1
|
Singh A, van den Burgh M, Boopathy V, van Nierop Y Sanchez P, Bageritz J, Lohmann I, Domsch K. Autonomous function of Antennapedia in adult muscle precursors directly connects Hox genes to adult muscle development. Development 2025; 152:DEV204341. [PMID: 39918891 DOI: 10.1242/dev.204341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 01/16/2025] [Indexed: 02/09/2025]
Abstract
The evolutionarily conserved Hox genes define segment identities along the anterior-posterior axis and are expressed in most cell types within each segment, performing specific functions tailored to cellular needs. It has been suggested previously that Drosophila adult flight muscles in the second thoracic segment (T2) develop without direct Hox gene input, relying instead on ectodermal signals to shape their identity. However, our research, leveraging single-cell transcriptomics of Drosophila wing discs and Hox perturbation experiments using CRISPR technology and gain-of-function assays, unveiled a more intricate regulatory landscape. We found that the Hox protein Antennapedia (Antp) is essential for adult flight muscle development, acting in two crucial ways: by regulating the cell cycle rate of adult muscle precursors (AMPs) through repression of proliferation genes, and by guiding flight muscle fate via regulation of Hedgehog (Hh) signalling during cell fate establishment. Antp, along with its co-factor Apterous (Ap), directly interacts with the patched (ptc) locus to control its expression in AMPs. These findings challenge the notion of T2 as a 'Hox-free' zone, highlighting the indispensable role of low-level Antp expression in adult muscle development.
Collapse
Affiliation(s)
- Aakriti Singh
- COS, Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Meike van den Burgh
- COS, Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany
| | | | | | - Josephine Bageritz
- COS, Stem Cell Niche Heterogeneity, Heidelberg University, 69120 Heidelberg, Germany
| | - Ingrid Lohmann
- COS, Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany
| | - Katrin Domsch
- COS, Developmental Biology, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|
2
|
Poliacikova G, Aouane A, Caruso N, Brouilly N, Maurel-Zaffran C, Graba Y, Saurin AJ. The Hox protein Antennapedia orchestrates Drosophila adult flight muscle development. SCIENCE ADVANCES 2024; 10:eadr2261. [PMID: 39602537 PMCID: PMC11601212 DOI: 10.1126/sciadv.adr2261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024]
Abstract
Muscle development and diversity require a large number of spatially and temporally regulated events controlled by transcription factors (TFs). Drosophila has long stood as a model to study myogenesis due to the highly conserved key TFs involved at all stages of muscle development. While many studies focused on the diversification of Drosophila larval musculature, how distinct adult muscle types are generated is much less characterized. Here, we identify an essential regulator of Drosophila thoracic flight muscle development, the Hox TF Antennapedia (Antp). Correcting a long-standing belief that flight muscle development occurs without the input of Hox TFs, we show that Antp intervenes at several stages of flight muscle development, from the establishment of the progenitor pool in the embryo to myoblast differentiation in the early pupa. Furthermore, the precisely regulated clearance of Hox in the developing flight muscle fibers is required to allow for fibrillar muscle fate diversification, setting these muscles apart from all other adult tubular muscle types.
Collapse
Affiliation(s)
- Gabriela Poliacikova
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Aïcha Aouane
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Nathalie Caruso
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Nicolas Brouilly
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Corinne Maurel-Zaffran
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Yacine Graba
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| | - Andrew J. Saurin
- Aix-Marseille Univ, CNRS, Developmental Biology Institute of Marseille (IBDM), UMR 7288, Case 907, Parc Scientifique de Luminy, Marseille Cedex 09 13288, France
| |
Collapse
|
3
|
Janssen R, Budd GE. New insights into mesoderm and endoderm development, and the nature of the onychophoran blastopore. Front Zool 2024; 21:2. [PMID: 38267986 PMCID: PMC10809584 DOI: 10.1186/s12983-024-00521-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Early during onychophoran development and prior to the formation of the germ band, a posterior tissue thickening forms the posterior pit. Anterior to this thickening forms a groove, the embryonic slit, that marks the anterior-posterior orientation of the developing embryo. This slit is by some authors considered the blastopore, and thus the origin of the endoderm, while others argue that the posterior pit represents the blastopore. This controversy is of evolutionary significance because if the slit represents the blastopore, then this would support the amphistomy hypothesis that suggests that a slit-like blastopore in the bilaterian ancestor evolved into protostomy and deuterostomy. RESULTS In this paper, we summarize our current knowledge about endoderm and mesoderm development in onychophorans and provide additional data on early endoderm- and mesoderm-determining marker genes such as Blimp, Mox, and the T-box genes. CONCLUSION We come to the conclusion that the endoderm of onychophorans forms prior to the development of the embryonic slit, and thus that the slit is not the primary origin of the endoderm. It is thus unlikely that the embryonic slit represents the blastopore. We suggest instead that the posterior pit indeed represents the lips of the blastopore, and that the embryonic slit (and surrounding tissue) represents a morphologically superficial archenteron-like structure. We conclude further that both endoderm and mesoderm development are under control of conserved gene regulatory networks, and that many of the features found in arthropods including the model Drosophila melanogaster are likely derived.
Collapse
Affiliation(s)
- Ralf Janssen
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden.
| | - Graham E Budd
- Department of Earth Sciences, Palaeobiology, Uppsala University, Villavägen 16, 75236, Uppsala, Sweden
| |
Collapse
|
4
|
Bataillé L, Lebreton G, Boukhatmi H, Vincent A. Insights and perspectives on the enigmatic alary muscles of arthropods. Front Cell Dev Biol 2024; 11:1337708. [PMID: 38288343 PMCID: PMC10822924 DOI: 10.3389/fcell.2023.1337708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/29/2023] [Indexed: 01/31/2024] Open
Abstract
Three types of muscles, cardiac, smooth and skeletal muscles are classically distinguished in eubilaterian animals. The skeletal, striated muscles are innervated multinucleated syncytia, which, together with bones and tendons, carry out voluntary and reflex body movements. Alary muscles (AMs) are another type of striated syncytial muscles, which connect the exoskeleton to the heart in adult arthropods and were proposed to control hemolymph flux. Developmental studies in Drosophila showed that larval AMs are specified in embryos under control of conserved myogenic transcription factors and interact with excretory, respiratory and hematopoietic tissues in addition to the heart. They also revealed the existence of thoracic AMs (TARMs) connecting to specific gut regions. Their asymmetric attachment sites, deformation properties in crawling larvae and ablation-induced phenotypes, suggest that AMs and TARMs could play both architectural and signalling functions. During metamorphosis, and heart remodelling, some AMs trans-differentiate into another type of muscles. Remaining critical questions include the enigmatic modes and roles of AM innervation, mechanical properties of AMs and TARMS and their evolutionary origin. The purpose of this review is to consolidate facts and hypotheses surrounding AMs/TARMs and underscore the need for further detailed investigation into these atypical muscles.
