1
|
Jeon SB, Koh H, Han AR, Kim J, Lee S, Lee JH, Im SS, Yoon YS, Lee JH, Lee JY. Ferric citrate and apo-transferrin enable erythroblast maturation with β-globin from hemogenic endothelium. NPJ Regen Med 2023; 8:46. [PMID: 37626061 PMCID: PMC10457393 DOI: 10.1038/s41536-023-00320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Red blood cell (RBC) generation from human pluripotent stem cells (PSCs) offers potential for innovative cell therapy in regenerative medicine as well as developmental studies. Ex vivo erythropoiesis from PSCs is currently limited by the low efficiency of functional RBCs with β-globin expression in culture systems. During induction of β-globin expression, the absence of a physiological microenvironment, such as a bone marrow niche, may impair cell maturation and lineage specification. Here, we describe a simple and reproducible culture system that can be used to generate erythroblasts with β-globin expression. We prepared a two-dimensional defined culture with ferric citrate treatment based on definitive hemogenic endothelium (HE). Floating erythroblasts derived from HE cells were primarily CD45+CD71+CD235a+ cells, and their number increased remarkably upon Fe treatment. Upon maturation, the erythroblasts cultured in the presence of ferric citrate showed high transcriptional levels of β-globin and enrichment of genes associated with heme synthesis and cell cycle regulation, indicating functionality. The rapid maturation of these erythroblasts into RBCs was observed when injected in vivo, suggesting the development of RBCs that were ready to grow. Hence, induction of β-globin expression may be explained by the effects of ferric citrate that promote cell maturation by binding with soluble transferrin and entering the cells.Taken together, upon treatment with Fe, erythroblasts showed advanced maturity with a high transcription of β-globin. These findings can help devise a stable protocol for the generation of clinically applicable RBCs.
Collapse
Affiliation(s)
- Soo-Been Jeon
- CHA Advanced Research Institute, Bundang CHA Medical Center, CHA University, Seongnam, Kyunggi-do, 13488, South Korea
| | - Hyebin Koh
- Futuristic Animal Resource & Research Center (FARRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - A-Reum Han
- CHA Advanced Research Institute, Bundang CHA Medical Center, CHA University, Seongnam, Kyunggi-do, 13488, South Korea
| | - Jieun Kim
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea
| | - Sunghun Lee
- CHA Advanced Research Institute, Bundang CHA Medical Center, CHA University, Seongnam, Kyunggi-do, 13488, South Korea
| | - Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu, 42601, Korea
| | - Young-Sup Yoon
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea
- Department of Medicine, Emory University, Atlanta, USA
| | - Jong-Hee Lee
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
- National Primate Research Center (NPRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Cheongju, Republic of Korea.
| | - Ji Yoon Lee
- CHA Advanced Research Institute, Bundang CHA Medical Center, CHA University, Seongnam, Kyunggi-do, 13488, South Korea.
- Department of Biomedical Science, CHA University, Seongnam, Kyunggi-do, 13488, South Korea.
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
2
|
Jeon S, Han A, Lee S, Lee SC, Lee MJ, Park S, Moon S, Lee JY. CD34 dim cells identified as pluripotent stem cell-derived definitive hemogenic endothelium purified using bone morphogenetic protein 4. Cell Prolif 2022; 56:e13366. [PMID: 36478274 PMCID: PMC9890535 DOI: 10.1111/cpr.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 10/24/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022] Open
Abstract
Hemogenic endothelium (HE) plays a pivotal and inevitable role in haematopoiesis and can generate all blood and endothelial lineage cells in the aorta-gonad-mesonephros of mouse embryos. Whether definitive HE can prospectively isolate pure HE from human pluripotent stem cells that can spontaneously differentiate into heterogeneous cells remains unknown. Here, we identified and validated a CD34dim subpopulation with hemogenic potential. We also purified CD34 cells with a CXCR4- CD73- phenotype as a definitive HE population that generated haematopoietic stem cells and lymphocytes. The frequency of CXCR4- CD73- CD34dim was evidently increased by bone morphogenetic protein 4, and purified HE cells differentiated into haematopoietic cells with myeloid and T lymphoid lineages including Vδ2+ subset of γ/δ T cells. We developed a simple method to purify HE cells that were enriched in CD34dim cells. We uncovered an initial step in differentiating haematopoietic lineage cells that could be applied to basic and translational investigations into regenerative medicine.
Collapse
Affiliation(s)
- Soo‐Been Jeon
- CHA Advanced Research Institute, Bundang CHA Medical CenterCHA UniversitySeongnamKyunggi‐doRepublic of Korea
| | - A‐Reum Han
- CHA Advanced Research Institute, Bundang CHA Medical CenterCHA UniversitySeongnamKyunggi‐doRepublic of Korea
| | - Sunghun Lee
- CHA Advanced Research Institute, Bundang CHA Medical CenterCHA UniversitySeongnamKyunggi‐doRepublic of Korea
| | - Seung Chan Lee
- R&D DivisionCHA BiotechSeongnamKyunggi‐doRepublic of Korea
| | - Min Ji Lee
- R&D DivisionCHA BiotechSeongnamKyunggi‐doRepublic of Korea
| | - Soon‐Jung Park
- Research InstituteT&R Biofab Co. LtdSiheungRepublic of Korea,Department of MedicineKonkuk University School of MedicineSeoulRepublic of Korea
| | - Sung‐Hwan Moon
- Department of MedicineKonkuk University School of MedicineSeoulRepublic of Korea,Department of Animal Science and TechnologyChung‐Ang UniversityAnseong‐siRepublic of Korea
| | - Ji Yoon Lee
- CHA Advanced Research Institute, Bundang CHA Medical CenterCHA UniversitySeongnamKyunggi‐doRepublic of Korea,Department of Biomedical ScienceCHA UniversitySeongnamKyunggi‐doRepublic of Korea
| |
Collapse
|
3
|
Trinh LT, Osipovich AB, Sampson L, Wong J, Wright CV, Magnuson MA. Differential regulation of alternate promoter regions in Sox17 during endodermal and vascular endothelial development. iScience 2022; 25:104905. [PMID: 36046192 PMCID: PMC9421400 DOI: 10.1016/j.isci.2022.104905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 04/06/2022] [Accepted: 08/05/2022] [Indexed: 11/20/2022] Open
Abstract
Sox17 gene expression is essential for both endothelial and endodermal cell differentiation. To better understand the genetic basis for the expression of multiple Sox17 mRNA forms, we identified and performed CRISPR/Cas9 mutagenesis of two evolutionarily conserved promoter regions (CRs). The deletion of the upstream and endothelial cell-specific CR1 caused only a modest increase in lympho-vasculogenesis likely via reduced Notch signaling downstream of SOX17. In contrast, the deletion of the downstream CR2 region, which functions in both endothelial and endodermal cells, impairs both vascular and endodermal development causing death by embryonic day 12.5. Analyses of 3D chromatin looping, transcription factor binding, histone modification, and chromatin accessibility data at the Sox17 locus and surrounding region further support differential regulation of the two promoters during the development.
