1
|
Nguyen T, Pelletier G, Bednaršek N, Gracey A. Single-Larva RNA Sequencing Reveals That Red Sea Urchin Larvae Are Vulnerable to Co-Occurring Ocean Acidification and Hypoxia. Mol Ecol 2025; 34:e17658. [PMID: 39822122 DOI: 10.1111/mec.17658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/19/2025]
Abstract
Anthropogenic carbon dioxide emissions have been increasing rapidly in recent years, driving pH and oxygen levels to record low concentrations in the oceans. Eastern boundary upwelling systems such as the California Current System (CCS) experience exacerbated ocean acidification and hypoxia (OAH) due to the physical and chemical properties of the transported deeper waters. Research efforts have significantly increased in recent years to investigate the deleterious effects of climate change on marine species, but have not focused on the impacts of simultaneous OAH stressor exposure. Additionally, few studies have explored the physiological impacts of these environmental stressors on the earliest life stages, which are more vulnerable and represent natural population bottlenecks in organismal life cycles. The physiological response of the ecologically and commercially important red sea urchin (Mesocentrotus franciscanus) was assessed by exposing larvae to a variety of OAH conditions, mimicking the range of ecologically relevant conditions encountered currently and in the near future along the CCS. Skeleton dissolution, larval development, and gene expression show a response with clearly delineated thresholds that were related to OAH severity. Skeletal dissolution and the induction of Acid-sensing Ion Channel 1A at pH 7.94/5.70 DO mg/L provide particularly sensitive markers of OAH, with dramatic shifts in larval morphology and gene expression detected at the pH/DO transition of 7.71/3.71-7.27/2.72 mg/L. Experimental simulations that describe physiological thresholds and establish molecular markers of OAH exposure will provide fishery management with the tools to predict patterns of larval recruitment and forecast population dynamics.
Collapse
Affiliation(s)
- Tina Nguyen
- Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA
| | - Greg Pelletier
- Washington Department of Ecology, Olympia, Washington, USA
| | - Nina Bednaršek
- Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center, Oregon State University, Corvallis, Oregon, USA
- Department of Environmental Sciences, Jozef Stefan Institute, Ljubljana, Slovenia
| | - Andrew Gracey
- Marine and Environmental Biology, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
2
|
Berrio A, Miranda E, Massri AJ, Afanassiev A, Schiebinger G, Wray GA, McClay DR. Reprogramming of cells during embryonic transfating: overcoming a reprogramming block. Development 2024; 151:dev203152. [PMID: 39628450 DOI: 10.1242/dev.203152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
Regulative development, demonstrated by many animal embryos, is the ability to replace missing cells or parts. The underlying molecular mechanism(s) of that ability is not well understood. If sea urchin micromeres (skeletogenic cell progenitors) are removed at the 16-cell stage, early endoderm initiates a sequential switch in cell fates, called transfating. Without micromeres, other mesoderm cells are absent as well, because their specification depends on signaling from micromeres. Most mesoderm cells later return by transfating, but pigment cells do not. Single-cell RNA sequencing, tracked over time, reveals the reprogramming sequence of those replacements. Beginning with an early endoderm specification state, cells progress through endomesoderm, then mesoderm, and finally distinct skeletogenic and blastocoelar cell specification states emerge, but pigment cells do not. Rescue of pigment cells was found to be a consequence of signal timing: if Delta is expressed prior to Nodal, pigment cells return. Thus, transfating operates through a series of gene regulatory state transitions, and reprogramming fails if endogenous negative signals occur prior to positive signals in the reprogramming sequence.
Collapse
Affiliation(s)
| | - Esther Miranda
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
3
|
Lhomond G, Schubert M, Croce J. Spatiotemporal requirements of nuclear β-catenin define early sea urchin embryogenesis. PLoS Biol 2024; 22:e3002880. [PMID: 39531468 DOI: 10.1371/journal.pbio.3002880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 12/20/2024] [Accepted: 10/04/2024] [Indexed: 11/16/2024] Open
Abstract
Establishment of the 3 primordial germ layers (ectoderm, endoderm, and mesoderm) during early animal development represents an essential prerequisite for the emergence of properly patterned embryos. β-catenin is an ancient protein that is known to play essential roles in this process. However, these roles have chiefly been established through inhibition of β-catenin translation or function at the time of fertilization. Comprehensive analyses reporting the totality of functions played by nuclear β-catenin during early embryogenesis of a given animal, i.e., at different developmental stages and in different germ layers, are thus still lacking. In this study, we used an inducible, conditional knockdown system in the sea urchin to characterize all possible requirements of β-catenin for germ layer establishment and patterning. By blocking β-catenin protein production starting at 7 different time points of early development, between fertilization and 12 h post fertilization, we established a clear correlation between the position of a germ layer along the primary embryonic axis (the animal-vegetal axis) and its dependence on nuclear β-catenin activity. For example, in the vegetal hemisphere, we determined that the 3 germ layers (skeletogenic mesoderm, non-skeletogenic mesoderm, and endoderm) require distinct and highly specific durations of β-catenin production for their respective specification, with the most vegetal germ layer, the skeletogenic mesoderm, requiring the shortest duration. Likewise, for the 2 animal territories (ectoderm and anterior neuroectoderm), we established that their restriction, along the animal-vegetal axis, relies on different durations of β-catenin production and that the longest duration is required for the most animal territory, the anterior neuroectoderm. Moreover, we found that 2 of the vegetal germ layers, the non-skeletogenic mesoderm and the endoderm, further require a prolonged period of nuclear β-catenin activity after their specification to maintain their respective germ layer identities through time. Finally, we determined that restriction of the anterior neuroectoderm territory depends on at least 2 nuclear β-catenin-dependent inputs and a nuclear β-catenin-independent mechanism. Taken together, this work is the first to comprehensively define the spatiotemporal requirements of β-catenin during the early embryogenesis of a single animal, the sea urchin Paracentrotus lividus, thereby providing new experimental evidence for a better understanding of the roles played by this evolutionary conserved protein during animal development.
Collapse
Affiliation(s)
- Guy Lhomond
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Michael Schubert
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| | - Jenifer Croce
- Sorbonne Université, CNRS, Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Evolution of Intercellular Signaling in Development (EvoInSiDe), Villefranche-sur-Mer, France
| |
Collapse
|
4
|
Konrad KD, Arnott M, Testa M, Suarez S, Song JL. microRNA-124 directly suppresses Nodal and Notch to regulate mesodermal development. Dev Biol 2023; 502:50-62. [PMID: 37419400 PMCID: PMC10719910 DOI: 10.1016/j.ydbio.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
MicroRNAs regulate gene expression post-transcriptionally by destabilizing and/or inhibiting translation of target mRNAs in animal cells. MicroRNA-124 (miR-124) has been examined mostly in the context of neurogenesis. This study discovers a novel role of miR-124 in regulating mesodermal cell differentiation in the sea urchin embryo. The expression of miR-124 is first detectable at 12hours post fertilization at the early blastula stage, during endomesodermal specification. Mesodermally-derived immune cells come from the same progenitor cells that give rise to blastocoelar cells (BCs) and pigment cells (PCs) that must make a binary fate decision. We determined that miR-124 directly represses Nodal and Notch to regulate BC and PC differentiation. miR-124 inhibition does not impact the dorsal-ventral axis formation, but result in a significant increase in number of cells expressing BC-specific transcription factors (TFs) and a concurrent reduction of differentiated PCs. In general, removing miR-124's suppression of Nodal phenocopies miR124 inhibition. Interestingly, removing miR-124's suppression of Notch leads to an increased number of both BCs and PCs, with a subset of hybrid cells that express both BC- and PC-specific TFs in the larvae. Removal of miR-124's suppression of Notch not only affects differentiation of both BCs and PCs, but also induces cell proliferation of these cells during the first wave of Notch signaling. This study demonstrates that post-transcriptional regulation by miR-124 impacts differentiation of BCs and PCs by regulating the Nodal and Notch signaling pathways.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malcolm Arnott
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Michael Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Santiago Suarez
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
5
|
Massri AJ, McDonald B, Wray GA, McClay DR. Feedback circuits are numerous in embryonic gene regulatory networks and offer a stabilizing influence on evolution of those networks. EvoDevo 2023; 14:10. [PMID: 37322563 DOI: 10.1186/s13227-023-00214-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 06/06/2023] [Indexed: 06/17/2023] Open
Abstract
The developmental gene regulatory networks (dGRNs) of two sea urchin species, Lytechinus variegatus (Lv) and Strongylocentrotus purpuratus (Sp), have remained remarkably similar despite about 50 million years since a common ancestor. Hundreds of parallel experimental perturbations of transcription factors with similar outcomes support this conclusion. A recent scRNA-seq analysis suggested that the earliest expression of several genes within the dGRNs differs between Lv and Sp. Here, we present a careful reanalysis of the dGRNs in these two species, paying close attention to timing of first expression. We find that initial expression of genes critical for cell fate specification occurs during several compressed time periods in both species. Previously unrecognized feedback circuits are inferred from the temporally corrected dGRNs. Although many of these feedbacks differ in location within the respective GRNs, the overall number is similar between species. We identify several prominent differences in timing of first expression for key developmental regulatory genes; comparison with a third species indicates that these heterochronies likely originated in an unbiased manner with respect to embryonic cell lineage and evolutionary branch. Together, these results suggest that interactions can evolve even within highly conserved dGRNs and that feedback circuits may buffer the effects of heterochronies in the expression of key regulatory genes.