Collapse
|
5
|
Nagel S, Haake J, Pommerenke C, Meyer C, MacLeod RAF. Establishment of the Myeloid TBX-Code Reveals Aberrant Expression of T-Box Gene TBX1 in Chronic Myeloid Leukemia. Int J Mol Sci 2023; 25:32. [PMID: 38203204 PMCID: PMC10778679 DOI: 10.3390/ijms25010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
T-box genes encode transcription factors, which control developmental processes and promote cancer if deregulated. Recently, we described the lymphoid TBX-code, which collates T-box gene activities in normal lymphopoiesis, enabling identification of members deregulated in lymphoid malignancies. Here, we have extended this analysis to cover myelopoiesis, compiling the myeloid TBX-code and, thus, highlighting which of these genes might be deregulated in myeloid tumor types. We analyzed public T-box gene expression datasets bioinformatically for normal and malignant cells. Candidate T-box-gene-expressing model cell lines were identified and examined by RQ-PCR, Western Blotting, genomic profiling, and siRNA-mediated knockdown combined with RNA-seq analysis and live-cell imaging. The established myeloid TBX-code comprised 10 T-box genes, including progenitor-cell-restricted TBX1. Accordingly, we detected aberrant expression of TBX1 in 10% of stem/progenitor-cell-derived chronic myeloid leukemia (CML) patients. The classic CML cell line K-562 expressed TBX1 at high levels and served as a model to identify TBX1 activators, including transcription factor GATA1 and genomic amplification of the TBX1 locus at 22q11; inhibitors, including BCR::ABL1 fusion and downregulated GNAI2, as well as BMP, FGF2, and WNT signaling; and the target genes CDKN1A, MIR17HG, NAV1, and TMEM38A. The establishment of the myeloid TBX-code permitted identification of aberrant TBX1 expression in subsets of CML patients and cell lines. TBX1 forms an integral part of an oncogenic regulatory network impacting proliferation, survival, and differentiation. Thus, the data spotlight novel diagnostic markers and potential therapeutic targets for this malignancy.
Collapse
Affiliation(s)
- Stefan Nagel
- Leibniz-Institute DSMZ, 38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
6
|
Bileckyj C, Blotz B, Cripps RM. Drosophila as a Model to Understand Second Heart Field Development. J Cardiovasc Dev Dis 2023; 10:494. [PMID: 38132661 PMCID: PMC10744189 DOI: 10.3390/jcdd10120494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
The genetic model system Drosophila has contributed fundamentally to our understanding of mammalian heart specification, development, and congenital heart disease. The relatively simple Drosophila heart is a linear muscular tube that is specified and develops in the embryo and persists throughout the life of the animal. It functions at all stages to circulate hemolymph within the open circulatory system of the body. During Drosophila metamorphosis, the cardiac tube is remodeled, and a new layer of muscle fibers spreads over the ventral surface of the heart to form the ventral longitudinal muscles. The formation of these fibers depends critically upon genes known to be necessary for mammalian second heart field (SHF) formation. Here, we review the prior contributions of the Drosophila system to the understanding of heart development and disease, discuss the importance of the SHF to mammalian heart development and disease, and then discuss how the ventral longitudinal adult cardiac muscles can serve as a novel model for understanding SHF development and disease.
Collapse
Affiliation(s)
| | | | - Richard M. Cripps
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
7
|
Frasch M, Ismat A, Reim I, Raufer J. The RNF220 domain nuclear factor Teyrha-Meyrha (Tey) regulates the migration and differentiation of specific visceral and somatic muscles in Drosophila. Development 2023; 150:dev201457. [PMID: 37642089 PMCID: PMC10508689 DOI: 10.1242/dev.201457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Development of the visceral musculature of the Drosophila midgut encompasses a closely coordinated sequence of migration events of cells from the trunk and caudal visceral mesoderm that underlies the formation of the stereotypic orthogonal pattern of circular and longitudinal midgut muscles. Our study focuses on the last step of migration and morphogenesis of longitudinal visceral muscle precursors and shows that these multinucleated precursors utilize dynamic filopodial extensions to migrate in dorsal and ventral directions over the forming midgut tube. The establishment of maximal dorsoventral distances from one another, and anteroposterior alignments, lead to the equidistant coverage of the midgut with longitudinal muscle fibers. We identify Teyrha-Meyhra (Tey), a tissue-specific nuclear factor related to the RNF220 domain protein family, as a crucial regulator of this process of muscle migration and morphogenesis that is further required for proper differentiation of longitudinal visceral muscles. In addition, Tey is expressed in a single somatic muscle founder cell in each hemisegment, regulates the migration of this founder cell, and is required for proper pathfinding of its developing myotube to specific myotendinous attachment sites.
Collapse
Affiliation(s)
- Manfred Frasch
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Afshan Ismat
- Department of Biology, University of St. Thomas, Saint Paul, MN 55105, USA
| | - Ingolf Reim
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Jasmin Raufer
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstrasse 5, 91058 Erlangen, Germany
| |
Collapse
|
8
|
Specificity of the Hox member Deformed is determined by transcription factor levels and binding site affinities. Nat Commun 2022; 13:5037. [PMID: 36028502 PMCID: PMC9418327 DOI: 10.1038/s41467-022-32408-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 07/29/2022] [Indexed: 11/08/2022] Open
Abstract
Hox proteins have similar binding specificities in vitro, yet they control different morphologies in vivo. This paradox has been partially solved with the identification of Hox low-affinity binding sites. However, anterior Hox proteins are more promiscuous than posterior Hox proteins, raising the question how anterior Hox proteins achieve specificity. We use the AP2x enhancer, which is activated in the maxillary head segment by the Hox TF Deformed (Dfd). This enhancer lacks canonical Dfd-Exd sites but contains several predicted low-affinity sites. Unexpectedly, these sites are strongly bound by Dfd-Exd complexes and their conversion into optimal Dfd-Exd sites results only in a modest increase in binding strength. These small variations in affinity change the sensitivity of the enhancer to different Dfd levels, resulting in perturbed AP-2 expression and maxillary morphogenesis. Thus, Hox-regulated morphogenesis seems to result from the co-evolution of Hox binding affinity and Hox dosage for precise target gene regulation. Despite the central role of Hox genes in controlling morphogenesis, the DNA binding of different Hox members is relatively similar. Here they show that specificity of Hox member Dfd relies on a precise balance of transcription factors and binding site affinities.
Collapse
|
9
|
Rose M, Domsch K, Bartle-Schultheis J, Reim I, Schaub C. Twist regulates Yorkie activity to guide lineage reprogramming of syncytial alary muscles. Cell Rep 2022; 38:110295. [DOI: 10.1016/j.celrep.2022.110295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/25/2021] [Accepted: 01/04/2022] [Indexed: 11/28/2022] Open
|
10
|
Bertin B, Renaud Y, Jagla T, Lavergne G, Dondi C, Da Ponte JP, Junion G, Jagla K. Gelsolin and dCryAB act downstream of muscle identity genes and contribute to preventing muscle splitting and branching in Drosophila. Sci Rep 2021; 11:13197. [PMID: 34162956 PMCID: PMC8222376 DOI: 10.1038/s41598-021-92506-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 06/03/2021] [Indexed: 11/30/2022] Open
Abstract
A combinatorial code of identity transcription factors (iTFs) specifies the diversity of muscle types in Drosophila. We previously showed that two iTFs, Lms and Ap, play critical role in the identity of a subset of larval body wall muscles, the lateral transverse (LT) muscles. Intriguingly, a small portion of ap and lms mutants displays an increased number of LT muscles, a phenotype that recalls pathological split muscle fibers in human. However, genes acting downstream of Ap and Lms to prevent these aberrant muscle feature are not known. Here, we applied a cell type specific translational profiling (TRAP) to identify gene expression signatures underlying identity of muscle subsets including the LT muscles. We found that Gelsolin (Gel) and dCryAB, both encoding actin-interacting proteins, displayed LT muscle prevailing expression positively regulated by, the LT iTFs. Loss of dCryAB function resulted in LTs with irregular shape and occasional branched ends also observed in ap and lms mutant contexts. In contrast, enlarged and then split LTs with a greater number of myonuclei formed in Gel mutants while Gel gain of function resulted in unfused myoblasts, collectively indicating that Gel regulates LTs size and prevents splitting by limiting myoblast fusion. Thus, dCryAB and Gel act downstream of Lms and Ap and contribute to preventing LT muscle branching and splitting. Our findings offer first clues to still unknown mechanisms of pathological muscle splitting commonly detected in human dystrophic muscles and causing muscle weakness.
