1
|
Xing C, Zeng Z, Li Y, Gong B, Shen W, Shah R, Yan L, Du H, Meng A. Regulatory factor identification for nodal genes in zebrafish by causal inference. Front Cell Dev Biol 2022; 10:1047363. [DOI: 10.3389/fcell.2022.1047363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of nodal genes is critical for mesoderm and endoderm induction. Our previous study reported that zebrafish nodal genes ndr1/squint and ndr2/cyclops are coordinately regulated by maternal Eomesa, Hwa-activated β-catenin (Hwa/β-catenin) signaling, and Nodal autoregulation (Nodal/Smad2) signaling. However, the exact contribution and underlying mechanisms are still elusive. Here, we applied “causal inference” to evaluate the causal between the independent and dependent variables, and we found that Hwa/β-catenin and Smad2 are the cause of ndr1 activation, while Eomesa is the cause of ndr2 activation. Mechanistically, the different cis-regulatory regions of ndr1 and ndr2 bound by Eomesa, β-catenin, and Smad2 were screened out via ChIP-qPCR and verified by the transgene constructs. The marginal GFP expression driven by ndr1 transgenesis could be diminished without both maternal Eomesa and Hwa/β-catenin, while Eomesa, not β-catenin, could bind and activate ndr2 demonstrated by ndr2 transgenesis. Thus, the distinct regulation of ndr1/ndr2 relies on different cis-regulatory regions.
Collapse
|
2
|
Xing C, Shen W, Gong B, Li Y, Yan L, Meng A. Maternal Factors and Nodal Autoregulation Orchestrate Nodal Gene Expression for Embryonic Mesendoderm Induction in the Zebrafish. Front Cell Dev Biol 2022; 10:887987. [PMID: 35693948 PMCID: PMC9178097 DOI: 10.3389/fcell.2022.887987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Nodal proteins provide crucial signals for mesoderm and endoderm induction. In zebrafish embryos, the nodal genes ndr1/squint and ndr2/cyclops are implicated in mesendoderm induction. It remains elusive how ndr1 and ndr2 expression is regulated spatiotemporally. Here we investigated regulation of ndr1 and ndr2 expression using Mhwa mutants that lack the maternal dorsal determinant Hwa with deficiency in β-catenin signaling, Meomesa mutants that lack maternal Eomesodermin A (Eomesa), Meomesa;Mhwa double mutants, and the Nodal signaling inhibitor SB431542. We show that ndr1 and ndr2 expression is completely abolished in Meomesa;Mhwa mutant embryos, indicating an essential role of maternal eomesa and hwa. Hwa-activated β-catenin signaling plays a major role in activation of ndr1 expression in the dorsal blastodermal margin, while eomesa is mostly responsible for ndr1 expression in the lateroventral margin and Nodal signaling contributes to ventral expansion of the ndr1 expression domain. However, ndr2 expression mainly depends on maternal eomesa with minor or negligible contribution of maternal hwa and Nodal autoregulation. These mechanisms may help understand regulation of Nodal expression in other species.
Collapse
Affiliation(s)
- Cencan Xing
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Daxing Research Institute, University of Science and Technology, Beijing, China
| | - Weimin Shen
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Bo Gong
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yaqi Li
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Lu Yan
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Anming Meng
- Laboratory of Molecular Developmental Biology, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Guangzhou National Laboratory, Guangzhou, China
- *Correspondence: Anming Meng,
| |
Collapse
|
3
|
Hill CS. Establishment and interpretation of NODAL and BMP signaling gradients in early vertebrate development. Curr Top Dev Biol 2022; 149:311-340. [PMID: 35606059 DOI: 10.1016/bs.ctdb.2021.12.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Transforming growth factor β (TGF-β) family ligands play crucial roles in orchestrating early embryonic development. Most significantly, two family members, NODAL and BMP form signaling gradients and indeed in fish, frogs and sea urchins these two opposing gradients are sufficient to organize a complete embryonic axis. This review focuses on how these gradients are established and interpreted during early vertebrate development. The review highlights key principles that are emerging, in particular the importance of signaling duration as well as ligand concentration in both gradient generation and their interpretation. Feedforward and feedback loops involving other signaling pathways are also essential for providing spatial and temporal information downstream of the NODAL and BMP signaling pathways. Finally, new data suggest the existence of buffering mechanisms, whereby early signaling defects can be readily corrected downstream later in development, suggesting that signaling gradients do not have to be as precise as previously thought.