Collapse
Affiliation(s)
| | - Brennan McDonald
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - Gregory A Wray
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Box 90338, Durham, NC, 27708, USA.
| |
Collapse
|
6
|
Spurrell M, Oulhen N, Foster S, Perillo M, Wessel G. Gene regulatory divergence amongst echinoderms underlies appearance of pigment cells in sea urchin development. Dev Biol 2023; 494:13-25. [PMID: 36519720 PMCID: PMC9870932 DOI: 10.1016/j.ydbio.2022.11.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 09/14/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Larvae of the sea urchin, Strongylocentrotus purpuratus, have pigmented migratory cells implicated in immune defense and gut patterning. The transcription factor SpGcm activates the expression of many pigment cell-specific genes, including those involved in pigment biosynthesis (SpPks1 and SpFmo3) and immune related genes (e.g. SpMif5). Despite the importance of this cell type in sea urchins, pigmented cells are absent in larvae of the sea star, Patiria miniata. In this study, we tested the premises that sea stars lack genes to synthesize echinochrome pigment, that the genes are present but are not expressed in the larvae, or rather that the homologous gene expression does not contribute to echinochrome synthesis. Our results show that orthologs of sea urchin pigment cell-specific genes (PmPks1, PmFmo3-1 and PmMifL1-2) are present in the sea star genome and expressed in the larvae. Although no cell lineage homologous to migratory sea urchin pigment cells is present, dynamic gene activation accomplishes a similar spatial and temporal expression profile. The mechanisms regulating the expression of these genes, though, is highly divergent. In sea stars, PmGcm lacks the central role in pigment gene expression since it is not expressed in PmPks1 and PmFmo3-1-positive cells, and knockdown of Gcm does not abrogate pigment gene expression. Pigment genes are instead expressed in the coelomic mesoderm early in development before later being expressed in the ectoderm. These findings were supported by in situ RNA hybridization and comparative scRNA-seq analyses. We conclude that simply the coexpression of Pks1 and Fmo3 orthologs in cells of the sea star is not sufficient to underlie the emergence of the larval pigment cell in the sea urchin.
Collapse
Affiliation(s)
- Maxwell Spurrell
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Nathalie Oulhen
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Stephany Foster
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Margherita Perillo
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA
| | - Gary Wessel
- Brown University, Department of Molecular Biology, Cell Biology & Biochemistry, Providence, RI, USA.
| |
Collapse
|
7
|
Davidson PL, Guo H, Swart JS, Massri AJ, Edgar A, Wang L, Berrio A, Devens HR, Koop D, Cisternas P, Zhang H, Zhang Y, Byrne M, Fan G, Wray GA. Recent reconfiguration of an ancient developmental gene regulatory network in Heliocidaris sea urchins. Nat Ecol Evol 2022; 6:1907-1920. [PMID: 36266460 DOI: 10.1038/s41559-022-01906-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 09/12/2022] [Indexed: 12/15/2022]
Abstract
Changes in developmental gene regulatory networks (dGRNs) underlie much of the diversity of life, but the evolutionary mechanisms that operate on regulatory interactions remain poorly understood. Closely related species with extreme phenotypic divergence provide a valuable window into the genetic and molecular basis for changes in dGRNs and their relationship to adaptive changes in organismal traits. Here we analyse genomes, epigenomes and transcriptomes during early development in two Heliocidaris sea urchin species that exhibit highly divergent life histories and in an outgroup species. Positive selection and chromatin accessibility modifications within putative regulatory elements are enriched on the branch leading to the derived life history, particularly near dGRN genes. Single-cell transcriptomes reveal a dramatic delay in cell fate specification in the derived state, which also has far fewer open chromatin regions, especially near conserved cell fate specification genes. Experimentally perturbing key transcription factors reveals profound evolutionary changes to early embryonic patterning events, disrupting regulatory interactions previously conserved for ~225 million years. These results demonstrate that natural selection can rapidly reshape developmental gene expression on a broad scale when selective regimes abruptly change. More broadly, even highly conserved dGRNs and patterning mechanisms in the early embryo remain evolvable under appropriate ecological circumstances.
Collapse
Affiliation(s)
| | - Haobing Guo
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Jane S Swart
- Department of Biology, Duke University, Durham, NC, USA
| | | | - Allison Edgar
- Department of Biology, Duke University, Durham, NC, USA
| | - Lingyu Wang
- Department of Biology, Duke University, Durham, NC, USA
| | | | | | - Demian Koop
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Paula Cisternas
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - He Zhang
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Yaolei Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- Qingdao-Europe Advanced Institute for Life Sciences, BGI-Qingdao, BGI-Shenzhen, Qingdao, China
| | - Maria Byrne
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, China
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC, USA.
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
McClay DR, Croce JC, Warner JF. Reprint of: Conditional specification of endomesoderm. Cells Dev 2021; 168:203731. [PMID: 34610899 DOI: 10.1016/j.cdev.2021.203731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Early in animal development many cells are conditionally specified based on observations that those cells can be directed toward alternate fates. The endomesoderm is so named because early specification produces cells that often have been observed to simultaneously express both early endoderm and mesoderm transcription factors. Experiments with these cells demonstrate that their progeny can directed entirely toward endoderm or mesoderm, whereas normally they establish both germ layers. This review examines the mechanisms that initiate the conditional endomesoderm state, its metastability, and the mechanisms that resolve that state into definitive endoderm and mesoderm.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC, USA.
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Villefranche-sur-Mer, France.
| | - Jacob F Warner
- Department of Biology, University of North Carolina, Wilmington, NC, USA.
| |
Collapse
|
9
|
Massri AJ, Greenstreet L, Afanassiev A, Berrio A, Wray GA, Schiebinger G, McClay DR. Developmental single-cell transcriptomics in the Lytechinus variegatus sea urchin embryo. Development 2021; 148:271986. [PMID: 34463740 DOI: 10.1242/dev.198614] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Using scRNA-seq coupled with computational approaches, we studied transcriptional changes in cell states of sea urchin embryos during development to the larval stage. Eighteen closely spaced time points were taken during the first 24 h of development of Lytechinus variegatus (Lv). Developmental trajectories were constructed using Waddington-OT, a computational approach to 'stitch' together developmental time points. Skeletogenic and primordial germ cell trajectories diverged early in cleavage. Ectodermal progenitors were distinct from other lineages by the 6th cleavage, although a small percentage of ectoderm cells briefly co-expressed endoderm markers that indicated an early ecto-endoderm cell state, likely in cells originating from the equatorial region of the egg. Endomesoderm cells also originated at the 6th cleavage and this state persisted for more than two cleavages, then diverged into distinct endoderm and mesoderm fates asynchronously, with some cells retaining an intermediate specification status until gastrulation. Seventy-nine out of 80 genes (99%) examined, and included in published developmental gene regulatory networks (dGRNs), are present in the Lv-scRNA-seq dataset and are expressed in the correct lineages in which the dGRN circuits operate.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Laura Greenstreet
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - Anton Afanassiev
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | | | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Columbia, 121-1984 Mathematics Road, Vancouver, BC V6T 1Z2, Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
10
|
McClay DR, Croce JC, Warner JF. Conditional specification of endomesoderm. Cells Dev 2021; 167:203716. [PMID: 34245941 DOI: 10.1016/j.cdev.2021.203716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 10/20/2022]
Abstract
Early in animal development many cells are conditionally specified based on observations that those cells can be directed toward alternate fates. The endomesoderm is so named because early specification produces cells that often have been observed to simultaneously express both early endoderm and mesoderm transcription factors. Experiments with these cells demonstrate that their progeny can directed entirely toward endoderm or mesoderm, whereas normally they establish both germ layers. This review examines the mechanisms that initiate the conditional endomesoderm state, its metastability, and the mechanisms that resolve that state into definitive endoderm and mesoderm.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, Duke University, Durham, NC, USA.
| | - Jenifer C Croce
- Sorbonne Université, CNRS, Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), Institut de la Mer de Villefranche, Villefranche-sur-Mer, France.
| | - Jacob F Warner
- Department of Biology, University of North Carolina, Wilmington, NC, USA.
| |
Collapse
|
11
|
Composite morphogenesis during embryo development. Semin Cell Dev Biol 2021; 120:119-132. [PMID: 34172395 DOI: 10.1016/j.semcdb.2021.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/23/2021] [Accepted: 06/13/2021] [Indexed: 11/21/2022]
Abstract
Morphogenesis drives the formation of functional living shapes. Gene expression patterns and signaling pathways define the body plans of the animal and control the morphogenetic processes shaping the embryonic tissues. During embryogenesis, a tissue can undergo composite morphogenesis resulting from multiple concomitant shape changes. While previous studies have unraveled the mechanisms that drive simple morphogenetic processes, how a tissue can undergo multiple and simultaneous changes in shape is still not known and not much explored. In this chapter, we focus on the process of concomitant tissue folding and extension that is vital for the animal since it is key for embryo gastrulation and neurulation. Recent pioneering studies focus on this problem highlighting the roles of different spatially coordinated cell mechanisms or of the synergy between different patterns of gene expression to drive composite morphogenesis.
Collapse
|
12
|
Adonin L, Drozdov A, Barlev NA. Sea Urchin as a Universal Model for Studies of Gene Networks. Front Genet 2021; 11:627259. [PMID: 33552139 PMCID: PMC7854572 DOI: 10.3389/fgene.2020.627259] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/10/2020] [Indexed: 01/06/2023] Open
Abstract
The purple sea urchin Strongylocentrotus purpuratus has been used for over 150 years as a model organism in developmental biology. Using this model species, scientists have been able to describe, in detail, the mechanisms of cell cycle control and cell adhesion, fertilization, calcium signaling, cell differentiation, and death. Massive parallel sequencing of the sea urchin genome enabled the deciphering of the main components of gene regulatory networks during the activation of embryonic signaling pathways. This knowledge helped to extrapolate aberrations in somatic cells that may lead to diseases, including cancer in humans. Furthermore, since many, if not all, developmental signaling pathways were shown to be controlled by non-coding RNAs (ncRNAs), the sea urchin organism represents an attractive experimental model. In this review, we discuss the main discoveries in the genetics, genomics, and transcriptomics of sea urchins during embryogenesis with the main focus on the role of ncRNAs. This information may be useful for comparative studies between different organisms, and may help identify new regulatory networks controlled by ncRNAs.
