8507, Japan.
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, Okazaki, Japan
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Aichi, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Fumiko Matsukawa Usami
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan
| | - Sanae Oka
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan
| | - Azusa Kato
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki, Aichi, 444-8787, Japan.
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Aichi, Japan.
| |
Collapse
|
48
|
Regin M, Essahib W, Demtschenko A, Dewandre D, David L, Gerri C, Niakan KK, Verheyen G, Tournaye H, Sterckx J, Sermon K, Van De Velde H. Lineage segregation in human pre-implantation embryos is specified by YAP1 and TEAD1. Hum Reprod 2023:7193343. [PMID: 37295962 DOI: 10.1093/humrep/dead107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/02/2023] [Indexed: 06/12/2023] Open
Abstract
STUDY QUESTION Which processes and transcription factors specify the first and second lineage segregation events during human preimplantation development? SUMMARY ANSWER Differentiation into trophectoderm (TE) cells can be initiated independently of polarity; moreover, TEAD1 and YAP1 co-localize in (precursor) TE and primitive endoderm (PrE) cells, suggesting a role in both the first and the second lineage segregation events. WHAT IS KNOWN ALREADY We know that polarity, YAP1/GATA3 signalling and phospholipase C signalling play a key role in TE initiation in compacted human embryos, however, little is known about the TEAD family of transcription factors that become activated by YAP1 and, especially, whether they play a role during epiblast (EPI) and PrE formation. In mouse embryos, polarized outer cells show nuclear TEAD4/YAP1 activity that upregulates Cdx2 and Gata3 expression while inner cells exclude YAP1 which upregulates Sox2 expression. The second lineage segregation event in mouse embryos is orchestrated by FGF4/FGFR2 signalling which could not be confirmed in human embryos; TEAD1/YAP1 signalling also plays a role during the establishment of mouse EPI cells. STUDY DESIGN, SIZE, DURATION Based on morphology, we set up a development timeline of 188 human preimplantation embryos between Day 4 and 6 post-fertilization (dpf). The compaction process was divided into three subgroups: embryos at the start (C0), during (C1), and at the end (C2) of, compaction. Inner cells were identified as cells that were entirely separated from the perivitelline space and enclosed by cellular contacts on all sides. The blastulation process was divided into six subgroups, starting with early blastocysts with sickle-cell shaped outer cells (B0) and further on, blastocysts with a cavity (B1). Full blastocysts (B2) showed a visible ICM and outer cells referred to as TE. Further expanded blastocysts (B3) had accumulated fluid and started to expand due to TE cell proliferation and zona pellucida (ZP) thinning. The blastocysts then significantly expanded further (B4) and started to hatch out of the ZP (B5) until they were fully hatched (B6). PARTICIPANTS/MATERIALS, SETTING, METHODS After informed consent and the expiration of the 5-year cryopreservation duration, 188 vitrified high quality eight-cell stage human embryos (3 dpf) were warmed and cultured until the required stages were reached. We also cultured 14 embryos that were created for research until the four- and eight-cell stage. The embryos were scored according to their developmental stage (C0-B6) displaying morphological key differences, rather than defining them according to their chronological age. They were fixed and immunostained for different combinations of cytoskeleton (F-actin), polarization (p-ERM), TE (GATA3), EPI (NANOG), PrE (GATA4 and SOX17), and members of the Hippo signalling pathway (YAP1, TEAD1 and TEAD4). We choose these markers based on previous observations in mouse embryos and single cell RNA-sequencing data of human embryos. After confocal imaging (LSM800, Zeiss), we analysed cell numbers within each lineage, different co-localization patterns and nuclear enrichment. MAIN RESULTS AND THE ROLE OF CHANCE We found that in human preimplantation embryos compaction is a heterogeneous process that takes place between the eight-cell to the 16-cell stages. Inner and outer cells are established at the end of the compaction process (C2) when the embryos contain up to six inner cells. Full apical p-ERM polarity is present in all outer cells of compacted C2 embryos. Co-localization