Collapse
Affiliation(s)
- Caroline S Hill
- Developmental Signalling Laboratory, The Francis Crick Institute, London, United Kingdom.
| |
Collapse
|
4
|
Jones WD, Mullins MC. Cell signaling pathways controlling an axis organizing center in the zebrafish. Curr Top Dev Biol 2022; 150:149-209. [DOI: 10.1016/bs.ctdb.2022.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
5
|
Reassembling gastrulation. Dev Biol 2021; 474:71-81. [DOI: 10.1016/j.ydbio.2020.12.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/11/2020] [Accepted: 12/13/2020] [Indexed: 12/18/2022]
|
6
|
Figiel DM, Elsayed R, Nelson AC. Investigating the molecular guts of endoderm formation using zebrafish. Brief Funct Genomics 2021:elab013. [PMID: 33754635 DOI: 10.1093/bfgp/elab013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/27/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The vertebrate endoderm makes major contributions to the respiratory and gastrointestinal tracts and all associated organs. Zebrafish and humans share a high degree of genetic homology and strikingly similar endodermal organ systems. Combined with a multitude of experimental advantages, zebrafish are an attractive model organism to study endoderm development and disease. Recent functional genomics studies have shed considerable light on the gene regulatory programs governing early zebrafish endoderm development, while advances in biological and technological approaches stand to further revolutionize our ability to investigate endoderm formation, function and disease. Here, we discuss the present understanding of endoderm specification in zebrafish compared to other vertebrates, how current and emerging methods will allow refined and enhanced analysis of endoderm formation, and how integration with human data will allow modeling of the link between non-coding sequence variants and human disease.
Collapse
Affiliation(s)
- Daniela M Figiel
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | - Randa Elsayed
- Medical Research Council Doctoral Training Partnership in Interdisciplinary Biomedical Research at Warwick Medical School
| | | |
Collapse
|
7
|
Fagotto F. Tissue segregation in the early vertebrate embryo. Semin Cell Dev Biol 2020; 107:130-146. [DOI: 10.1016/j.semcdb.2020.05.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/22/2020] [Accepted: 05/26/2020] [Indexed: 11/30/2022]
|
8
|
Schauer A, Pinheiro D, Hauschild R, Heisenberg CP. Zebrafish embryonic explants undergo genetically encoded self-assembly. eLife 2020; 9:55190. [PMID: 32250246 PMCID: PMC7190352 DOI: 10.7554/elife.55190] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 04/05/2020] [Indexed: 12/20/2022] Open
Abstract
Embryonic stem cell cultures are thought to self-organize into embryoid bodies, able to undergo symmetry-breaking, germ layer specification and even morphogenesis. Yet, it is unclear how to reconcile this remarkable self-organization capacity with classical experiments demonstrating key roles for extrinsic biases by maternal factors and/or extraembryonic tissues in embryogenesis. Here, we show that zebrafish embryonic tissue explants, prepared prior to germ layer induction and lacking extraembryonic tissues, can specify all germ layers and form a seemingly complete mesendoderm anlage. Importantly, explant organization requires polarized inheritance of maternal factors from dorsal-marginal regions of the blastoderm. Moreover, induction of endoderm and head-mesoderm, which require peak Nodal-signaling levels, is highly variable in explants, reminiscent of embryos with reduced Nodal signals from the extraembryonic tissues. Together, these data suggest that zebrafish explants do not undergo bona fide self-organization, but rather display features of genetically encoded self-assembly, where intrinsic genetic programs control the emergence of order.
Collapse
|
9
|
|
10
|
Abstract
Soon after fertilization the zebrafish embryo generates the pool of cells that will give rise to the germline and the three somatic germ layers of the embryo (ectoderm, mesoderm and endoderm). As the basic body plan of the vertebrate embryo emerges, evolutionarily conserved developmental signaling pathways, including Bmp, Nodal, Wnt, and Fgf, direct the nearly totipotent cells of the early embryo to adopt gene expression profiles and patterns of cell behavior specific to their eventual fates. Several decades of molecular genetics research in zebrafish has yielded significant insight into the maternal and zygotic contributions and mechanisms that pattern this vertebrate embryo. This new understanding is the product of advances in genetic manipulations and imaging technologies that have allowed the field to probe the cellular, molecular and biophysical aspects underlying early patterning. The current state of the field indicates that patterning is governed by the integration of key signaling pathways and physical interactions between cells, rather than a patterning system in which distinct pathways are deployed to specify a particular cell fate. This chapter focuses on recent advances in our understanding of the genetic and molecular control of the events that impart cell identity and initiate the patterning of tissues that are prerequisites for or concurrent with movements of gastrulation.
Collapse
Affiliation(s)
- Florence L Marlow
- Icahn School of Medicine Mount Sinai Department of Cell, Developmental and Regenerative Biology, New York, NY, United States.
| |
Collapse
|
11
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
12
|
Nodal and BMP dispersal during early zebrafish development. Dev Biol 2018; 447:14-23. [PMID: 29653088 DOI: 10.1016/j.ydbio.2018.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 03/29/2018] [Accepted: 04/06/2018] [Indexed: 12/30/2022]
Abstract
The secreted TGF-β superfamily signals Nodal and BMP coordinate the patterning of vertebrate embryos. Nodal specifies endoderm and mesoderm during germ layer formation, and BMP specifies ventral fates and patterns the dorsal/ventral axis. Five major models have been proposed to explain how the correct distributions of Nodal and BMP are achieved within tissues to orchestrate embryogenesis: source/sink, transcriptional determination, relay, self-regulation, and shuttling. Here, we discuss recent experiments probing these signal dispersal models, focusing on early zebrafish development.