Collapse
Affiliation(s)
- Benjamin Bertin
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Yoan Renaud
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Teresa Jagla
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Guillaume Lavergne
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Cristiana Dondi
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Jean-Philippe Da Ponte
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France
| | - Guillaume Junion
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France.
| | - Krzysztof Jagla
- GReD Institute - INSERM U1103, CNRS UMR6293, Université Clermont Auvergne, 28, place Henri-Dunant, 63000, Clermont-Ferrand, France.
| |
Collapse
|
11
|
Domsch K, Schröder J, Janeschik M, Schaub C, Lohmann I. The Hox Transcription Factor Ubx Ensures Somatic Myogenesis by Suppressing the Mesodermal Master Regulator Twist. Cell Rep 2021; 34:108577. [PMID: 33406430 DOI: 10.1016/j.celrep.2020.108577] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/25/2020] [Accepted: 12/08/2020] [Indexed: 02/03/2023] Open
Abstract
Early lineage-specific master regulators are essential for the specification of cell types. However, once cells are committed to a specific fate, it is critical to restrict the activity of such factors to enable differentiation. To date, it remains unclear how these factors are silenced. Using the Drosophila mesoderm as a model and a comparative genomic approach, we identify the Hox transcription factor Ultrabithorax (Ubx) to be critical for the repression of the master regulator Twist. Mesoderm-specific Ubx loss-of-function experiments using CRISPR-Cas9 and overexpression studies demonstrate that Ubx majorly impacts twist transcription. A mechanistic analysis reveals that Ubx requires the NK-homeodomain protein Tinman to bind to the twist promoter. Furthermore, we find these factor interactions to be critical for silencing by recruiting the Polycomb DNA binding protein Pleiohomeotic. Altogether, our data reveal that Ubx is a critical player in mediating the silencing of Twist, which is crucial for coordinated muscle differentiation.
Collapse
Affiliation(s)
- Katrin Domsch
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, 69120 Heidelberg, Germany.
| | - Julia Schröder
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, 69120 Heidelberg, Germany
| | - Matthias Janeschik
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, 69120 Heidelberg, Germany
| | - Christoph Schaub
- Erlangen-Nürnberg University, Developmental Biology, 91058 Erlangen, Germany
| | - Ingrid Lohmann
- Heidelberg University, Centre for Organismal Studies (COS) Heidelberg, 69120 Heidelberg, Germany
| |
Collapse
|
12
|
Poovathumkadavil P, Jagla K. Genetic Control of Muscle Diversification and Homeostasis: Insights from Drosophila. Cells 2020; 9:cells9061543. [PMID: 32630420 PMCID: PMC7349286 DOI: 10.3390/cells9061543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 12/13/2022] Open
Abstract
In the fruit fly, Drosophila melanogaster, the larval somatic muscles or the adult thoracic flight and leg muscles are the major voluntary locomotory organs. They share several developmental and structural similarities with vertebrate skeletal muscles. To ensure appropriate activity levels for their functions such as hatching in the embryo, crawling in the larva, and jumping and flying in adult flies all muscle components need to be maintained in a functionally stable or homeostatic state despite constant strain. This requires that the muscles develop in a coordinated manner with appropriate connections to other cell types they communicate with. Various signaling pathways as well as extrinsic and intrinsic factors are known to play a role during Drosophila muscle development, diversification, and homeostasis. In this review, we discuss genetic control mechanisms of muscle contraction, development, and homeostasis with particular emphasis on the contractile unit of the muscle, the sarcomere.
Collapse
|
13
|
Bataillé L, Colombié N, Pelletier A, Paululat A, Lebreton G, Carrier Y, Frendo JL, Vincent A. Alary muscles and thoracic alary-related muscles are atypical striated muscles involved in maintaining the position of internal organs. Development 2020; 147:dev.185645. [PMID: 32188630 DOI: 10.1242/dev.185645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/04/2020] [Indexed: 12/11/2022]
Abstract
Alary muscles (AMs) have been described as a component of the cardiac system in various arthropods. Lineage-related thoracic muscles (TARMs), linking the exoskeleton to specific gut regions, have recently been discovered in Drosophila Asymmetrical attachments of AMs and TARMs, to the exoskeleton on one side and internal organs on the other, suggested an architectural function in moving larvae. Here, we analysed the shape and sarcomeric organisation of AMs and TARMs, and imaged their atypical deformability in crawling larvae. We then selectively eliminated AMs and TARMs by targeted apoptosis. Elimination of AMs revealed that AMs are required for suspending the heart in proper intra-haemocelic position and for opening of the heart lumen, and that AMs constrain the curvature of the respiratory tracheal system during crawling; TARMs are required for proper positioning of visceral organs and efficient food transit. AM/TARM cardiac versus visceral attachment depends on Hox control, with visceral attachment being the ground state. TARMs and AMs are the first example of multinucleate striated muscles connecting the skeleton to the cardiac and visceral systems in bilaterians, with multiple physiological functions.
Collapse
Affiliation(s)
- Laetitia Bataillé
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Nathalie Colombié
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Aurore Pelletier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Achim Paululat
- University of Osnabrück, Department of Biology/Chemistry, Zoology and Developmental Biology, Barbarastraße 11, 49076 Osnabrück, Germany
| | - Gaëlle Lebreton
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Yannick Carrier
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Frendo
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| | - Alain Vincent
- Centre de Biologie du Développement (CBD), Centre de Biologie Intégrative (CBI), Université de Toulouse 3, CNRS, UPS, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
14
|
RNAi Screen in Tribolium Reveals Involvement of F-BAR Proteins in Myoblast Fusion and Visceral Muscle Morphogenesis in Insects. G3-GENES GENOMES GENETICS 2019; 9:1141-1151. [PMID: 30733382 PMCID: PMC6469413 DOI: 10.1534/g3.118.200996] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a large-scale RNAi screen in Tribolium castaneum for genes with knock-down phenotypes in the larval somatic musculature, one recurring phenotype was the appearance of larval muscle fibers that were significantly thinner than those in control animals. Several of the genes producing this knock-down phenotype corresponded to orthologs of Drosophila genes that are known to participate in myoblast fusion, particularly via their effects on actin polymerization. A new gene previously not implicated in myoblast fusion but displaying a similar thin-muscle knock-down phenotype was the Tribolium ortholog of Nostrin, which encodes an F-BAR and SH3 domain protein. Our genetic studies of Nostrin and Cip4, a gene encoding a structurally related protein, in Drosophila show that the encoded F-BAR proteins jointly contribute to efficient myoblast fusion during larval muscle development. Together with the F-Bar protein Syndapin they are also required for normal embryonic midgut morphogenesis. In addition, Cip4 is required together with Nostrin during the profound remodeling of the midgut visceral musculature during metamorphosis. We propose that these F-Bar proteins help govern proper morphogenesis particularly of the longitudinal midgut muscles during metamorphosis.