of p-ERM and F-actin increases steadily from 42.2% to 100% of the outer cells, between C2 and B1 stages, while p-ERM polarizes before F-actin (P < 0.00001). Next, we sought to determine which factors specify the first lineage segregation event. We found that 19.5% of the nuclei stain positive for YAP1 at the start of compaction (C0) which increases to 56.1% during compaction (C1). At the C2 stage, 84.6% of polarized outer cells display high levels of nuclear YAP1 while it is absent in 75% of non-polarized inner cells. In general, throughout the B0-B3 blastocyst stages, polarized outer/TE cells are mainly positive for YAP1 and non-polarized inner/ICM cells are negative for YAP1. From the C1 stage onwards, before polarity is established, the TE marker GATA3 is detectable in YAP1 positive cells (11.6%), indicating that differentiation into TE cells can be initiated independently of polarity. Co-localization of YAP1 and GATA3 increases steadily in outer/TE cells (21.8% in C2 up to 97.3% in B3). Transcription factor TEAD4 is ubiquitously present throughout preimplantation development from the compacted stage onwards (C2-B6). TEAD1 displays a distinct pattern that coincides with YAP1/GATA3 co-localization in the outer cells. Most outer/TE cells throughout the B0-B3 blastocyst stages are positive for TEAD1 and YAP1. However, TEAD1 proteins are also detected in most nuclei of the inner/ICM cells of the blastocysts from cavitation onwards, but at visibly lower levels as compared to that in TE cells. In the ICM of B3 blastocysts, we found one main population of cells with NANOG+/SOX17-/GATA4- nuclei (89.1%), but exceptionally we found NANOG+/SOX17+/GATA4+ cells (0.8%). In seven out of nine B3 blastocysts, nuclear NANOG was found in all the ICM cells, supporting the previously reported hypothesis that PrE cells arise from EPI cells. Finally, to determine which factors specify the second lineage segregation event, we co-stained for TEAD1, YAP1, and GATA4. We identified two main ICM cell populations in B4-6 blastocysts: the EPI (negative for the three markers, 46.5%) and the PrE (positive for the three markers, 28.1%) cells. We conclude that TEAD1 and YAP1 co-localise in (precursor) TE and PrE cells, indicating that TEAD1/YAP1 signalling plays a role in the first and the second lineage segregation events. LIMITATIONS, REASONS FOR CAUTION In this descriptive study, we did not perform functional studies to investigate the role of TEAD1/YAP1 signalling during the first and second lineage segregation events. WIDER IMPLICATIONS OF THE FINDINGS Our detailed roadmap on polarization, compaction, position and lineage segregation events during human preimplantation development paves the way for further functional studies. Understanding the gene regulatory networks and signalling pathways involved in early embryogenesis could ultimately provide insights into why embryonic development is sometimes impaired and facilitate the establishment of guidelines for good practice in the IVF lab. STUDY FUNDING/COMPETING INTERESTS This work was financially supported by Wetenschappelijk Fonds Willy Gepts (WFWG) of the University Hospital UZ Brussel (WFWG142) and the Fonds Wetenschappelijk Onderzoek-Vlaanderen (FWO, G034514N). M.R. is doctoral fellow at the FWO. The authors have no conflicts of interest to declare. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Marius Regin
- Research Group Reproduction and Genetics (REGE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Wafaa Essahib
- Research Group Reproduction and Immunology (REIM), Vrije Universiteit Brussel, Brussels, Belgium
| | - Andrej Demtschenko
- Research Group Reproduction and Genetics (REGE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Delphine Dewandre
- Research Group Reproduction and Genetics (REGE), Vrije Universiteit Brussel, Brussels, Belgium
- Beacon CARE Fertility, Beacon Consultants Concourse, Sandyford, Dublin, Ireland
| | - Laurent David
- Université de Nantes, CHU Nantes, INSERM, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
- Université de Nantes, CHU Nantes, INSERM, CNRS, SFR Santé, FED 4203, INSERM UMS 016, CNRS UMS 3556, Nantes, France
| | - Claudia Gerri
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
- Center for Systems Biology Dresden, Pfotenhauerstrasse 108, Dresden, 01307, Germany
| | - Kathy K Niakan
- Human Embryo and Stem Cell Laboratory, The Francis Crick Institute, London, UK
- Department of Physiology, Development and Neuroscience, Centre for Trophoblast Research, Cambridge, UK
