1
|
Sun J, Yuan H, Yu Y, Li A, Zhao Z, Tang Y, Zheng F. Immunomodulatory potential of primary cilia in the skin. Front Immunol 2024; 15:1456875. [PMID: 39676858 PMCID: PMC11638010 DOI: 10.3389/fimmu.2024.1456875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Primary cilia (PC) are essential signaling hubs for proper epithelial formation and the maintenance of skin homeostasis. Found on most cells in the human body, including skin cells, PC facilitate signal transduction that allows ciliated cells to interact with the immune system via multiple pathways, helping to maintain immune system homeostasis. PC can be altered by various microenvironmental stimuli to develop corresponding regulatory functions. Both PC and ciliary signaling pathways have been shown to be involved in the immune processes of various skin lesions. However, the mechanisms by which PC regulate cellular functions and maintain immune homeostasis in tissues are highly complex, and our understanding of them in the skin remains limited. In this paper, we discuss key ciliary signaling pathways and ciliated cells in the skin, with a focus on their immunomodulatory functions. We have compiled evidence from various cells, tissues and disease models to help explore the potential immunomodulatory effects of PC in the skin and their molecular mechanisms.
Collapse
Affiliation(s)
- Jingwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Yuan
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aorou Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihe Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
2
|
Kim NH, Lee AY. Oxidative Stress Induces Skin Pigmentation in Melasma by Inhibiting Hedgehog Signaling. Antioxidants (Basel) 2023; 12:1969. [PMID: 38001823 PMCID: PMC10669456 DOI: 10.3390/antiox12111969] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
There is growing evidence that oxidative stress plays a role in melasma and disrupts primary cilia formation. Additionally, primary cilia have been suggested to have an inhibitory role in melanogenesis. This study examined the potential link between oxidative stress, skin hyperpigmentation, and primary cilia. We compared the expression levels of the nuclear factor E2-related factor 2 (NRF2), intraflagellar transport 88 (IFT88), and glioma-associated oncogene homologs (GLIs) in skin samples from patients with melasma, both in affected and unaffected areas. We also explored the roles of NRF2, IFT88, and GLIs in ciliogenesis and pigmentation using cultured adult human keratinocytes, with or without melanocytes. Our findings revealed decreased levels of NRF2, heme oxygenase-1, IFT88, and GLIs in lesional skin from melasma patients. The knockdown of NRF2 resulted in reduced expressions of IFT88 and GLI1, along with fewer ciliated cells. Furthermore, NRF2, IFT88, or GLI1 knockdown led to increased expressions in protease-activated receptor-2 (PAR2), K10, involucrin, tyrosinase, and/or melanin. These effects were reversed by the smoothened agonist 1.1. Calcium also upregulated these proteins, but not NRF2. The upregulation of involucrin and PAR2 after NRF2 knockdown was mitigated with a calcium chelator. In summary, our study suggests that oxidative stress in NRF2-downregulated melasma keratinocytes impedes ciliogenesis and related molecular processes. This inhibition stimulates keratinocyte differentiation, resulting in melanin synthesis and melanosome transfer, ultimately leading to skin hyperpigmentation.
Collapse
Affiliation(s)
| | - Ai-Young Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, 814 Siksa-dong, Ilsandong-gu, Goyang-si 410-773, Gyeonggi-do, Republic of Korea
| |
Collapse
|
3
|
Portal C, Lin Y, Rastogi V, Peterson C, Yiu SCH, Foster JW, Wilkerson A, Butovich IA, Iomini C. Primary cilia control cellular patterning of Meibomian glands during morphogenesis but not lipid composition. Commun Biol 2023; 6:282. [PMID: 36932132 PMCID: PMC10023665 DOI: 10.1038/s42003-023-04632-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 02/27/2023] [Indexed: 03/19/2023] Open
Abstract
Meibomian glands (MGs) are modified sebaceous glands producing the tear film's lipids. Despite their critical role in maintaining clear vision, the mechanisms underlying MG morphogenesis in development and disease remain obscure. Cilia-mediate signals are critical for the development of skin adnexa, including sebaceous glands. Thus, we investigated the role of cilia in MG morphogenesis during development. Most cells were ciliated during early MG development, followed by cilia disassembly during differentiation. In mature glands, ciliated cells were primarily restricted to the basal layer of the proximal gland central duct. Cilia ablation in keratine14-expressing tissue disrupted the accumulation of proliferative cells at the distal tip but did not affect the overall rate of proliferation or apoptosis. Moreover, impaired cellular patterning during elongation resulted in hypertrophy of mature MGs with increased meibum volume without altering its lipid composition. Thus, cilia signaling networks provide a new platform to design therapeutic treatments for MG dysfunction.
Collapse
Affiliation(s)
- Céline Portal
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Yvonne Lin
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Varuni Rastogi
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Cornelia Peterson
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Samuel Chi-Hung Yiu
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - James W Foster
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Amber Wilkerson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Igor A Butovich
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
- Graduate School of Biomedical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Carlo Iomini
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA.
| |
Collapse
|
4
|
Girardet L, Cyr DG, Belleannée C. Arl13b controls basal cell stemness properties and Hedgehog signaling in the mouse epididymis. Cell Mol Life Sci 2022; 79:556. [PMID: 36261680 PMCID: PMC11803030 DOI: 10.1007/s00018-022-04570-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/09/2022] [Accepted: 09/22/2022] [Indexed: 11/30/2022]
Abstract
Epithelial cells orchestrate a series of intercellular signaling events in response to tissue damage. While the epididymis is composed of a pseudostratified epithelium that controls the acquisition of male fertility, the maintenance of its integrity in the context of tissue damage or inflammation remains largely unknown. Basal cells of the epididymis contain a primary cilium, an organelle that controls cellular differentiation in response to Hedgehog signaling cues. Hypothesizing its contribution to epithelial homeostasis, we knocked out the ciliary component ARL13B in keratin 5-positive basal cells. In this model, the reduced size of basal cell primary cilia was associated with impaired Hedgehog signaling and the loss of KRT5, KRT14, and P63 basal cell markers. When subjected to tissue injury, the epididymal epithelium from knock-out mice displayed imbalanced rates of cell proliferation/apoptosis and failed to properly regenerate in vivo. This response was associated with changes in the transcriptomic landscape related to immune response, cell differentiation, cell adhesion, and triggered severe hypoplasia of the epithelium. Together our results indicate that the ciliary GTPase, ARL13B, participates in the transduction of the Hedgehog signaling pathway to maintain basal cell stemness needed for tissue regeneration. These findings provide new insights into the role of basal cell primary cilia as safeguards of pseudostratified epithelia.
Collapse
Affiliation(s)
- Laura Girardet
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
| | - Daniel G Cyr
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada
- Laboratory for Reproductive Toxicology, INRS-Centre Armand-Frappier Santé Biotechnologie, Université du Québec, Laval, QC, Canada
| | - Clémence Belleannée
- Faculty of Medicine, Department of Obstetrics, Gynecology and Reproduction, Université Laval, CHU de Québec Research Center (CHUL), Quebec City, QC, Canada.
| |
Collapse
|
5
|
Rahmawati SF, Vos R, Bos IST, Kerstjens HAM, Kistemaker LEM, Gosens R. Function-specific IL-17A and dexamethasone interactions in primary human airway epithelial cells. Sci Rep 2022; 12:11110. [PMID: 35773318 PMCID: PMC9247091 DOI: 10.1038/s41598-022-15393-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/23/2022] [Indexed: 11/09/2022] Open
Abstract
Asthmatics have elevated levels of IL-17A compared to healthy controls. IL-17A is likely to contribute to reduced corticosteroid sensitivity of human airway epithelium. Here, we aimed to investigate the mechanistic underpinnings of this reduced sensitivity in more detail. Differentiated primary human airway epithelial cells (hAECs) were exposed to IL-17A in the absence or presence of dexamethasone. Cells were then collected for RNA sequencing analysis or used for barrier function experiments. Mucus was collected for volume measurement and basal medium for cytokine analysis. 2861 genes were differentially expressed by IL-17A (Padj < 0.05), of which the majority was not sensitive to dexamethasone (< 50% inhibition). IL-17A did inhibit canonical corticosteroid genes, such as HSD11B2 and FKBP5 (p < 0.05). Inflammatory and goblet cell metaplasia markers, cytokine secretion and mucus production were all induced by IL-17A, and these effects were not prevented by dexamethasone. Dexamethasone did reverse IL-17A-stimulated epithelial barrier disruption, and this was associated with gene expression changes related to cilia function and development. We conclude that IL-17A induces function-specific corticosteroid-insensitivity. Whereas inflammatory response genes and mucus production in primary hAECs in response to IL-17A were corticosteroid-insensitive, corticosteroids were able to reverse IL-17A-induced epithelial barrier disruption.
Collapse
Affiliation(s)
- Siti Farah Rahmawati
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Pharmacology and Clinical Pharmacy, Institut Teknologi Bandung, Bandung, Indonesia
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Rémon Vos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - I Sophie T Bos
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Huib A M Kerstjens
- Department of Pulmonary Medicine, University of Groningen, University Medical Center Groningen (UMCG), Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Loes E M Kistemaker
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Aquilo Contract Research, Groningen, The Netherlands
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
- University of Groningen, University Medical Center Groningen (UMCG), Groningen Research Institute for Asthma and COPD, Groningen, The Netherlands.
| |
Collapse
|
6
|
Blanchard G, Pich C, Hohl D. HaCaT cells as a model system to study primary cilia in keratinocytes. Exp Dermatol 2022; 31:1276-1280. [PMID: 35708968 PMCID: PMC9542831 DOI: 10.1111/exd.14626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/09/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
Primary cilium (PC) is a microtubule‐based organelle found on the apical surface of most mammalian cell types, playing a role in development and tissue homeostasis. Ciliopathies are a rapidly growing group of human diseases characterized by disordered cilium. PC plays an important role in pathogenesis of basal cell cancer, the most common human malignancy. A significant increase in ciliation has been observed in the epidermis of atopic dermatitis and psoriasis patients. Spontaneously immortalized human keratinocytes, HaCaT are a model to study the epidermal homeostasis and pathophysiology. In contrast to what has been previously described, here, we show that HaCaT can be efficiently ciliated. In HaCaT cells, differentiation significantly increased the number of ciliated cells and we were able to analyse in detail the ciliary length progression with duration of differentiation. As the number of recognized ciliopathies continues to increase, the importance of ciliary models also rises. Even though keratinocytes do not become as highly and rapidly ciliated as cell lines frequently used in ciliary studies, they are a better model for the study of skin ciliopathies. Detailed progression of ciliation in HaCaT could serve as the basis for ciliary studies in this cell line.
