1
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
2
|
Moreno MR, Boswell K, Casbolt HL, Bulgakova NA. Multifaceted control of E-cadherin dynamics by Adaptor Protein Complex 1 during epithelial morphogenesis. Mol Biol Cell 2022; 33:ar80. [PMID: 35609212 DOI: 10.1091/mbc.e21-12-0598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Intracellular trafficking regulates the distribution of transmembrane proteins including the key determinants of epithelial polarity and adhesion. The Adaptor Protein 1 (AP-1) complex is the key regulator of vesicle sorting, which binds many specific cargoes. We examined roles of the AP-1 complex in epithelial morphogenesis, using the Drosophila wing as a paradigm. We found that AP-1 knockdown leads to ectopic tissue folding, which is consistent with the observed defects in integrin targeting to the basal cell-extracellular matrix adhesion sites. This occurs concurrently with an integrin-independent induction of cell death, which counteracts elevated proliferation and prevents hyperplasia. We discovered a distinct pool of AP-1 that localizes at the subapical adherens junctions. Upon AP-1 knockdown, E-cadherin is hyperinternalized from these junctions and becomes enriched at the Golgi and recycling endosomes. We then provide evidence that E-cadherin hyperinternalization acts upstream of cell death in a potential tumor-suppressive mechanism. Simultaneously, cells compensate for elevated internalization of E-cadherin by increasing its expression to maintain cell-cell adhesion.
Collapse
Affiliation(s)
- Miguel Ramírez Moreno
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Katy Boswell
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Helen L Casbolt
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| | - Natalia A Bulgakova
- School of Biosciences and Bateson Centre, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
3
|
Abstract
The molecular complexes underlying planar cell polarity (PCP) were first identified in Drosophila through analysis of mutant phenotypes in the adult cuticle and the orientation of associated polarized protrusions such as wing hairs and sensory bristles. The same molecules are conserved in vertebrates and are required for the localization of polarized protrusions such as primary or sensory cilia and the orientation of hair follicles. Not only is PCP signaling required to align cellular structures across a tissue, it is also required to coordinate movement during embryonic development and adult homeostasis. PCP signaling allows cells to interpret positional cues within a tissue to move in the appropriate direction and to coordinate this movement with their neighbors. In this review we outline the molecular basis of the core Wnt-Frizzled/PCP pathway, and describe how this signaling orchestrates collective motility in Drosophila and vertebrates. Here we cover the paradigms of ommatidial rotation and border cell migration in Drosophila, and convergent extension in vertebrates. The downstream cell biological processes that underlie polarized motility include cytoskeletal reorganization, and adherens junctional and extracellular matrix remodeling. We discuss the contributions of these processes in the respective cell motility contexts. Finally, we address examples of individual cell motility guided by PCP factors during nervous system development and in cancer disease contexts.
Collapse
|
4
|
Warrington SJ, Strutt H, Strutt D. Use of Fluorescence Recovery After Photobleaching (FRAP) to Measure In Vivo Dynamics of Cell Junction-Associated Polarity Proteins. Methods Mol Biol 2022; 2438:1-30. [PMID: 35147932 DOI: 10.1007/978-1-0716-2035-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Here, we present a detailed protocol for fluorescence recovery after photobleaching (FRAP) to measure the dynamics of junctional populations of proteins in living tissue. Specifically, we describe how to perform FRAP in Drosophila pupal wings on fluorescently tagged core planar polarity proteins, which exhibit relatively slow junctional turnover. We provide a step-by-step practical guide to performing FRAP, and list a series of controls and optimizations to do before conducting a FRAP experiment. Finally, we describe how to present the FRAP data for publication.
Collapse
Affiliation(s)
| | - Helen Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Strutt
- School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
5
|
In search of conserved principles of planar cell polarization. Curr Opin Genet Dev 2021; 72:69-81. [PMID: 34871922 DOI: 10.1016/j.gde.2021.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 11/06/2021] [Accepted: 11/10/2021] [Indexed: 01/26/2023]
Abstract
The making of an embryo and its internal organs entails the spatial coordination of cellular activities. This manifests during tissue morphogenesis as cells change shape, rearrange and divide along preferential axis and during cell differentiation. Cells live in a polarized field and respond to it by polarizing their cellular activities in the plane of the tissue by a phenomenon called planar cell polarization. This phenomenon is ubiquitous in animals and depends on a few conserved planar cell polarity (PCP) pathways. All PCP pathways share two essential characteristics: the existence of local interactions between protein complexes present at the cell surface leading to their asymmetric distribution within cells; a supracellular graded cue that aligns these cellular asymmetries at the tissue level. Here, we discuss the potential common principles of planar cell polarization by comparing the local and global mechanisms employed by the different PCP pathways identified so far. The focus of the review is on the logic of the system rather than the molecules per se.