Collapse
Affiliation(s)
- Leonid Adonin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russia
| | - Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, Russia
| | - Nickolai A Barlev
- Moscow Institute of Physics and Technology, Dolgoprudny, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, Russia.,Institute of Cytology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
13
|
Cary GA, McCauley BS, Zueva O, Pattinato J, Longabaugh W, Hinman VF. Systematic comparison of sea urchin and sea star developmental gene regulatory networks explains how novelty is incorporated in early development. Nat Commun 2020; 11:6235. [PMID: 33277483 PMCID: PMC7719182 DOI: 10.1038/s41467-020-20023-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 11/09/2020] [Indexed: 12/26/2022] Open
Abstract
The extensive array of morphological diversity among animal taxa represents the product of millions of years of evolution. Morphology is the output of development, therefore phenotypic evolution arises from changes to the topology of the gene regulatory networks (GRNs) that control the highly coordinated process of embryogenesis. A particular challenge in understanding the origins of animal diversity lies in determining how GRNs incorporate novelty while preserving the overall stability of the network, and hence, embryonic viability. Here we assemble a comprehensive GRN for endomesoderm specification in the sea star from zygote through gastrulation that corresponds to the GRN for sea urchin development of equivalent territories and stages. Comparison of the GRNs identifies how novelty is incorporated in early development. We show how the GRN is resilient to the introduction of a transcription factor, pmar1, the inclusion of which leads to a switch between two stable modes of Delta-Notch signaling. Signaling pathways can function in multiple modes and we propose that GRN changes that lead to switches between modes may be a common evolutionary mechanism for changes in embryogenesis. Our data additionally proposes a model in which evolutionarily conserved network motifs, or kernels, may function throughout development to stabilize these signaling transitions.
Collapse
Affiliation(s)
- Gregory A Cary
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - Brenna S McCauley
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
- Huffington Center on Aging, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Olga Zueva
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Joseph Pattinato
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | | | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
14
|
Perillo M, Oulhen N, Foster S, Spurrell M, Calestani C, Wessel G. Regulation of dynamic pigment cell states at single-cell resolution. eLife 2020; 9:e60388. [PMID: 32812865 PMCID: PMC7455242 DOI: 10.7554/elife.60388] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022] Open
Abstract
Cells bearing pigment have diverse roles and are often under strict evolutionary selection. Here, we explore the regulation of pigmented cells in the purple sea urchin Strongylocentrotus purpuratus, an emerging model for diverse pigment function. We took advantage of single cell RNA-seq (scRNAseq) technology and discovered that pigment cells in the embryo segregated into two distinct populations, a mitotic cluster and a post-mitotic cluster. Gcm is essential for expression of several genes important for pigment function, but is only transiently expressed in these cells. We discovered unique genes expressed by pigment cells and test their expression with double fluorescence in situ hybridization. These genes include new members of the fmo family that are expressed selectively in pigment cells of the embryonic and in the coelomic cells of the adult - both cell-types having immune functions. Overall, this study identifies nodes of molecular intersection ripe for change by selective evolutionary pressures.
Collapse
Affiliation(s)
- Margherita Perillo
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Nathalie Oulhen
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Stephany Foster
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | - Maxwell Spurrell
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| | | | - Gary Wessel
- Department of Molecular and Cellular Biology Division of Biology and Medicine Brown UniversityProvidenceUnited States
| |
Collapse
|
15
|
Peter IS. The function of architecture and logic in developmental gene regulatory networks. Curr Top Dev Biol 2020; 139:267-295. [PMID: 32450963 DOI: 10.1016/bs.ctdb.2020.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An important contribution of systems biology is the insight that biological systems depend on the function of molecular interactions and not just on individual molecules. System level mechanisms are particularly important in the development of animals and plants which depends not just on transcription factors and signaling molecules, but also on regulatory circuits and gene regulatory networks (GRNs). However, since GRNs consist of transcription factors, it can be challenging to assess the function of regulatory circuits independently of the function of regulatory factors. The comparison of different GRNs offers a way to do so and leads to several observations. First, similar regulatory circuits operate in various developmental contexts and in different species, and frequently, these circuits are associated with similar developmental functions. Second, given regulatory circuits are often used at particular positions within the GRN hierarchy. Third, in some GRNs, regulatory circuits are organized in a particular order in respect to each other. And fourth, the evolution of GRNs occurs not just by co-option of regulatory genes but also by rewiring of regulatory linkages between conserved regulatory genes, indicating that the organization of interactions is important. Thus, even though in most instances the function of regulatory circuits remains to be discovered, it becomes evident that the architecture and logic of GRNs are functionally important for the control of genome activity and for the specification of the body plan.
Collapse
Affiliation(s)
- Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
16
|
Ettensohn CA. The gene regulatory control of sea urchin gastrulation. Mech Dev 2020; 162:103599. [PMID: 32119908 DOI: 10.1016/j.mod.2020.103599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
The cell behaviors associated with gastrulation in sea urchins have been well described. More recently, considerable progress has been made in elucidating gene regulatory networks (GRNs) that underlie the specification of early embryonic territories in this experimental model. This review integrates information from these two avenues of work. I discuss the principal cell movements that take place during sea urchin gastrulation, with an emphasis on molecular effectors of the movements, and summarize our current understanding of the gene regulatory circuitry upstream of those effectors. A case is made that GRN biology can provide a causal explanation of gastrulation, although additional analysis is needed at several levels of biological organization in order to provide a deeper understanding of this complex morphogenetic process.
Collapse
Affiliation(s)
- Charles A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Ave., Pittsburgh, PA 15213, USA.
| |
Collapse
|
17
|
Hogan JD, Keenan JL, Luo L, Ibn-Salem J, Lamba A, Schatzberg D, Piacentino ML, Zuch DT, Core AB, Blumberg C, Timmermann B, Grau JH, Speranza E, Andrade-Navarro MA, Irie N, Poustka AJ, Bradham CA. The developmental transcriptome for Lytechinus variegatus exhibits temporally punctuated gene expression changes. Dev Biol 2019; 460:139-154. [PMID: 31816285 DOI: 10.1016/j.ydbio.2019.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
Embryonic development is arguably the most complex process an organism undergoes during its lifetime, and understanding this complexity is best approached with a systems-level perspective. The sea urchin has become a highly valuable model organism for understanding developmental specification, morphogenesis, and evolution. As a non-chordate deuterostome, the sea urchin occupies an important evolutionary niche between protostomes and vertebrates. Lytechinus variegatus (Lv) is an Atlantic species that has been well studied, and which has provided important insights into signal transduction, patterning, and morphogenetic changes during embryonic and larval development. The Pacific species, Strongylocentrotus purpuratus (Sp), is another well-studied sea urchin, particularly for gene regulatory networks (GRNs) and cis-regulatory analyses. A well-annotated genome and transcriptome for Sp are available, but similar resources have not been developed for Lv. Here, we provide an analysis of the Lv transcriptome at 11 timepoints during embryonic and larval development. Temporal analysis suggests that the gene regulatory networks that underlie specification are well-conserved among sea urchin species. We show that the major transitions in variation of embryonic transcription divide the developmental time series into four distinct, temporally sequential phases. Our work shows that sea urchin development occurs via sequential intervals of relatively stable gene expression states that are punctuated by abrupt transitions.
Collapse
Affiliation(s)
- John D Hogan
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Lingqi Luo
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | - Jonas Ibn-Salem
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Faculty of Biology, Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Arjun Lamba
- Biology Department, Boston University, Boston, MA, USA
| | | | - Michael L Piacentino
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Daniel T Zuch
- Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA
| | - Amanda B Core
- Biology Department, Boston University, Boston, MA, USA
| | | | - Bernd Timmermann
- Sequencing Core Facility, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - José Horacio Grau
- Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany; Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Emily Speranza
- Program in Bioinformatics, Boston University, Boston, MA, USA
| | | | - Naoki Irie
- Department of Biological Sciences, University of Tokyo, Tokyo, Japan
| | - Albert J Poustka
- Evolution and Development Group, Max-Planck Institute for Molecular Genetics, Berlin, Germany; Dahlem Centre for Genome Research and Medical Systems Biology, Environmental and Phylogenomics Group, Berlin, Germany
| | - Cynthia A Bradham
- Program in Bioinformatics, Boston University, Boston, MA, USA; Biology Department, Boston University, Boston, MA, USA; Program in Molecular and Cellular Biology and Biochemistry, Boston University, Boston, MA, USA.
| |
Collapse
|
18
|
Abstract
Gastrulation is arguably the most important evolutionary innovation in the animal kingdom. This process provides the basic embryonic architecture, an inner layer separated from an outer layer, from which all animal forms arise. An extraordinarily simple and elegant process of gastrulation is observed in the sea urchin embryo. The cells participating in sea urchin gastrulation are specified early during cleavage. One outcome of that specification is the expression of transcription factors that control each of the many subsequent morphogenetic changes. The first of these movements is an epithelial-mesenchymal transition (EMT) of skeletogenic mesenchyme cells, then EMT of pigment cell progenitors. Shortly thereafter, invagination of the archenteron occurs. At the end of archenteron extension, a second wave of EMT occurs to release immune cells into the blastocoel and primordial germ cells that will home to the coelomic pouches. The archenteron then remodels to establish the three parts of the gut, and at the anterior end, the gut fuses with the stomodaeum to form the through-gut. As part of the anterior remodeling, mesodermal coelomic pouches bud off the lateral sides of the archenteron tip. Multiple cell biological processes conduct each of these movements and in some cases the upstream transcription factors controlling this process have been identified. Remarkably, each event seamlessly occurs at the right time to orchestrate formation of the primitive body plan. This review covers progress toward understanding many of the molecular mechanisms underlying this sequence of morphogenetic events.
Collapse
|
19
|
Annunziata R, Andrikou C, Perillo M, Cuomo C, Arnone MI. Development and evolution of gut structures: from molecules to function. Cell Tissue Res 2019; 377:445-458. [PMID: 31446445 DOI: 10.1007/s00441-019-03093-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/09/2019] [Indexed: 12/13/2022]
Abstract
The emergence of a specialized system for food digestion and nutrient absorption was a crucial innovation for multicellular organisms. Digestive systems with different levels of complexity evolved in different animals, with the endoderm-derived one-way gut of most bilaterians to be the prevailing and more specialized form. While the molecular events regulating the early phases of embryonic tissue specification have been deeply investigated in animals occupying different phylogenetic positions, the mechanisms underlying gut patterning and gut-associated structures differentiation are still mostly obscure. In this review, we describe the main discoveries in gut and gut-associated structures development in echinoderm larvae (mainly for sea urchin and, when available, for sea star) and compare them with existing information in vertebrates. An impressive degree of conservation emerges when comparing the transcription factor toolkits recruited for gut cells and tissue differentiation in animals as diverse as echinoderms and vertebrates, thus suggesting that their function emerged in the deuterostome ancestor.