Collapse
Affiliation(s)
- Gabriela Blanchard
- Department of Dermatology, CHUV-FBM UNIL, Beaumont Hospital, Lausanne, Switzerland
| | - Christine Pich
- Department of Dermatology, CHUV-FBM UNIL, Beaumont Hospital, Lausanne, Switzerland
| | - Daniel Hohl
- Department of Dermatology, CHUV-FBM UNIL, Beaumont Hospital, Lausanne, Switzerland.,University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
S100A1 expression characterizes terminally differentiated superficial cells in the urothelium of the murine bladder and ureter. Histochem Cell Biol 2022; 158:389-399. [PMID: 35648290 PMCID: PMC9512885 DOI: 10.1007/s00418-022-02120-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2022] [Indexed: 11/04/2022]
Abstract
The urothelium is a stratified epithelium that lines the inner surface of the components of the urinary drainage system. It is composed of a layer of basal cells, one or several layers of intermediate cells, and a layer of large luminal superficial or umbrella cells. In the mouse, only a small set of markers is available that allows easy molecular distinction of these urothelial cell types. Here, we analyzed expression of S100A1, a member of the S100 family of calcium-binding proteins, in the urothelium of the two major organs of the murine urinary tract, the ureter and the bladder. Using RNA in situ hybridization analysis, we found exclusive expression of S100a1 mRNA in luminal cells of the ureter from embryonic day (E)17.5 onwards and of the bladder from E15.5 to adulthood. Immunofluorescence analysis showed that expression of S100A1 protein is confined to terminally differentiated superficial cells of both the ureter and bladder where it localized to the nucleus and cytoplasm. We conclude that S100A1 is a suitable marker for mature superficial cells in the urothelial lining of the drainage system of the developing and mature mouse.
Collapse
|
8
|
Shimada IS, Kato Y. Ciliary signaling in stem cells in health and disease: Hedgehog pathway and beyond. Semin Cell Dev Biol 2022; 129:115-125. [PMID: 35466055 DOI: 10.1016/j.semcdb.2022.04.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/11/2022] [Accepted: 04/12/2022] [Indexed: 11/29/2022]
Abstract
The primary cilium is a hair-like sensory compartment that protrudes from the cellular surface. The primary cilium is enriched in a variety of signaling molecules that regulate cellular activities. Stem cells have primary cilia. They reside in a specialized environment, called the stem cell niche. This niche contains a variety of secreted factors, and some of their receptors are localized in the primary cilia of stem cells. Here, we summarize the current understanding of the function of cilia in compartmentalized signaling in stem cells. We describe how ciliary signaling regulates stem cells and progenitor cells during development, tissue homeostasis and tumorigenesis. We summarize our understanding of cilia regulated signaling -primary involving the hedgehog pathway- in stem cells in diverse settings that include neuroepithelial cells, radial glia, cerebellar granule neuron precursors, hematopoietic stem cells, hair follicle stem cells, bone marrow mesenchymal stem cells and mammary gland stem cells. Overall, our review highlights a variety of roles that ciliary signaling plays in regulating stem cells throughout life.
Collapse
Affiliation(s)
- Issei S Shimada
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| | - Yoichi Kato
- Department of Cell Biology, Graduate School of Medical Sciences, Nagoya City University, 1 Azakawasumi, Mizuzho-cho, Mizuho-ku, Nagoya, 467-8601 Aichi, Japan.
| |
Collapse
|
9
|
Maiello N, Comberiati P, Giannetti A, Ricci G, Carello R, Galli E. New Directions in Understanding Atopic March Starting from Atopic Dermatitis. CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9040450. [PMID: 35455494 PMCID: PMC9029734 DOI: 10.3390/children9040450] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 01/12/2023]
Abstract
Recent evidence showed that the postulated linear progression of the atopic march, from atopic dermatitis to food and respiratory allergies, does not capture the heterogeneity of allergic phenotypes, which are influenced by complex interactions between environmental, genetic, and psychosocial factors. Indeed, multiple atopic trajectories are possible in addition to the classic atopic march. Nevertheless, atopic dermatitis is often the first manifestation of an atopic march. Improved understanding of atopic dermatitis pathogenesis is warranted as this could represent a turning point in the prevention of atopic march. In this review, we outline the recent findings on the pathogenetic mechanisms leading to atopic dermatitis that could be targeted by intervention strategies for the prevention of atopic march.
Collapse
Affiliation(s)
- Nunzia Maiello
- Department of Woman, Child and General and Specialized Surgery, University of Campania “Luigi Vanvitelli”, 81100 Naples, Italy
- Correspondence:
| | - Pasquale Comberiati
- Department of Clinical and Experimental Medicine, Section of Pediatrics, University of Pisa, 56126 Pisa, Italy;
- Department of Clinical Immunology and Allergology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Arianna Giannetti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Giampaolo Ricci
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, 40138 Bologna, Italy;
| | - Rossella Carello
- Pediatric Allergic Unit, S.Pietro Hospital FbF Roma, 00189 Rome, Italy; (R.C.); (E.G.)
| | - Elena Galli
- Pediatric Allergic Unit, S.Pietro Hospital FbF Roma, 00189 Rome, Italy; (R.C.); (E.G.)
| |
Collapse
|
10
|
Zhou K, Zhou Y, Yang D, Chen T, Liu X, Li S, Wang Z. The type 3 adenylyl cyclase is crucial for intestinal mucosal neural network in the gut lamina propria. Neurogastroenterol Motil 2021; 33:e14140. [PMID: 33939232 DOI: 10.1111/nmo.14140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 02/13/2021] [Accepted: 03/02/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND The type 3 adenylyl cyclase (AC3) enzyme is involved in the synthesis of cyclic adenosine monophosphate (cAMP). It is primarily expressed in the central nervous system (CNS) and plays a crucial role in neurogenesis and neural dendritic arborization. However, the AC3's functional role in the gastrointestinal tract remains ambiguous. METHODS AC3 expression in enteric tissue of AC3+/+ mice was investigated using immunohistochemistry and RT-PCR. AC3 knock-out mice (AC3-/- ) were used to examine the effect of AC3 on the enteric nervous system (ENS) function and the number of cilia and apoptotic cells. Additionally, total gastrointestinal transit time and colonic motility were compared between the AC3-/- and AC3+/+ groups of mice. KEY RESULTS AC3 was predominately expressed in the myenteric plexus of the large intestine. Colonic-bead expulsion analysis showed accelerated propulsion in the large intestine of the AC3-/- mice. The AC3-/- mice demonstrated reduced nerve fibers and enteric glial cells count in colonic mucosa compared to the AC3+/+ mice. Furthermore, AC3-/- mice exhibited increased cellular apoptosis and reduced ARL13B+ cilium cells in the colonic lamina propria compared to the AC3+/+ mice. CONCLUSIONS In AC3-/- mice, innervation of the lamina propria in the colonic mucosa was reduced and colonic propulsion was accelerated. AC3 is crucial for the development and function of the adult neural network of ENS. AC3 deficiency caused atrophy in the colonic mucosal neural network of mice.
Collapse
Affiliation(s)
- Kang Zhou
- College of Life Science, Hebei University, Baoding, China
| | - Yanfen Zhou
- College of Life Science, Hebei University, Baoding, China
| | - Dong Yang
- College of Life Science, Hebei University, Baoding, China
| | - Tingrong Chen
- College of Life Science, Hebei University, Baoding, China
| | - Xinxia Liu
- College of Life Science, Hebei University, Baoding, China.,Medical College, Hebei University, Baoding, China
| | - Shujuan Li
- College of Life Science, Hebei University, Baoding, China
| | - Zhenshan Wang
- College of Life Science, Hebei University, Baoding, China
| |
Collapse
|
11
|
Kaplan N, Wang S, Wang J, Yang W, Ventrella R, Majekodunmi A, Perez White BE, Getsios S, Mitchell BJ, Peng H, Lavker RM. Ciliogenesis and autophagy are coordinately regulated by EphA2 in the cornea to maintain proper epithelial architecture. Ocul Surf 2021; 21:193-205. [PMID: 34119713 DOI: 10.1016/j.jtos.2021.06.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 11/25/2022]
Abstract
PURPOSE To understand the relationship between ciliogenesis and autophagy in the corneal epithelium. METHODS siRNAs for EphA2 or PLD1 were used to inhibit protein expression in vitro. Morpholino-anti-EphA2 was used to knockdown EphA2 in Xenopus skin. An EphA2 knockout mouse was used to conduct loss of function studies. Autophagic vacuoles were visualized by contrast light microscopy. Autophagy flux, was measured by LC3 turnover and p62 protein levels. Immunostaining and confocal microscopy were conducted to visualize cilia in cultured cells and in vivo. RESULTS Loss of EphA2 (i) increased corneal epithelial thickness by elevating proliferative potential in wing cells, (ii) reduced the number of ciliated cells, (iii) increased large hollow vacuoles, that could be rescued by BafA1; (iv) inhibited autophagy flux and (v) increased GFP-LC3 puncta in the mouse corneal epithelium. This indicated a role for EphA2 in stratified epithelial assembly via regulation of proliferation as well as a positive role in both ciliogenesis and end-stage autophagy. Inhibition of PLD1, an EphA2 interacting protein that is a critical regulator of end-stage autophagy, reversed the accumulation of vacuoles, and the reduction in the number of ciliated cells due to EphA2 depletion, suggesting EphA2 regulation of both end-stage autophagy and ciliogenesis via PLD1. PLD1 mediated rescue of ciliogenesis by EphA2 depletion was blocked by BafA1, placing autophagy between EphA2 signaling and regulation of ciliogenesis. CONCLUSION Our findings demonstrate a novel role for EphA2 in regulating both autophagy and ciliogenesis, processes that are essential for proper corneal epithelial homeostasis.