Collapse
|
6
|
Founounou N, Farhadifar R, Collu GM, Weber U, Shelley MJ, Mlodzik M. Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation. Nat Commun 2021; 12:6974. [PMID: 34848713 PMCID: PMC8632910 DOI: 10.1038/s41467-021-27253-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
The phenomenon of tissue fluidity-cells' ability to rearrange relative to each other in confluent tissues-has been linked to several morphogenetic processes and diseases, yet few molecular regulators of tissue fluidity are known. Ommatidial rotation (OR), directed by planar cell polarity signaling, occurs during Drosophila eye morphogenesis and shares many features with polarized cellular migration in vertebrates. We utilize in vivo live imaging analysis tools to quantify dynamic cellular morphologies during OR, revealing that OR is driven autonomously by ommatidial cell clusters rotating in successive pulses within a permissive substrate. Through analysis of a rotation-specific nemo mutant, we demonstrate that precise regulation of junctional E-cadherin levels is critical for modulating the mechanical properties of the tissue to allow rotation to progress. Our study defines Nemo as a molecular tool to induce a transition from solid-like tissues to more viscoelastic tissues broadening our molecular understanding of tissue fluidity.
Collapse
Affiliation(s)
- Nabila Founounou
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Reza Farhadifar
- grid.430264.7Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 5th Ave, New York, NY 10010 USA ,grid.38142.3c000000041936754XDepartment of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138 USA
| | - Giovanna M. Collu
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Ursula Weber
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Michael J. Shelley
- grid.430264.7Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 5th Ave, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753Courant Institute, New York University, 251 Mercer St, New York, NY 10012 USA
| | - Marek Mlodzik
- Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
7
|
Chan EHY, Zhou Y, Aerne BL, Holder MV, Weston A, Barry DJ, Collinson L, Tapon N. RASSF8-mediated transport of Echinoid via the exocyst promotes Drosophila wing elongation and epithelial ordering. Development 2021; 148:dev199731. [PMID: 34532737 PMCID: PMC8572004 DOI: 10.1242/dev.199731] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/13/2021] [Indexed: 01/14/2023]
Abstract
Cell-cell junctions are dynamic structures that maintain cell cohesion and shape in epithelial tissues. During development, junctions undergo extensive rearrangements to drive the epithelial remodelling required for morphogenesis. This is particularly evident during axis elongation, where neighbour exchanges, cell-cell rearrangements and oriented cell divisions lead to large-scale alterations in tissue shape. Polarised vesicle trafficking of junctional components by the exocyst complex has been proposed to promote junctional rearrangements during epithelial remodelling, but the receptors that allow exocyst docking to the target membranes remain poorly understood. Here, we show that the adherens junction component Ras Association domain family 8 (RASSF8) is required for the epithelial re-ordering that occurs during Drosophila pupal wing proximo-distal elongation. We identify the exocyst component Sec15 as a RASSF8 interactor. Loss of RASSF8 elicits cytoplasmic accumulation of Sec15 and Rab11-containing vesicles. These vesicles also contain the nectin-like homophilic adhesion molecule Echinoid, the depletion of which phenocopies the wing elongation and epithelial packing defects observed in RASSF8 mutants. Thus, our results suggest that RASSF8 promotes exocyst-dependent docking of Echinoid-containing vesicles during morphogenesis.
Collapse
Affiliation(s)
- Eunice H. Y. Chan
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Yanxiang Zhou
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Birgit L. Aerne
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Maxine V. Holder
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Anne Weston
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - David J. Barry
- Advanced Light Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Lucy Collinson
- Electron Microscopy Science Technology Platform, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Nicolas Tapon
- Apoptosis and Proliferation Control Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| |
Collapse
|
8
|
Tan SE, Tan W, Fisher K, Strutt D. QuantifyPolarity, a new tool-kit for measuring planar polarized protein distributions and cell properties in developing tissues. Development 2021; 148:272072. [PMID: 34351416 PMCID: PMC8451067 DOI: 10.1242/dev.198952] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 07/26/2021] [Indexed: 11/24/2022]
Abstract
The coordination of cells or structures within the plane of a tissue is known as planar polarization. It is often governed by the asymmetric distribution of planar polarity proteins within cells. A number of quantitative methods have been developed to provide a readout of planar polarized protein distributions. However, previous planar polarity quantification methods can be affected by variation in cell geometry. Hence, we developed a novel planar polarity quantification method based on Principal Component Analysis (PCA) that is shape insensitive. Here, we compare this method with other state-of-the-art methods on simulated models and biological datasets. We found that the PCA method performs robustly in quantifying planar polarity independently of variation in cell geometry and other image conditions. We designed a user-friendly graphical user interface called QuantifyPolarity, equipped with three polarity methods for automated quantification of polarity. QuantifyPolarity also provides tools to quantify cell morphology and packing geometry, allowing the relationship of these characteristics to planar polarization to be investigated. This tool enables experimentalists with no prior computational expertise to perform high-throughput cell polarity and shape analysis automatically and efficiently. Summary: We present a novel planar polarity quantification method based on Principal Component Analysis that performs robustly in quantifying planar polarity independently of variation in cell geometry and other image properties.