Collapse
|
13
|
Gagnon JA, Obbad K, Schier AF. The primary role of zebrafish nanog is in extra-embryonic tissue. Development 2018; 145:dev.147793. [PMID: 29180571 DOI: 10.1242/dev.147793] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 11/07/2017] [Indexed: 12/17/2022]
Abstract
The role of the zebrafish transcription factor Nanog has been controversial. It has been suggested that Nanog is primarily required for the proper formation of the extra-embryonic yolk syncytial layer (YSL) and only indirectly regulates gene expression in embryonic cells. In an alternative scenario, Nanog has been proposed to directly regulate transcription in embryonic cells during zygotic genome activation. To clarify the roles of Nanog, we performed a detailed analysis of zebrafish nanog mutants. Whereas zygotic nanog mutants survive to adulthood, maternal-zygotic (MZnanog) and maternal mutants exhibit developmental arrest at the blastula stage. In the absence of Nanog, YSL formation and epiboly are abnormal, embryonic tissue detaches from the yolk, and the expression of dozens of YSL and embryonic genes is reduced. Epiboly defects can be rescued by generating chimeric embryos of MZnanog embryonic tissue with wild-type vegetal tissue that includes the YSL and yolk cell. Notably, cells lacking Nanog readily respond to Nodal signals and when transplanted into wild-type hosts proliferate and contribute to embryonic tissues and adult organs from all germ layers. These results indicate that zebrafish Nanog is necessary for proper YSL development but is not directly required for embryonic cell differentiation.
Collapse
Affiliation(s)
- James A Gagnon
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kamal Obbad
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA .,Center for Brain Science, Harvard University, Cambridge, MA 02138, USA.,The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.,FAS Center for Systems Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
14
|
Veil M, Schaechtle MA, Gao M, Kirner V, Buryanova L, Grethen R, Onichtchouk D. Maternal Nanog is required for zebrafish embryo architecture and for cell viability during gastrulation. Development 2018; 145:dev.155366. [PMID: 29180568 DOI: 10.1242/dev.155366] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Nanog has been implicated in establishment of pluripotency in mammals and in zygotic genome activation in zebrafish. In this study, we characterize the development of MZnanog (maternal and zygotic null) mutant zebrafish embryos. Without functional Nanog, epiboly is severely affected, embryo axes do not form and massive cell death starts at the end of gastrulation. We show that three independent defects in MZnanog mutants contribute to epiboly failure: yolk microtubule organization required for epiboly is abnormal, maternal mRNA fails to degrade owing to the absence of miR-430, and actin structure of the yolk syncytial layer does not form properly. We further demonstrate that the cell death in MZnanog embryos is cell-autonomous. Nanog is necessary for correct spatial expression of the ventral-specifying genes bmp2b, vox and vent, and the neural transcription factor her3 It is also required for the correctly timed activation of endoderm genes and for the degradation of maternal eomesa mRNA via miR-430. Our findings suggest that maternal Nanog coordinates several gene regulatory networks that shape the embryo during gastrulation.
Collapse
Affiliation(s)
- Marina Veil
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Melanie Anna Schaechtle
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Meijiang Gao
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany.,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Viola Kirner
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Lenka Buryanova
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Rachel Grethen
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany
| | - Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany .,BIOSS Centre for Biological Signalling Studies, Albert Ludwigs University of Freiburg, 79104 Freiburg, Germany.,Institute of Developmental Biology RAS, 119991 Moscow, Russia
| |
Collapse
|
15
|
Tewary M, Ostblom J, Prochazka L, Zulueta-Coarasa T, Shakiba N, Fernandez-Gonzalez R, Zandstra PW. A stepwise model of reaction-diffusion and positional information governs self-organized human peri-gastrulation-like patterning. Development 2017; 144:4298-4312. [PMID: 28870989 PMCID: PMC5769627 DOI: 10.1242/dev.149658] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 08/23/2017] [Indexed: 12/15/2022]
Abstract
How position-dependent cell fate acquisition occurs during embryogenesis is a central question in developmental biology. To study this process, we developed a defined, high-throughput assay to induce peri-gastrulation-associated patterning in geometrically confined human pluripotent stem cell (hPSC) colonies. We observed that, upon BMP4 treatment, phosphorylated SMAD1 (pSMAD1) activity in the colonies organized into a radial gradient. We developed a reaction-diffusion (RD)-based computational model and observed that the self-organization of pSMAD1 signaling was consistent with the RD principle. Consequent fate acquisition occurred as a function of both pSMAD1 signaling strength and duration of induction, consistent with the positional-information (PI) paradigm. We propose that the self-organized peri-gastrulation-like fate patterning in BMP4-treated geometrically confined hPSC colonies arises via a stepwise model of RD followed by PI. This two-step model predicted experimental responses to perturbations of key parameters such as colony size and BMP4 dose. Furthermore, it also predicted experimental conditions that resulted in RD-like periodic patterning in large hPSC colonies, and rescued peri-gastrulation-like patterning in colony sizes previously thought to be reticent to this behavior.