Collapse
Affiliation(s)
- Linh T. Trinh
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Anna B. Osipovich
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Leesa Sampson
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan Wong
- College of Arts and Science, Vanderbilt University, Nashville, TN 37232, USA
| | - Chris V.E. Wright
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark A. Magnuson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
- Center for Stem Cell Biology, Vanderbilt University, Nashville, TN 37232, USA
- Program in Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
4
|
Role of TGFβ1 and WNT6 in FGF2 and BMP4-driven endothelial differentiation of murine embryonic stem cells. Angiogenesis 2021; 25:113-128. [PMID: 34478025 PMCID: PMC8813801 DOI: 10.1007/s10456-021-09815-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/13/2021] [Indexed: 11/21/2022]
Abstract
Embryonic stem cells (ES) are a valuable source of endothelial cells. By co-culturing ES cells with the stromal PA6 cells, the endothelial commitment can be achieved by adding exogenous FGF2 or BMP4. In this work, the molecular pathways that direct the differentiation of ES cells toward endothelium in response to FGF2 are evaluated and compared to those activated by BMP4. To this purpose the genes expression profiles of both ES/PA6 co-cultures and of pure cultures of PA6 cells were obtained by microarray technique at different time points. The bioinformatics processing of the data indicated TGFβ1 as the most represented upstream regulator in FGF2-induced endothelial commitment while WNT pathway as the most represented in BMP4-activated endothelial differentiation. Loss of function experiments were performed to validate the importance of TGFβ1 and WNT6 respectively in FGF2 and BMP4-induced endothelial differentiation. The loss of TGFβ1 expression significantly impaired the accomplishment of the endothelial commitment unless exogenous recombinant TGFβ1 was added to the culture medium. Similarly, silencing WNT6 expression partially affected the endothelial differentiation of the ES cells upon BMP4 stimulation. Such dysfunction was recovered by the addition of recombinant WNT6 to the culture medium. The ES/PA6 co-culture system recreates an in vitro complete microenvironment in which endothelial commitment is accomplished in response to alternative signals through different mechanisms. Given the importance of WNT and TGFβ1 in mediating the crosstalk between tumor and stromal cells this work adds new insights in the mechanism of tumor angiogenesis and of its possible inhibition.
Collapse
|
5
|
Tsuruda M, Morino-Koga S, Ogawa M. Bone morphogenetic protein 4 differently promotes distinct VE-cadherin + precursor stages during the definitive hematopoietic development from embryonic stem cell-derived mesodermal cells. Exp Hematol 2021; 103:40-51.e7. [PMID: 34464660 DOI: 10.1016/j.exphem.2021.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022]
Abstract
Definitive hematopoietic cells develop from fetal liver kinase 1 (Flk1)+ mesodermal cells during the in vitro differentiation of mouse embryonic stem cells (ESCs). VE-cadherin+CD41-CD45-(V+41-45-) hemogenic endothelial cells (HECs) and VE-cadherin+CD41+CD45- (V+41+45-) cells mediate the definitive hematopoietic development from Flk1+ cells. Bone morphogenetic protein 4 (BMP4) is known to be essential for the formation of mesoderm. However, the role of BMP4 in differentiation of the VE-cadherin+ definitive hematopoietic precursors from the mesoderm has been elusive. We addressed this issue using a co-aggregation culture of ESC-derived Flk1+ cells with OP9 stromal cells. This culture method induced V+41-45- cells, V+41+45- cells, and CD45+ cells from Flk1+ cells. V+41+45- cells possessed potential for erythromyeloid and T-lymphoid differentiation. When Flk1+ cells were cultured in the presence of a high concentration of BMP4, the generation of V+41-45- cells was enhanced. The increase in V+41-45- cells led to the subsequent increase in V+41+45- and CD45+ cells. The addition of BMP4 also increased hematopoietic colony-forming cells of various lineages. Furthermore, BMP4 promoted the expansion of V+41+45- cells independently of the preceding V+41-45- cell stage. These results suggest that BMP4 has promotive effects on the differentiation of V+41-45- HECs from Flk1+ mesodermal cells and the subsequent proliferation of V+41+45- hematopoietic precursors. These findings may provide insights for establishing a culture system to induce definitive hematopoietic stem cells from ESCs.
Collapse
Affiliation(s)
- Mariko Tsuruda
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Saori Morino-Koga
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan
| | - Minetaro Ogawa
- Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Chuo-ku, Kumamoto, Japan.
| |
Collapse
|
6
|
Chen PC, Hsueh YW, Lee YH, Tsai HW, Tsai KJ, Chiang PM. FGF primes angioblast formation by inducing ETV2 and LMO2 via FGFR1/BRAF/MEK/ERK. Cell Mol Life Sci 2021; 78:2199-2212. [PMID: 32910224 PMCID: PMC11073248 DOI: 10.1007/s00018-020-03630-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 07/28/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023]
Abstract
It is critical to specify a signal that directly drives the transition that occurs between cell states. However, such inferences are often confounded by indirect intercellular communications or secondary transcriptomic changes due to primary transcription factors. Although FGF is known for its importance during mesoderm-to-endothelium differentiation, its specific role and signaling mechanisms are still unclear due to the confounding factors referenced above. Here, we attempted to minimize the secondary artifacts by manipulating FGF and its downstream mediators with a short incubation time before sampling and protein-synthesis blockage in a low-density angioblastic/endothelial differentiation system. In less than 8 h, FGF started the conversion of KDRlow/PDGFRAlow nascent mesoderm into KDRhigh/PDGFRAlow angioblasts, and the priming by FGF was necessary to endow endothelial formation 72 h later. Further, the angioblastic conversion was mediated by the FGFR1/BRAF/MEK/ERK pathway in mesodermal cells. Finally, two transcription factors, ETV2 and LMO2, were the early direct functional responders downstream of the FGF pathway, and ETV2 alone was enough to complement the absence of FGF. FGF's selective role in mediating the first-step, angioblastic conversion from mesoderm-to-endothelium thus allows for refined control over acquiring and manipulating angioblasts. The noise-minimized differentiation/analysis platform presented here is well-suited for studies on the signaling switches of other mesodermal-lineage fates as well.