Collapse
Affiliation(s)
- Su Ee Tan
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Weijie Tan
- School of Computer Science, University of Nottingham, Jubilee Campus, Wollaton Road, Nottingham, NG8 1BB, UK
| | - Katherine Fisher
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
9
|
Balaraju AK, Hu B, Rodriguez JJ, Murry M, Lin F. Glypican 4 regulates planar cell polarity of endoderm cells by controlling the localization of Cadherin 2. Development 2021; 148:dev199421. [PMID: 34131730 PMCID: PMC8313861 DOI: 10.1242/dev.199421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/09/2021] [Indexed: 11/20/2022]
Abstract
Noncanonical Wnt/planar cell polarity (Wnt/PCP) signaling has been implicated in endoderm morphogenesis. However, the underlying cellular and molecular mechanisms of this process are unclear. We found that, during convergence and extension (C&E) in zebrafish, gut endodermal cells are polarized mediolaterally, with GFP-Vangl2 enriched at the anterior edges. Endoderm cell polarity is lost and intercalation is impaired in the absence of glypican 4 (gpc4), a heparan-sulfate proteoglycan that promotes Wnt/PCP signaling, suggesting that this signaling is required for endodermal cell polarity. Live imaging revealed that endoderm C&E is accomplished by polarized cell protrusions and junction remodeling, which are impaired in gpc4-deficient endodermal cells. Furthermore, in the absence of gpc4, Cadherin 2 expression on the endodermal cell surface is increased as a result of impaired Rab5c-mediated endocytosis, which partially accounts for the endodermal defects in these mutants. These findings indicate that Gpc4 regulates endodermal planar cell polarity during endoderm C&E by influencing the localization of Cadherin 2. Thus, our study uncovers a new mechanism by which Gpc4 regulates planar cell polarity and reveals the role of Wnt/PCP signaling in endoderm morphogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Fang Lin
- Department of Anatomy and Cell Biology, Carver College of Medicine, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
10
|
Johnson RI. Hexagonal patterning of the Drosophila eye. Dev Biol 2021; 478:173-182. [PMID: 34245727 DOI: 10.1016/j.ydbio.2021.07.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 10/24/2022]
Abstract
A complex network of transcription factor interactions propagates across the larval eye disc to establish columns of evenly-spaced R8 precursor cells, the founding cells of Drosophila ommatidia. After the recruitment of additional photoreceptors to each ommatidium, the surrounding cells are organized into their stereotypical pattern during pupal development. These support cells - comprised of pigment and cone cells - are patterned to encapsulate the photoreceptors and separate ommatidia with an hexagonal honeycomb lattice. Since the proteins and processes essential for correct eye patterning are conserved, elucidating how these function and change during Drosophila eye patterning can substantially advance our understanding of transcription factor and signaling networks, cytoskeletal structures, adhesion complexes, and the biophysical properties of complex tissues during their morphogenesis. Our understanding of many of these aspects of Drosophila eye patterning is largely descriptive. Many important questions, especially relating to the regulation and integration of cellular events, remain.
Collapse
Affiliation(s)
- Ruth I Johnson
- Biology Department, Wesleyan University, 52 Lawn Avenue, Middletown, CT, USA.