Collapse
Affiliation(s)
- Mukul Tewary
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Joel Ostblom
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Laura Prochazka
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Teresa Zulueta-Coarasa
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nika Shakiba
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| | - Rodrigo Fernandez-Gonzalez
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Ted Rogers Centre for Heart Research, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, M5S 3G5, Canada
| | - Peter W Zandstra
- Institute of Biomaterials and Biomedical Engineering (IBBME), University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Collaborative Program in Developmental Biology, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario, M5S 3ES, Canada
- Medicine by Design: A Canada First Research Excellence Fund Program, University of Toronto, Toronto, Ontario, M5S 3E1, Canada
| |
Collapse
|
16
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Localization in Oogenesis of Maternal Regulators of Embryonic Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 953:173-207. [DOI: 10.1007/978-3-319-46095-6_5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
18
|
van Boxtel AL, Chesebro JE, Heliot C, Ramel MC, Stone RK, Hill CS. A Temporal Window for Signal Activation Dictates the Dimensions of a Nodal Signaling Domain. Dev Cell 2015; 35:175-85. [PMID: 26506307 PMCID: PMC4640439 DOI: 10.1016/j.devcel.2015.09.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 08/11/2015] [Accepted: 09/23/2015] [Indexed: 11/22/2022]
Abstract
Morphogen signaling is critical for the growth and patterning of tissues in embryos and adults, but how morphogen signaling gradients are generated in tissues remains controversial. The morphogen Nodal was proposed to form a long-range signaling gradient via a reaction-diffusion system, on the basis of differential diffusion rates of Nodal and its antagonist Lefty. Here we use a specific zebrafish Nodal biosensor combined with immunofluorescence for phosphorylated Smad2 to demonstrate that endogenous Nodal is unlikely to diffuse over a long range. Instead, short-range Nodal signaling activation in a temporal window is sufficient to determine the dimensions of the Nodal signaling domain. The size of this temporal window is set by the differentially timed production of Nodal and Lefty, which arises mainly from repression of Lefty translation by the microRNA miR-430. Thus, temporal information is transformed into spatial information to define the dimensions of the Nodal signaling domain and, consequently, to specify mesendoderm.
Collapse
Affiliation(s)
- Antonius L van Boxtel
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - John E Chesebro
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Claire Heliot
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Marie-Christine Ramel
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Richard K Stone
- Experimental Histopathology, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| | - Caroline S Hill
- Developmental Signalling, The Francis Crick Institute, Lincoln's Inn Fields Laboratory, 44 Lincoln's Inn Fields, London WC2A 3LY, UK.
| |
Collapse
|
19
|
Li-Villarreal N, Forbes MM, Loza AJ, Chen J, Ma T, Helde K, Moens CB, Shin J, Sawada A, Hindes AE, Dubrulle J, Schier AF, Longmore GD, Marlow FL, Solnica-Krezel L. Dachsous1b cadherin regulates actin and microtubule cytoskeleton during early zebrafish embryogenesis. Development 2015; 142:2704-18. [PMID: 26160902 DOI: 10.1242/dev.119800] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 06/25/2015] [Indexed: 01/04/2023]
Abstract
Dachsous (Dchs), an atypical cadherin, is an evolutionarily conserved regulator of planar cell polarity, tissue size and cell adhesion. In humans, DCHS1 mutations cause pleiotropic Van Maldergem syndrome. Here, we report that mutations in zebrafish dchs1b and dchs2 disrupt several aspects of embryogenesis, including gastrulation. Unexpectedly, maternal zygotic (MZ) dchs1b mutants show defects in the earliest developmental stage, egg activation, including abnormal cortical granule exocytosis (CGE), cytoplasmic segregation, cleavages and maternal mRNA translocation, in transcriptionally quiescent embryos. Later, MZdchs1b mutants exhibit altered dorsal organizer and mesendodermal gene expression, due to impaired dorsal determinant transport and Nodal signaling. Mechanistically, MZdchs1b phenotypes can be explained in part by defective actin or microtubule networks, which appear bundled in mutants. Accordingly, disruption of actin cytoskeleton in wild-type embryos phenocopied MZdchs1b mutant defects in cytoplasmic segregation and CGE, whereas interfering with microtubules in wild-type embryos impaired dorsal organizer and mesodermal gene expression without perceptible earlier phenotypes. Moreover, the bundled microtubule phenotype was partially rescued by expressing either full-length Dchs1b or its intracellular domain, suggesting that Dchs1b affects microtubules and some developmental processes independent of its known ligand Fat. Our results indicate novel roles for vertebrate Dchs in actin and microtubule cytoskeleton regulation in the unanticipated context of the single-celled embryo.