Collapse
Affiliation(s)
- Nihal Kaplan
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA
| | - Sijia Wang
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, 510515, China
| | - Junyi Wang
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA; Department of Ophthalmology, The Third Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wending Yang
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA
| | - Rosa Ventrella
- Cell and Developmental Biology, Northwestern University, Chicago, IL 60611, USA
| | - Ahmed Majekodunmi
- Department of Neurology, Northwestern University, Chicago, IL, 60611, USA
| | | | | | - Brian J Mitchell
- Cell and Developmental Biology, Northwestern University, Chicago, IL 60611, USA
| | - Han Peng
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA.
| | - Robert M Lavker
- Department of Dermatology, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
12
|
High proliferation and delamination during skin epidermal stratification. Nat Commun 2021; 12:3227. [PMID: 34050161 PMCID: PMC8163813 DOI: 10.1038/s41467-021-23386-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
The development of complex stratified epithelial barriers in mammals is initiated from single-layered epithelia. How stratification is initiated and fueled are still open questions. Previous studies on skin epidermal stratification suggested a central role for perpendicular/asymmetric cell division orientation of the basal keratinocyte progenitors. Here, we use centrosomes, that organize the mitotic spindle, to test whether cell division orientation and stratification are linked. Genetically ablating centrosomes from the developing epidermis leads to the activation of the p53-, 53BP1- and USP28-dependent mitotic surveillance pathway causing a thinner epidermis and hair follicle arrest. The centrosome/p53-double mutant keratinocyte progenitors significantly alter their division orientation in the later stages without majorly affecting epidermal differentiation. Together with time-lapse imaging and tissue growth dynamics measurements, the data suggest that the first and major phase of epidermal development is boosted by high proliferation rates in both basal and suprabasally-committed keratinocytes as well as cell delamination, whereas the second phase maybe uncoupled from the division orientation of the basal progenitors. The data provide insights for tissue homeostasis and hyperproliferative diseases that may recapitulate developmental programs. How the developing skin epidermis is transformed from a simple single-layered epithelium to a complex and stratified barrier is still an open question. Here, the authors provide a model based on high proliferation and delamination of the keratinocyte progenitors that support the stratification process.
Collapse
|
13
|
Toriyama M, Ishii KJ. Primary Cilia in the Skin: Functions in Immunity and Therapeutic Potential. Front Cell Dev Biol 2021; 9:621318. [PMID: 33644059 PMCID: PMC7905053 DOI: 10.3389/fcell.2021.621318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/04/2021] [Indexed: 12/21/2022] Open
Abstract
The skin is the biggest organ and provides a physical and immunological barrier against pathogen infection. The distribution of primary cilia in the skin of mice has been reported, but which cells in human skin have them has not, and we still know very little about how they change in response to immune reactions or disease. This review introduces several studies that describe mechanisms of cilia regulation by immune reaction and the physiological relevance of cilia regulating proliferation and differentiation of stroma cells, including skin-resident Langerhans cells. We discuss the possibility of primary cilia pathology in allergic atopic dermatitis and the potential for therapies targeting primary cilia signaling.
Collapse
Affiliation(s)
- Manami Toriyama
- Graduate School of Pharmacological Sciences, Osaka University, Osaka, Japan.,Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Ken J Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan.,Laboratory of Vaccine Science, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Vaccine Science, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
14
|
Flora P, Ezhkova E. Regulatory mechanisms governing epidermal stem cell function during development and homeostasis. Development 2020; 147:147/22/dev194100. [PMID: 33191273 DOI: 10.1242/dev.194100] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cell divisions and cell-fate decisions require stringent regulation for proper tissue development and homeostasis. The mammalian epidermis is a highly organized tissue structure that is sustained by epidermal stem cells (ESCs) that balance self-renewal and cell-fate decisions to establish a protective barrier, while replacing dying cells during homeostasis and in response to injury. Extensive work over past decades has provided insights into the regulatory mechanisms that control ESC specification, self-renewal and maintenance during different stages of the lifetime of an organism. In this Review, we discuss recent findings that have furthered our understanding of key regulatory features that allow ESCs to establish a functional barrier during development and to maintain tissue homeostasis in adults.
Collapse
Affiliation(s)
- Pooja Flora
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| | - Elena Ezhkova
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
15
|
Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020; 8:578384. [PMID: 33282860 PMCID: PMC7691485 DOI: 10.3389/fcell.2020.578384] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/08/2020] [Indexed: 12/21/2022] Open
Abstract
Primary cilia (PC) are solitary, post-mitotic, microtubule-based, and membrane-covered protrusions that are found on almost every mammalian cell. PC are specialized cellular sensory organelles that transmit environmental information to the cell. Signaling through PC is involved in the regulation of a variety of cellular processes, including proliferation, differentiation, and migration. Conversely, defective, or abnormal PC signaling can contribute to the development of various pathological conditions. Our knowledge of the role of PC in organ development and function is largely based on ciliopathies, a family of genetic disorders with mutations affecting the structure and function of PC. In this review, we focus on the role of PC in their major signaling pathways active in skin cells, and their contribution to wound healing and scarring. To provide comprehensive insights into the current understanding of PC functions, we have collected data available in the literature, including evidence across cell types, tissues, and animal species. We conclude that PC are underappreciated subcellular organelles that significantly contribute to both physiological and pathological processes of the skin development and wound healing. Thus, PC assembly and disassembly and PC signaling may serve as attractive targets for antifibrotic and antiscarring therapies.
Collapse
Affiliation(s)
- Mayu Hosio
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
- Dermatology Clinic, Tartu University Hospital, Tartu, Estonia
| | - Heli Lagus
- Department of Plastic Surgery and Wound Healing Centre, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Jyrki Vuola
- Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Rei Ogawa
- Department of Plastic, Reconstructive and Aesthetic Surgery, Nippon Medical School, Tokyo, Japan
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
16
|
Pedro MP, Lund K, Iglesias-Bartolome R. The landscape of GPCR signaling in the regulation of epidermal stem cell fate and skin homeostasis. Stem Cells 2020; 38:1520-1531. [PMID: 32896043 DOI: 10.1002/stem.3273] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2020] [Indexed: 12/12/2022]
Abstract
Continuous integration of signals from the micro and macro-environment is necessary for somatic stem cells to adapt to changing conditions, maintain tissue homeostasis and activate repair mechanisms. G-protein coupled receptors (GPCRs) facilitate this integration by binding to numerous hormones, metabolites and inflammatory mediators, influencing a diverse network of pathways that regulate stem cell fate. This adaptive mechanism is particularly relevant for tissues that are exposed to environmental assault, like skin. The skin is maintained by a set of basal keratinocyte stem and progenitor cells located in the hair follicle and interfollicular epidermis, and several GPCRs and their signaling partners serve as makers and regulators of epidermal stem cell activity. GPCRs utilize heterotrimeric G protein dependent and independent pathways to translate extracellular signals into intracellular molecular cascades that dictate the activation of keratinocyte proliferative and differentiation networks, including Hedgehog GLI, Hippo YAP1 and WNT/β-catenin, ultimately regulating stem cell identity. Dysregulation of GPCR signaling underlines numerous skin inflammatory diseases and cancer, with smoothened-driven basal cell carcinoma being a main example of a GPCR associated cancer. In this review, we discuss the impact of GPCRs and their signaling partners in skin keratinocyte biology, particularly in the regulation of the epidermal stem cell compartment.
Collapse
Affiliation(s)
- M Pilar Pedro
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Katherine Lund
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Disease-associated KIF3A variants alter gene methylation and expression impacting skin barrier and atopic dermatitis risk. Nat Commun 2020; 11:4092. [PMID: 32796837 PMCID: PMC7427989 DOI: 10.1038/s41467-020-17895-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/24/2020] [Indexed: 11/08/2022] Open
Abstract
Single nucleotide polymorphisms (SNPs) in the gene encoding kinesin family member 3A, KIF3A, have been associated with atopic dermatitis (AD), a chronic inflammatory skin disorder. We find that KIF3A SNP rs11740584 and rs2299007 risk alleles create cytosine-phosphate-guanine sites, which are highly methylated and result in lower KIF3A expression, and this methylation is associated with increased transepidermal water loss (TEWL) in risk allele carriers. Kif3aK14∆/∆ mice have increased TEWL, disrupted junctional proteins, and increased susceptibility to develop AD. Thus, KIF3A is required for skin barrier homeostasis whereby decreased KIF3A skin expression causes disrupted skin barrier function and promotes development of AD. Genetic variants in KIF3A are associated with atopic dermatitis (AD). Here, the authors identify two AD-risk alleles that show high methylation resulting in lower KIF3A expression. Mice with epidermis-specific loss of Kif3a show disrupted skin barrier homeostasis and increased AD susceptibility.
Collapse
|
18
|
Bowie E, Goetz SC. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. eLife 2020; 9:51166. [PMID: 31934864 PMCID: PMC7028366 DOI: 10.7554/elife.51166] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are vital signaling organelles that extend from most types of cells, including neurons and glia. These structures are essential for development of many tissues and organs; however, their function in adult tissues, particularly neurons in the brain, remains largely unknown. Tau tubulin kinase 2 (TTBK2) is a critical regulator of ciliogenesis, and is also mutated in a hereditary neurodegenerative disorder, spinocerebellar ataxia type 11 (SCA11). Here, we show that conditional knockout of Ttbk2 in adult mice results in degenerative cerebellar phenotypes that recapitulate aspects of SCA11 including motor coordination deficits and defects to Purkinje cell (PC) integrity. We also find that the Ttbk2 conditional mutant mice quickly lose cilia throughout the brain. We show that conditional knockout of the key ciliary trafficking gene Ift88 in adult mice results in nearly identical cerebellar phenotypes to those of the Ttbk2 knockout, indicating that disruption of ciliary signaling is a key driver of these phenotypes. Our data suggest that primary cilia play an integral role in maintaining the function of PCs in the adult cerebellum and reveal novel insights into mechanisms involved in neurodegeneration.
Collapse
Affiliation(s)
- Emily Bowie
- University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Sarah C Goetz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| |
Collapse
|
19
|
Lagus H, Klaas M, Juteau S, Elomaa O, Kere J, Vuola J, Jaks V, Kankuri E. Discovery of increased epidermal DNAH10 expression after regeneration of dermis in a randomized with-in person trial - reflections on psoriatic inflammation. Sci Rep 2019; 9:19136. [PMID: 31836722 PMCID: PMC6910998 DOI: 10.1038/s41598-019-53874-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Because molecular memories of past inflammatory events can persist in epidermal cells, we evaluated the long-term epidermal protein expression landscapes after dermal regeneration and in psoriatic inflammation. We first characterized the effects of two dermal regeneration strategies on transplants of indicator split-thickness skin grafts (STSGs) in ten adult patients with deep burns covering more than 20% of their body surface area. After fascial excision, three adjacent areas within the wound were randomized to receive a permanent dermal matrix, a temporary granulation-tissue-inducing dressing or no dermal component as control. Control areas were covered with STSG immediately, and treated areas after two-weeks of dermis formation. Epidermis-dermis-targeted proteomics of one-year-follow-up samples were performed for protein expression profiling. Epidermal expression of axonemal dynein heavy chain 10 (DNAH10) was increased 20-fold in samples having had regenerating dermis vs control. Given the dermal inflammatory component found in our dermal regeneration samples as well as in early psoriatic lesions, we hypothesized that DNAH10 protein expression also would be affected in psoriatic skin samples. We discovered increased DNAH10 expression in inflammatory lesions when compared to unaffected skin. Our results associate DNAH10 expression with cell proliferation and inflammation as well as with the epidermal memory resulting from the previous regenerative signals of dermis. This study (ISRCTN14499986) was funded by the Finnish Ministry of Defense and by government subsidies for medical research.