Collapse
|
15
|
A Large Scale Systemic RNAi Screen in the Red Flour Beetle Tribolium castaneum Identifies Novel Genes Involved in Insect Muscle Development. G3-GENES GENOMES GENETICS 2019; 9:1009-1026. [PMID: 30733381 PMCID: PMC6469426 DOI: 10.1534/g3.118.200995] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although muscle development has been widely studied in Drosophila melanogaster there are still many gaps in our knowledge, and it is not known to which extent this knowledge can be transferred to other insects. To help in closing these gaps we participated in a large-scale RNAi screen that used the red flour beetle, Tribolium castaneum, as a screening platform. The effects of systemic RNAi were screened upon double-stranded RNA injections into appropriate muscle-EGFP tester strains. Injections into pupae were followed by the analysis of the late embryonic/early larval muscle patterns, and injections into larvae by the analysis of the adult thoracic muscle patterns. Herein we describe the results of the first-pass screens with pupal and larval injections, which covered ∼8,500 and ∼5,000 genes, respectively, of a total of ∼16,500 genes of the Tribolium genome. Apart from many genes known from Drosophila as regulators of muscle development, a collection of genes previously unconnected to muscle development yielded phenotypes in larval body wall and leg muscles as well as in indirect flight muscles. We then present the main candidates from the pupal injection screen that remained after being processed through a series of verification and selection steps. Further, we discuss why distinct though overlapping sets of genes are revealed by the Drosophila and Tribolium screening approaches.
Collapse
|
16
|
Wolfstetter G, Pfeifer K, van Dijk JR, Hugosson F, Lu X, Palmer RH. The scaffolding protein Cnk binds to the receptor tyrosine kinase Alk to promote visceral founder cell specification inDrosophila. Sci Signal 2017; 10:10/502/eaan0804. [DOI: 10.1126/scisignal.aan0804] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Tolkin T, Christiaen L. Rewiring of an ancestral Tbx1/10-Ebf-Mrf network for pharyngeal muscle specification in distinct embryonic lineages. Development 2017; 143:3852-3862. [PMID: 27802138 DOI: 10.1242/dev.136267] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 08/30/2016] [Indexed: 01/01/2023]
Abstract
Skeletal muscles arise from diverse embryonic origins in vertebrates, yet converge on extensively shared regulatory programs that require muscle regulatory factor (MRF)-family genes. Myogenesis in the tail of the simple chordate Ciona exhibits a similar reliance on its single MRF-family gene, and diverse mechanisms activate Ci-Mrf Here, we show that myogenesis in the atrial siphon muscles (ASMs) and oral siphon muscles (OSMs), which control the exhalant and inhalant siphons, respectively, also requires Mrf We characterize the ontogeny of OSM progenitors and compare the molecular basis of Mrf activation in OSM versus ASM. In both muscle types, Ebf and Tbx1/10 are expressed and function upstream of Mrf However, we demonstrate that regulatory relationships between Tbx1/10, Ebf and Mrf differ between the OSM and ASM lineages. We propose that Tbx1, Ebf and Mrf homologs form an ancient conserved regulatory state for pharyngeal muscle specification, whereas their regulatory relationships might be more evolutionarily variable.
Collapse
Affiliation(s)
- Theadora Tolkin
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| | - Lionel Christiaen
- Center for Developmental Genetics, Department of Biology, New York University, New York, NY 10003, USA
| |
Collapse
|
18
|
Mendoza-García P, Hugosson F, Fallah M, Higgins ML, Iwasaki Y, Pfeifer K, Wolfstetter G, Varshney G, Popichenko D, Gergen JP, Hens K, Deplancke B, Palmer RH. The Zic family homologue Odd-paired regulates Alk expression in Drosophila. PLoS Genet 2017; 13:e1006617. [PMID: 28369060 PMCID: PMC5393633 DOI: 10.1371/journal.pgen.1006617] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 04/17/2017] [Accepted: 02/07/2017] [Indexed: 01/30/2023] Open
Abstract
The Anaplastic Lymphoma Kinase (Alk) receptor tyrosine kinase (RTK) plays a critical role in the specification of founder cells (FCs) in the Drosophila visceral mesoderm (VM) during embryogenesis. Reporter gene and CRISPR/Cas9 deletion analysis reveals enhancer regions in and upstream of the Alk locus that influence tissue-specific expression in the amnioserosa (AS), the VM and the epidermis. By performing high throughput yeast one-hybrid screens (Y1H) with a library of Drosophila transcription factors (TFs) we identify Odd-paired (Opa), the Drosophila homologue of the vertebrate Zic family of TFs, as a novel regulator of embryonic Alk expression. Further characterization identifies evolutionarily conserved Opa-binding cis-regulatory motifs in one of the Alk associated enhancer elements. Employing Alk reporter lines as well as CRISPR/Cas9-mediated removal of regulatory elements in the Alk locus, we show modulation of Alk expression by Opa in the embryonic AS, epidermis and VM. In addition, we identify enhancer elements that integrate input from additional TFs, such as Binou (Bin) and Bagpipe (Bap), to regulate VM expression of Alk in a combinatorial manner. Taken together, our data show that the Opa zinc finger TF is a novel regulator of embryonic Alk expression. The Alk receptor tyrosine kinase is employed repeatedly during Drosophila development to drive signaling events in a variety of tissues. The spatial and temporal expression pattern of the Alk gene is tightly regulated. Identifying factors that influence the expression of Alk is important to better understand how Alk signaling is controlled. In this paper we characterize cis-regulatory sequences in the Alk locus and the transcription factors that bind them to govern Alk expression in the Drosophila embryo. Using a robotic protein-DNA interaction assay, we identified the Zic family transcription factor Odd-paired as a factor that binds to regulatory elements in the Alk locus. Binding of Odd-paired to Alkcis-regulatory elements varies spatially, revealing a requirement for additional transcription factors such as the NK3 and FoxF orthologues Bagpipe and Biniou in a subset of Alk-expressing tissues. Our findings provide new insight into the dynamics underlying temporal and spatial regulation of the Alk receptor during embryogenesis.
Collapse
Affiliation(s)
- Patricia Mendoza-García
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Fredrik Hugosson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Mahsa Fallah
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Michael L. Higgins
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yasuno Iwasaki
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kathrin Pfeifer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Georg Wolfstetter
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gaurav Varshney
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | - J. Peter Gergen
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Korneel Hens
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, United Kingdom
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Lausanne, Switzerland
| | - Ruth H. Palmer
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
19
|
|
20
|
Abstract
Recent data have paved the way to mechanistic studies into the role of Tbx1 during development. Tbx1 is haploinsufficient and is involved in an important genetic disorder. The gene encodes a T-box transcription factor that is expressed from approximately E7.5 in mouse embryos and continues to be expressed in a highly dynamic manner. It is neither a strong transcriptional activator nor a strong repressor, but it regulates a large number of genes through epigenetic modifications. Here, we review recent literature concerning mechanisms of gene regulation by Tbx1 and its role in mammalian development, with a special focus on the cardiac, vascular, and central nervous systems.
Collapse
|
21
|
Abstract
T-box (Tbx) genes encode an ancient group of transcription factors that play important roles in patterning, specification, proliferation, and differentiation programs in vertebrate organogenesis. This is testified by severe organ malformation syndromes in mice homozygous for engineered null alleles of specific T-box genes and by the large number of human inherited organ-specific diseases that have been linked to mutations in these genes. One of the organ systems that has not been associated with loss of specific T-box gene function in human disease for long is the excretory system. However, this has changed with the finding that mutations in TBX18, a member of a vertebrate-specific subgroup within the Tbx1-subfamily of T-box transcription factor genes, cause congenital anomalies of the kidney and urinary tract, predominantly hydroureter and ureteropelvic junction obstruction. Gene expression analyses, loss-of-function studies, and lineage tracing in the mouse suggest a primary role for this transcription factor in specifying the ureteric mesenchyme in the common anlage of the kidney, the ureter, and the bladder. We review the function of Tbx18 in ureterogenesis and discuss the body of evidence that Tbx18 and other members of the T-box gene family, namely, Tbx1, Tbx2, Tbx3, and Tbx20, play additional roles in development and homeostasis of other components of the excretory system in vertebrates.