| |
Collapse
|
11
|
Torban E, Sokol SY. Planar cell polarity pathway in kidney development, function and disease. Nat Rev Nephrol 2021; 17:369-385. [PMID: 33547419 PMCID: PMC8967065 DOI: 10.1038/s41581-021-00395-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2021] [Indexed: 02/08/2023]
Abstract
Planar cell polarity (PCP) refers to the coordinated orientation of cells in the tissue plane. Originally discovered and studied in Drosophila melanogaster, PCP is now widely recognized in vertebrates, where it is implicated in organogenesis. Specific sets of PCP genes have been identified. The proteins encoded by these genes become asymmetrically distributed to opposite sides of cells within a tissue plane and guide many processes that include changes in cell shape and polarity, collective cell movements or the uniform distribution of cell appendages. A unifying characteristic of these processes is that they often involve rearrangement of actomyosin. Mutations in PCP genes can cause malformations in organs of many animals, including humans. In the past decade, strong evidence has accumulated for a role of the PCP pathway in kidney development including outgrowth and branching morphogenesis of ureteric bud and podocyte development. Defective PCP signalling has been implicated in the pathogenesis of developmental kidney disorders of the congenital anomalies of the kidney and urinary tract spectrum. Understanding the origins, molecular constituents and cellular targets of PCP provides insights into the involvement of PCP molecules in normal kidney development and how dysfunction of PCP components may lead to kidney disease.
Collapse
Affiliation(s)
- Elena Torban
- McGill University and McGill University Health Center Research Institute, 1001 Boulevard Decarie, Block E, Montreal, Quebec, Canada, H4A3J1.,Corresponding authors: Elena Torban (); Sergei Sokol ()
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, New York, 10029, USA,Corresponding authors: Elena Torban (); Sergei Sokol ()
| |
Collapse
|
12
|
Kong D, Großhans J. Planar Cell Polarity and E-Cadherin in Tissue-Scale Shape Changes in Drosophila Embryos. Front Cell Dev Biol 2020; 8:619958. [PMID: 33425927 PMCID: PMC7785826 DOI: 10.3389/fcell.2020.619958] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/07/2020] [Indexed: 12/04/2022] Open
Abstract
Planar cell polarity and anisotropic cell behavior play critical roles in large-scale epithelial morphogenesis, homeostasis, wound repair, and regeneration. Cell-Cell communication and mechano-transduction in the second to minute scale mediated by E-cadherin complexes play a central role in the coordination and self-organization of cellular activities, such as junction dynamics, cell shape changes, and cell rearrangement. Here we review the current understanding in the interplay of cell polarity and cell dynamics during body axis elongation and dorsal closure in Drosophila embryos with a focus on E-cadherin dynamics in linking cell and tissue polarization and tissue-scale shape changes.
Collapse
Affiliation(s)
- Deqing Kong
- Department of Biology, Philipps-University Marburg, Marburg, Germany
| | | |
Collapse
|
13
|
Abstract
Cell intercalation is a key topological transformation driving tissue morphogenesis, homeostasis and diseases such as cancer cell invasion. In recent years, much work has been undertaken to better elucidate the fundamental mechanisms controlling intercalation. Cells often use protrusions to propel themselves in between cell neighbours, resulting in topology changes. Nevertheless, in simple epithelial tissues, formed by a single layer of densely packed prism-shaped cells, topology change takes place in an astonishing fashion: cells exchange neighbours medio-laterally by conserving their apical-basal architecture and by maintaining an intact epithelial layer. Medio-lateral cell intercalation in simple epithelia is thus an exemplary case of both robustness and plasticity. Interestingly, in simple epithelia, cells use a combinatory set of mechanisms to ensure a topological transformation at the apical and basal sides. This article is part of the discussion meeting issue 'Contemporary morphogenesis'.
Collapse
Affiliation(s)
- Matteo Rauzi
- Université Côte d'Azur, CNRS, Inserm, iBV, Nice, France
| |
Collapse
|
14
|
Gheisari E, Aakhte M, Müller HAJ. Gastrulation in Drosophila melanogaster: Genetic control, cellular basis and biomechanics. Mech Dev 2020; 163:103629. [PMID: 32615151 DOI: 10.1016/j.mod.2020.103629] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/08/2020] [Accepted: 06/24/2020] [Indexed: 01/31/2023]
Abstract
Gastrulation is generally understood as the morphogenetic processes that result in the spatial organization of the blastomere into the three germ layers, ectoderm, mesoderm and endoderm. This review summarizes our current knowledge of the morphogenetic mechanisms in Drosophila gastrulation. In addition to the events that drive mesoderm invagination and germband elongation, we pay particular attention to other, less well-known mechanisms including midgut invagination, cephalic furrow formation, dorsal fold formation, and mesoderm layer formation. This review covers topics ranging from the identification and functional characterization of developmental and morphogenetic control genes to the analysis of the physical properties of cells and tissues and the control of cell and tissue mechanics of the morphogenetic movements in the gastrula.