Collapse
Affiliation(s)
- Heli Lagus
- Helsinki Burn Centre, Department of Plastic Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Mariliis Klaas
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Susanna Juteau
- Department of Pathology, Haartman Institute, University of Helsinki and HUSLAB, Helsinki, Finland
| | - Outi Elomaa
- Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum and Research Programs Unit, Molecular Neurology, University of Helsinki, Helsinki, Finland
| | - Juha Kere
- Department of Biosciences and Nutrition, Karolinska Institutet, Solna, Sweden
| | - Jyrki Vuola
- Helsinki Burn Centre, Department of Plastic Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Viljar Jaks
- Department of Cell Biology, Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Esko Kankuri
- Faculty of Medicine, Department of Pharmacology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
20
|
Bhattarai SR, Begum S, Popow R, Ezratty EJ. The ciliary GTPase Arl3 maintains tissue architecture by directing planar spindle orientation during epidermal morphogenesis. Development 2019; 146:dev.161885. [PMID: 30952667 DOI: 10.1242/dev.161885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
Abstract
Arl/ARF GTPases regulate ciliary trafficking, but their tissue-specific functions are unclear. Here, we demonstrate that ciliary GTPase Arl3 is required for mitotic spindle orientation of mouse basal stem cells during skin development. Arl3 loss diminished cell divisions within the plane of the epithelium, leading to increased perpendicular divisions, expansion of progenitor cells and loss of epithelial integrity. These observations suggest that an Arl3-dependent mechanism maintains cell division polarity along the tissue axis, and disruption of planar spindle orientation has detrimental consequences for epidermal architecture. Defects in planar cell polarity (PCP) can disrupt spindle positioning during tissue morphogenesis. Upon Arl3 loss, the PCP signaling molecules Celsr1 and Vangl2 failed to maintain planar polarized distributions, resulting in defective hair follicle angling, a hallmark of disrupted PCP. In the absence of Celsr1 polarity, frizzled 6 lost its asymmetrical distribution and abnormally segregated to the apical cortex of basal cells. We propose that Arl3 regulates polarized endosomal trafficking of PCP components to compartmentalized membrane domains. Cell-cell communication via ciliary GTPase signaling directs mitotic spindle orientation and PCP signaling, processes that are crucial for the maintenance of epithelial architecture.
Collapse
Affiliation(s)
- Samip R Bhattarai
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Salma Begum
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rachel Popow
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Ellen J Ezratty
- Department of Pathology and Cell Biology, Columbia University Medical Center, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
21
|
Lecland N, Hsu CY, Chemin C, Merdes A, Bierkamp C. Epidermal development requires ninein for spindle orientation and cortical microtubule organization. Life Sci Alliance 2019; 2:2/2/e201900373. [PMID: 30923192 PMCID: PMC6441496 DOI: 10.26508/lsa.201900373] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 03/12/2019] [Accepted: 03/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the epidermis, ninein affects spindle orientation of progenitor cells, as well as cortical microtubule organization, desmosome assembly, and lamellar body secretion in differentiating cells. In mammalian skin, ninein localizes to the centrosomes of progenitor cells and relocates to the cell cortex upon differentiation of keratinocytes, where cortical arrays of microtubules are formed. To examine the function of ninein in skin development, we use epidermis-specific and constitutive ninein-knockout mice to demonstrate that ninein is necessary for maintaining regular protein levels of the differentiation markers filaggrin and involucrin, for the formation of desmosomes, for the secretion of lamellar bodies, and for the formation of the epidermal barrier. Ninein-deficient mice are viable but develop a thinner skin with partly impaired epidermal barrier. We propose two underlying mechanisms: first, ninein contributes to spindle orientation during the division of progenitor cells, whereas its absence leads to misoriented cell divisions, altering the pool of progenitor cells. Second, ninein is required for the cortical organization of microtubules in differentiating keratinocytes, and for the cortical re-localization of microtubule-organizing proteins, and may thus affect any mechanisms that depend on localized microtubule-dependent transport.
Collapse
Affiliation(s)
- Nicolas Lecland
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Chiung-Yueh Hsu
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Cécile Chemin
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Andreas Merdes
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| | - Christiane Bierkamp
- Centre de Biologie du Développement, Centre de Biologie Intégrative, Université Paul Sabatier/CNRS (Centre National de la Recherche Scientifique), Toulouse, France
| |
Collapse
|
22
|
Johansson E, Biagini Myers JM, Martin LJ, He H, Ryan P, LeMasters GK, Bernstein DI, Lockey J, Khurana Hershey GK. Identification of two early life eczema and non-eczema phenotypes with high risk for asthma development. Clin Exp Allergy 2019; 49:829-837. [PMID: 30830718 DOI: 10.1111/cea.13379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 02/06/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND The "atopic march" has been considered a linear progression starting with eczema and culminating with development of asthma. Not all asthma cases, however, are preceded by eczema, and not all children with eczema go on to develop asthma. OBJECTIVE The aim of this study was to explore the impact of allergic sensitization patterns on the association between early eczema and later childhood asthma. Given the numerous reported associations of the ciliary gene KIF3A with the atopic march, we also examined the impact of KIF3A risk allele rs12186803 on our analyses. METHODS We studied 505 participants in the Cincinnati Childhood Allergy and Air Pollution Study (CCAAPS), a prospective birth cohort, with longitudinal eczema and asthma outcomes as well as prospective data regarding timing of sensitization to foods and aeroallergens. KIF3A genotypes were available on all children. RESULTS Two high-risk groups were identified: one with and one without early eczema. The high-risk group with early eczema was more likely to be sensitized to food allergens, while the group without early eczema was more likely to be polysensitized to aeroallergens. The KIF3A rs12186803 risk allele interacted with food sensitization to increase asthma risk in children with eczema (P = 0.02). In children without eczema, asthma was associated with the interaction between rs12186803 and aeroallergen sensitization (P = 0.007). CONCLUSIONS & CLINICAL RELEVANCE KIF3A interacted differentially with sensitization pattern to increase the risk of asthma in two high-risk groups of children with and without early eczema. Given the reported role of KIF3A in epithelial cell functioning, the results add evidence to the hypothesis that an impaired epithelial barrier is a key aspect in the development of allergic disease.
Collapse
Affiliation(s)
- Elisabet Johansson
- Department of Pediatrics, University of Cincinnati, Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Jocelyn M Biagini Myers
- Department of Pediatrics, University of Cincinnati, Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Lisa J Martin
- Department of Pediatrics, University of Cincinnati, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Hua He
- Department of Pediatrics, University of Cincinnati, Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Patrick Ryan
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Grace K LeMasters
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - David I Bernstein
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio
| | - James Lockey
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati, Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
23
|
Haws RM, McIntee TJ, Green CB. Cutaneous findings in Bardet‐Biedl syndrome. Int J Dermatol 2019; 58:1160-1164. [DOI: 10.1111/ijd.14412] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 11/26/2018] [Accepted: 01/29/2019] [Indexed: 11/28/2022]
|
24
|
The complexity of the cilium: spatiotemporal diversity of an ancient organelle. Curr Opin Cell Biol 2018; 55:139-149. [PMID: 30138887 DOI: 10.1016/j.ceb.2018.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 07/31/2018] [Accepted: 08/02/2018] [Indexed: 02/06/2023]
Abstract
Cilia are microtubule-based appendages present on almost all vertebrate cell types where they mediate a myriad of cellular processes critical for development and homeostasis. In humans, impaired ciliary function is associated with an ever-expanding repertoire of phenotypically-overlapping yet highly variable genetic disorders, the ciliopathies. Extensive work to elucidate the structure, function, and composition of the cilium is offering hints that the `static' representation of the cilium is a gross oversimplification of a highly dynamic organelle whose functions are choreographed dynamically across cell types, developmental, and homeostatic contexts. Understanding this diversity will require discerning ciliary versus non-ciliary roles for classically-defined `ciliary' proteins; defining ciliary protein-protein interaction networks within and beyond the cilium; and resolving the spatiotemporal diversity of ciliary structure and function. Here, focusing on one evolutionarily conserved ciliary module, the intraflagellar transport system, we explore these ideas and propose potential future studies that will improve our knowledge gaps of the oversimplified cilium and, by extension, inform the reasons that underscore the striking range of clinical pathologies associated with ciliary dysfunction.
Collapse
|
25
|
Bakshi A, Chaudhary SC, Rana M, Elmets CA, Athar M. Basal cell carcinoma pathogenesis and therapy involving hedgehog signaling and beyond. Mol Carcinog 2017; 56:2543-2557. [PMID: 28574612 DOI: 10.1002/mc.22690] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 05/23/2017] [Accepted: 06/01/2017] [Indexed: 02/06/2023]
Abstract
Basal cell carcinoma (BCC) of the skin is driven by aberrant hedgehog signaling. Thus blocking this signaling pathway by small molecules such as vismodegib inhibits tumor growth. Primary cilium in the epidermal cells plays an integral role in the processing of hedgehog signaling-related proteins. Recent genomic studies point to the involvement of additional genetic mutations that might be associated with the development of BCCs, suggesting significance of other signaling pathways, such as WNT, NOTCH, mTOR, and Hippo, aside from hedgehog in the pathogenesis of this human neoplasm. Some of these pathways could be regulated by noncoding microRNA. Altered microRNA expression profile is recognized with the progression of these lesions. Stopping treatment with Smoothened (SMO) inhibitors often leads to tumor reoccurrence in the patients with basal cell nevus syndrome, who develop 10-100 of BCCs. In addition, the initial effectiveness of these SMO inhibitors is impaired due to the onset of mutations in the drug-binding domain of SMO. These data point to a need to develop strategies to overcome tumor recurrence and resistance and to enhance efficacy by developing novel single agent-based or multiple agents-based combinatorial approaches. Immunotherapy and photodynamic therapy could be additional successful approaches particularly if developed in combination with chemotherapy for inoperable and metastatic BCCs.