Collapse
|
22
|
Lovato TL, Cripps RM. Regulatory Networks that Direct the Development of Specialized Cell Types in the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3. [PMID: 27695700 PMCID: PMC5044875 DOI: 10.3390/jcdd3020018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The Drosophila cardiac tube was once thought to be a simple linear structure, however research over the past 15 years has revealed significant cellular and molecular complexity to this organ. Prior reviews have focused upon the gene regulatory networks responsible for the specification of the cardiac field and the activation of cardiac muscle structural genes. Here we focus upon highlighting the existence, function, and development of unique cell types within the dorsal vessel, and discuss their correspondence to analogous structures in the vertebrate heart.
Collapse
|
23
|
On the Morphology of the Drosophila Heart. J Cardiovasc Dev Dis 2016; 3:jcdd3020015. [PMID: 29367564 PMCID: PMC5715677 DOI: 10.3390/jcdd3020015] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/03/2016] [Accepted: 03/29/2016] [Indexed: 11/17/2022] Open
Abstract
The circulatory system of Drosophilamelanogaster represents an easily amenable genetic model whose analysis at different levels, i.e., from single molecules up to functional anatomy, has provided new insights into general aspects of cardiogenesis, heart physiology and cardiac aging, to name a few examples. In recent years, the Drosophila heart has also attracted the attention of researchers in the field of biomedicine. This development is mainly due to the fact that several genes causing human heart disease are also present in Drosophila, where they play the same or similar roles in heart development, maintenance or physiology as their respective counterparts in humans. This review will attempt to briefly introduce the anatomy of the Drosophila circulatory system and then focus on the different cell types and non-cellular tissue that constitute the heart.
Collapse
|
24
|
Frasch M. Dedifferentiation, Redifferentiation, and Transdifferentiation of Striated Muscles During Regeneration and Development. Curr Top Dev Biol 2016; 116:331-55. [PMID: 26970627 DOI: 10.1016/bs.ctdb.2015.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
In some rare and striking cases, striated muscle fibers of the skeleton or body wall, which consist of terminally differentiated syncytia with complex ultrastructures, were found to be capable of dedifferentiating and fragmenting into mononucleate cells. Examples of such events will be discussed in which the dedifferentiated cells reenter the cell cycle, proliferate, and rebuilt damaged muscle fibers during limb regeneration or transdifferentiate to generate new types of muscles during normal development.
Collapse
Affiliation(s)
- Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
25
|
Dobi KC, Schulman VK, Baylies MK. Specification of the somatic musculature in Drosophila. WILEY INTERDISCIPLINARY REVIEWS. DEVELOPMENTAL BIOLOGY 2015; 4:357-75. [PMID: 25728002 PMCID: PMC4456285 DOI: 10.1002/wdev.182] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 01/16/2015] [Accepted: 02/04/2015] [Indexed: 11/09/2022]
Abstract
The somatic muscle system formed during Drosophila embryogenesis is required for larvae to hatch, feed, and crawl. This system is replaced in the pupa by a new adult muscle set, responsible for activities such as feeding, walking, and flight. Both the larval and adult muscle systems are comprised of distinct muscle fibers to serve these specific motor functions. In this way, the Drosophila musculature is a valuable model for patterning within a single tissue: while all muscle cells share properties such as the contractile apparatus, properties such as size, position, and number of nuclei are unique for a particular muscle. In the embryo, diversification of muscle fibers relies first on signaling cascades that pattern the mesoderm. Subsequently, the combinatorial expression of specific transcription factors leads muscle fibers to adopt particular sizes, shapes, and orientations. Adult muscle precursors (AMPs), set aside during embryonic development, proliferate during the larval phases and seed the formation of the abdominal, leg, and flight muscles in the adult fly. Adult muscle fibers may either be formed de novo from the fusion of the AMPs, or are created by the binding of AMPs to an existing larval muscle. While less is known about adult muscle specification compared to the larva, expression of specific transcription factors is also important for its diversification. Increasingly, the mechanisms required for the diversification of fly muscle have found parallels in vertebrate systems and mark Drosophila as a robust model system to examine questions about how diverse cell types are generated within an organism.
Collapse
Affiliation(s)
- Krista C. Dobi
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
| | - Victoria K. Schulman
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| | - Mary K. Baylies
- Program in Developmental Biology, Sloan Kettering Institute, New York, NY, USA
- Cell and Developmental Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY, USA
| |
Collapse
|
26
|
A new heart for a new head in vertebrate cardiopharyngeal evolution. Nature 2015; 520:466-73. [PMID: 25903628 DOI: 10.1038/nature14435] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Accepted: 11/25/2014] [Indexed: 12/22/2022]
Abstract
It has been more than 30 years since the publication of the new head hypothesis, which proposed that the vertebrate head is an evolutionary novelty resulting from the emergence of neural crest and cranial placodes. Neural crest generates the skull and associated connective tissues, whereas placodes produce sensory organs. However, neither crest nor placodes produce head muscles, which are a crucial component of the complex vertebrate head. We discuss emerging evidence for a surprising link between the evolution of head muscles and chambered hearts - both systems arise from a common pool of mesoderm progenitor cells within the cardiopharyngeal field of vertebrate embryos. We consider the origin of this field in non-vertebrate chordates and its evolution in vertebrates.
Collapse
|
27
|
Iyer J, Girirajan S. Gene discovery and functional assessment of rare copy-number variants in neurodevelopmental disorders. Brief Funct Genomics 2015; 14:315-28. [DOI: 10.1093/bfgp/elv018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
28
|
Kumar RP, Dobi KC, Baylies MK, Abmayr SM. Muscle cell fate choice requires the T-box transcription factor midline in Drosophila. Genetics 2015; 199:777-91. [PMID: 25614583 PMCID: PMC4349071 DOI: 10.1534/genetics.115.174300] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 01/11/2015] [Indexed: 11/18/2022] Open
Abstract
Drosophila Midline (Mid) is an ortholog of vertebrate Tbx20, which plays roles in the developing heart, migrating cranial motor neurons, and endothelial cells. Mid functions in cell-fate specification and differentiation of tissues that include the ectoderm, cardioblasts, neuroblasts, and egg chambers; however, a role in the somatic musculature has not been described. We identified mid in genetic and molecular screens for factors contributing to somatic muscle morphogenesis. Mid is expressed in founder cells (FCs) for several muscle fibers, and functions cooperatively with the T-box protein H15 in lateral oblique muscle 1 and the segment border muscle. Mid is particularly important for the specification and development of the lateral transverse (LT) muscles LT3 and LT4, which arise by asymmetric division of a single muscle progenitor. Mid is expressed in this progenitor and its two sibling FCs, but is maintained only in the LT4 FC. Both muscles were frequently missing in mid mutant embryos, and LT4-associated expression of the transcription factor Krüppel (Kr) was lost. When present, LT4 adopted an LT3-like morphology. Coordinately, mid misexpression caused LT3 to adopt an LT4-like morphology and was associated with ectopic Kr expression. From these data, we concluded that mid functions first in the progenitor to direct development of LT3 and LT4, and later in the FCs to influence whichever of these differentiation profiles is selected. Mid is the first T-box factor shown to influence LT3 and LT4 muscle identity and, along with the T-box protein Optomotor-blind-related-gene 1 (Org-1), is representative of a new class of transcription factors in muscle specification.