Collapse
Affiliation(s)
- Peng-Chieh Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd., Tainan, 70457, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Wen Hsueh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd., Tainan, 70457, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Hsuan Lee
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Hung-Wen Tsai
- Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd., Tainan, 70457, Taiwan
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Min Chiang
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, No. 35, Xiaodong Rd., Tainan, 70457, Taiwan.
- Research Center of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
7
|
Jahn SK, Hennicke T, Kassack MU, Drews L, Reichert AS, Fritz G. Distinct influence of the anthracycline derivative doxorubicin on the differentiation efficacy of mESC-derived endothelial progenitor cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118711. [PMID: 32224192 DOI: 10.1016/j.bbamcr.2020.118711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 12/16/2022]
Abstract
Cardiotoxicity is a highly relevant, because often life-threatening, adverse effect of doxorubicin (Doxo)-based anticancer therapy. Here, we investigated the Doxo-response of cardiovascular stem/progenitor cells employing a mouse embryonic stem cell (mESC)-based in vitro differentiation model. Endothelial progenitor cells revealed a pronounced Doxo sensitivity as compared to mESC, differentiated endothelial-like (EC) and cardiomyocyte-like cells (CM) and CM progenitors, which rests on the activation of senescence. Doxo treatment of EC progenitors altered protein expression of individual endothelial markers, actin cytoskeleton morphology, mRNA expression of genes related to mitochondrial functions, autophagy, apoptosis, and DNA repair as well as mitochondrial DNA content, respiration and ATP production in the surviving differentiated EC progeny. By contrast, LDL uptake, ATP-stimulated Ca2+ release, and cytokine-stimulated ICAM-1 expression remained unaffected by the anthracycline treatment. Thus, exposure of EC progenitors to Doxo elicits isolated and persistent dysfunctions in the surviving EC progeny. In conclusion, we suggest that Doxo-induced injury of EC progenitors adds to anthracycline-induced cardiotoxicity, making this cell-type a preferential target for pharmacoprotective and regenerative strategies.
Collapse
Affiliation(s)
- Sarah K Jahn
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Tatiana Hennicke
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany
| | - Matthias U Kassack
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Leonie Drews
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty, Heinrich-Heine-University Duesseldorf, Universitätsstr. 1, 40225 Duesseldorf, Germany
| | - Gerhard Fritz
- Institute of Toxicology, Medical Faculty, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany.
| |
Collapse
|
8
|
Majumder A, Dharan AT, Baral I, Varghese PC, Mukherjee A, Subhadradevi L, Narayanan G, Dutta D. Histone chaperone HIRA dictate proliferation vs differentiation of chronic myeloid leukemia cells. FASEB Bioadv 2019; 1:525-537. [PMID: 32123848 PMCID: PMC6996362 DOI: 10.1096/fba.2019-00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 02/24/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
Abnormal proliferation and disrupted differentiation of hematopoietic progenitors mark leukemia. Histone cell cycle regulator A (HIRA), a histone chaperone, regulates hemogenic to hematopoietic transition involved in normal hematopoiesis. But, its role remains unexplored in leukemia, a case of dysregulated hematopoiesis. Here, the Cancer Cell Line Encyclopedia database analysis showed enhanced HIRA mRNA expression in cells of hematopoietic and lymphoid origin with maximal expression in the chronic myeloid leukemia (CML) cell line, K562. This observation was further endorsed by the induced expression of HIRA in CML patient samples compared to healthy individuals and Acute Myeloid Leukemia patients. Downregulation of HIRA in K562 cells displayed cell cycle arrest, loss in proliferation, presence of polyploidy with significant increase in CD41+ population thereby limiting proliferation but inducing differentiation of leukemia cells to megakaryocyte fate. Induced megakaryocyte differentiation of mouse Hira-knockout hematopoietic progenitors in vivo further confirmed the in vitro findings in leukemia cells. Molecular analysis showed the involvement of MKL1/GATA2/H3.3 axis in dictating differentiation of CML cells to megakaryocytes. Thus, HIRA could be exploited for differentiation induction therapy in CML and in chronic pathological conditions involving low platelet counts.
Collapse
Affiliation(s)
- Aditi Majumder
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Arya T. Dharan
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
| | - Ishita Baral
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Pallavi Chinnu Varghese
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
- Manipal Academy of Higher EducationManipalIndia
| | - Ananda Mukherjee
- Cancer Research ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
| | - Lakshmi Subhadradevi
- Department of Cancer ResearchRegional Cancer Centre, Medical College CampusThiruvananthapuramIndia
| | - Geetha Narayanan
- Department of Medical OncologyRegional Cancer Centre, Medical College CampusThiruvananthapuramIndia
| | - Debasree Dutta
- Regenerative Biology ProgramRajiv Gandhi Centre for BiotechnologyThiruvananthapuramIndia
| |
Collapse
|
9
|
Dorsey TB, Kim D, Grath A, James D, Dai G. Multivalent biomaterial platform to control the distinct arterial venous differentiation of pluripotent stem cells. Biomaterials 2018; 185:1-12. [PMID: 30216805 DOI: 10.1016/j.biomaterials.2018.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/30/2018] [Accepted: 09/02/2018] [Indexed: 11/25/2022]
Abstract
Vascular endothelial cells (ECs) differentiated from pluripotent stem cells have enormous potential to be used in a variety of therapeutic areas such as tissue engineering of vascular grafts and re-vascularization of ischemic tissues. To date, various protocols have been developed to differentiate stem cells toward vascular ECs. However, current methods are still not sufficient to drive the distinct arterial venous differentiation. Therefore, developing refined method of arterial-venous differentiation is critically needed to address this gap. Here, we developed a biomaterial platform to mimic multivalent ephrin-B2/EphB4 signaling and investigated its role in the early arterial and venous specification of pluripotent stem cells. Our results show immobilized ephrinB2 or EphB4 on hydrogel substrates have a distinct effect on arterial venous differentiation by regulating several arterial venous markers. When in combination with Wnt pathway agonist or BMP4 signaling, the ephrin-B2/EphB4 biomaterial platform can create diverging EC progenitor populations, demonstrating differential gene expression pattern across a wide range of arterial and venous markers, as well as phenotypic markers such as anti-thrombotic, pro-atherogenic and osteogenic genes, that are consistent with the in vivo expression patterns of arterial and venous ECs. Importantly, this distinct EC progenitor population cannot be achieved by current methods of applying soluble factors or hemodynamic stimuli alone, illustrating that fine-tuning of developmental signals using the biomaterial platform offers a new approach to better control the arterial venous differentiation of stem cells.