Collapse
Affiliation(s)
- Rossella Annunziata
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Carmen Andrikou
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5006, Bergen, Norway
| | - Margherita Perillo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
- Department of Molecular and Cell Biology and Biochemistry, Brown University, 185 Meeting St, Providence, RI, 02912, USA
| | - Claudia Cuomo
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy
| | - Maria I Arnone
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa comunale, 80121, Naples, Italy.
| |
Collapse
|
20
|
Abstract
The regulatory genome controls genome activity throughout the life of an organism. This requires that complex information processing functions are encoded in, and operated by, the regulatory genome. Although much remains to be learned about how the regulatory genome works, we here discuss two cases where regulatory functions have been experimentally dissected in great detail and at the systems level, and formalized by computational logic models. Both examples derive from the sea urchin embryo, but assess two distinct organizational levels of genomic information processing. The first example shows how the regulatory system of a single gene, endo16, executes logic operations through individual transcription factor binding sites and cis-regulatory modules that control the expression of this gene. The second example shows information processing at the gene regulatory network (GRN) level. The GRN controlling development of the sea urchin endomesoderm has been experimentally explored at an almost complete level. A Boolean logic model of this GRN suggests that the modular logic functions encoded at the single-gene level show compositionality and suffice to account for integrated function at the network level. We discuss these examples both from a biological-experimental point of view and from a computer science-informational point of view, as both illuminate principles of how the regulatory genome works.
Collapse
Affiliation(s)
- Sorin Istrail
- Department of Computer Science, Brown University, Providence, Rhode Island
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, MC156-29, California Institute of Technology, Pasadena, California
| |
Collapse
|
21
|
Whole mount in situ hybridization techniques for analysis of the spatial distribution of mRNAs in sea urchin embryos and early larvae. Methods Cell Biol 2019. [PMID: 30948007 DOI: 10.1016/bs.mcb.2019.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
A critical process in embryonic development is the activation and spatial localization of mRNAs to specific cells and territories of the embryo. Revealing the spatial distribution of mRNAs and how it changes during development is a vital piece of information that aids in understanding the signaling and regulatory genes driving specific gene regulatory networks. In the laboratory, a cost-efficient, reliable method to determine the spatial distribution of mRNAs in embryos is in situ hybridization. This sensitive and straightforward method employs exogenous antisense RNA probes to find specific and complementary sequences in fixed embryos. Antigenic moieties conjugated to the ribonucleotides incorporated in the probe cross-react with antibodies, and numerous staining methods can be subsequently employed to reveal the spatial distribution of the targeted mRNA. The quality of the data produced by this method is equivalent to the experience of the researcher, and thus a thorough understanding of the numerous steps comprising this method is important for obtaining high quality data. Here we compile and summarize several protocols that have been employed chiefly on five sea urchin species in numerous laboratories around the world. Whereas the protocols can vary for the different species, the overarching steps are similar and can be readily mastered. When properly and carefully undertaken, in situ hybridization is a powerful tool providing unambiguous data for which there currently is no comparable substitute and will continue to be an important method in the era of big data and beyond.
Collapse
|
22
|
Molina MD, Gache C, Lepage T. Expression of exogenous mRNAs to study gene function in echinoderm embryos. Methods Cell Biol 2019; 151:239-282. [PMID: 30948011 DOI: 10.1016/bs.mcb.2018.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
With the completion of the genome sequencing projects, a new challenge for developmental biologists is to assign a function to the thousands of genes identified. Expression of exogenous mRNAs is a powerful, versatile and rapid technique that can be used to study gene function during development of the sea urchin. This chapter describes how this technique can be used to analyze gene function in echinoderm embryos, how it can be combined with cell transplantation to perform mosaic analysis and how it can be applied to identify downstream targets genes of transcription factors and signaling pathways. We describe specific examples of the use of overexpression of mRNA to analyze gene function, mention the benefits and current limitations of the technique and emphasize the importance of using different controls to assess the specificity of the effects observed. Finally, this chapter details the different steps, vectors and protocols for in vitro production of mRNA and phenotypic analysis.
Collapse
Affiliation(s)
| | - Christian Gache
- Université Pierre et Marie Curie, Observatoire Océanologique de Villefranche sur Mer, UMR7009 CNRS, Paris, France
| | - Thierry Lepage
- Université Côte d'Azur, CNRS, INSERM, iBV, Nice, France.
| |
Collapse
|
23
|
Erkenbrack EM, Davidson EH, Peter IS. Conserved regulatory state expression controlled by divergent developmental gene regulatory networks in echinoids. Development 2018; 145:dev.167288. [PMID: 30470703 DOI: 10.1242/dev.167288] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/15/2018] [Indexed: 12/16/2022]
Abstract
Evolution of the animal body plan is driven by changes in developmental gene regulatory networks (GRNs), but how networks change to control novel developmental phenotypes remains, in most cases, unresolved. Here, we address GRN evolution by comparing the endomesoderm GRN in two echinoid sea urchins, Strongylocentrotus purpuratus and Eucidaris tribuloides, with at least 268 million years of independent evolution. We first analyzed the expression of twelve transcription factors and signaling molecules of the S. purpuratus GRN in E. tribuloides embryos, showing that orthologous regulatory genes are expressed in corresponding endomesodermal cell fates in the two species. However, perturbation of regulatory genes revealed that important regulatory circuits of the S. purpuratus GRN are significantly different in E. tribuloides For example, mesodermal Delta/Notch signaling controls exclusion of alternative cell fates in E. tribuloides but controls mesoderm induction and activation of a positive feedback circuit in S. purpuratus These results indicate that the architecture of the sea urchin endomesoderm GRN evolved by extensive gain and loss of regulatory interactions between a conserved set of regulatory factors that control endomesodermal cell fate specification.
Collapse
Affiliation(s)
- Eric M Erkenbrack
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Eric H Davidson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
24
|
McClay DR, Miranda E, Feinberg SL. Neurogenesis in the sea urchin embryo is initiated uniquely in three domains. Development 2018; 145:dev167742. [PMID: 30413529 PMCID: PMC6240313 DOI: 10.1242/dev.167742] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/23/2022]
Abstract
Many marine larvae begin feeding within a day of fertilization, thus requiring rapid development of a nervous system to coordinate feeding activities. Here, we examine the patterning and specification of early neurogenesis in sea urchin embryos. Lineage analysis indicates that neurons arise locally in three regions of the embryo. Perturbation analyses showed that when patterning is disrupted, neurogenesis in the three regions is differentially affected, indicating distinct patterning requirements for each neural domain. Six transcription factors that function during proneural specification were identified and studied in detail. Perturbations of these proneural transcription factors showed that specification occurs differently in each neural domain prior to the Delta-Notch restriction signal. Though gene regulatory network state changes beyond the proneural restriction are largely unresolved, the data here show that the three neural regions already differ from each other significantly early in specification. Future studies that define the larval nervous system in the sea urchin must therefore separately characterize the three populations of neurons that enable the larva to feed, to navigate, and to move food particles through the gut.
Collapse
Affiliation(s)
- David R McClay
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Esther Miranda
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| | - Stacy L Feinberg
- Department of Biology, 124 Science Drive, Duke University, Durham, NC 27708, USA
| |
Collapse
|
25
|
Osborne CC, Perry KJ, Shankland M, Henry JQ. Ectomesoderm and epithelial-mesenchymal transition-related genes in spiralian development. Dev Dyn 2018; 247:1097-1120. [PMID: 30133032 DOI: 10.1002/dvdy.24667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Spiralians (e.g., annelids, molluscs, and flatworms) possess two sources of mesoderm. One is from endodermal precursors (endomesoderm), which is considered to be the ancestral source in metazoans. The second is from ectoderm (ectomesoderm) and may represent a novel cell type in the Spiralia. In the mollusc Crepidula fornicata, ectomesoderm is derived from micromere daughters within the A and B cell quadrants. Their progeny lie along the anterolateral edges of the blastopore. There they undergo epithelial-mesenchymal transition (EMT), become rounded and undergo delamination/ingression. Subsequently, they assume the mesenchymal phenotype, and migrate beneath the surface ectoderm to differentiate various cell types, including muscles and pigment cells. RESULTS We examined expression of several genes whose homologs are known to regulate Type 1 EMT in other metazoans. Most of these genes were expressed within spiralian ectomesoderm during EMT. CONCLUSIONS We propose that spiralian ectomesoderm, which exhibits analogous cellular behaviors to other populations of mesenchymal cells, may be controlled by the same genes that drive EMT in other metazoans. Perhaps these genes comprise a conserved metazoan EMT gene regulatory network (GRN). This study represents the first step in elucidating the GRN controlling the development of a novel spiralian cell type (ectomesoderm). Developmental Dynamics 247:1097-1120, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- C Cornelia Osborne
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Kimberly J Perry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Marty Shankland
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| | - Jonathan Q Henry
- University of Illinois, Department of Cell and Developmental Biology, Urbana, Illinois
| |
Collapse
|
26
|
Favarolo MB, López SL. Notch signaling in the division of germ layers in bilaterian embryos. Mech Dev 2018; 154:122-144. [PMID: 29940277 DOI: 10.1016/j.mod.2018.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/08/2018] [Accepted: 06/18/2018] [Indexed: 01/09/2023]
Abstract
Bilaterian embryos are triploblastic organisms which develop three complete germ layers (ectoderm, mesoderm, and endoderm). While the ectoderm develops mainly from the animal hemisphere, there is diversity in the location from where the endoderm and the mesoderm arise in relation to the animal-vegetal axis, ranging from endoderm being specified between the ectoderm and mesoderm in echinoderms, and the mesoderm being specified between the ectoderm and the endoderm in vertebrates. A common feature is that part of the mesoderm segregates from an ancient bipotential endomesodermal domain. The process of segregation is noisy during the initial steps but it is gradually refined. In this review, we discuss the role of the Notch pathway in the establishment and refinement of boundaries between germ layers in bilaterians, with special focus on its interaction with the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- María Belén Favarolo
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina
| | - Silvia L López
- Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Instituto de Biología Celular y Neurociencias "Prof. E. De Robertis" (IBCN), Facultad de Medicina, Laboratorio de Embriología Molecular "Prof. Dr. Andrés E. Carrasco", Buenos Aires, Argentina.