Collapse
Affiliation(s)
- Ram P Kumar
- Stowers Institute for Medical Research, Kansas City, Missouri 64110
| | - Krista C Dobi
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Mary K Baylies
- Program in Developmental Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065
| | - Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, Missouri 64110 Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, Kansas 66160
| |
Collapse
|
29
|
Org-1-dependent lineage reprogramming generates the ventral longitudinal musculature of the Drosophila heart. Curr Biol 2015; 25:488-94. [PMID: 25660543 DOI: 10.1016/j.cub.2014.12.029] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/01/2014] [Accepted: 12/03/2014] [Indexed: 01/27/2023]
Abstract
Only few examples of transdifferentiation, which denotes the conversion of one differentiated cell type to another, are known to occur during normal development, and more often, it is associated with regeneration processes. With respect to muscles, dedifferentiation/redifferentiation processes have been documented during post-traumatic muscle regeneration in blastema of newts as well as during myocardial regeneration. As shown herein, the ventral longitudinal muscles of the adult Drosophila heart arise from specific larval alary muscles in a process that represents the first known example of syncytial muscle transdifferentiation via dedifferentiation into mononucleate myoblasts during normal development. We demonstrate that this unique process depends on the reinitiation of a transcriptional program previously employed for embryonic alary muscle development, in which the factors Org-1 (Drosophila Tbx1) and Tailup (Drosophila Islet1) are key components. During metamorphosis, the action of these factors is combined with cell-autonomous inputs from the ecdysone steroid and the Hox gene Ultrabithorax, which provide temporal and spatial specificity to the transdifferentiation events. Following muscle dedifferentiation, inductive cues, particularly from the remodeling heart tube, are required for the redifferentiation of myoblasts into ventral longitudinal muscles. Our results provide new insights into mechanisms of lineage commitment and cell-fate plasticity during development.
Collapse
|
30
|
Hugosson F, Sjögren C, Birve A, Hedlund L, Eriksson T, Palmer RH. The Drosophila midkine/pleiotrophin homologues Miple1 and Miple2 affect adult lifespan but are dispensable for alk signaling during embryonic gut formation. PLoS One 2014; 9:e112250. [PMID: 25380037 PMCID: PMC4224452 DOI: 10.1371/journal.pone.0112250] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/10/2014] [Indexed: 01/07/2023] Open
Abstract
Midkine (MDK) and Pleiotrophin (PTN) are small heparin-binding cytokines with closely related structures. The Drosophila genome harbours two genes encoding members of the MDK/PTN family of proteins, known as miple1 and miple2. We have investigated the role of Miple proteins in vivo, in particular with regard to their proposed role as ligands for the Alk receptor tyrosine kinase (RTK). Here we show that Miple proteins are neither required to drive Alk signaling during Drosophila embryogenesis, nor are they essential for development in the fruit fly. Additionally we show that neither MDK nor PTN can activate hALK in vivo when ectopically co-expressed in the fly. In conclusion, our data suggest that Alk is not activated by MDK/PTN related growth factors Miple1 and Miple 2 in vivo.
Collapse
Affiliation(s)
| | - Camilla Sjögren
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Anna Birve
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Ruth H. Palmer
- Department of Molecular Biology, Umeå University, Umeå, Sweden
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, Göteborg, Sweden
- * E-mail:
| |
Collapse
|
31
|
Boukhatmi H, Schaub C, Bataillé L, Reim I, Frendo JL, Frasch M, Vincent A. An Org-1-Tup transcriptional cascade reveals different types of alary muscles connecting internal organs in Drosophila. Development 2014; 141:3761-71. [PMID: 25209244 DOI: 10.1242/dev.111005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The T-box transcription factor Tbx1 and the LIM-homeodomain transcription factor Islet1 are key components in regulatory circuits that generate myogenic and cardiogenic lineage diversity in chordates. We show here that Org-1 and Tup, the Drosophila orthologs of Tbx1 and Islet1, are co-expressed and required for formation of the heart-associated alary muscles (AMs) in the abdomen. The same holds true for lineage-related muscles in the thorax that have not been described previously, which we name thoracic alary-related muscles (TARMs). Lineage analyses identified the progenitor cell for each AM and TARM. Three-dimensional high-resolution analyses indicate that AMs and TARMs connect the exoskeleton to the aorta/heart and to different regions of the midgut, respectively, and surround-specific tracheal branches, pointing to an architectural role in the internal anatomy of the larva. Org-1 controls tup expression in the AM/TARM lineage by direct binding to two regulatory sites within an AM/TARM-specific cis-regulatory module, tupAME. The contributions of Org-1 and Tup to the specification of Drosophila AMs and TARMs provide new insights into the transcriptional control of Drosophila larval muscle diversification and highlight new parallels with gene regulatory networks involved in the specification of cardiopharyngeal mesodermal derivatives in chordates.
Collapse
Affiliation(s)
- Hadi Boukhatmi
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, Toulouse F-31062, Cedex 09, France
| | - Christoph Schaub
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstraβe 5, Erlangen 91058, Germany
| | - Laetitia Bataillé
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, Toulouse F-31062, Cedex 09, France
| | - Ingolf Reim
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstraβe 5, Erlangen 91058, Germany
| | - Jean-Louis Frendo
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, Toulouse F-31062, Cedex 09, France
| | - Manfred Frasch
- Friedrich-Alexander University of Erlangen-Nürnberg, Department of Biology, Division of Developmental Biology, Staudtstraβe 5, Erlangen 91058, Germany
| | - Alain Vincent
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, Toulouse F-31062, Cedex 09, France
| |
Collapse
|
32
|
Sen A, Grimm S, Hofmeyer K, Pflugfelder GO. Optomotor-blindin the Development of theDrosophilaHS and VS Lobula Plate Tangential Cells. J Neurogenet 2014; 28:250-63. [DOI: 10.3109/01677063.2014.917645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
33
|
Hollfelder D, Frasch M, Reim I. Distinct functions of the laminin β LN domain and collagen IV during cardiac extracellular matrix formation and stabilization of alary muscle attachments revealed by EMS mutagenesis in Drosophila. BMC DEVELOPMENTAL BIOLOGY 2014; 14:26. [PMID: 24935095 PMCID: PMC4068974 DOI: 10.1186/1471-213x-14-26] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 06/09/2014] [Indexed: 12/27/2022]
Abstract
BACKGROUND The Drosophila heart (dorsal vessel) is a relatively simple tubular organ that serves as a model for several aspects of cardiogenesis. Cardiac morphogenesis, proper heart function and stability require structural components whose identity and ways of assembly are only partially understood. Structural components are also needed to connect the myocardial tube with neighboring cells such as pericardial cells and specialized muscle fibers, the so-called alary muscles. RESULTS Using an EMS mutagenesis screen for cardiac and muscular abnormalities in Drosophila embryos we obtained multiple mutants for two genetically interacting complementation groups that showed similar alary muscle and pericardial cell detachment phenotypes. The molecular lesions underlying these defects were identified as domain-specific point mutations in LamininB1 and Cg25C, encoding the extracellular matrix (ECM) components laminin β and collagen IV α1, respectively. Of particular interest within the LamininB1 group are certain hypomorphic mutants that feature prominent defects in cardiac morphogenesis and cardiac ECM layer formation, but in contrast to amorphic mutants, only mild defects in other tissues. All of these alleles carry clustered missense mutations in the laminin LN domain. The identified Cg25C mutants display weaker and largely temperature-sensitive phenotypes that result from glycine substitutions in different Gly-X-Y repeats of the triple helix-forming domain. While initial basement membrane assembly is not abolished in Cg25C mutants, incorporation of perlecan is impaired and intracellular accumulation of perlecan as well as the collagen IV α2 chain is detected during late embryogenesis. CONCLUSIONS Assembly of the cardiac ECM depends primarily on laminin, whereas collagen IV is needed for stabilization. Our data underscore the importance of a correctly assembled ECM particularly for the development of cardiac tissues and their lateral connections. The mutational analysis suggests that the β6/β3/β8 interface of the laminin β LN domain is highly critical for formation of contiguous cardiac ECM layers. Certain mutations in the collagen IV triple helix-forming domain may exert a semi-dominant effect leading to an overall weakening of ECM structures as well as intracellular accumulation of collagen and other molecules, thus paralleling observations made in other organisms and in connection with collagen-related diseases.