- Wellcome Trust - Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - Greta Verheyen
- Brussels IVF, Universitair Ziekenhuis Brussel, Belgium, Brussels
| | - Herman Tournaye
- Brussels IVF, Universitair Ziekenhuis Brussel, Belgium, Brussels
- Department of Obstetrics, Gynaecology, Perinatology and Reproduction, Institute of Professional Education, Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation, Moscow, Russia
| | - Johan Sterckx
- Brussels IVF, Universitair Ziekenhuis Brussel, Belgium, Brussels
| | - Karen Sermon
- Research Group Reproduction and Genetics (REGE), Vrije Universiteit Brussel, Brussels, Belgium
| | - Hilde Van De Velde
- Research Group Reproduction and Immunology (REIM), Vrije Universiteit Brussel, Brussels, Belgium
- Brussels IVF, Universitair Ziekenhuis Brussel, Belgium, Brussels
| |
Collapse
|
49
|
Speckhart SL, Oliver MA, Ealy AD. Developmental Hurdles That Can Compromise Pregnancy during the First Month of Gestation in Cattle. Animals (Basel) 2023; 13:1760. [PMID: 37889637 PMCID: PMC10251927 DOI: 10.3390/ani13111760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 10/29/2023] Open
Abstract
Several key developmental events are associated with early embryonic pregnancy losses in beef and dairy cows. These developmental problems are observed at a greater frequency in pregnancies generated from in-vitro-produced bovine embryos. This review describes critical problems that arise during oocyte maturation, fertilization, early embryonic development, compaction and blastulation, embryonic cell lineage specification, elongation, gastrulation, and placentation. Additionally, discussed are potential remediation strategies, but unfortunately, corrective actions are not available for several of the problems being discussed. Further research is needed to produce bovine embryos that have a greater likelihood of surviving to term.
Collapse
Affiliation(s)
| | | | - Alan D. Ealy
- School of Animal Science, Virginia Tech, Blacksburg, VA 24061, USA; (S.L.S.); (M.A.O.)
| |
Collapse
|
50
|
Meharwade T, Joumier L, Parisotto M, Huynh V, Lummertz da Rocha E, Malleshaiah M. Cross-activation of FGF, NODAL, and WNT pathways constrains BMP-signaling-mediated induction of the totipotent state in mouse embryonic stem cells. Cell Rep 2023; 42:112438. [PMID: 37126449 DOI: 10.1016/j.celrep.2023.112438] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 11/11/2022] [Accepted: 04/11/2023] [Indexed: 05/02/2023] Open
Abstract
Embryonic stem cells (ESCs) are an attractive model to study the relationship between signaling and cell fates. Cultured mouse ESCs can exist in multiple states resembling distinct stages of early embryogenesis, such as totipotent, pluripotent, primed, and primitive endoderm. The signaling mechanisms regulating the totipotent state and coexistence of these states are poorly understood. Here we identify bone morphogenetic protein (BMP) signaling as an inducer of the totipotent state. However, we discover that BMP's role is constrained by the cross-activation of FGF, NODAL, and WNT pathways. We exploit this finding to enhance the proportion of totipotent cells by rationally inhibiting the cross-activated pathways. Single-cell mRNA sequencing reveals that induction of the totipotent state is accompanied by suppression of primed and primitive endoderm states. Furthermore, reprogrammed totipotent cells we generate in culture resemble totipotent cells of preimplantation embryo. Our findings reveal a BMP signaling mechanism regulating both the totipotent state and heterogeneity of ESCs.
Collapse
Affiliation(s)
- Thulaj Meharwade
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Loïck Joumier
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Maxime Parisotto
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada
| | - Vivian Huynh
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada
| | - Edroaldo Lummertz da Rocha
- Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Mohan Malleshaiah
- Montreal Clinical Research Institute (IRCM), 110 Pine Avenue West, Montreal, QC H2W 1R7, Canada; Department of Biochemistry and Molecular Medicine, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; Molecular Biology Program, University of Montreal, C.P. 6128, Succursale Centre-ville, Montreal, QC H3C 3J7, Canada; The Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada; McGill Regenerative Medicine Network, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada.
| |
Collapse
|