| |
Collapse
|
27
|
Assessing regulatory information in developmental gene regulatory networks. Proc Natl Acad Sci U S A 2018; 114:5862-5869. [PMID: 28584110 DOI: 10.1073/pnas.1610616114] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gene regulatory networks (GRNs) provide a transformation function between the static genomic sequence and the primary spatial specification processes operating development. The regulatory information encompassed in developmental GRNs thus goes far beyond the control of individual genes. We here address regulatory information at different levels of network organization, from single node to subcircuit to large-scale GRNs and discuss how regulatory design features such as network architecture, hierarchical organization, and cis-regulatory logic contribute to the developmental function of network circuits. Using specific subcircuits from the sea urchin endomesoderm GRN, for which both circuit design and biological function have been described, we evaluate by Boolean modeling and in silico perturbations the import of given circuit features on developmental function. The examples include subcircuits encoding positive feedback, mutual repression, and coherent feedforward, as well as signaling interaction circuitry. Within the hierarchy of the endomesoderm GRN, these subcircuits are organized in an intertwined and overlapping manner. Thus, we begin to see how regulatory information encoded at individual nodes is integrated at all levels of network organization to control developmental process.
Collapse
|
28
|
Calestani C, Wessel GM. These Colors Don't Run: Regulation of Pigment-Biosynthesis in Echinoderms. Results Probl Cell Differ 2018; 65:515-525. [PMID: 30083933 PMCID: PMC6550297 DOI: 10.1007/978-3-319-92486-1_22] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Pigment production is an important biological process throughout the tree of life. Some pigments function for collecting light energy, or for visual identification, while others have dramatic antimicrobial functions, or camouflage capabilities. The functions of these pigments and their biosynthesis are of great interest if only because of their diversity. The biochemistry of echinoderm pigmentation has been intensively studied for many years, and with more recent technologies, the origin and functions of these pigments are being exposed. Here we summarize the major pigment types in biology and emphasize the status of the field in echinoderms, taking full advantage of the new genomic and technologic resources for studying these important animals and their beautiful pigmentation.
Collapse
Affiliation(s)
| | - Gary M Wessel
- Department of Molecular and Cellular Biology and Biochemistry, Brown University, Providence, RI, USA.
| |
Collapse
|
29
|
Erkenbrack EM. Notch-mediated lateral inhibition is an evolutionarily conserved mechanism patterning the ectoderm in echinoids. Dev Genes Evol 2018; 228:1-11. [PMID: 29249002 DOI: 10.1007/s00427-017-0599-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
Notch signaling is a crucial cog in early development of euechinoid sea urchins, specifying both non-skeletogenic mesodermal lineages and serotonergic neurons in the apical neuroectoderm. Here, the spatial distributions and function of delta, gcm, and hesc, three genes critical to these processes in euechinoids, are examined in the distantly related cidaroid sea urchin Eucidaris tribuloides. Spatial distribution and experimental perturbation of delta and hesc suggest that the function of Notch signaling in ectodermal patterning in early development of E. tr ibuloides is consistent with canonical lateral inhibition. Delta transcripts were observed in t he archenteron, apical ectoderm, and lateral ectoderm in gastrulating e mbryos of E. tribuloides. Perturbation of Notch signaling by either delta morpholino or treatment of DAPT downregulated hesc and upregulated delta and gcm, resulting in ectopic expression of delta and gcm. Similarly, hesc perturbation mirrored the effects of delta perturbation. Interestingly, perturbation of delta or hesc resulted in more cells expressing gcm and supernumerary pigment cells, suggesting that pigment cell proliferation is regulated by Notch in E. tribuloides. These results are consistent with an evolutionary scenario whereby, in the echinoid ancestor, Notch signaling was deployed in the ectoderm to specify neurogenic progenitors and controlled pigment cell proliferation in the dorsal ectoderm.
Collapse
Affiliation(s)
- Eric M Erkenbrack
- Yale Systems Biology Institute, Yale University, West Haven, CT, 06516, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA.
| |
Collapse
|
30
|
Anello L, Cavalieri V, Di Bernardo M. Developmental effects of the protein kinase inhibitor kenpaullone on the sea urchin embryo. Comp Biochem Physiol C Toxicol Pharmacol 2018; 204:36-44. [PMID: 29128602 DOI: 10.1016/j.cbpc.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 01/06/2023]
Abstract
The selection and validation of bioactive compounds require multiple approaches, including in-depth analyses of their biological activity in a whole-animal context. We exploited the sea urchin embryo in a rapid, medium-scale range screening to test the effects of the small synthetic kinase inhibitor kenpaullone. We show that sea urchin embryos specifically respond to this molecule depending on both dose and timing of administration. Phenotypic effects of kenpaullone are not immediately visible, since this molecule affects neither the fertilization nor the spatial arrangement of blastomeres at early developmental stages. Nevertheless, kenpaullone exposure from the beginning of embryogenesis profoundly perturbs specification, detachment from the epithelium, and migration of the primary mesenchyme cells, thus affecting the whole embryonic epithelial mesenchymal transition process. Our results reaffirm the sea urchin embryo as an excellent and sensitive in vivo system, which provides straightforward and rapid response to external stimuli.
Collapse
Affiliation(s)
- Letizia Anello
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy
| | - Vincenzo Cavalieri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Viale delle Scienze Edificio 16, 90128 Palermo, Italy; Advanced Technologies Network (ATeN) Center, University of Palermo, Viale delle Scienze Edificio 18, 90128 Palermo, Italy
| | - Maria Di Bernardo
- Istituto di Biomedicina e Immunologia Molecolare "A. Monroy", Consiglio Nazionale delle Ricerche, Via Ugo La Malfa 153, 90146 Palermo, Italy.
| |
Collapse
|
31
|
Martik ML, McClay DR. New insights from a high-resolution look at gastrulation in the sea urchin, Lytechinus variegatus. Mech Dev 2017; 148:3-10. [PMID: 28684256 PMCID: PMC5705275 DOI: 10.1016/j.mod.2017.06.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 05/27/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Gastrulation is a complex orchestration of movements by cells that are specified early in development. Until now, classical convergent extension was considered to be the main contributor to sea urchin archenteron extension, and the relative contributions of cell divisions were unknown. Active migration of cells along the axis of extension was also not considered as a major factor in invagination. RESULTS Cell transplantations plus live imaging were used to examine endoderm cell morphogenesis during gastrulation at high-resolution in the optically clear sea urchin embryo. The invagination sequence was imaged throughout gastrulation. One of the eight macromeres was replaced by a fluorescently labeled macromere at the 32 cell stage. At gastrulation those patches of fluorescent endoderm cell progeny initially about 4 cells wide, released a column of cells about 2 cells wide early in gastrulation and then often this column narrowed to one cell wide by the end of archenteron lengthening. The primary movement of the column of cells was in the direction of elongation of the archenteron with the narrowing (convergence) occurring as one of the two cells moved ahead of its neighbor. As the column narrowed, the labeled endoderm cells generally remained as a contiguous population of cells, rarely separated by intrusion of a lateral unlabeled cell. This longitudinal cell migration mechanism was assessed quantitatively and accounted for almost 90% of the elongation process. Much of the extension was the contribution of Veg2 endoderm with a minor contribution late in gastrulation by Veg1 endoderm cells. We also analyzed the contribution of cell divisions to elongation. Endoderm cells in Lytechinus variagatus were determined to go through approximately one cell doubling during gastrulation. That doubling occurs without a net increase in cell mass, but the question remained as to whether oriented divisions might contribute to archenteron elongation. We learned that indeed there was a biased orientation of cell divisions along the plane of archenteron elongation, but when the impact of that bias was analyzed quantitatively, it contributed a maximum 15% to the total elongation of the gut. CONCLUSIONS The major driver of archenteron elongation in the sea urchin, Lytechinus variagatus, is directed movement of Veg2 endoderm cells as a narrowing column along the plane of elongation. The narrowing occurs as cells in the column converge as they migrate, so that the combination of migration and the angular convergence provide the major component of the lengthening. A minor contributor to elongation is oriented cell divisions that contribute to the lengthening but no more than about 15%.
Collapse
Affiliation(s)
- Megan L Martik
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27708, USA; University Program in Genetics and Genomics, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
32
|
Mellott DO, Thisdelle J, Burke RD. Notch signaling patterns neurogenic ectoderm and regulates the asymmetric division of neural progenitors in sea urchin embryos. Development 2017; 144:3602-3611. [PMID: 28851710 DOI: 10.1242/dev.151720] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023]
Abstract
We have examined regulation of neurogenesis by Delta/Notch signaling in sea urchin embryos. At gastrulation, neural progenitors enter S phase coincident with expression of Sp-SoxC. We used a BAC containing GFP knocked into the Sp-SoxC locus to label neural progenitors. Live imaging and immunolocalizations indicate that Sp-SoxC-expressing cells divide to produce pairs of adjacent cells expressing GFP. Over an interval of about 6 h, one cell fragments, undergoes apoptosis and expresses high levels of activated Caspase3. A Notch reporter indicates that Notch signaling is activated in cells adjacent to cells expressing Sp-SoxC. Inhibition of γ-secretase, injection of Sp-Delta morpholinos or CRISPR/Cas9-induced mutation of Sp-Delta results in supernumerary neural progenitors and neurons. Interfering with Notch signaling increases neural progenitor recruitment and pairs of neural progenitors. Thus, Notch signaling restricts the number of neural progenitors recruited and regulates the fate of progeny of the asymmetric division. We propose a model in which localized signaling converts ectodermal and ciliary band cells to neural progenitors that divide asymmetrically to produce a neural precursor and an apoptotic cell.