Collapse
Affiliation(s)
- Dominik Hollfelder
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Manfred Frasch
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Ingolf Reim
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nürnberg, Staudtstr. 5, 91058, Erlangen, Germany
| |
Collapse
|
34
|
Wang W, Razy-Krajka F, Siu E, Ketcham A, Christiaen L. NK4 antagonizes Tbx1/10 to promote cardiac versus pharyngeal muscle fate in the ascidian second heart field. PLoS Biol 2013; 11:e1001725. [PMID: 24311985 PMCID: PMC3849182 DOI: 10.1371/journal.pbio.1001725] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 10/23/2013] [Indexed: 12/27/2022] Open
Abstract
Cross inhibition between NK4 and TBX1 transcription factors specifies heart versus pharyngeal muscle fates by promoting the activation of tissue-specific regulators in distinct precursors within the cardiopharyngeal lineage of the ascidian, Ciona intestinalis. The heart and head muscles share common developmental origins and genetic underpinnings in vertebrates, including humans. Parts of the heart and cranio-facial musculature derive from common mesodermal progenitors that express NKX2-5, ISL1, and TBX1. This ontogenetic kinship is dramatically reflected in the DiGeorge/Cardio-Velo-Facial syndrome (DGS/CVFS), where mutations of TBX1 cause malformations in the pharyngeal apparatus and cardiac outflow tract. Cardiac progenitors of the first heart field (FHF) do not require TBX1 and segregate precociously from common progenitors of the second heart field (SHF) and pharyngeal muscles. However, the cellular and molecular mechanisms that govern heart versus pharyngeal muscle specification within this lineage remain elusive. Here, we harness the simplicity of the ascidian larva to show that, following asymmetric cell division of common progenitors, NK4/NKX2-5 promotes GATAa/GATA4/5/6 expression and cardiac specification in the second heart precursors by antagonizing Tbx1/10-mediated inhibition of GATAa and activation of Collier/Olf/EBF (COE), the determinant of atrial siphon muscle (ASM) specification. Our results uncover essential regulatory connections between the conserved cardio-pharyngeal factor Tbx1/10 and muscle determinant COE, as well as a mutual antagonism between NK4 and Tbx1/10 activities upstream of GATAa and COE. The latter cross-antagonism underlies a fundamental heart versus pharyngeal muscle fate choice that occurs in a conserved lineage of cardio-pharyngeal progenitors. We propose that this basic ontogenetic motif underlies cardiac and pharyngeal muscle development and evolution in chordates. Mutations in the regulatory genes encoding the transcription factors NKX2-5 and TBX1, which govern heart and head muscle development, cause prevalent congenital defects. Recent studies using vertebrate models have shown that the heart and pharyngeal head muscle cells derive from common progenitors in the early embryo. To better understand the genetic mechanisms by which these progenitors select one of the two developmental trajectories, we studied the activity of these transcription factors in a simple invertebrate chordate model, the sea squirt Ciona intestinalis. We show that the sea squirt homolog of NKX2-5 promotes early heart specification by inhibiting the formation of pharyngeal muscles. Conversely, the TBX1 homolog determines pharyngeal muscle fate by inhibiting GATAa and thereby the heart program it instructs, as well as promoting the pharyngeal muscle program through activation of COE (Collier/Olf-1/EBF), a recently identified regulator of skeletal muscle differentiation. Finally, we show that the NKX2-5 homolog protein directly binds to the COE gene to repress its activity. Notably, these antagonistic interactions occur in heart and pharyngeal precursors immediately following the division of their pluripotent mother cells, thus contributing to their respective fate choice. These mechanistic insights into the process of early heart versus head muscle specification in this simple chordate provide the grounds for establishing the etiology of human congenital cardio-craniofacial defects.
Collapse
Affiliation(s)
- Wei Wang
- Department of Biology, New York University, New York, New York, United States of America
| | - Florian Razy-Krajka
- Department of Biology, New York University, New York, New York, United States of America
| | - Eric Siu
- Department of Biology, New York University, New York, New York, United States of America
| | - Alexandra Ketcham
- Department of Biology, New York University, New York, New York, United States of America
| | - Lionel Christiaen
- Department of Biology, New York University, New York, New York, United States of America
- * E-mail:
| |
Collapse
|
35
|
Busser BW, Gisselbrecht SS, Shokri L, Tansey TR, Gamble CE, Bulyk ML, Michelson AM. Contribution of distinct homeodomain DNA binding specificities to Drosophila embryonic mesodermal cell-specific gene expression programs. PLoS One 2013; 8:e69385. [PMID: 23922708 PMCID: PMC3724861 DOI: 10.1371/journal.pone.0069385] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 06/26/2013] [Indexed: 11/18/2022] Open
Abstract
Homeodomain (HD) proteins are a large family of evolutionarily conserved transcription factors (TFs) having diverse developmental functions, often acting within the same cell types, yet many members of this family paradoxically recognize similar DNA sequences. Thus, with multiple family members having the potential to recognize the same DNA sequences in cis-regulatory elements, it is difficult to ascertain the role of an individual HD or a subclass of HDs in mediating a particular developmental function. To investigate this problem, we focused our studies on the Drosophila embryonic mesoderm where HD TFs are required to establish not only segmental identities (such as the Hox TFs), but also tissue and cell fate specification and differentiation (such as the NK-2 HDs, Six HDs and identity HDs (I-HDs)). Here we utilized the complete spectrum of DNA binding specificities determined by protein binding microarrays (PBMs) for a diverse collection of HDs to modify the nucleotide sequences of numerous mesodermal enhancers to be recognized by either no or a single subclass of HDs, and subsequently assayed the consequences of these changes on enhancer function in transgenic reporter assays. These studies show that individual mesodermal enhancers receive separate transcriptional input from both I-HD and Hox subclasses of HDs. In addition, we demonstrate that enhancers regulating upstream components of the mesodermal regulatory network are targeted by the Six class of HDs. Finally, we establish the necessity of NK-2 HD binding sequences to activate gene expression in multiple mesodermal tissues, supporting a potential role for the NK-2 HD TF Tinman (Tin) as a pioneer factor that cooperates with other factors to regulate cell-specific gene expression programs. Collectively, these results underscore the critical role played by HDs of multiple subclasses in inducing the unique genetic programs of individual mesodermal cells, and in coordinating the gene regulatory networks directing mesoderm development.