Collapse
Affiliation(s)
- Taylor B Dorsey
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, United States; Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 1623 15th, St, Troy, NY 12180, United States; Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Diana Kim
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, United States; Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 1623 15th, St, Troy, NY 12180, United States; Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Alexander Grath
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, United States; Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 1623 15th, St, Troy, NY 12180, United States; Department of Bioengineering, Northeastern University, Boston, MA 02115, United States
| | - Daylon James
- Center for Reproductive Medicine and Infertility, Weill Cornell Medical College, New York, NY, 10065, United States
| | - Guohao Dai
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, 110 8th St., Troy, NY 12180, United States; Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies, 1623 15th, St, Troy, NY 12180, United States; Department of Bioengineering, Northeastern University, Boston, MA 02115, United States.
| |
Collapse
|
10
|
Belt H, Koponen JK, Kekarainen T, Puttonen KA, Mäkinen PI, Niskanen H, Oja J, Wirth G, Koistinaho J, Kaikkonen MU, Ylä-Herttuala S. Temporal Dynamics of Gene Expression During Endothelial Cell Differentiation From Human iPS Cells: A Comparison Study of Signalling Factors and Small Molecules. Front Cardiovasc Med 2018; 5:16. [PMID: 29594149 PMCID: PMC5861200 DOI: 10.3389/fcvm.2018.00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/16/2018] [Indexed: 01/22/2023] Open
Abstract
Endothelial cell (EC) therapy may promote vascular growth or reendothelization in a variety of disease conditions. However, the production of a cell therapy preparation containing differentiated, dividing cells presenting typical EC phenotype, functional properties and chemokine profile is challenging. We focused on comparative analysis of seven small molecule-mediated differentiation protocols of ECs from human induced pluripotent stem cells. Differentiated cells showed a typical surface antigen pattern of ECs as characterized with flow cytometry analysis, functional properties, such as tube formation and ability to uptake acetylated LDL. Gene expression analysis by RNA sequencing revealed an efficient silencing of pluripotency genes and upregulation of genes related to cellular adhesion during differentiation. In addition, distinct patterns of transcription factor expression were identified during cellular reprogramming providing targets for more effective differentiation protocols in the future. Altogether, our results suggest that the most optimal EC differentiation protocol includes early inhibition of Rho-associated coiled-coil kinase and activation of cyclic AMP signaling, and inhibition of transforming growth factor beta signaling after mesodermal stage. These findings provide the first systematic characterization of the most potent signalling factors and small molecules used to generate ECs from human induced pluripotent stem cells and, consequently, this work improves the existing EC differentiation protocols and opens up new avenues for controlling cell fate for regenerative EC therapy.
Collapse
Affiliation(s)
- Heini Belt
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jonna K Koponen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | | | - Katja A Puttonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Kuopio Center for Gene and Cell Therapy, Kuopio, Finland
| | - Petri I Mäkinen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Henri Niskanen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Joni Oja
- FinVector Vision Therapies Oy, Kuopio, Finland
| | - Galina Wirth
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jari Koistinaho
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Minna U Kaikkonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Seppo Ylä-Herttuala
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland.,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
11
|
Kim D, Lee V, Dorsey TB, Niklason LE, Gui L, Dai G. Neuropilin-1 Mediated Arterial Differentiation of Murine Pluripotent Stem Cells. Stem Cells Dev 2018; 27:441-455. [PMID: 29415620 DOI: 10.1089/scd.2017.0240] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Pluripotent stem cell-derived endothelial cells (ECs) have great potential to be used in vascular therapy or tissue engineering. It is also much desired to obtain arterial or venous ECs for specific applications. Factors that are critical for the proper arterial or venous differentiation from pluripotent stem cells still need to be understood. Here, we aim at investigating this problem deeper by examining neuropilin-1 (Nrp1), an early arterial marker that may be critical for arterial cell fate commitment. Using murine embryonic stem cells as the model system, this study investigates the neuropilin-1 (Nrp1) expression during the differentiation of pluripotent stem cells toward a vascular progenitor population. We hypothesize that Nrp1, an early arterial marker present in a developing embryo, may be more responsive when further induced in vitro toward an arterial fate. We developed a two-step differentiation approach that yielded a large percentage of Nrp1+ vascular progenitor cells (VPCs) and investigated their potential to become arterial ECs. We have defined the culture parameters that contribute greatly to the emergence of Nrp1+ VPCs: certain soluble factors, especially Wnt and BMP4, early cell-cell contact, and hypoxia. Subsequent isolation of this population demonstrated a highly proliferative and network-forming behavior. The Nrp1+ VPCs exhibited increased gene expression of several Notch pathway-related arterial markers compared with Nrp1- VPCs. Most importantly, Nrp1+ VPCs demonstrated a dramatically greater response to hemodynamic stimuli by upregulating many arterial markers whereas Nrp1- VPCs have very little response. Surprisingly, these differences between Nrp1+ and Nrp1- VPCs are not evident with vascular endothelial growth factor (VEGF) treatment. Our data suggest that Nrp1+ VPCs may serve as the arterial progenitor by enhanced response to hemodynamic flow but not to VEGF, whereas Nrp1- VPCs lack the plasticity to become arterial ECs. The findings of this research indicate that Nrp1+ VPCs in the murine model act as an important step in the arterial differentiation process.