Collapse
Affiliation(s)
- Dan O Mellott
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Jordan Thisdelle
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| | - Robert D Burke
- Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada V8W 2Y2
| |
Collapse
|
33
|
Buckley KM, Ho ECH, Hibino T, Schrankel CS, Schuh NW, Wang G, Rast JP. IL17 factors are early regulators in the gut epithelium during inflammatory response to Vibrio in the sea urchin larva. eLife 2017; 6. [PMID: 28447937 PMCID: PMC5457136 DOI: 10.7554/elife.23481] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 04/25/2017] [Indexed: 12/25/2022] Open
Abstract
IL17 cytokines are central mediators of mammalian immunity. In vertebrates, these factors derive from diverse cellular sources. Sea urchins share a molecular heritage with chordates that includes the IL17 system. Here, we characterize the role of epithelial expression of IL17 in the larval gut-associated immune response. The purple sea urchin genome encodes 10 IL17 subfamilies (35 genes) and 2 IL17 receptors. Most of these subfamilies are conserved throughout echinoderms. Two IL17 subfamilies are sequentially strongly upregulated and attenuated in the gut epithelium in response to bacterial disturbance. IL17R1 signal perturbation results in reduced expression of several response genes including an IL17 subtype, indicating a potential feedback. A third IL17 subfamily is activated in adult immune cells indicating that expression in immune cells and epithelia is divided among families. The larva provides a tractable model to investigate the regulation and consequences of gut epithelial IL17 expression across the organism. DOI:http://dx.doi.org/10.7554/eLife.23481.001 To protect themselves from the constant invasion of harmful microbes, animals have evolved complex immune systems. The gut is one of the most active sites of the immune system and plays a key role in regulating immune responses. In mammals, cells lining the gut wall can sense the presence of harmful bacteria and communicate this information to tissues across the body by producing specialized proteins called Interleukin-17 (IL-17). IL-17 proteins are important for regulating inflammation and are thought to activate specific immune cells in an infected area. Some aspects of immune systems are similar between different animal species, which can provide clues of how immunity evolved and how it is regulated. For example, sea urchins, which evolved 400-600 million years ago, begin life as simple larvae consisting of a few thousand cells. As oceans harbor a multitude of bacteria and viruses, sea urchin larvae need an efficient immune system to defend themselves. These larvae can respond to specific types of bacteria within a few hours after the microbes have entered their gut by modifying gene expression in distant cells. As these changes occur in cells that are removed from the bacteria, it is thought that the gut cells that initially sense the bacteria, somehow communicate this information. Now, Buckley et al. exposed sea urchin larvae to a marine bacterium and measured the responses of the cells and their gene expression. The infection affected several types of cells, and in the first 24 hours, a subset of immune cells changed shape and started migrating to the gut wall. In addition, IL-17 gene expression changed significantly in gut cells in the early phases of the larval immune response. Buckley et al. identified three types of IL-17 proteins involved in sea urchin immunity: two that are important for the immune response in the gut during the larval stage, and a third that is only present in adults. These findings suggest that IL-17 signaling is an ancient and central element of gut-associated immune response, which even exists in animals that evolved long before humans. These findings demonstrate that the sea urchin larva represents a unique and ideal experimental model to study immune responses in a living organism that is more closely related to mammals than some other models, like fruit flies or worms. By understanding the fundamental mechanisms that mediate gut health, this work may highlight new drug targets to treat conditions like Crohn’s disease and colon cancer. DOI:http://dx.doi.org/10.7554/eLife.23481.002
Collapse
Affiliation(s)
- Katherine M Buckley
- Department of Immunology, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Eric Chun Hei Ho
- Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Taku Hibino
- Sunnybrook Research Institute, Toronto, Canada
| | - Catherine S Schrankel
- Department of Immunology, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada
| | - Nicholas W Schuh
- Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Guizhi Wang
- Sunnybrook Research Institute, Toronto, Canada
| | - Jonathan P Rast
- Department of Immunology, University of Toronto, Toronto, Canada.,Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
34
|
Brown LR, Caldwell GS. Tissue and spine regeneration in the temperate sea urchin Psammechinus miliaris. INVERTEBR REPROD DEV 2017. [DOI: 10.1080/07924259.2017.1287779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Leah R. Brown
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, UK
| | - Gary S. Caldwell
- School of Marine Science and Technology, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
35
|
Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins. Proc Natl Acad Sci U S A 2016; 113:E7202-E7211. [PMID: 27810959 DOI: 10.1073/pnas.1612820113] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Developmental gene regulatory networks (GRNs) are assemblages of gene regulatory interactions that direct ontogeny of animal body plans. Studies of GRNs operating in the early development of euechinoid sea urchins have revealed that little appreciable change has occurred since their divergence ∼90 million years ago (mya). These observations suggest that strong conservation of GRN architecture was maintained in early development of the sea urchin lineage. Testing whether this holds for all sea urchins necessitates comparative analyses of echinoid taxa that diverged deeper in geological time. Recent studies highlighted extensive divergence of skeletogenic mesoderm specification in the sister clade of euechinoids, the cidaroids, suggesting that comparative analyses of cidaroid GRN architecture may confer a greater understanding of the evolutionary dynamics of developmental GRNs. Here I report spatiotemporal patterning of 55 regulatory genes and perturbation analyses of key regulatory genes involved in euechinoid oral-aboral patterning of nonskeletogenic mesodermal and ectodermal domains in early development of the cidaroid Eucidaris tribuloides These results indicate that developmental GRNs directing mesodermal and ectodermal specification have undergone marked alterations since the divergence of cidaroids and euechinoids. Notably, statistical and clustering analyses of echinoid temporal gene expression datasets indicate that regulation of mesodermal genes has diverged more markedly than regulation of ectodermal genes. Although research on indirect-developing euechinoid sea urchins suggests strong conservation of GRN circuitry during early embryogenesis, this study indicates that since the divergence of cidaroids and euechinoids, developmental GRNs have undergone significant, cell type-biased alterations.
Collapse
|
36
|
CH Ho E, Buckley KM, Schrankel CS, Schuh NW, Hibino T, Solek CM, Bae K, Wang G, Rast JP. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva. Immunol Cell Biol 2016; 94:861-874. [PMID: 27192936 PMCID: PMC5073156 DOI: 10.1038/icb.2016.51] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 05/12/2016] [Accepted: 05/12/2016] [Indexed: 02/07/2023]
Abstract
The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates.
Collapse
Affiliation(s)
- Eric CH Ho
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Katherine M Buckley
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Catherine S Schrankel
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas W Schuh
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Taku Hibino
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Cynthia M Solek
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Koeun Bae
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Guizhi Wang
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jonathan P Rast
- Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
37
|
Henry JQ, Lyons DC. Molluscan models: Crepidula fornicata. Curr Opin Genet Dev 2016; 39:138-148. [PMID: 27526387 DOI: 10.1016/j.gde.2016.05.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/16/2016] [Accepted: 05/30/2016] [Indexed: 12/11/2022]
Abstract
Gastropod snails in the genus Crepidula have emerged as model systems for studying a metazoan super clade, the Spiralia. Recent work on one species in particular, Crepidula fornicata, has produced high-resolution cell lineage fate maps, details of morphogenetic events during gastrulation, key insights into the molecular underpinnings of early development, and the first demonstration of CRISPR/Cas9 genome editing in the Spiralia. Furthermore, invasive species of Crepidula are a significant ecological threat, while one of these, C. fornicata, is also being harvested for food. This review highlights progress towards developing these animals as models for evolutionary, developmental, and ecological studies. Such studies have contributed greatly to our understanding of biology in a major clade of bilaterians. This information may also help us to control and cultivate these snails.
Collapse
Affiliation(s)
- Jonathan Q Henry
- University of Illinois, Department of Cell & Developmental Biology, 601 South Goodwin Avenue, Urbana, IL 61801, United States.
| | - Deirdre C Lyons
- University of California, San Diego, Scripps Institution of Oceanography, 9500 Gilman Drive, La Jolla, CA 92093, United States.
| |
Collapse
|
38
|
Schrankel CS, Solek CM, Buckley KM, Anderson MK, Rast JP. A conserved alternative form of the purple sea urchin HEB/E2-2/E2A transcription factor mediates a switch in E-protein regulatory state in differentiating immune cells. Dev Biol 2016; 416:149-161. [PMID: 27265865 DOI: 10.1016/j.ydbio.2016.05.034] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/26/2016] [Accepted: 05/27/2016] [Indexed: 12/11/2022]
Abstract
E-proteins are basic helix-loop-helix (bHLH) transcription factors with essential roles in animal development. In mammals, these are encoded by three loci: E2-2 (ITF-2/ME2/SEF2/TCF4), E2A (TCF3), and HEB (ME1/REB/TCF12). The HEB and E2-2 paralogs are expressed as alternative (Alt) isoforms with distinct N-terminal sequences encoded by unique exons under separate regulatory control. Expression of these alternative transcripts is restricted relative to the longer (Can) forms, suggesting distinct regulatory roles, although the functions of the Alt proteins remain poorly understood. Here, we characterize the single sea urchin E-protein ortholog (SpE-protein). The organization of the SpE-protein gene closely resembles that of the extended HEB/E2-2 vertebrate loci, including a transcript that initiates at a homologous alternative transcription start site (SpE-Alt). The existence of an Alt form in the sea urchin indicates that this feature predates the emergence of the vertebrates. We present additional evidence indicating that this transcript was present in the common bilaterian ancestor. In contrast to the widely expressed canonical form (SpE-Can), SpE-Alt expression is tightly restricted. SpE-Alt is expressed in two phases: first in aboral non-skeletogenic mesenchyme (NSM) cells and then in oral NSM cells preceding their differentiation and ingression into the blastocoel. Derivatives of these cells mediate immune response in the larval stage. Inhibition of SpE-Alt activity interferes with these events. Notably, although the two isoforms are initially co-expressed, as these cells differentiate, SpE-Can is excluded from the SpE-Alt(+) cell population. This mutually exclusive expression is dependent on SpE-Alt function, which reveals a previously undescribed negative regulatory linkage between the two E-protein forms. Collectively, these findings reorient our understanding of the evolution of this transcription factor family and highlight fundamental properties of E-protein biology.