Collapse
Affiliation(s)
- Nanbing Li-Villarreal
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Meredyth M Forbes
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Andrew J Loza
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Jiakun Chen
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Taylur Ma
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Kathryn Helde
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jimann Shin
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Atsushi Sawada
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Anna E Hindes
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Julien Dubrulle
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Alexander F Schier
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Gregory D Longmore
- Department of Internal Medicine, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| | - Florence L Marlow
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA Department of Neuroscience, Albert Einstein College of Medicine, Yeshiva University, Bronx, NY 10461, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA
| |
Collapse
|
20
|
Nagai H, Sezaki M, Kakiguchi K, Nakaya Y, Lee HC, Ladher R, Sasanami T, Han JY, Yonemura S, Sheng G. Cellular analysis of cleavage-stage chick embryos reveals hidden conservation in vertebrate early development. Development 2015; 142:1279-86. [PMID: 25742796 PMCID: PMC4378249 DOI: 10.1242/dev.118604] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Birds and mammals, phylogenetically close amniotes with similar post-gastrula development, exhibit little conservation in their post-fertilization cleavage patterns. Data from the mouse suggest that cellular morphogenesis and molecular signaling at the cleavage stage play important roles in lineage specification at later (blastula and gastrula) stages. Very little is known, however, about cleavage-stage chick embryos, owing to their poor accessibility. This period of chick development takes place before egg-laying and encompasses several fundamental processes of avian embryology, including zygotic gene activation (ZGA) and blastoderm cell-layer increase. We have carried out morphological and cellular analyses of cleavage-stage chick embryos covering the first half of pre-ovipositional development, from Eyal-Giladi and Kochav stage (EGK-) I to EGK-V. Scanning electron microscopy revealed remarkable subcellular details of blastomere cellularization and subgerminal cavity formation. Phosphorylated RNA polymerase II immunostaining showed that ZGA in the chick starts at early EGK-III during the 7th to 8th nuclear division cycle, comparable with the time reported for other yolk-rich vertebrates (e.g. zebrafish and Xenopus). The increase in the number of cell layers after EGK-III is not a direct consequence of oriented cell division. Finally, we present evidence that, as in the zebrafish embryo, a yolk syncytial layer is formed in the avian embryo after EGK-V. Our data suggest that several fundamental features of cleavage-stage development in birds resemble those in yolk-rich anamniote species, revealing conservation in vertebrate early development. Whether this conservation lends morphogenetic support to the anamniote-to-amniote transition in evolution or reflects developmental plasticity in convergent evolution awaits further investigation.
Collapse
Affiliation(s)
- Hiroki Nagai
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Maiko Sezaki
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Kisa Kakiguchi
- Electron Microscopy Laboratory, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Yukiko Nakaya
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Raj Ladher
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Tomohiro Sasanami
- Department of Applied Biological Chemistry, Faculty of Agriculture, Shizuoka University, 836 Ohya, Shizuoka 422-8529, Japan
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
| | - Shigenobu Yonemura
- Electron Microscopy Laboratory, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| | - Guojun Sheng
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Hyogo 650-0047, Japan
| |
Collapse
|
21
|
Kenyon EJ, Campos I, Bull JC, Williams PH, Stemple DL, Clark MD. Zebrafish Rab5 proteins and a role for Rab5ab in nodal signalling. Dev Biol 2014; 397:212-24. [PMID: 25478908 PMCID: PMC4294769 DOI: 10.1016/j.ydbio.2014.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/03/2014] [Accepted: 11/11/2014] [Indexed: 01/08/2023]
Abstract
The RAB5 gene family is the best characterised of all human RAB families and is essential for in vitro homotypic fusion of early endosomes. In recent years, the disruption or activation of Rab5 family proteins has been used as a tool to understand growth factor signal transduction in whole animal systems such as Drosophila melanogaster and zebrafish. In this study we have examined the functions for four rab5 genes in zebrafish. Disruption of rab5ab expression by antisense morpholino oligonucleotide (MO) knockdown abolishes nodal signalling in early zebrafish embryos, whereas overexpression of rab5ab mRNA leads to ectopic expression of markers that are normally downstream of nodal signalling. By contrast MO disruption of other zebrafish rab5 genes shows little or no effect on expression of markers of dorsal organiser development. We conclude that rab5ab is essential for nodal signalling and organizer specification in the developing zebrafish embryo. We have examined the activities of each of the zebrafish Rab5 genes using morpholino knockdowns. Loss of one Rab5 isoform, Rab5ab, affects formation of the dorsal organizer. Rab5ab overexpression leads to ectopic expression of dorsal markers.
Collapse
Affiliation(s)
- Emma J Kenyon
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Isabel Campos
- Champalimaud Centre for the Unknown, Fundação Champalimaud, Lisboa, Portugal
| | - James C Bull
- Department of Biosciences, Swansea University, Swansea SA2 8PP, United Kingdom
| | - P Huw Williams
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom
| | - Derek L Stemple
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, United Kingdom.