Collapse
Affiliation(s)
- Diana Kim
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Bioengineering, Northeastern University , Boston, Massachusetts
| | - Vivian Lee
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Bioengineering, Northeastern University , Boston, Massachusetts
| | - Taylor B Dorsey
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Bioengineering, Northeastern University , Boston, Massachusetts
| | - Laura E Niklason
- 4 Vascular Biology and Therapeutics Program, Yale University School of Medicine , New Haven, Connecticut.,5 Department of Anesthesiology, Yale University , New Haven, Connecticut.,6 Department of Biomedical Engineering, Yale University , New Haven, Connecticut.,7 Yale Stem Cell Center , New Haven, Connecticut
| | - Liqiong Gui
- 4 Vascular Biology and Therapeutics Program, Yale University School of Medicine , New Haven, Connecticut.,5 Department of Anesthesiology, Yale University , New Haven, Connecticut
| | - Guohao Dai
- 1 Department of Biomedical Engineering, Rensselaer Polytechnic Institute , Troy, New York.,2 Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York.,3 Department of Bioengineering, Northeastern University , Boston, Massachusetts
| |
Collapse
|
12
|
Brinkhof B, van Tol HTA, Groot Koerkamp MJA, Wubbolts RW, Haagsman HP, Roelen BAJ. Characterization of bovine embryos cultured under conditions appropriate for sustaining human naïve pluripotency. PLoS One 2017; 12:e0172920. [PMID: 28241084 PMCID: PMC5328396 DOI: 10.1371/journal.pone.0172920] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/02/2017] [Indexed: 12/27/2022] Open
Abstract
In mammalian preimplantation development, pluripotent cells are set aside from cells that contribute to extra-embryonic tissues. Although the pluripotent cell population of mouse and human embryos can be cultured as embryonic stem cells, little is known about the pathways involved in formation of a bovine pluripotent cell population, nor how to maintain these cells in vitro. The objective of this study was to determine the transcriptomic profile related to bovine pluripotency. Therefore, in vitro derived embryos were cultured in various culture media that recently have been reported capable of maintaining the naïve pluripotent state of human embryonic cells. Gene expression profiles of embryos cultured in these media were compared using microarray analysis and quantitative RT-PCR. Compared to standard culture conditions, embryo culture in ‘naïve’ media reduced mRNA expression levels of the key pluripotency markers NANOG and POU5F1. A relatively high percentage of genes with differential expression levels were located on the X-chromosome. In addition, reduced XIST expression was detected in embryos cultured in naïve media and female embryos contained fewer cells with H3K27me3 foci, indicating a delay in X-chromosome inactivation. Whole embryos cultured in one of the media, 5iLA, could be maintained until 23 days post fertilization. Together these data indicate that ‘naïve’ conditions do not lead to altered expression of known genes involved in pluripotency. Interestingly, X-chromosome inactivation and development of bovine embryos were dependent on the culture conditions.
Collapse
Affiliation(s)
- Bas Brinkhof
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Helena T. A. van Tol
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Richard W. Wubbolts
- Center for Cellular Imaging (CCI), Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Henk P. Haagsman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Bernard A. J. Roelen
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
13
|
Yao J, Guihard PJ, Blazquez-Medela AM, Guo Y, Liu T, Boström KI, Yao Y. Matrix Gla protein regulates differentiation of endothelial cells derived from mouse embryonic stem cells. Angiogenesis 2016; 19:1-7. [PMID: 26364300 PMCID: PMC4703505 DOI: 10.1007/s10456-015-9484-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 09/07/2015] [Indexed: 12/15/2022]
Abstract
Matrix Gla protein (MGP) is an antagonist of bone morphogenetic proteins and expressed in vascular endothelial cells. Lack of MGP causes vascular abnormalities in multiple organs in mice. The objective of this study is to define the role of MGP in early endothelial differentiation. We find that expression of endothelial markers is highly induced in Mgp null organs, which, in wild type, contain high MGP expression. Furthermore, Mgp null embryonic stem cells express higher levels of endothelial markers than wild-type controls and an abnormal temporal pattern of expression. We also find that the Mgp-deficient endothelial cells adopt characteristics of mesenchymal stem cells. We conclude that loss of MGP causes dysregulation of early endothelial differentiation.
Collapse
Affiliation(s)
- Jiayi Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 Western Yanta Road, Xi'an, 710061, China
| | - Pierre J Guihard
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Ana M Blazquez-Medela
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Yina Guo
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
| | - Ting Liu
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dong Fang Rd, Shanghai, 200127, China
| | - Kristina I Boström
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA
- The Molecular Biology Institute at UCLA, Los Angeles, CA, 90095-1570, USA
| | - Yucheng Yao
- Division of Cardiology, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095-1679, USA.
- Division of Cardiology, David Geffen School of Medicine at UCLA, Box 951679, Los Angeles, CA, 90095-1679, USA.
| |
Collapse
|
14
|
Signaling Control of Differentiation of Embryonic Stem Cells toward Mesendoderm. J Mol Biol 2015; 428:1409-22. [PMID: 26119455 DOI: 10.1016/j.jmb.2015.06.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 01/29/2023]
Abstract
Mesendoderm (ME) refers to the primitive streak in mammalian embryos, which has the ability to further differentiate into mesoderm and endoderm. A better understanding on the regulatory networks of ME differentiation of embryonic stem (ES) cells would provide important insights on early embryo patterning and a possible guidance for ES applications in regenerative medicine. Studies on developmental biology and embryology have offered a great deal of knowledge about key signaling pathways involved in primitive streak formation. Recently, various chemically defined recipes have been formulated to induce differentiation of ES cells toward ME in vitro, which greatly facilitate the elucidation of the regulatory mechanisms of different signals involved in ME specification. Among the extrinsic signals, transforming growth factor-β/Activin signaling and Wnt signaling have been shown to be the most critical ones. On another side, intrinsic epigenetic regulation has been indicated to be important in ME determination. In this review, we summarize the current understanding on the extrinsic and intrinsic regulations of ES cells-to-ME differentiation and the crosstalk among them, aiming to get a general overview on ME specification and primitive streak formation.