Collapse
Affiliation(s)
- Catherine S Schrankel
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Cynthia M Solek
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Katherine M Buckley
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Michele K Anderson
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Jonathan P Rast
- Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Perillo M, Wang YJ, Leach SD, Arnone MI. A pancreatic exocrine-like cell regulatory circuit operating in the upper stomach of the sea urchin Strongylocentrotus purpuratus larva. BMC Evol Biol 2016; 16:117. [PMID: 27230062 PMCID: PMC4880809 DOI: 10.1186/s12862-016-0686-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background Digestive cells are present in all metazoans and provide the energy necessary for the whole organism. Pancreatic exocrine cells are a unique vertebrate cell type involved in extracellular digestion of a wide range of nutrients. Although the organization and regulation of this cell type is intensively studied in vertebrates, its evolutionary history is still unknown. In order to understand which are the elements that define the pancreatic exocrine phenotype, we have analyzed the expression of genes that contribute to specification and function of this cell-type in an early branching deuterostome, the sea urchin Strongylocentrotus purpuratus. Results We defined the spatial and temporal expression of sea urchin orthologs of pancreatic exocrine genes and described a unique population of cells clustered in the upper stomach of the sea urchin embryo where exocrine markers are co-expressed. We used a combination of perturbation analysis, drug and feeding experiments and found that in these cells of the sea urchin embryo gene expression and gene regulatory interactions resemble that of bona fide pancreatic exocrine cells. We show that the sea urchin Ptf1a, a key transcriptional activator of digestive enzymes in pancreatic exocrine cells, can substitute for its vertebrate ortholog in activating downstream genes. Conclusions Collectively, our study is the first to show with molecular tools that defining features of a vertebrate cell-type, the pancreatic exocrine cell, are shared by a non-vertebrate deuterostome. Our results indicate that the functional cell-type unit of the vertebrate pancreas may evolutionarily predate the emergence of the pancreas as a discrete organ. From an evolutionary perspective, these results encourage to further explore the homologs of other vertebrate cell-types in traditional or newly emerging deuterostome systems. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0686-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Margherita Perillo
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy.,Present address: Department of Biology, Boston College, Chestnut Hill, MA, USA
| | - Yue Julia Wang
- Department of Surgery and the McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Steven D Leach
- Department of Surgery and the McKusick Nathans Institute for Genetic Medicine, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Maria Ina Arnone
- Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Napoli, 80121, Italy.
| |
Collapse
|
40
|
Ben-Tabou de-Leon S. Robustness and Accuracy in Sea Urchin Developmental Gene Regulatory Networks. Front Genet 2016; 7:16. [PMID: 26913048 PMCID: PMC4753288 DOI: 10.3389/fgene.2016.00016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 01/28/2016] [Indexed: 11/13/2022] Open
Abstract
Developmental gene regulatory networks robustly control the timely activation of regulatory and differentiation genes. The structure of these networks underlies their capacity to buffer intrinsic and extrinsic noise and maintain embryonic morphology. Here I illustrate how the use of specific architectures by the sea urchin developmental regulatory networks enables the robust control of cell fate decisions. The Wnt-βcatenin signaling pathway patterns the primary embryonic axis while the BMP signaling pathway patterns the secondary embryonic axis in the sea urchin embryo and across bilateria. Interestingly, in the sea urchin in both cases, the signaling pathway that defines the axis controls directly the expression of a set of downstream regulatory genes. I propose that this direct activation of a set of regulatory genes enables a uniform regulatory response and a clear cut cell fate decision in the endoderm and in the dorsal ectoderm. The specification of the mesodermal pigment cell lineage is activated by Delta signaling that initiates a triple positive feedback loop that locks down the pigment specification state. I propose that the use of compound positive feedback circuitry provides the endodermal cells enough time to turn off mesodermal genes and ensures correct mesoderm vs. endoderm fate decision. Thus, I argue that understanding the control properties of repeatedly used regulatory architectures illuminates their role in embryogenesis and provides possible explanations to their resistance to evolutionary change.
Collapse
|
41
|
Peter IS, Davidson EH. Implications of Developmental Gene Regulatory Networks Inside and Outside Developmental Biology. Curr Top Dev Biol 2016; 117:237-51. [PMID: 26969981 DOI: 10.1016/bs.ctdb.2015.12.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The insight that the genomic control of developmental process is encoded in the form of gene regulatory networks has profound impacts on many areas of modern bioscience. Most importantly, it affects developmental biology itself, as it means that a causal understanding of development requires knowledge of the architecture of regulatory network interactions. Furthermore, it follows that functional changes in developmental gene regulatory networks have to be considered as a primary mechanism for evolutionary process. We here discuss some of the recent advances in gene regulatory network biology and how they have affected our current understanding of development, evolution, and regulatory genomics.
Collapse
Affiliation(s)
- Isabelle S Peter
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA.
| | - Eric H Davidson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
| |
Collapse
|
42
|
Katow H. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. Tissue Barriers 2015; 3:e1059004. [PMID: 26716069 PMCID: PMC4681286 DOI: 10.1080/21688370.2015.1059004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology; Tohoku University; Asamushi, Aomori, Japan
| |
Collapse
|
43
|
Reinardy HC, Emerson CE, Manley JM, Bodnar AG. Tissue regeneration and biomineralization in sea urchins: role of Notch signaling and presence of stem cell markers. PLoS One 2015; 10:e0133860. [PMID: 26267358 PMCID: PMC4534296 DOI: 10.1371/journal.pone.0133860] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 07/02/2015] [Indexed: 11/30/2022] Open
Abstract
Echinoderms represent a phylum with exceptional regenerative capabilities that can reconstruct both external appendages and internal organs. Mechanistic understanding of the cellular pathways involved in regeneration in these animals has been hampered by the limited genomic tools and limited ability to manipulate regenerative processes. We present a functional assay to investigate mechanisms of tissue regeneration and biomineralization by measuring the regrowth of amputated tube feet (sensory and motor appendages) and spines in the sea urchin, Lytechinus variegatus. The ability to manipulate regeneration was demonstrated by concentration-dependent inhibition of regrowth of spines and tube feet by treatment with the mitotic inhibitor, vincristine. Treatment with the gamma-secretase inhibitor DAPT resulted in a concentration-dependent inhibition of regrowth, indicating that both tube feet and spine regeneration require functional Notch signaling. Stem cell markers (Piwi and Vasa) were expressed in tube feet and spine tissue, and Vasa-positive cells were localized throughout the epidermis of tube feet by immunohistochemistry, suggesting the existence of multipotent progenitor cells in these highly regenerative appendages. The presence of Vasa protein in other somatic tissues (e.g. esophagus, radial nerve, and a sub-population of coelomocytes) suggests that multipotent cells are present throughout adult sea urchins and may contribute to normal homeostasis in addition to regeneration. Mechanistic insight into the cellular pathways governing the tremendous regenerative capacity of echinoderms may reveal processes that can be modulated for regenerative therapies, shed light on the evolution of regeneration, and enable the ability to predict how these processes will respond to changing environmental conditions.
Collapse
Affiliation(s)
- Helena C. Reinardy
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Chloe E. Emerson
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Jason M. Manley
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
| | - Andrea G. Bodnar
- Molecular Discovery Laboratory, Bermuda Institute of Ocean Sciences, St. George’s GE 01, Bermuda
- * E-mail:
| |
Collapse
|
44
|
Comparative Study of Regulatory Circuits in Two Sea Urchin Species Reveals Tight Control of Timing and High Conservation of Expression Dynamics. PLoS Genet 2015; 11:e1005435. [PMID: 26230518 PMCID: PMC4521883 DOI: 10.1371/journal.pgen.1005435] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 07/08/2015] [Indexed: 12/25/2022] Open
Abstract
Accurate temporal control of gene expression is essential for normal development and must be robust to natural genetic and environmental variation. Studying gene expression variation within and between related species can delineate the level of expression variability that development can tolerate. Here we exploit the comprehensive model of sea urchin gene regulatory networks and generate high-density expression profiles of key regulatory genes of the Mediterranean sea urchin, Paracentrotus lividus (Pl). The high resolution of our studies reveals highly reproducible gene initiation times that have lower variation than those of maximal mRNA levels between different individuals of the same species. This observation supports a threshold behavior of gene activation that is less sensitive to input concentrations. We then compare Mediterranean sea urchin gene expression profiles to those of its Pacific Ocean relative, Strongylocentrotus purpuratus (Sp). These species shared a common ancestor about 40 million years ago and show highly similar embryonic morphologies. Our comparative analyses of five regulatory circuits operating in different embryonic territories reveal a high conservation of the temporal order of gene activation but also some cases of divergence. A linear ratio of 1.3-fold between gene initiation times in Pl and Sp is partially explained by scaling of the developmental rates with temperature. Scaling the developmental rates according to the estimated Sp-Pl ratio and normalizing the expression levels reveals a striking conservation of relative dynamics of gene expression between the species. Overall, our findings demonstrate the ability of biological developmental systems to tightly control the timing of gene activation and relative dynamics and overcome expression noise induced by genetic variation and growth conditions.