Collapse
Affiliation(s)
- Anshika Bakshi
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama.,Rutgers Robert Wood Johnson Medical School, Piscataway, New Jersey
| | - Sandeep C Chaudhary
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mehtab Rana
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Craig A Elmets
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| | - Mohammad Athar
- Department of Dermatology and Skin Diseases Research Center, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
26
|
Tian H, Feng J, Li J, Ho TV, Yuan Y, Liu Y, Brindopke F, Figueiredo JC, Magee W, Sanchez-Lara PA, Chai Y. Intraflagellar transport 88 (IFT88) is crucial for craniofacial development in mice and is a candidate gene for human cleft lip and palate. Hum Mol Genet 2017; 26:860-872. [PMID: 28069795 DOI: 10.1093/hmg/ddx002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 01/03/2016] [Indexed: 01/08/2023] Open
Abstract
Ciliopathies are pleiotropic human diseases resulting from defects of the primary cilium, and these patients often have cleft lip and palate. IFT88 is required for the assembly and function of the primary cilia, which mediate the activity of key developmental signaling pathways. Through whole exome sequencing of a family of three affected siblings with isolated cleft lip and palate, we discovered that they share a novel missense mutation in IFT88 (c.915G > C, p.E305D), suggesting this gene should be considered a candidate for isolated orofacial clefting. In order to evaluate the function of IFT88 in regulating craniofacial development, we generated Wnt1-Cre;Ift88fl/fl mice to eliminate Ift88 specifically in cranial neural crest (CNC) cells. Wnt1-Cre;Ift88fl/flpups died at birth due to severe craniofacial defects including bilateral cleft lip and palate and tongue agenesis, following the loss of the primary cilia in the CNC-derived palatal mesenchyme. Loss of Ift88 also resulted in a decrease in neural crest cell proliferation during early stages of palatogenesis as well as a downregulation of the Shh signaling pathway in the palatal mesenchyme. Importantly, Osr2KI-Cre;Ift88fl/flmice, in which Ift88 is lost specifically in the palatal mesenchyme, exhibit isolated cleft palate. Taken together, our results demonstrate that IFT88 has a highly conserved function within the primary cilia of the CNC-derived mesenchyme in the lip and palate region in mice and is a strong candidate as an orofacial clefting gene in humans.
Collapse
Affiliation(s)
- Hua Tian
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Jifan Feng
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Jingyuan Li
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing 100050, China
| | - Thach-Vu Ho
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yuan Yuan
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
| | - Frederick Brindopke
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Jane C Figueiredo
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - William Magee
- Division of Plastic and Maxillofacial Surgery, Children's Hospital Los Angeles, Los Angeles, CA, USA
| | - Pedro A Sanchez-Lara
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA.,Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.,Department of Pathology & Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Yang Chai
- Center for Craniofacial Molecular Biology, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
27
|
Ezratty EJ, Pasolli HA, Fuchs E. A Presenilin-2-ARF4 trafficking axis modulates Notch signaling during epidermal differentiation. J Cell Biol 2016; 214:89-101. [PMID: 27354375 PMCID: PMC4932368 DOI: 10.1083/jcb.201508082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 06/01/2016] [Indexed: 01/08/2023] Open
Abstract
How primary cilia impact epidermal growth and differentiation during embryogenesis is poorly understood. Here, we show that during skin development, Notch signaling occurs within the ciliated, differentiating cells of the first few suprabasal epidermal layers. Moreover, both Notch signaling and cilia disappear in the upper layers, where key ciliary proteins distribute to cell-cell borders. Extending this correlation, we find that Presenilin-2 localizes to basal bodies/cilia through a conserved VxPx motif. When this motif is mutated, a GFP-tagged Presenilin-2 still localizes to intercellular borders, but basal body localization is lost. Notably, in contrast to wild type, this mutant fails to rescue epidermal differentiation defects seen upon Psen1 and 2 knockdown. Screening components implicated in ciliary targeting and polarized exocytosis, we provide evidence that the small GTPase ARF4 is required for Presenilin basal body localization, Notch signaling, and subsequent epidermal differentiation. Collectively, our findings raise the possibility that ARF4-dependent polarized exocytosis acts through the basal body-ciliary complex to spatially regulate Notch signaling during epidermal differentiation.
Collapse
Affiliation(s)
- Ellen J Ezratty
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - H Amalia Pasolli
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY 10065
| |
Collapse
|
28
|
Grisanti L, Revenkova E, Gordon RE, Iomini C. Primary cilia maintain corneal epithelial homeostasis by regulation of the Notch signaling pathway. Development 2016; 143:2160-71. [PMID: 27122169 DOI: 10.1242/dev.132704] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 04/11/2016] [Indexed: 01/10/2023]
Abstract
Primary cilia have been linked to signaling pathways involved in cell proliferation, cell motility and cell polarity. Defects in ciliary function result in developmental abnormalities and multiple ciliopathies. Patients affected by severe ciliopathies, such as Meckel syndrome, present several ocular surface disease conditions of unclear pathogenesis. Here, we show that primary cilia are predominantly present on basal cells of the mouse corneal epithelium (CE) throughout development and in the adult. Conditional ablation of cilia in the CE leads to an increase in proliferation and vertical migration of basal corneal epithelial cells (CECs). A consequent increase in cell density of suprabasal layers results in a thicker than normal CE. Surprisingly, in cilia-deficient CE, cilia-mediated signaling pathways, including Hh and Wnt pathways, were not affected but the intensity of Notch signaling was severely diminished. Although Notch1 and Notch2 receptors were expressed normally, nuclear Notch1 intracellular domain (N1ICD) expression was severely reduced. Postnatal development analysis revealed that in cilia-deficient CECs downregulation of the Notch pathway precedes cell proliferation defects. Thus, we have uncovered a function of the primary cilium in maintaining homeostasis of the CE by balancing proliferation and vertical migration of basal CECs through modulation of Notch signaling.
Collapse
Affiliation(s)
- Laura Grisanti
- Department of Ophthalmology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ekaterina Revenkova
- Department of Ophthalmology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ronald E Gordon
- Department of Pathology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Carlo Iomini
- Department of Ophthalmology and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
29
|
Buszczak M, Inaba M, Yamashita YM. Signaling by Cellular Protrusions: Keeping the Conversation Private. Trends Cell Biol 2016; 26:526-534. [PMID: 27032616 DOI: 10.1016/j.tcb.2016.03.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/27/2022]
Abstract
Information exchange between different cells makes multicellular life possible. Signaling between cells can occur over long distances, as in the case of hormone signaling, or it can take place over short distances between immediately juxtaposed neighbors, as in the case of stem cell-niche signaling. The ability of signal-sending and -receiving cells to communicate with one another in a specific manner is of paramount importance in the proper development and function of tissues. Growing evidence indicates that different cellular protrusions help to achieve specificity in signaling that occurs between distinct cell types. Here, we focus on new roles for cellular protrusions in cell-to-cell communication, drawing special attention to how stem cells use specialized extensions to promote reception of self-renewing signals emanating from the niche.
Collapse
Affiliation(s)
- Michael Buszczak
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA.
| | - Mayu Inaba
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390-9148, USA; Life Sciences Institute, Department of Cell and Developmental Biology Medical School, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yukiko M Yamashita
- Life Sciences Institute, Department of Cell and Developmental Biology Medical School, Howard Hughes Medical Institute, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
31
|
Coelho PA, Bury L, Shahbazi MN, Liakath-Ali K, Tate PH, Wormald S, Hindley CJ, Huch M, Archer J, Skarnes WC, Zernicka-Goetz M, Glover DM. Over-expression of Plk4 induces centrosome amplification, loss of primary cilia and associated tissue hyperplasia in the mouse. Open Biol 2015; 5:150209. [PMID: 26701933 PMCID: PMC4703062 DOI: 10.1098/rsob.150209] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/02/2015] [Indexed: 12/28/2022] Open
Abstract
To address the long-known relationship between supernumerary centrosomes and cancer, we have generated a transgenic mouse that permits inducible expression of the master regulator of centriole duplication, Polo-like-kinase-4 (Plk4). Over-expression of Plk4 from this transgene advances the onset of tumour formation that occurs in the absence of the tumour suppressor p53. Plk4 over-expression also leads to hyperproliferation of cells in the pancreas and skin that is enhanced in a p53 null background. Pancreatic islets become enlarged following Plk4 over-expression as a result of equal expansion of α- and β-cells, which exhibit centrosome amplification. Mice overexpressing Plk4 develop grey hair due to a loss of differentiated melanocytes and bald patches of skin associated with a thickening of the epidermis. This reflects an increase in proliferating cells expressing keratin 5 in the basal epidermal layer and the expansion of these cells into suprabasal layers. Such cells also express keratin 6, a marker for hyperplasia. This is paralleled by a decreased expression of later differentiation markers, involucrin, filaggrin and loricrin. Proliferating cells showed an increase in centrosome number and a loss of primary cilia, events that were mirrored in primary cultures of keratinocytes established from these animals. We discuss how repeated duplication of centrioles appears to prevent the formation of basal bodies leading to loss of primary cilia, disruption of signalling and thereby aberrant differentiation of cells within the epidermis. The absence of p53 permits cells with increased centrosomes to continue dividing, thus setting up a neoplastic state of error prone mitoses, a prerequisite for cancer development.