Collapse
|
15
|
Wu YT, I-Shing Yu, Tsai KJ, Shih CY, Hwang SM, Su IJ, Chiang PM. Defining minimum essential factors to derive highly pure human endothelial cells from iPS/ES cells in an animal substance-free system. Sci Rep 2015; 5:9718. [PMID: 25864432 PMCID: PMC4394195 DOI: 10.1038/srep09718] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 03/16/2015] [Indexed: 01/18/2023] Open
Abstract
It is desirable to obtain unlimited supplies of endothelial cells for research and therapeutics. However, current methods of deriving endothelial cells from humans suffer from issues, such as limited supplies, contamination from animal substances, and lengthy/complicated procedures. In this article we developed a way to differentiate human iPS and ES cells to highly pure endothelial cells in 5 days. The chemically defined system is robust, easy to perform, and free of animal substances. Using the system, we verified that combined TGFβ and canonical Wnt agonists are essential and sufficient for iPS/ES cell-to-mesoderm transition. Besides, VEGF-KDR signaling alone is required for endothelial formation at high density while supplementation with FGF allows for colonial endothelial differentiation. Finally, anti-adsorptive agents could enrich the endothelial output by allowing selective attachment of the endothelial precursors. The system was validated to work on multiple iPS/ES cells lines to produce endothelial cells capable of forming capillary-like structures in vitro and integrating into host vasculature in vivo. In sum, the simple yet robust differentiation system permits the unlimited supply of human endothelial cells. The defined and animal substance-free nature of the system is compatible with clinical applications and characterization of endothelial differentiation in an unbiased manner.
Collapse
Affiliation(s)
- Yu-Ting Wu
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - I-Shing Yu
- Laboratory Animal Center, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | - Kuen-Jer Tsai
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Chien-Yu Shih
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| | - Shiaw-Min Hwang
- Food Industry Research and Development Institute, Hsinchu, Taiwan, ROC
| | - Ih-Jen Su
- Division of Infectious Diseases, National Health Research Institutes, Tainan, Taiwan, ROC
| | - Po-Min Chiang
- Institute of Clinical Medicine, National Cheng Kung University, Tainan, Taiwan, ROC
| |
Collapse
|
16
|
Majumder A, Syed KM, Joseph S, Scambler PJ, Dutta D. Histone Chaperone HIRA in Regulation of Transcription Factor RUNX1. J Biol Chem 2015; 290:13053-63. [PMID: 25847244 DOI: 10.1074/jbc.m114.615492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Indexed: 12/14/2022] Open
Abstract
RUNX1 (Runt-related transcription factor 1) is indispensable for the generation of hemogenic endothelium. However, the regulation of RUNX1 during this developmental process is poorly understood. We investigated the role of the histone chaperone HIRA (histone cell cycle regulation-defective homolog A) from this perspective and report that HIRA significantly contributes toward the regulation of RUNX1 in the transition of differentiating mouse embryonic stem cells from hemogenic to hematopoietic stage. Direct interaction of HIRA and RUNX1 activates the downstream targets of RUNX1 implicated in generation of hematopoietic stem cells. At the molecular level, HIRA-mediated incorporation of histone H3.3 variant within the Runx1 +24 mouse conserved noncoding element is essential for the expression of Runx1 during endothelial to hematopoietic transition. An inactive chromatin at the intronic enhancer of Runx1 in absence of HIRA significantly repressed the transition of cells from hemogenic to hematopoietic fate. We expect that the HIRA-RUNX1 axis might open up a novel approach in understanding leukemogenesis in future.
Collapse
Affiliation(s)
- Aditi Majumder
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala, India and
| | - Khaja Mohieddin Syed
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala, India and
| | - Sunu Joseph
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala, India and
| | - Peter J Scambler
- the Institute of Child Health, University College of London, London WC1E 6BT, United Kingdom
| | - Debasree Dutta
- From the Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, Thycaud PO, Poojappura, Thiruvananthapuram, 695 014 Kerala, India and
| |
Collapse
|
17
|
Hennicke T, Nieweg K, Brockmann N, Kassack MU, Gottmann K, Fritz G. mESC-based in vitro differentiation models to study vascular response and functionality following genotoxic insults. Toxicol Sci 2014; 144:138-50. [PMID: 25516496 DOI: 10.1093/toxsci/kfu264] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Because of high exposure to systemic noxae, vascular endothelial cells (EC) have to ensure distinct damage defense and regenerative mechanisms to guarantee vascular health. For meaningful toxicological drug assessments employing embryonic stem cell (ESC)-based in vitro models, functional competence of differentiated progeny and detailed knowledge regarding damage defense mechanisms are essential. Here, mouse ESCs (mESC) were differentiated into functionally competent vascular cells (EC and smooth muscle cells [SMC]). mESC, EC, and SMC were comparatively analyzed regarding DNA repair and DNA damage response (DDR). Differentiation was accompanied by both congruent and unique alterations in repair and DDR characteristics. EC and SMC shared the downregulation of genes involved cell cycle regulation and repair of DNA double-strand breaks (DSBs) and mismatches, whereas genes associated with nucleotide excision repair (NER), apoptosis, and autophagy were upregulated when compared with mESC. Expression of genes involved in base excision repair (BER) was particularly low in SMC. IR-induced formation of DSBs, as detected by nuclear γH2AX foci formation, was most efficient in SMC, the repair of DSBs was fastest in EC. Together with substantial differences in IR-induced phosphorylation of p53, Chk1, and Kap1, the data demonstrate complex alterations in DDR capacity going along with the loss of pluripotency and gain of EC- and SMC-specific functions. Notably, IR exposure of early vascular progenitors did not impair differentiation into functionally competent EC and SMC. Summarizing, mESC-based vascular differentiation models are informative to study the impact of environmental stressors on differentiation and function of vascular cells.