| | - Matthew D Clark
- Sequencing Technology Development, The Genome Analysis Centre, Norwich Research Park, Colney, Norwich NR4 7UH, United Kingdom
| |
Collapse
|
22
|
Xu P, Zhu G, Wang Y, Sun J, Liu X, Chen YG, Meng A. Maternal Eomesodermin regulates zygotic nodal gene expression for mesendoderm induction in zebrafish embryos. J Mol Cell Biol 2014; 6:272-85. [DOI: 10.1093/jmcb/mju028] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
23
|
Extraembryonic Signals under the Control of MGA, Max, and Smad4 Are Required for Dorsoventral Patterning. Dev Cell 2014; 28:322-34. [DOI: 10.1016/j.devcel.2014.01.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/13/2013] [Accepted: 01/07/2014] [Indexed: 11/19/2022]
|
24
|
Kumari P, Gilligan PC, Lim S, Tran LD, Winkler S, Philp R, Sampath K. An essential role for maternal control of Nodal signaling. eLife 2013; 2:e00683. [PMID: 24040511 PMCID: PMC3771576 DOI: 10.7554/elife.00683] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Accepted: 08/06/2013] [Indexed: 12/26/2022] Open
Abstract
Growth factor signaling is essential for pattern formation, growth, differentiation, and maintenance of stem cell pluripotency. Nodal-related signaling factors are required for axis formation and germ layer specification from sea urchins to mammals. Maternal transcripts of the zebrafish Nodal factor, Squint (Sqt), are localized to future embryonic dorsal. The mechanisms by which maternal sqt/nodal RNA is localized and regulated have been unclear. Here, we show that maternal control of Nodal signaling via the conserved Y box-binding protein 1 (Ybx1) is essential. We identified Ybx1 via a proteomic screen. Ybx1 recognizes the 3’ untranslated region (UTR) of sqt RNA and prevents premature translation and Sqt/Nodal signaling. Maternal-effect mutations in zebrafish ybx1 lead to deregulated Nodal signaling, gastrulation failure, and embryonic lethality. Implanted Nodal-coated beads phenocopy ybx1 mutant defects. Thus, Ybx1 prevents ectopic Nodal activity, revealing a new paradigm in the regulation of Nodal signaling, which is likely to be conserved. DOI:http://dx.doi.org/10.7554/eLife.00683.001 In many organisms, embryonic development is controlled in part by RNAs that are deposited into the egg as it forms inside the mother. These ‘maternal RNAs’ may localize to particular regions of the egg or embryo, where they are then exclusively translated into protein and carry out their specific function. This helps to establish asymmetry in the developing organism—that is, to produce tissues that will eventually become the top or bottom, front or back, and left or right of the organism. One such maternal RNA encodes Nodal, a key signaling molecule that is conserved across vertebrate and some invertebrate organisms. In zebrafish, the equivalent RNA is called squint, and plays an important role in embryonic development. The squint RNA deposited by the mother localizes to the dorsal region—the embryo’s back—and signals that region to make dorsal tissues, but how squint is regulated is not well understood. Now, Kumari et al. identify a protein that controls the positioning of squint RNA, and find that it can also prevent this RNA from being translated into protein. The squint RNA contains a ‘dorsal localization element’ that recruits it to the dorsal cells of the embryo by the 4-cell stage (i.e., within two cell divisions after the egg is fertilized). Kumari et al. identified a protein called Ybx1 that could bind to this element: this protein may help to correctly position RNAs in many other organisms, including fruit flies and mammals. Strikingly, embryos formed abnormally when their maternally derived Ybx1 protein was mutant, and these mutations also prevented the squint RNA from localizing properly. This suggests that maternally derived Ybx1 protein directly regulates the squint RNA. As well as positioning the squint RNA correctly, the embryo must translate this RNA into protein at the right time. In embryos with mutant maternal Ybx1 protein, the Squint protein could be detected at the 16-cell stage, whereas in wild-type embryos this protein is not translated until the 256-cell stage; this indicates that Ybx1 protein might normally repress the translation of the squint RNA. Indeed, Kumari et al. found that Ybx1 binds to another protein—eIF4E—that recruits mRNAs to the ribosome (the cell’s translational machinery). Ybx1 might therefore prevent eIF4E from associating with other components of the ribosomal complex, and initiating the translation of the squint RNA, until additional signals have been received. It will be interesting to determine how widespread this regulatory mechanism is in other organisms. DOI:http://dx.doi.org/10.7554/eLife.00683.002
Collapse
Affiliation(s)
- Pooja Kumari
- Temasek Life Sciences Laboratory , National University of Singapore , Singapore , Singapore ; Department of Biological Sciences , National University of Singapore , Singapore , Singapore
| | | | | | | | | | | | | |
Collapse
|
25
|
Godard BG, Mazan S. Early patterning in a chondrichthyan model, the small spotted dogfish: towards the gnathostome ancestral state. J Anat 2012; 222:56-66. [PMID: 22905913 DOI: 10.1111/j.1469-7580.2012.01552.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/17/2012] [Indexed: 01/09/2023] Open
Abstract
In the past few years, the small spotted dogfish has become the primary model for analyses of early development in chondrichthyans. Its phylogenetic position makes it an ideal outgroup to reconstruct the ancestral gnathostome state by comparisons with established vertebrate model organisms. It is also a suitable model to address the molecular bases of lineage-specific diversifications such as the rise of extraembryonic tissues, as it is endowed with a distinct extraembryonic yolk sac and yolk duct ensuring exchanges between the embryo and a large undivided vitelline mass. Experimental or functional approaches such as cell marking or in ovo pharmacological treatments are emerging in this species, but recent analyses of early development in this species have primarily concentrated on molecular descriptions. These data show the dogfish embryo exhibits early polarities reflecting the dorso-ventral axis of amphibians and teleosts at early blastula stages and an atypical anamniote molecular pattern during gastrulation, independently of the presence of extraembryonic tissues. They also highlight unexpected relationships with amniotes, with a strikingly similar Nodal-dependent regional pattern in the extraembryonic endoderm. In this species, extraembryonic cell fates seem to be determined by differential cell behaviors, which lead to cell allocation in extraembryonic and embryonic tissues, rather than by cell regional identity. We suggest that this may exemplify an early evolutionary step in the rise of extraembryonic tissues, possibly related to quantitative differences in the signaling activities, which shape the early embryo. These results highlight the conservation across gnathostomes of a highly constrained core genetic program controlling early patterning. This conservation may be obscured in some lineages by taxa-specific diversifications such as specializations of extraembryonic nutritive tissues.