Collapse
Affiliation(s)
- Paula A Coelho
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Leah Bury
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | - Marta N Shahbazi
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - Kifayathullah Liakath-Ali
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK Centre for Stem Cells and Regenerative Medicine, King's College London, Floor 28, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Peri H Tate
- Wellcome Trust Genome Campus, the Wellcome Trust Sanger Institute, Cambridge, Hinxton CB10 1SA, UK
| | - Sam Wormald
- Wellcome Trust Genome Campus, the Wellcome Trust Sanger Institute, Cambridge, Hinxton CB10 1SA, UK
| | - Christopher J Hindley
- Henry Wellcome Building of Cancer and Developmental Biology, the Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Meritxell Huch
- Henry Wellcome Building of Cancer and Developmental Biology, the Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Joy Archer
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - William C Skarnes
- Wellcome Trust Genome Campus, the Wellcome Trust Sanger Institute, Cambridge, Hinxton CB10 1SA, UK
| | - Magdalena Zernicka-Goetz
- Department of Physiology, Development and Neuroscience, Physiological Laboratory, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | - David M Glover
- Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| |
Collapse
|
32
|
Liu Y, Snedecor ER, Choi YJ, Yang N, Zhang X, Xu Y, Han Y, Jones EC, Shroyer KR, Clark RA, Zhang L, Qin C, Chen J. Gorab Is Required for Dermal Condensate Cells to Respond to Hedgehog Signals during Hair Follicle Morphogenesis. J Invest Dermatol 2015; 136:378-386. [PMID: 26967474 PMCID: PMC4789774 DOI: 10.1016/j.jid.2015.10.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Revised: 10/11/2015] [Accepted: 10/19/2015] [Indexed: 11/03/2022]
Abstract
GORAB is a golgin that localizes predominantly at the Golgi apparatus and physically interacts with small guanosine triphosphatases. GORAB is ubiquitously expressed in mammalian tissues, including the skin. However, the biological function of this golgin in skin is unknown. Here, we report that disrupting the expression of the Gorab gene in mice results in hair follicle morphogenesis defects that were characterized by impaired follicular keratinocyte differentiation. This hair follicle phenotype was associated with markedly suppressed hedgehog (Hh) signaling pathway in dermal condensates in vivo. Gorab-deficient dermal mesenchymal cells also displayed a significantly reduced capability to respond to Hh pathway activation in vitro. Furthermore, we found that the formation of the primary cilium, a cellular organelle that is essential for the Hh pathway, was impaired in mutant dermal condensate cells, suggesting that Gorab may be required for the Hh pathway through facilitating the formation of primary cilia. Thus, data obtained from this study provided insight into the biological functions of Gorab during embryonic morphogenesis of the skin in which Hh signaling and primary cilia exert important functions.
Collapse
Affiliation(s)
- Ying Liu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Comparative Medical Center, Peking Union Medical College, and Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Elizabeth R Snedecor
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA; Graduate Program in Genetics, Stony Brook University, Stony Brook, New York, USA
| | - Yeon Ja Choi
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Ning Yang
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Xu Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Comparative Medical Center, Peking Union Medical College, and Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Yuhuan Xu
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Comparative Medical Center, Peking Union Medical College, and Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Yunlin Han
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Comparative Medical Center, Peking Union Medical College, and Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Evan C Jones
- Department of Dermatology, Stony Brook University, Stony Brook, New York, USA
| | - Kenneth R Shroyer
- Department of Pathology, Stony Brook University, Stony Brook, New York, USA
| | - Richard A Clark
- Department of Dermatology, Stony Brook University, Stony Brook, New York, USA
| | - Lianfeng Zhang
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Comparative Medical Center, Peking Union Medical College, and Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China
| | - Chuan Qin
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Comparative Medical Center, Peking Union Medical College, and Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China.
| | - Jiang Chen
- Institute of Laboratory Animal Science, Chinese Academy of Medical Science, Comparative Medical Center, Peking Union Medical College, and Key Laboratory of Human Disease Comparative Medicine, Ministry of Health, Beijing, China; Department of Pathology, Stony Brook University, Stony Brook, New York, USA; Department of Dermatology, Stony Brook University, Stony Brook, New York, USA.
| |
Collapse
|
33
|
Abstract
UNLABELLED The olfactory epithelium (OE) is one of the few tissues to undergo constitutive neurogenesis throughout the mammalian lifespan. It is composed of multiple cell types including olfactory sensory neurons (OSNs) that are readily replaced by two populations of basal stem cells, frequently dividing globose basal cells and quiescent horizontal basal cells (HBCs). However, the precise mechanisms by which these cells mediate OE regeneration are unclear. Here, we show for the first time that the HBC subpopulation of basal stem cells uniquely possesses primary cilia that are aligned in an apical orientation in direct apposition to sustentacular cell end feet. The positioning of these cilia suggests that they function in the detection of growth signals and/or differentiation cues. To test this idea, we generated an inducible, cell type-specific Ift88 knock-out mouse line (K5rtTA;tetOCre;Ift88(fl/fl)) to disrupt cilia formation and maintenance specifically in HBCs. Surprisingly, the loss of HBC cilia did not affect the maintenance of the adult OE but dramatically impaired the regeneration of OSNs following lesion. Furthermore, the loss of cilia during development resulted in a region-specific decrease in neurogenesis, implicating HBCs in the establishment of the OE. Together, these results suggest a novel role for primary cilia in HBC activation, proliferation, and differentiation. SIGNIFICANCE STATEMENT We show for the first time the presence of primary cilia on a quiescent population of basal stem cells, the horizontal basal cells (HBCs), in the olfactory epithelium (OE). Importantly, our data demonstrate that cilia on HBCs are necessary for regeneration of the OE following injury. Moreover, the disruption of HBC cilia alters neurogenesis during the development of the OE, providing evidence that HBCs participate in the establishment of this tissue. These data suggest that the mechanisms of penetrance for ciliopathies in the OE extend beyond that of defects in olfactory sensory neurons and may include alterations in OE maintenance and regeneration.
Collapse
|
34
|
Tellkamp F, Vorhagen S, Niessen CM. Epidermal polarity genes in health and disease. Cold Spring Harb Perspect Med 2014; 4:a015255. [PMID: 25452423 DOI: 10.1101/cshperspect.a015255] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The epidermis of the skin is a highly polarized, metabolic tissue with important innate immune functions. The polarity of the epidermis is, for example, reflected in controlled changes in cell shape that accompany differentiation, oriented cell division, and the planar orientation of hair follicles and cilia. The establishment and maintenance of polarity is organized by a diverse set of polarity proteins that include transmembrane adhesion proteins, cytoskeletal scaffold proteins, and kinases. Although polarity proteins have been extensively studied in cell culture and in vivo in simple epithelia of lower organisms, their role in mammalian tissue biology is only slowly evolving. This article will address the importance of polarizing processes and their molecular regulators in epidermal morphogenesis and homeostasis and discuss how alterations in polarity may contribute to skin disease.
Collapse
Affiliation(s)
- Frederik Tellkamp
- Department of Dermatology, Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Susanne Vorhagen
- Department of Dermatology, Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Carien M Niessen
- Department of Dermatology, Center for Molecular Medicine Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
35
|
The ciliopathy gene Rpgrip1l is essential for hair follicle development. J Invest Dermatol 2014; 135:701-709. [PMID: 25398052 PMCID: PMC4340706 DOI: 10.1038/jid.2014.483] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 10/27/2014] [Accepted: 10/27/2014] [Indexed: 01/01/2023]
Abstract
The primary cilium is essential for skin morphogenesis through regulating the Notch, Wnt, and hedgehog signaling pathways. Prior studies on the functions of primary cilia in the skin were based on the investigations of genes that are essential for cilium formation. However, none of these ciliogenic genes has been linked to ciliopathy, a group of disorders caused by abnormal formation or function of cilia. To determine whether there is a genetic and molecular link between ciliopathies and skin morphogenesis, we investigated the role of RPGRIP1L, a gene mutated in Joubert (JBTS) and Meckel (MKS) syndromes, two severe forms of ciliopathy, in the context of skin development. We found that RPGRIP1L is essential for hair follicle morphogenesis. Specifically, disrupting the Rpgril1 gene in mice resulted in reduced proliferation and differentiation of follicular keratinocytes, leading to hair follicle developmental defects. These defects were associated with significantly decreased primary cilium formation and attenuated hedgehog signaling. In contrast, we found that hair follicle induction and polarization and the development of interfollicular epidermis were unaffected. This study indicates that RPGRIP1L, a ciliopathy gene, is essential for hair follicle morphogenesis likely through regulating primary cilia formation and the hedgehog signaling pathway.
Collapse
|
36
|
Rocha C, Papon L, Cacheux W, Marques Sousa P, Lascano V, Tort O, Giordano T, Vacher S, Lemmers B, Mariani P, Meseure D, Medema JP, Bièche I, Hahne M, Janke C. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J 2014; 33:2247-60. [PMID: 25180231 DOI: 10.15252/embj.201488466] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
TTLL3 and TTLL8 are tubulin glycine ligases catalyzing posttranslational glycylation of microtubules. We show here for the first time that these enzymes are required for robust formation of primary cilia. We further discover the existence of primary cilia in colon and demonstrate that TTLL3 is the only glycylase in this organ. As a consequence, colon epithelium shows a reduced number of primary cilia accompanied by an increased rate of cell division in TTLL3-knockout mice. Strikingly, higher proliferation is compensated by faster tissue turnover in normal colon. In a mouse model for tumorigenesis, lack of TTLL3 strongly promotes tumor development. We further demonstrate that decreased levels of TTLL3 expression are linked to the development of human colorectal carcinomas. Thus, we have uncovered a novel role for tubulin glycylation in primary cilia maintenance, which controls cell proliferation of colon epithelial cells and plays an essential role in colon cancer development.
Collapse
Affiliation(s)
- Cecilia Rocha
- Institut Curie, Orsay, France PSL Research University, Paris, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France IGMM CNRS UMR5535, Montpellier, France Université Montpellier Sud de France, Montpellier, France
| | - Laura Papon
- IGMM CNRS UMR5535, Montpellier, France Université Montpellier Sud de France, Montpellier, France
| | | | - Patricia Marques Sousa
- Institut Curie, Orsay, France PSL Research University, Paris, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| | | | - Olivia Tort
- Institut Curie, Orsay, France PSL Research University, Paris, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France Institut de Biotecnologia i de Biomedicina, Department of Biochemistry and Molecular Biology, Universitat Autònoma de Barcelona, Bellaterra (Barcelona), Spain
| | - Tiziana Giordano
- Institut Curie, Orsay, France PSL Research University, Paris, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| | | | - Benedicte Lemmers
- IGMM CNRS UMR5535, Montpellier, France Université Montpellier Sud de France, Montpellier, France
| | | | | | | | | | - Michael Hahne
- IGMM CNRS UMR5535, Montpellier, France Université Montpellier Sud de France, Montpellier, France Academic Medical Center, Amsterdam, The Netherlands
| | - Carsten Janke
- Institut Curie, Orsay, France PSL Research University, Paris, France CNRS UMR3306, Orsay, France INSERM U1005, Orsay, France
| |
Collapse
|
37
|
Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in Basal cell nevus syndrome. Cancer Res 2014; 74:4967-75. [PMID: 25172843 DOI: 10.1158/0008-5472.can-14-1666] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arianna L Kim
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| | | | - David R Bickers
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| |
Collapse
|
38
|
Eguether T, Ermolaeva MA, Zhao Y, Bonnet MC, Jain A, Pasparakis M, Courtois G, Tassin AM. The deubiquitinating enzyme CYLD controls apical docking of basal bodies in ciliated epithelial cells. Nat Commun 2014; 5:4585. [PMID: 25134987 DOI: 10.1038/ncomms5585] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/03/2014] [Indexed: 12/20/2022] Open
Abstract
CYLD is a tumour suppressor gene mutated in familial cylindromatosis, a genetic disorder leading to the development of skin appendage tumours. It encodes a deubiquitinating enzyme that removes Lys63- or linear-linked ubiquitin chains. CYLD was shown to regulate cell proliferation, cell survival and inflammatory responses, through various signalling pathways. Here we show that CYLD localizes at centrosomes and basal bodies via interaction with the centrosomal protein CAP350 and demonstrate that CYLD must be both at the centrosome and catalytically active to promote ciliogenesis independently of NF-κB. In transgenic mice engineered to mimic the smallest truncation found in cylindromatosis patients, CYLD interaction with CAP350 is lost disrupting CYLD centrosome localization, which results in cilia formation defects due to impairment of basal body migration and docking. These results point to an undiscovered regulation of ciliogenesis by Lys63 ubiquitination and provide new perspectives regarding CYLD function that should be considered in the context of cylindromatosis.