Collapse
Affiliation(s)
- Tatiana Hennicke
- *Institute of Toxicology, Heinrich-Heine-University Düsseldorf, Institute of Neuro- and Sensory Physiology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5 and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Katja Nieweg
- *Institute of Toxicology, Heinrich-Heine-University Düsseldorf, Institute of Neuro- and Sensory Physiology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5 and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Nicole Brockmann
- *Institute of Toxicology, Heinrich-Heine-University Düsseldorf, Institute of Neuro- and Sensory Physiology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5 and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Matthias U Kassack
- *Institute of Toxicology, Heinrich-Heine-University Düsseldorf, Institute of Neuro- and Sensory Physiology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5 and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Kurt Gottmann
- *Institute of Toxicology, Heinrich-Heine-University Düsseldorf, Institute of Neuro- and Sensory Physiology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5 and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Gerhard Fritz
- *Institute of Toxicology, Heinrich-Heine-University Düsseldorf, Institute of Neuro- and Sensory Physiology, Heinrich-Heine-University Düsseldorf, Moorenstrasse 5 and Institute of Pharmaceutical and Medicinal Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| |
Collapse
|
18
|
Vereide DT, Vickerman V, Swanson SA, Chu LF, McIntosh BE, Thomson JA. An expandable, inducible hemangioblast state regulated by fibroblast growth factor. Stem Cell Reports 2014; 3:1043-57. [PMID: 25458896 PMCID: PMC4264065 DOI: 10.1016/j.stemcr.2014.10.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Revised: 10/13/2014] [Accepted: 10/14/2014] [Indexed: 12/18/2022] Open
Abstract
During development, the hematopoietic and vascular lineages are thought to descend from common mesodermal progenitors called hemangioblasts. Here we identify six transcription factors, Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1, that “trap” murine cells in a proliferative state and endow them with a hemangioblast potential. These “expandable” hemangioblasts (eHBs) are capable, once released from the control of the ectopic factors, to give rise to functional endothelial cells, multilineage hematopoietic cells, and smooth muscle cells. The eHBs can be derived from embryonic stem cells, from fetal liver cells, or poorly from fibroblasts. The eHBs reveal a central role for fibroblast growth factor, which not only promotes their expansion, but also facilitates their ability to give rise to endothelial cells and leukocytes, but not erythrocytes. This study serves as a demonstration that ephemeral progenitor states can be harnessed in vitro, enabling the creation of tractable progenitor cell lines. Gata2, Lmo2, Mycn, Pitx2, Sox17, and Tal1 induce and maintain a hemangioblast state FGF2 promotes the expansion of these progenitors and impacts their potency
Collapse
Affiliation(s)
- David T Vereide
- Morgridge Institute for Research, Madison, WI 53715, USA; Biotechnology Center, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | | | | | - Li-Fang Chu
- Morgridge Institute for Research, Madison, WI 53715, USA
| | | | - James A Thomson
- Morgridge Institute for Research, Madison, WI 53715, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705, USA; Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.
| |
Collapse
|
19
|
An updated view on the differentiation of stem cells into endothelial cells. SCIENCE CHINA-LIFE SCIENCES 2014; 57:763-73. [DOI: 10.1007/s11427-014-4712-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/16/2014] [Indexed: 12/16/2022]
|
20
|
Molecular pathways governing development of vascular endothelial cells from ES/iPS cells. Stem Cell Rev Rep 2014; 9:586-98. [PMID: 23765563 DOI: 10.1007/s12015-013-9450-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Assembly of complex vascular networks occurs in numerous biological systems through morphogenetic processes such as vasculogenesis, angiogenesis and vascular remodeling. Pluripotent stem cells such as embryonic stem (ES) and induced pluripotent stem (iPS) cells can differentiate into any cell type, including endothelial cells (ECs), and have been extensively used as in vitro models to analyze molecular mechanisms underlying EC generation and differentiation. The emergence of these promising new approaches suggests that ECs could be used in clinical therapy. Much evidence suggests that ES/iPS cell differentiation into ECs in vitro mimics the in vivo vascular morphogenic process. Through sequential steps of maturation, ECs derived from ES/iPS cells can be further differentiated into arterial, venous, capillary and lymphatic ECs, as well as smooth muscle cells. Here, we review EC development from ES/iPS cells with special attention to molecular pathways functioning in EC specification.
Collapse
|
21
|
Inhibition of endothelial ERK signalling by Smad1/5 is essential for haematopoietic stem cell emergence. Nat Commun 2014; 5:3431. [DOI: 10.1038/ncomms4431] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 02/11/2014] [Indexed: 01/02/2023] Open
|
22
|
Tsao KC, Tu CF, Lee SJ, Yang RB. Zebrafish scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF (epidermal growth factor) domain-containing protein 1) is involved in primitive hematopoiesis. J Biol Chem 2012; 288:5017-26. [PMID: 23271740 DOI: 10.1074/jbc.m112.375196] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
scube1 (signal peptide-CUB (complement protein C1r/C1s, Uegf, and Bmp1)-EGF domain-containing protein 1), the founding member of a novel secreted and cell surface SCUBE protein family, is expressed predominantly in various developing tissues in mice. However, its function in primitive hematopoiesis remains unknown. In this study, we identified and characterized zebrafish scube1 and analyzed its function by injecting antisense morpholino-oligonucleotide into embryos. Whole-mount in situ hybridization revealed that zebrafish scube1 mRNA is maternally expressed and widely distributed during early embryonic development. Knockdown of scube1 by morpholino-oligonucleotide down-regulated the expression of marker genes associated with early primitive hematopoietic precursors (scl) and erythroid (gata1 and hbbe1), as well as early (pu.1) and late (mpo and l-plastin) myelomonocytic lineages. However, the expression of an early endothelial marker fli1a and vascular morphogenesis appeared normal in scube1 morphants. Overexpression of bone morphogenetic protein (bmp) rescued the expression of scl in the posterior lateral mesoderm during early primitive hematopoiesis in scube1 morphants. Biochemical and molecular analysis revealed that Scube1 could be a BMP co-receptor to augment BMP signaling. Our results suggest that scube1 is critical for and functions at the top of the regulatory hierarchy of primitive hematopoiesis by modulating BMP activity during zebrafish embryogenesis.