Collapse
Affiliation(s)
- B G Godard
- Development and Evolution of Vertebrates, CNRS-UPMC-UMR 7150, Station Biologique, Roscoff, France
| | | |
Collapse
|
26
|
Pereira LA, Wong MS, Mei Lim S, Stanley EG, Elefanty AG. The Mix family of homeobox genes—Key regulators of mesendoderm formation during vertebrate development. Dev Biol 2012; 367:163-77. [DOI: 10.1016/j.ydbio.2012.04.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 04/24/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022]
|
27
|
Xu C, Fan ZP, Müller P, Fogley R, DiBiase A, Trompouki E, Unternaehrer J, Xiong F, Torregroza I, Evans T, Megason SG, Daley GQ, Schier AF, Young RA, Zon LI. Nanog-like regulates endoderm formation through the Mxtx2-Nodal pathway. Dev Cell 2012; 22:625-38. [PMID: 22421047 DOI: 10.1016/j.devcel.2012.01.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 09/19/2011] [Accepted: 01/11/2012] [Indexed: 12/15/2022]
Abstract
In mammalian embryonic stem cells, the acquisition of pluripotency is dependent on Nanog, but the in vivo analysis of Nanog has been hampered by its requirement for early mouse development. In an effort to examine the role of Nanog in vivo, we identified a zebrafish Nanog ortholog and found that its knockdown impaired endoderm formation. Genome-wide transcription analysis revealed that nanog-like morphants fail to develop the extraembryonic yolk syncytial layer (YSL), which produces Nodal, required for endoderm induction. We examined the genes that were regulated by Nanog-like and identified the homeobox gene mxtx2, which is both necessary and sufficient for YSL induction. Chromatin immunoprecipitation assays and genetic studies indicated that Nanog-like directly activates mxtx2, which, in turn, specifies the YSL lineage by directly activating YSL genes. Our study identifies a Nanog-like-Mxtx2-Nodal pathway and establishes a role for Nanog-like in regulating the formation of the extraembryonic tissue required for endoderm induction.
Collapse
Affiliation(s)
- Cong Xu
- Howard Hughes Medical Institute, Children's Hospital Boston and Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Narayanan A, Lekven AC. Biphasic wnt8a expression is achieved through interactions of multiple regulatory inputs. Dev Dyn 2012; 241:1062-75. [PMID: 22473868 DOI: 10.1002/dvdy.23787] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2012] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Vertebrate axis development depends upon wnt8a transcription in a dynamic pool of mesoderm progenitors at the posterior pole of the gastrulating embryo. The transcriptional mechanisms controlling wnt8a expression are not understood, but previous studies identified two phases of wnt8a expression in zebrafish: Nodal-dependent activation during early gastrulation (phase I) and No tail (Ntl)-dependent regulation from mid gastrula stages (phase II). RESULTS We identified two upstream cis-regulatory regions, proximal and distal, each of which possesses a promoter. The proximal regulatory region contains a margin-specific enhancer that is required for both the Nodal and Ntl responses. Phase I expression requires Nodal activation of the margin enhancer in combination with the transcription factor Zbtb4 and the distal regulatory region. Phase II expression requires Ntl regulation of the margin enhancer in the context of the proximal regulatory region. An additional mechanism is required to ensure the transition from phase I to phase II regulation. Analysis of stickleback wnt8a suggests this mechanism of regulation may be conserved. CONCLUSIONS The seemingly simple wnt8a expression pattern reflects complex interactions of multiple regulatory inputs.