Collapse
Affiliation(s)
- Brian W. Busser
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen S. Gisselbrecht
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leila Shokri
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Terese R. Tansey
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Caitlin E. Gamble
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Martha L. Bulyk
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Pathology, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts, United States of America
- Harvard-MIT Division of Health Sciences and Technology (HST), Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alan M. Michelson
- Laboratory of Developmental Systems Biology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
36
|
Popichenko D, Hugosson F, Sjögren C, Dogru M, Yamazaki Y, Wolfstetter G, Schönherr C, Fallah M, Hallberg B, Nguyen H, Palmer RH. Jeb/Alk signalling regulates the Lame duck GLI family transcription factor in the Drosophila visceral mesoderm. Development 2013; 140:3156-66. [PMID: 23824577 DOI: 10.1242/dev.094466] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The Jelly belly (Jeb)/Anaplastic Lymphoma Kinase (Alk) signalling pathway regulates myoblast fusion in the circular visceral mesoderm (VM) of Drosophila embryos via specification of founder cells. However, only a limited number of target molecules for this pathway are described. We have investigated the role of the Lame Duck (Lmd) transcription factor in VM development in relationship to Jeb/Alk signal transduction. We show that Alk signalling negatively regulates Lmd activity post-transcriptionally through the MEK/MAPK (ERK) cascade resulting in a relocalisation of Lmd protein from the nucleus to cytoplasm. It has previously been shown that downregulation of Lmd protein is necessary for the correct specification of founder cells. In the visceral mesoderm of lmd mutant embryos, fusion-competent myoblasts seem to be converted to 'founder-like' cells that are still able to build a gut musculature even in the absence of fusion. The ability of Alk signalling to downregulate Lmd protein requires the N-terminal 140 amino acids, as a Lmd(141-866) mutant remains nuclear in the presence of active ALK and is able to drive robust expression of the Lmd downstream target Vrp1 in the developing VM. Our results suggest that Lmd is a target of Jeb/Alk signalling in the VM of Drosophila embryos.
Collapse
Affiliation(s)
- Dmitry Popichenko
- Department of Molecular Biology, Building 6L, Umeå University, Umeå S-90187, Sweden
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Schaub C, Frasch M. Org-1 is required for the diversification of circular visceral muscle founder cells and normal midgut morphogenesis. Dev Biol 2013; 376:245-59. [PMID: 23380635 DOI: 10.1016/j.ydbio.2013.01.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/23/2013] [Indexed: 02/08/2023]
Abstract
The T-Box family of transcription factors plays fundamental roles in the generation of appropriate spatial and temporal gene expression profiles during cellular differentiation and organogenesis in animals. In this study we report that the Drosophila Tbx1 orthologue optomotor-blind-related-gene-1 (org-1) exerts a pivotal function in the diversification of circular visceral muscle founder cell identities in Drosophila. In embryos mutant for org-1, the specification of the midgut musculature per se is not affected, but the differentiating midgut fails to form the anterior and central midgut constrictions and lacks the gastric caeca. We demonstrate that this phenotype results from the nearly complete loss of the founder cell specific expression domains of several genes known to regulate midgut morphogenesis, including odd-paired (opa), teashirt (tsh), Ultrabithorax (Ubx), decapentaplegic (dpp) and wingless (wg). To address the mechanisms that mediate the regulatory inputs from org-1 towards Ubx, dpp, and wg in these founder cells we genetically dissected known visceral mesoderm specific cis-regulatory-modules (CRMs) of these genes. The analyses revealed that the activities of the dpp and wg CRMs depend on org-1, the CRMs are bound by Org-1 in vivo and their T-Box binding sites are essential for their activation in the visceral muscle founder cells. We conclude that Org-1 acts within a well-defined signaling and transcriptional network of the trunk visceral mesoderm as a crucial founder cell-specific competence factor, in concert with the general visceral mesodermal factor Biniou. As such, it directly regulates several key genes involved in the establishment of morphogenetic centers along the anteroposterior axis of the visceral mesoderm, which subsequently organize the formation of midgut constrictions and gastric caeca and thereby determine the morphology of the midgut.
Collapse
Affiliation(s)
- Christoph Schaub
- Department of Biology, Division of Developmental Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Staudtstr. 5, 91058 Erlangen, Germany
| | | |
Collapse
|
38
|
Boukhatmi H, Frendo JL, Enriquez J, Crozatier M, Dubois L, Vincent A. Tup/Islet1 integrates time and position to specify muscle identity in Drosophila. Development 2012; 139:3572-82. [DOI: 10.1242/dev.083410] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The LIM-homeodomain transcription factor Tailup/Islet1 (Tup) is a key component of cardiogenesis in Drosophila and vertebrates. We report here an additional major role for Drosophila Tup in specifying dorsal muscles. Tup is expressed in the four dorsal muscle progenitors (PCs) and tup-null embryos display a severely disorganized dorsal musculature, including a transformation of the dorsal DA2 into dorsolateral DA3 muscle. This transformation is reciprocal to the DA3 to DA2 transformation observed in collier (col) mutants. The DA2 PC, which gives rise to the DA2 muscle and to an adult muscle precursor, is selected from a cluster of myoblasts transiently expressing both Tinman (Tin) and Col. The activation of tup by Tin in the DA2 PC is required to repress col transcription and establish DA2 identity. The transient, partial overlap between Tin and Col expression provides a window of opportunity to distinguish between DA2 and DA3 muscle identities. The function of Tup in the DA2 PC illustrates how single cell precision can be reached in cell specification when temporal dynamics are combined with positional information. The contributions of Tin, Tup and Col to patterning Drosophila dorsal muscles bring novel parallels with chordate pharyngeal muscle development.
Collapse
Affiliation(s)
- Hadi Boukhatmi
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Jean Louis Frendo
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Jonathan Enriquez
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Michèle Crozatier
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Laurence Dubois
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| | - Alain Vincent
- Université de Toulouse 3, Centre de Biologie du Développement, UMR 5547 CNRS and FRBT, 118 route de Narbonne, F-31062 Toulouse cedex 09, France
| |
Collapse
|
39
|
Reim I, Hollfelder D, Ismat A, Frasch M. The FGF8-related signals Pyramus and Thisbe promote pathfinding, substrate adhesion, and survival of migrating longitudinal gut muscle founder cells. Dev Biol 2012; 368:28-43. [PMID: 22609944 DOI: 10.1016/j.ydbio.2012.05.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 04/17/2012] [Accepted: 05/04/2012] [Indexed: 01/04/2023]
Abstract
Fibroblast growth factors (FGFs) frequently fulfill prominent roles in the regulation of cell migration in various contexts. In Drosophila, the FGF8-like ligands Pyramus (Pyr) and Thisbe (Ths), which signal through their receptor Heartless (Htl), are known to regulate early mesodermal cell migration after gastrulation as well as glial cell migration during eye development. Herein, we show that Pyr and Ths also exert key roles during the long-distance migration of a specific sub-population of mesodermal cells that migrate from the caudal visceral mesoderm within stereotypic bilateral paths along the trunk visceral mesoderm toward the anterior. These cells constitute the founder myoblasts of the longitudinal midgut muscles. In a forward genetic screen for regulators of this morphogenetic process we identified loss of function alleles for pyr. We show that pyr and ths are expressed along the paths of migration in the trunk visceral mesoderm and endoderm and act largely redundantly to help guide the founder myoblasts reliably onto and along their substrate of migration. Ectopically-provided Pyr and Ths signals can efficiently re-rout the migrating cells, both in the presence and absence of endogenous signals. Our data indicate that the guidance functions of these FGFs must act in concert with other important attractive or adhesive activities of the trunk visceral mesoderm. Apart from their guidance functions, the Pyr and Ths signals play an obligatory role for the survival of the migrating cells. Without these signals, essentially all of these cells enter cell death and detach from the migration substrate during early migration. We present experiments that allowed us to dissect the roles of these FGFs as guidance cues versus trophic activities during the migration of the longitudinal visceral muscle founders.
Collapse
Affiliation(s)
- Ingolf Reim
- University of Erlangen-Nuremberg, Department of Biology, Division of Developmental Biology, Staudtstr. 5, 91058 Erlangen, Germany
| | | | | | | |
Collapse
|