Collapse
Affiliation(s)
- Thibaut Eguether
- 1] Institut Curie/INSERM U759, Campus Universitaire, Bat 112, 91405 Orsay Cedex, France [2] Université Pierre et Marie Curie, 75005 Paris, France [3]
| | - Maria A Ermolaeva
- Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Yongge Zhao
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Marion C Bonnet
- 1] Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany [2] Excellence Research Chair, Université Européenne de Bretagne, IRSET/INSERM UMR1085, Faculté de Pharmacie, Université de Rennes 1, 35000 Rennes, France
| | - Ashish Jain
- Laboratory of Host Defenses, NIAID, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Manolis Pasparakis
- Institute for Genetics, Center for Molecular Medicine (CMMC) and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Joseph-Stelzmann-Strasse 26, 50931 Cologne, Germany
| | - Gilles Courtois
- 1] Université Grenoble Alpes, 38000 Grenoble, France [2] INSERM U1038/BGE/Institut de Recherches en Technologies et Sciences pour le Vivant, CEA, 38054 Grenoble, France
| | - Anne-Marie Tassin
- 1] Institut Curie/INSERM U759, Campus Universitaire, Bat 112, 91405 Orsay Cedex, France [2] CNRS, Centre de Génétique Moléculaire, UPR3404, Avenue de la Terrasse, F-91198 Gif-sur-Yvette, France
| |
Collapse
|
39
|
Vernooij M, Claessens T, Luijten M, van Steensel MAM, Coull BJ. Birt-Hogg-Dubé syndrome and the skin. Fam Cancer 2013; 12:381-5. [PMID: 23307118 DOI: 10.1007/s10689-013-9600-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Birt-Hogg-Dubé syndrome (MIM #135150) is characterized by the development of benign skin tumours called fibrofolliculomas, pulmonary cysts that may lead to pneumothorax and a high risk of developing kidney cancer. BHD is caused by mutations affecting the highly conserved protein folliculin (FLCN), which probably has a role in intracellular transport. Most of the research effort directed towards BHD has focused on understanding how loss of FLCN causes kidney cancer. The cutaneous manifestations have received comparatively little attention. Although understandable, it is unfortunate, as the fibrofolliculomas are highly accessible and thus potentially are an excellent system for trying to understand the basic pathobiology of BHD. Also, patients can be very much burdened by the cosmetic consequences of having hundreds of facial skin tumours. Our lack of insight into what drives fibrofolliculoma growth translates into a very limited therapeutic arsenal. Thus, paying attention to fibrofolliculomas has both basic science and practical benefits. In this review, we will discuss the state of the art regarding our understanding of fibrofolliculoma pathogenesis and indicate future directions for research.
Collapse
Affiliation(s)
- Marigje Vernooij
- Department of Dermatology, GROW School for Oncology and Developmental Biology, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
40
|
An inducible CiliaGFP mouse model for in vivo visualization and analysis of cilia in live tissue. Cilia 2013; 2:8. [PMID: 23819925 PMCID: PMC3700774 DOI: 10.1186/2046-2530-2-8] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 06/14/2013] [Indexed: 12/26/2022] Open
Abstract
Background Cilia are found on nearly every cell type in the mammalian body, and have been historically classified as either motile or immotile. Motile cilia are important for fluid and cellular movement; however, the roles of non-motile or primary cilia in most tissues remain unknown. Several genetic syndromes, called the ciliopathies, are associated with defects in cilia structure or function and have a wide range of clinical presentations. Much of what we know about the formation and maintenance of cilia comes from model systems like C. elegans and Chalmydomonas. Studies of mammalian cilia in live tissues have been hampered by difficulty visualizing them. Results To facilitate analyses of mammalian cilia function we generated an inducible CiliaGFP mouse by targeting mouse cDNA encoding a cilia-localized protein somatostatin receptor 3 fused to GFP (Sstr3::GFP) into the ROSA26 locus. In this system, Sstr3::GFP is expressed from the ubiquitous ROSA26 promoter after Cre mediated deletion of an upstream Neo cassette flanked by lox P sites. Fluorescent cilia labeling was observed in a variety of live tissues and after fixation. Both cell-type specific and temporally regulated cilia labeling were obtained using multiple Cre lines. The analysis of renal cilia in anesthetized live mice demonstrates that cilia commonly lay nearly parallel to the apical surface of the tubule. In contrast, in more deeply anesthetized mice the cilia display a synchronized, repetitive oscillation that ceases upon death, suggesting a relationship to heart beat, blood pressure or glomerular filtration. Conclusions The ability to visualize cilia in live samples within the CiliaGFP mouse will greatly aid studies of ciliary function. This mouse will be useful for in vivo genetic and pharmacological screens to assess pathways regulating cilia motility, signaling, assembly, trafficking, resorption and length control and to study cilia regulated physiology in relation to ciliopathy phenotypes.
Collapse
|
41
|
Pasek RC, Berbari NF, Lewis WR, Kesterson RA, Yoder BK. Mammalian Clusterin associated protein 1 is an evolutionarily conserved protein required for ciliogenesis. Cilia 2012; 1:20. [PMID: 23351563 PMCID: PMC3556011 DOI: 10.1186/2046-2530-1-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 08/07/2012] [Indexed: 11/10/2022] Open
Abstract
UNLABELLED BACKGROUND Clusterin associated protein 1 (CLUAP1) was initially characterized as a protein that interacts with clusterin, and whose gene is frequently upregulated in colon cancer. Although the consequences of these observations remain unclear, research of CLUAP1 homologs in C. elegans and zebrafish indicates that it is needed for cilia assembly and maintenance in these models. To begin evaluating whether Cluap1 has an evolutionarily conserved role in cilia in mammalian systems and to explore the association of Cluap1 with disease pathogenesis and developmental abnormalities, we generated Cluap1 mutant mice. METHODS Cluap1 mutant embryos were generated and examined for gross morphological and anatomical defects using light microscopy. Reverse transcription PCR, β-galactosidase staining assays, and immunofluorescence analysis were used to determine the expression of the gene and localization of the protein in vivo and in cultured cell lines. We also used immunofluorescence analysis and qRT-PCR to examine defects in the Sonic hedgehog signaling pathway in mutant embryos. RESULTS Cluap1 mutant embryos die in mid-gestation, indicating that it is necessary for proper development. Mutant phenotypes include a failure of embryonic turning, an enlarged pericardial sac, and defects in neural tube development. Consistent with the diverse phenotypes, Cluap1 is widely expressed. Furthermore, the Cluap1 protein localizes to primary cilia, and mutant embryos were found to lack cilia at embryonic day 9.5. The phenotypes observed in Cluap1 mutant mice are indicative of defects in Sonic hedgehog signaling. This was confirmed by analyzing hedgehog signaling activity in Cluap1 mutants, which revealed that the pathway is repressed. CONCLUSIONS These data indicate that the function of Cluap1 is evolutionarily conserved with regard to ciliogenesis. Further, the results implicate mammalian Cluap1 as a key regulator of hedgehog signaling and as an intraflagellar transport B complex protein. Future studies on mammalian Cluap1 utilizing this mouse model may provide insights into the role for Cluap1 in intraflagellar transport and the association with colon cancer and cystic kidney disorders.
Collapse
Affiliation(s)
- Raymond C Pasek
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, 1918 University Blvd,, Birmingham, AL, 35294, USA.
| | | | | | | | | |
Collapse
|
42
|
Sennett R, Rendl M. Mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling. Semin Cell Dev Biol 2012; 23:917-27. [PMID: 22960356 DOI: 10.1016/j.semcdb.2012.08.011] [Citation(s) in RCA: 284] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 07/27/2012] [Accepted: 08/24/2012] [Indexed: 12/17/2022]
Abstract
Embryonic hair follicle induction and formation are regulated by mesenchymal-epithelial interactions between specialized dermal cells and epidermal stem cells that switch to a hair fate. Similarly, during postnatal hair growth, communication between mesenchymal dermal papilla cells and surrounding epithelial matrix cells coordinates hair shaft production. Adult hair follicle regeneration in the hair cycle again is thought to be controlled by activating signals originating from the mesenchymal compartment and acting on hair follicle stem cells. Although many signaling pathways are implicated in hair follicle formation and growth, the precise nature, timing, and intersection of these inductive and regulatory signals remains elusive. The goal of this review is to summarize our current understanding and to discuss recent new insights into mesenchymal-epithelial interactions during hair follicle morphogenesis and cycling.
Collapse
Affiliation(s)
- Rachel Sennett
- Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | |
Collapse
|
43
|
Planar cell polarity effector gene Intu regulates cell fate-specific differentiation of keratinocytes through the primary cilia. Cell Death Differ 2012; 20:130-8. [PMID: 22935613 DOI: 10.1038/cdd.2012.104] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Genes involved in the planar cell polarity (PCP) signaling pathway are essential for a number of developmental processes in mammals, such as convergent extension and ciliogenesis. Tissue-specific PCP effector genes of the PCP signaling pathway are believed to mediate PCP signals in a tissue- and cell type-specific manner. However, how PCP signaling controls the morphogenesis of mammalian tissues remains unclear. In this study, we investigated the role of inturned (Intu), a tissue-specific PCP effector gene, during hair follicle formation in mice. Tissue-specific disruption of Intu in embryonic epidermis resulted in hair follicle morphogenesis arrest because of the failure of follicular keratinocyte to differentiate. Targeting Intu in the epidermis resulted in almost complete loss of primary cilia in epidermal and follicular keratinocytes, and a suppressed hedgehog signaling pathway. Surprisingly, the epidermal stratification and differentiation programs and barrier function were not affected. These results demonstrate that tissue-specific PCP effector genes of the PCP signaling pathway control the differentiation of keratinocytes through the primary cilia in a cell fate- and context-dependent manner, which may be critical in orchestrating the propagation and interpretation of polarity signals established by the core PCP components.