Collapse
|
45
|
Yaguchi S, Yamazaki A, Wada W, Tsuchiya Y, Sato T, Shinagawa H, Yamada Y, Yaguchi J. Early development and neurogenesis ofTemnopleurus reevesii. Dev Growth Differ 2015; 57:242-50. [DOI: 10.1111/dgd.12202] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 11/28/2022]
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center; University of Tsukuba; 5-10-1 Shimoda Shizuoka 415-0025 Japan
- Japanese Association for Marine Biology (JAMBIO); 5-10-1 Shimoda Shizuoka 415-0025 Japan
| | - Atsuko Yamazaki
- Shimoda Marine Research Center; University of Tsukuba; 5-10-1 Shimoda Shizuoka 415-0025 Japan
| | - Wakana Wada
- Shimoda Marine Research Center; University of Tsukuba; 5-10-1 Shimoda Shizuoka 415-0025 Japan
| | - Yasutaka Tsuchiya
- Shimoda Marine Research Center; University of Tsukuba; 5-10-1 Shimoda Shizuoka 415-0025 Japan
| | - Toshihiko Sato
- Shimoda Marine Research Center; University of Tsukuba; 5-10-1 Shimoda Shizuoka 415-0025 Japan
| | - Hideo Shinagawa
- Shimoda Marine Research Center; University of Tsukuba; 5-10-1 Shimoda Shizuoka 415-0025 Japan
| | - Yutaro Yamada
- Shimoda Marine Research Center; University of Tsukuba; 5-10-1 Shimoda Shizuoka 415-0025 Japan
| | - Junko Yaguchi
- Shimoda Marine Research Center; University of Tsukuba; 5-10-1 Shimoda Shizuoka 415-0025 Japan
- Japan Society for the Promotion of Science (JSPS); Tokyo 102-0083 Japan
| |
Collapse
|
46
|
McCauley BS, Akyar E, Saad HR, Hinman VF. Dose-dependent nuclear β-catenin response segregates endomesoderm along the sea star primary axis. Development 2015; 142:207-17. [PMID: 25516976 DOI: 10.1242/dev.113043] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
In many invertebrates, the nuclearization of β-catenin at one pole of the embryo initiates endomesoderm specification. An intriguing possibility is that a gradient of nuclear β-catenin (nβ-catenin), similar to that operating in vertebrate neural tube patterning, functions to distinguish cell fates in invertebrates. To test this hypothesis, we determined the function of nβ-catenin during the early development of the sea star, which undergoes a basal deuterostomal mode of embryogenesis. We show that low levels of nβ-catenin activity initiate bra, which is expressed in the future posterior endoderm-fated territory; intermediate levels are required for expression of foxa and gata4/5/6, which are later restricted to the endoderm; and activation of ets1 and erg in the mesoderm-fated territory requires the highest nβ-catenin activity. Transcription factors acting downstream of high nβ-catenin segregate the endoderm/mesoderm boundary, which is further reinforced by Delta/Notch signaling. Significantly, therefore, in sea stars, endomesoderm segregation arises through transcriptional responses to levels of nβ-catenin activity. Here, we describe the first empirical evidence of a dose-dependent response to a dynamic spatiotemporal nβ-catenin activity that patterns cell fates along the primary axis in an invertebrate.
Collapse
Affiliation(s)
- Brenna S McCauley
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - Eda Akyar
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - H Rosa Saad
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| | - Veronica F Hinman
- Department of Biological Sciences, Carnegie Mellon University, 4400 5th Ave, Pittsburgh, PA 15213, USA
| |
Collapse
|
47
|
Stepicheva N, Nigam PA, Siddam AD, Peng CF, Song JL. microRNAs regulate β-catenin of the Wnt signaling pathway in early sea urchin development. Dev Biol 2015; 402:127-41. [PMID: 25614238 DOI: 10.1016/j.ydbio.2015.01.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 12/18/2014] [Accepted: 01/09/2015] [Indexed: 12/19/2022]
Abstract
Development of complex multicellular organisms requires careful regulation at both transcriptional and post-transcriptional levels. Post-transcriptional gene regulation is in part mediated by a class of non-coding RNAs of 21-25 nucleotides in length known as microRNAs (miRNAs). β-catenin, regulated by the canonical Wnt signaling pathway, has a highly evolutionarily conserved function in patterning early metazoan embryos, in forming the Anterior-Posterior axis, and in establishing the endomesoderm. Using reporter constructs and site-directed mutagenesis, we identified at least three miRNA binding sites within the 3' untranslated region (3'UTR) of the sea urchin β-catenin. Further, blocking these three miRNA binding sites within the β-catenin 3'UTR to prevent regulation of endogenous β-catenin by miRNAs resulted in a minor increase in β-catenin protein accumulation that is sufficient to induce aberrant gut morphology and circumesophageal musculature. These phenotypes are likely the result of increased transcript levels of Wnt responsive endomesodermal regulatory genes. This study demonstrates the importance of miRNA regulation of β-catenin in early development.
Collapse
Affiliation(s)
- Nadezda Stepicheva
- Department of Biological Sciences, University of Delaware, 323 Wolf Hall, Newark, DE 19716, USA
| | - Priya A Nigam
- Department of Biological Sciences, University of Delaware, 323 Wolf Hall, Newark, DE 19716, USA
| | - Archana D Siddam
- Department of Biological Sciences, University of Delaware, 323 Wolf Hall, Newark, DE 19716, USA
| | - Chieh Fu Peng
- Department of Biology, University of Miami, Coral Gables, FL 33124, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, 323 Wolf Hall, Newark, DE 19716, USA.
| |
Collapse
|
48
|
Sun M, Cheng X, Socolar JES. Regulatory logic and pattern formation in the early sea urchin embryo. J Theor Biol 2014; 363:80-92. [PMID: 25093827 DOI: 10.1016/j.jtbi.2014.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 06/10/2014] [Accepted: 07/25/2014] [Indexed: 10/24/2022]
Abstract
We model the endomesoderm tissue specification process in the vegetal half of the early sea urchin embryo using Boolean models with continuous-time updating to represent the regulatory network that controls gene expression. Our models assume that the network interaction rules remain constant over time and the dynamics plays out on a predetermined program of cell divisions. An exhaustive search of two-node models, in which each node may represent a module of several genes in the real regulatory network, yields a unique network architecture that can accomplish the pattern formation task at hand--the formation of three latitudinal tissue bands from an initial state with only two distinct cell types. Analysis of an eight-gene model constructed from available experimental data reveals that it has a modular structure equivalent to the successful two-node case. Our results support the hypothesis that the gene regulatory network provides sufficient instructions for producing the correct pattern of tissue specification at this stage of development (between the fourth and tenth cleavages in the urchin embryo).
Collapse
Affiliation(s)
- Mengyang Sun
- Duke University, Physics Department, Box 90305, Durham, NC 27708, USA.
| | - Xianrui Cheng
- Department of Chemical and Systems Biology, Stanford University School of Medicine, 269 Campus Drive, CCSR Building, Stanford, CA 94305, USA.
| | - Joshua E S Socolar
- Duke University, Physics Department, Box 90305, Durham, NC 27708, USA; Duke University, Duke Center for Systems Biology, Durham, NC 27708, USA.
| |
Collapse
|
49
|
Specific functions of the Wnt signaling system in gene regulatory networks throughout the early sea urchin embryo. Proc Natl Acad Sci U S A 2014; 111:E5029-38. [PMID: 25385617 DOI: 10.1073/pnas.1419141111] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Wnt signaling affects cell-fate specification processes throughout embryonic development. Here we take advantage of the well-studied gene regulatory networks (GRNs) that control pregastrular sea urchin embryogenesis to reveal the gene regulatory functions of the entire Wnt-signaling system. Five wnt genes, three frizzled genes, two secreted frizzled-related protein 1 genes, and two Dickkopf genes are expressed in dynamic spatial patterns in the pregastrular embryo of Strongylocentrotus purpuratus. We present a comprehensive analysis of these genes in each embryonic domain. Total functions of the Wnt-signaling system in regulatory gene expression throughout the embryo were studied by use of the Porcupine inhibitor C59, which interferes with zygotic Wnt ligand secretion. Morpholino-mediated knockdown of each expressed Wnt ligand demonstrated that individual Wnt ligands are functionally distinct, despite their partially overlapping spatial expression. They target specific embryonic domains and affect particular regulatory genes. The sum of the effects of blocking expression of individual wnt genes is shown to equal C59 effects. Remarkably, zygotic Wnt-signaling inputs are required for only three general aspects of embryonic specification: the broad activation of endodermal GRNs, the regional specification of the immediately adjacent stripe of ectoderm, and the restriction of the apical neurogenic domain. All Wnt signaling in this pregastrular embryo is short range (and/or autocrine). Furthermore, we show that the transcriptional drivers of wnt genes execute important specification functions in the embryonic domains targeted by the ligands, thus connecting the expression and function of wnt genes by encoded cross-regulatory interactions within the specific regional GRNs.
Collapse
|
50
|
Cheng X, Lyons DC, Socolar JES, McClay DR. Delayed transition to new cell fates during cellular reprogramming. Dev Biol 2014; 391:147-57. [PMID: 24780626 PMCID: PMC4064802 DOI: 10.1016/j.ydbio.2014.04.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 04/19/2014] [Accepted: 04/21/2014] [Indexed: 01/08/2023]
Abstract
In many embryos specification toward one cell fate can be diverted to a different cell fate through a reprogramming process. Understanding how that process works will reveal insights into the developmental regulatory logic that emerged from evolution. In the sea urchin embryo, cells at gastrulation were found to reprogram and replace missing cell types after surgical dissections of the embryo. Non-skeletogenic mesoderm (NSM) cells reprogrammed to replace missing skeletogenic mesoderm cells and animal caps reprogrammed to replace all endomesoderm. In both cases evidence of reprogramming onset was first observed at the early gastrula stage, even if the cells to be replaced were removed earlier in development. Once started however, the reprogramming occurred with compressed gene expression dynamics. The NSM did not require early contact with the skeletogenic cells to reprogram, but the animal cap cells gained the ability to reprogram early in gastrulation only after extended contact with the vegetal halves prior to that time. If the entire vegetal half was removed at early gastrula, the animal caps reprogrammed and replaced the vegetal half endomesoderm. If the animal caps carried morpholinos to either hox11/13b or foxA (endomesoderm specification genes), the isolated animal caps failed to reprogram. Together these data reveal that the emergence of a reprogramming capability occurs at early gastrulation in the sea urchin embryo and requires activation of early specification components of the target tissues.
Collapse
Affiliation(s)
- Xianrui Cheng
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA; Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Deirdre C Lyons
- Department of Biology, Duke University, Durham, NC 27708, USA.
| | - Joshua E S Socolar
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA; Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA; Department of Physics, Duke University, Durham, NC 27708, USA.
| | - David R McClay
- Program in Computational Biology and Bioinformatics, Duke University, Durham, NC 27708, USA; Duke Center for Systems Biology, Duke University, Durham, NC 27708, USA; Department of Biology, Duke University, Durham, NC 27708, USA.
| |
Collapse
|