Collapse
Affiliation(s)
- Anand Narayanan
- Department of Biology, Texas A&M University, College Station, Texas 77843-3258, USA
| | | |
Collapse
|
29
|
Solute carrier family 3 member 2 (Slc3a2) controls yolk syncytial layer (YSL) formation by regulating microtubule networks in the zebrafish embryo. Proc Natl Acad Sci U S A 2012; 109:3371-6. [PMID: 22331904 DOI: 10.1073/pnas.1200642109] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The yolk syncytial layer (YSL) in the zebrafish embryo is a multinucleated syncytium essential for embryo development, but the molecular mechanisms underlying YSL formation remain largely unknown. Here we show that zebrafish solute carrier family 3 member 2 (Slc3a2) is expressed specifically in the YSL and that slc3a2 knockdown causes severe YSL defects including clustering of the yolk syncytial nuclei and enhanced cell fusion, accompanied by disruption of microtubule networks. Expression of a constitutively active RhoA mimics the YSL phenotypes caused by slc3a2 knockdown, whereas attenuation of RhoA or ROCK activity rescues the slc3a2-knockdown phenotypes. Furthermore, slc3a2 knockdown significantly reduces tyrosine phosphorylation of c-Src, and overexpression of a constitutively active Src restores the slc3a2-knockdown phenotypes. Our data demonstrate a signaling pathway regulating YSL formation in which Slc3a2 inhibits the RhoA/ROCK pathway via phosphorylation of c-Src to modulate YSL microtubule dynamics. This work illuminates processes at a very early stage of zebrafish embryogenesis and more generally informs the mechanism of cell dynamics during syncytium formation.
Collapse
|
30
|
Du S, Draper BW, Mione M, Moens CB, Bruce AEE. Differential regulation of epiboly initiation and progression by zebrafish Eomesodermin A. Dev Biol 2012; 362:11-23. [PMID: 22142964 PMCID: PMC3259739 DOI: 10.1016/j.ydbio.2011.10.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 09/24/2011] [Accepted: 10/19/2011] [Indexed: 01/07/2023]
Abstract
The T-box transcription factor Eomesodermin (Eomes) has been implicated in patterning and morphogenesis in frog, fish and mouse. In zebrafish, one of the two Eomes homologs, Eomesa, has been implicated in dorsal-ventral patterning, epiboly and endoderm specification in experiments employing over-expression, dominant-negative constructs and antisense morpholino oligonucleotides. Here we report for the first time the identification and characterization of an Eomesa mutant generated by TILLING. We find that Eomesa has a strictly maternal role in the initiation of epiboly, which involves doming of the yolk cell up into the overlying blastoderm. By contrast, epiboly progression is normal, demonstrating for the first time that epiboly initiation is genetically separable from progression. The yolk cell microtubules, which are required for epiboly, are defective in maternal-zygotic eomesa mutant embryos. In addition, the deep cells of the blastoderm are more tightly packed and exhibit more bleb-like protrusions than cells in control embryos. We postulate that the doming delay may be the consequence both of overly stabilized yolk cell microtubules and defects in the adhesive properties or motility of deep cells. We also show that Eomesa is required for normal expression of the endoderm markers sox32, bon and og9x; however it is not essential for endoderm formation.
Collapse
Affiliation(s)
- Susan Du
- Department of Cell and Systems Biology University of Toronto 25 Harbord Street Toronto, ON M5S 3G5 Canada
| | - Bruce W. Draper
- Molecular and Cellular Biology University of California, Davis One Shields Avenue Davis, CA 95616 USA
| | - Marina Mione
- IFOM, Istituto FIRC di Oncologia Molecolare Via Adamello 16 Milan, I-20139 Italy
| | - Cecilia B. Moens
- Howard Hughes Medical Institute Division of Basic Science Fred Hutchinson Cancer Research Center P.O. Box 19024 1100 Fairview Avenue North Seattle, WA 98109-1024 USA
| | - Ashley E. E. Bruce
- Department of Cell and Systems Biology University of Toronto 25 Harbord Street Toronto, ON M5S 3G5 Canada
| |
Collapse
|
31
|
Abstract
Vertebrate development begins with precise molecular, cellular, and morphogenetic controls to establish the basic body plan of the embryo. In zebrafish, these tightly regulated processes begin during oogenesis and proceed through gastrulation to establish and pattern the axes of the embryo. During oogenesis a maternal factor is localized to the vegetal pole of the oocyte that is a determinant of dorsal tissues. Following fertilization this vegetally localized dorsal determinant is asymmetrically translocated in the egg and initiates formation of the dorsoventral axis. Dorsoventral axis formation and patterning is then mediated by maternal and zygotic factors acting through Wnt, BMP (bone morphogenetic protein), Nodal, and FGF (fibroblast growth factor) signaling pathways, each of which is required to establish and/or pattern the dorsoventral axis. This review addresses recent advances in our understanding of the molecular factors and mechanisms that establish and pattern the dorsoventral axis of the zebrafish embryo, including establishment of the animal-vegetal axis as it relates to formation of the dorsoventral axis.
Collapse
Affiliation(s)
- Yvette G Langdon
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104, USA.
| | | |
Collapse
|
32
|
Narayanan A, Thompson SA, Lee JJ, Lekven AC. A transgenic wnt8a:PAC reporter reveals biphasic regulation of vertebrate mesoderm development. Dev Dyn 2011; 240:898-907. [PMID: 21384472 DOI: 10.1002/dvdy.22599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2011] [Indexed: 12/25/2022] Open
Affiliation(s)
- Anand Narayanan
- Department of Biology, Texas A&M University, College Station, Texas, USA
| | | | | | | |
Collapse
|