Collapse
|
44
|
Muroyama A, Lechler T. Polarity and stratification of the epidermis. Semin Cell Dev Biol 2012; 23:890-6. [PMID: 22960184 DOI: 10.1016/j.semcdb.2012.08.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/08/2012] [Accepted: 08/24/2012] [Indexed: 02/08/2023]
Abstract
Polarity is a fundamental property of epithelial cells. In this review, we discuss our current knowledge of the polarity of a stratified epithelium, the epidermis, focusing on similarities and differences with simple epithelial models. We highlight how the differences in tissue architecture and physiology result in alterations in some aspects of cell polarity. In addition, we discuss one of the most prominent uses for cell polarity in the epidermis-orienting the mitotic spindle to drive the stratification and differentiation of this tissue during development.
Collapse
Affiliation(s)
- Andrew Muroyama
- Department of Cell Biology, Duke University Medical Center, USA
| | | |
Collapse
|
45
|
Sotiropoulou PA, Blanpain C. Development and homeostasis of the skin epidermis. Cold Spring Harb Perspect Biol 2012; 4:a008383. [PMID: 22751151 DOI: 10.1101/cshperspect.a008383] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The skin epidermis is a stratified epithelium that forms a barrier that protects animals from dehydration, mechanical stress, and infections. The epidermis encompasses different appendages, such as the hair follicle (HF), the sebaceous gland (SG), the sweat gland, and the touch dome, that are essential for thermoregulation, sensing the environment, and influencing social behavior. The epidermis undergoes a constant turnover and distinct stem cells (SCs) are responsible for the homeostasis of the different epidermal compartments. Deregulation of the signaling pathways controlling the balance between renewal and differentiation often leads to cancer formation.
Collapse
|
46
|
Lai Y, Li D, Li C, Muehleisen B, Radek KA, Park HJ, Jiang Z, Li Z, Lei H, Quan Y, Zhang T, Wu Y, Kotol P, Morizane S, Hata TR, Iwatsuki K, Tang C, Gallo RL. The antimicrobial protein REG3A regulates keratinocyte proliferation and differentiation after skin injury. Immunity 2012; 37:74-84. [PMID: 22727489 DOI: 10.1016/j.immuni.2012.04.010] [Citation(s) in RCA: 192] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 03/20/2012] [Accepted: 04/27/2012] [Indexed: 12/26/2022]
Abstract
Epithelial keratinocyte proliferation is an essential element of wound repair, and abnormal epithelial proliferation is an intrinsic element in the skin disorder psoriasis. The factors that trigger epithelial proliferation in these inflammatory processes are incompletely understood. Here we have shown that regenerating islet-derived protein 3-alpha (REG3A) is highly expressed in keratinocytes during psoriasis and wound repair and in imiquimod-induced psoriatic skin lesions. The expression of REG3A by keratinocytes is induced by interleukin-17 (IL-17) via activation of keratinocyte-encoded IL-17 receptor A (IL-17RA) and feeds back on keratinocytes to inhibit terminal differentiation and increase cell proliferation by binding to exostosin-like 3 (EXTL3) followed by activation of phosphatidylinositol 3 kinase (PI3K) and the kinase AKT. These findings reveal that REG3A, a secreted intestinal antimicrobial protein, can promote skin keratinocyte proliferation and can be induced by IL-17. This observation suggests that REG3A may mediate the epidermal hyperproliferation observed in normal wound repair and in psoriasis.
Collapse
Affiliation(s)
- Yuping Lai
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
In mammals, the skin can form complex global and local patterns to meet diverse functional requirements in different parts of the body. To date, the fundamental principles that underlie skin patterning remain poorly understood because of the involvement of multiple interacting processes. Genes involved in the planar cell polarity (PCP) signalling pathway, which is capable of polarizing cells within the planar plane of an epithelium, can control the orientation and differentiation of hair follicles, underlining their involvement in skin pattern formation. Here, we summarize recent progress that has been made to understand the PCP signalling pathway and its function in mammalian skin, including its role in hair follicle morphogenesis, ciliogenesis and wound healing. We argue that dissecting PCP signalling in the context of hair follicle formation might reveal many as-yet-undiscovered functions for PCP in the development, homeostasis and regeneration of skin.
Collapse
Affiliation(s)
- Jiang Chen
- Department of Dermatology, Charles C. Gates Center for Regenerative Medicine and Stem Cell Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | |
Collapse
|
48
|
Abstract
The differentiation of cilia is mediated by kinesin-driven transport. As the function of kinesins in vertebrate ciliogenesis is poorly characterized, we decided to determine the role of kinesin-2 family motors--heterotrimeric kinesin-II and the homodimeric Kif17 kinesin--in zebrafish cilia. We report that kif17 is largely dispensable for ciliogenesis; kif17 homozygous mutant animals are viable and display subtle morphological defects of olfactory cilia only. In contrast to that, the kif3b gene, encoding a heterotrimeric kinesin subunit, is necessary for cilia differentiation in most tissues, although exceptions exist, and include photoreceptors and a subset of hair cells. Cilia of these cell types persist even in kif3b/kif17 double mutants. Although we have not observed a functional redundancy of kif3b and kif17, kif17 is able to substitute for kif3b in some cilia. In contrast to kif3b/kif17 double mutants, simultaneous interference with kif3b and kif3c leads to the complete loss of photoreceptor and hair cell cilia, revealing redundancy of function. This is in agreement with the idea that Kif3b and Kif3c motor subunits form complexes with Kif3a, but not with each other. Interestingly, kif3b mutant photoreceptor cilia differentiate with a delay, suggesting that kif3c, although redundant with kif3b at later stages of differentiation, is not active early in photoreceptor ciliogenesis. Consistent with that, the overexpression of kif3c in kif3b mutants rescues early photoreceptor cilia defects. These data reveal unexpected diversity of functional relationships between vertebrate ciliary kinesins, and show that the repertoire of kinesin motors changes in some cilia during their differentiation.
Collapse
|
49
|
Deane JA, Ricardo SD. Emerging roles for renal primary cilia in epithelial repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2012; 293:169-93. [PMID: 22251562 DOI: 10.1016/b978-0-12-394304-0.00011-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Primary cilia are microscopic sensory antennae that cells in many vertebrate tissues use to gather information about their environment. In the kidney, primary cilia sense urine flow and are essential for the maintenance of epithelial architecture. Defects of this organelle cause the cystic kidney disease characterized by epithelial abnormalities. These findings link primary cilia to the regulation of epithelial differentiation and proliferation, processes that must be precisely controlled during epithelial repair in the kidney. Here, we consider likely roles for primary cilium-based signaling during responses to renal injury and ensuing epithelial repair processes.
Collapse
Affiliation(s)
- James A Deane
- Centre for Inflammatory Diseases, Monash University Department of Medicine, Monash Medical Centre, Clayton, Victoria, Australia
| | | |
Collapse
|
50
|
Berbari NF, Kin NW, Sharma N, Michaud EJ, Kesterson RA, Yoder BK. Mutations in Traf3ip1 reveal defects in ciliogenesis, embryonic development, and altered cell size regulation. Dev Biol 2011; 360:66-76. [PMID: 21945076 PMCID: PMC4059607 DOI: 10.1016/j.ydbio.2011.09.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Revised: 08/12/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Tumor necrosis factor alpha receptor 3 interacting protein 1 (Traf3ip1), also known as MIPT3, was initially characterized through its interactions with tubulin, actin, TNFR-associated factor-3 (Traf3), IL-13R1, and DISC1. It functions as an inhibitor of IL-13-mediated phosphorylation of Stat6 and in sequestration of Traf3 and DISC1 to the cytoskeleton. Studies of the Traf3ip1 homologs in C. elegans (DYF-11), Zebrafish (elipsa), and Chlamydomonas (IFT54) revealed that the protein localizes to the cilium and is required for ciliogenesis. Similar localization data has now been reported for mammalian Traf3ip1. This raises the possibility that Traf3ip1 has an evolutionarily conserved role in mammalian ciliogenesis in addition to its previously indicated functions. To evaluate this possibility, a Traf3ip1 mutant mouse line was generated. Traf3ip1 mutant cells are unable to form cilia. Homozygous Traf3ip1 mutant mice are not viable and have both neural developmental defects and polydactyly, phenotypes typical of mouse mutants with ciliary assembly defects. Furthermore, in Traf3ip1 mutants the hedgehog pathway is disrupted, as evidenced by abnormal dorsal-ventral neural tube patterning and diminished expression of a hedgehog reporter. Analysis of the canonical Wnt pathway indicates that it was largely unaffected; however, specific domains in the pharyngeal arches have elevated levels of reporter activity. Interestingly, Traf3ip1 mutant embryos and cells failed to show alterations in IL-13 signaling, one of the pathways associated with its initial discovery. Novel phenotypes observed in Traf3ip1 mutant cells include elevated cytosolic levels of acetylated microtubules and a marked increase in cell size in culture. The enlarged Traf3ip1 mutant cell size was associated with elevated basal mTor pathway activity. Taken together, these data demonstrate that Traf3ip1 function is highly conserved in ciliogenesis and is important for proper regulation of a number of essential developmental and cellular pathways. The Traf3ip1 mutant mouse and cell lines will provide valuable resources to assess cilia function in mammalian development and also serve as a tool to explore the potential connections between cilia and cytoskeletal dynamics, mTor regulation, and cell volume control.
Collapse
Affiliation(s)
- Nicolas F. Berbari
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Nicholas W. Kin
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Neeraj Sharma
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Edward J. Michaud
- School of Physician Assistant Studies, South College, Knoxville, Tennessee 37909
| | - Robert A. Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| | - Bradley K. Yoder
- Department of Cell Biology, University of Alabama at Birmingham, Birmingham, AL 35294 USA
| |
Collapse
|