Collapse
Affiliation(s)
- Ku-Chi Tsao
- Institute of Biomedical Sciences, Taiwan International Graduate Program, Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | | | | | | |
Collapse
|
23
|
Shi Q, Hodara V, Simerly CR, Schatten GP, VandeBerg JL. Ex vivo reconstitution of arterial endothelium by embryonic stem cell-derived endothelial progenitor cells in baboons. Stem Cells Dev 2012; 22:631-42. [PMID: 22931470 DOI: 10.1089/scd.2012.0313] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is an increasing need for an animal model that can be used to translate basic research into clinical therapy. We documented the differentiation and functional competence of embryonic stem cell (ESC)-derived endothelial cells in baboons. Baboon angioblasts were sequentially differentiated from embryoid body cultures for 9 days in an angioblast differentiation medium with varying concentrations of BMP-4, FLT-3 ligand, stem cell factor, thrombopoietin, basic fibroblast growth factor (FGF), vascular endothelial growth factor (VEGF), and knockout serum replacement. Real-time polymerase chain reaction results showed that ESC-derived angioblasts downregulated NANOG and OCT3/4, upregulated T-brachyury and GATA2, and moderately expressed CD34; they did not express CD144, TEK, or VWF, and varied in levels of CD31 expression. Several populations of putative angioblasts appeared 3 days and 9 days after differentiation, as identified by flow cytometry. Angioblasts at this stage exhibited dual paths of differentiation toward hematopoietic and vascular fates. To examine whether derived angioblasts could reconstitute the endothelium, we built an ex vivo culture system and seeded fluorescently labeled angioblast cultures onto a denuded segment of the femoral artery. We found that the seeded cells were able to grow into the endothelium on the interior surface of denuded artery segments within 5 days after seeding. After 14 days of ex vivo culture, the transplanted cells expressed CD31, an endothelial marker. The control arteries, seeded with vehicle only, did not harbor cells with endothelial markers. We conclude that ESC-derived angioblasts are promising therapeutic agents for repairing damaged vasculature, and that the baboon model will be vital for optimizing therapies for human clinical studies.
Collapse
Affiliation(s)
- Qiang Shi
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas 78245-0549, USA.
| | | | | | | | | |
Collapse
|
24
|
Petrighi Polidori G, Lomax MA, Docherty K. Palmitate enhances the differentiation of mouse embryonic stem cells towards white adipocyte lineages. Mol Cell Endocrinol 2012; 361:40-50. [PMID: 22484460 DOI: 10.1016/j.mce.2012.03.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 03/02/2012] [Accepted: 03/16/2012] [Indexed: 11/23/2022]
Abstract
The number of adipocyte progenitors is determined early in foetal and neonatal development in a process which may be altered by gender and excess nutrient intake, and which in turn determines fat mass in adulthood and the risk of developing obesity. Here we investigate the hypothesis that excess nutrients, in this case the long chain fatty acid palmitate, can program differentiating stem cells towards white fat lineages. The experiments were performed on mouse embryonic stem cells in chemically defined media (CDM) supplemented with bone morphogenetic protein 4 (BMP4) and all trans-retinoic acid (RA). Subsequent treatment for 21 days with palmitate not only promoted the expression of adipocyte markers and monolocular lipid deposition as observed by RT/QPCR and immunocytochemistry, but also stimulated a considerable enrichment in adipocytes as measured by flow cytometry and a lipolytic response to catecholamines. Palmitate increased protein levels of adiponectin that is preferentially expressed in subcutaneous fat, while inhibiting IGFBP2 and IGFBP3 that are associated with visceral fat. In keeping with this finding, palmitate also increased expression of the subcutaneous markers Shox2 and Twist1 and oestrogenising enzymes. Collectively, these results suggest that palmitate induces differentiation towards subcutaneous fat and that this could occur through its oestrogenising effects on the preadipocyte, suggesting a role for palmitate in programming fat development towards a metabolically favourable profile.
Collapse
Affiliation(s)
- Gioia Petrighi Polidori
- School of Medical Sciences, University of Aberdeen, Institute of Medical Sciences, Foresterhill, Aberdeen, UK
| | | | | |
Collapse
|
25
|
Lesinski DA, Heinz N, Pilat-Carotta S, Rudolph C, Jacobs R, Schlegelberger B, Klump H, Schiedlmeier B. Serum- and stromal cell-free hypoxic generation of embryonic stem cell-derived hematopoietic cells in vitro, capable of multilineage repopulation of immunocompetent mice. Stem Cells Transl Med 2012. [PMID: 23197864 DOI: 10.5966/sctm.2012-0020] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) may become a promising source for the generation of patient-specific hematopoietic stem cells (HSCs) in vitro. A crucial prerequisite will be the availability of reliable protocols for the directed and efficient differentiation toward HSCs. So far, the most robust strategy for generating HSCs from pluripotent cells in vitro has been established in the mouse model involving ectopic expression of the human transcription factor HOXB4. However, most differentiation protocols include coculture on a xenogenic stroma cell line and the use of animal serum. Involvement of any of both would pose a major barrier to the translation of those protocols to human autologous iPSCs intended for clinical use. Therefore, we asked whether long-term repopulating HSCs can, in principle, be generated from embryonic stem cells without stroma cells or serum. Here, we showed that long-term multilineage engraftment could be accomplished in immunocompetent mice when HSCs were generated in serum-free medium without stroma cell support and when hypoxic conditions were used. Under those conditions, HOXB4(+) embryonic stem cell-derived hematopoietic stem and progenitor cells were immunophenotypically similar to definitive bone marrow resident E-SLAM(+) (CD150(+)CD48(-)CD45(+)CD201(+)) HSCs. Thus, our findings may ease the development of definitive, adult-type HSCs from pluripotent stem cells, entirely in vitro.
Collapse
Affiliation(s)
- Dietrich Armin Lesinski
- Institute of Experimental Hematology, The Walter and Eliza Hall Institute for Medical Research, Parkville, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Descamps B, Emanueli C. Vascular differentiation from embryonic stem cells: Novel technologies and therapeutic promises. Vascul Pharmacol 2012; 56:267-79. [DOI: 10.1016/j.vph.2012.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 12/04/2011] [Indexed: 01/25/2023]
|
27
|
Loeffler D, Kokkaliaris KD, Schroeder T. Wnt to notch relay signaling induces definitive hematopoiesis. Cell Stem Cell 2012; 9:2-4. [PMID: 21726826 DOI: 10.1016/j.stem.2011.06.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The molecular mechanisms specifying hematopoietic stem cells (HSCs) in the vertebrate embryo remain poorly understood. Recently in Nature, Traver and colleagues demonstrate that timed wnt to Notch relay signaling across multiple cell types serves as an early upstream mechanism of HSC induction in zebrafish (Clements et al., 2011).
Collapse
|