Collapse
Affiliation(s)
- Elham Gheisari
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - Mostafa Aakhte
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany
| | - H-Arno J Müller
- Institute for Biology, Dept. Developmental Genetics, University of Kassel, Germany.
| |
Collapse
|
15
|
Gkogkou P, Peponi E, Ntaskagiannis D, Murray S, Demou A, Sainis I, Ioakeim E, Briasoulis E, Tsekeris P. E-Cadherin and Syndecan-1 Expression in Patients With Advanced Non-small Cell Lung Cancer Treated With Chemoradiotherapy. In Vivo 2020; 34:453-459. [PMID: 31882513 DOI: 10.21873/invivo.11795] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND/AIM The aim of the study was to investigate whether E-cadherin and syndecan-1 are molecular markers of advanced non-small cell lung cancer (NSCLC). PATIENTS AND METHODS The expression of E-cadherin and syndecan-1 (SDC1) was examined immunohistochemically on tissue specimens of 64 patients, with stage III disease at presentation. The obtained expression data were correlated with clinical parameters. RESULTS Negative expression of SDC1 was correlated with squamous histology (p=0.002). E-cadherin positive expression was significantly associated with increased 2-year overall survival (OS) rate (p=0.032). In the multivariate Cox analysis, performance status 0-1 was an independent predictor of OS (p=0.001) and disease-free survival (DFS) (p=0.001). E-cadherin expression was an independent predictor of OS (p=0.007) and DFS (p=0.029). CONCLUSION E-cadherin might be a prognostic factor for OS and DFS in advanced stage NSCLC patients. Further investigations are needed for the establishment of E-cadherin and syndecan-1 as molecular markers, affecting treatment response and survival.
Collapse
Affiliation(s)
- Pinelopi Gkogkou
- Department of Radiation Oncology, Norfolk and Norwich University Hospital, Norwich, U.K.
| | - Evangelia Peponi
- Department of Radiation Oncology, University Hospital of Ioannina, Ioannina, Greece
| | | | | | - Asimo Demou
- Department of Pathology,"Hatzikosta" Community Hospital, Ioannina, Greece
| | - Ioannis Sainis
- Interscience Molecular Laboratory, Cancer Biobank Center, University of Ioannina, University Campus, Ioannina, Greece
| | - Elli Ioakeim
- Department of Pathology,"Hatzikosta" Community Hospital, Ioannina, Greece
| | - Evangelos Briasoulis
- Hematology Department and Interscience Molecular Laboratory, Cancer Biobank Center, University of Ioannina, Ioannina, Greece
| | - Pericles Tsekeris
- Department of Radiation Oncology, University Hospital of Ioannina, Ioannina, Greece
| |
Collapse
|
16
|
Abstract
Convergent extension is a conserved mechanism for elongating tissues. In the Drosophila embryo, convergent extension is driven by planar polarized cell intercalation and is a paradigm for understanding the cellular, molecular, and biophysical mechanisms that establish tissue structure. Studies of convergent extension in Drosophila have provided key insights into the force-generating molecules that promote convergent extension in epithelial tissues, as well as the global systems of spatial information that systematically organize these cell behaviors. A general framework has emerged in which asymmetrically localized proteins involved in cytoskeletal tension and cell adhesion direct oriented cell movements, and spatial signals provided by the Toll, Tartan, and Teneurin receptor families break planar symmetry to establish and coordinate planar cell polarity throughout the tissue. In this chapter, we describe the cellular, molecular, and biophysical mechanisms that regulate cell intercalation in the Drosophila embryo, and discuss how research in this system has revealed conserved biological principles that control the organization of multicellular tissues and animal body plans.
Collapse
Affiliation(s)
- Adam C Paré
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, United States.
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, United States.
| |
Collapse
|
17
|
Dos-Santos Carvalho S, Moreau MM, Hien YE, Garcia M, Aubailly N, Henderson DJ, Studer V, Sans N, Thoumine O, Montcouquiol M. Vangl2 acts at the interface between actin and N-cadherin to modulate mammalian neuronal outgrowth. eLife 2020; 9:51822. [PMID: 31909712 PMCID: PMC6946565 DOI: 10.7554/elife.51822] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/16/2019] [Indexed: 12/13/2022] Open
Abstract
Dynamic mechanical interactions between adhesion complexes and the cytoskeleton are essential for axon outgrowth and guidance. Whether planar cell polarity (PCP) proteins, which regulate cytoskeleton dynamics and appear necessary for some axon guidance, also mediate interactions with membrane adhesion is still unclear. Here we show that Vangl2 controls growth cone velocity by regulating the internal retrograde actin flow in an N-cadherin-dependent fashion. Single molecule tracking experiments show that the loss of Vangl2 decreased fast-diffusing N-cadherin membrane molecules and increased confined N-cadherin trajectories. Using optically manipulated N-cadherin-coated microspheres, we correlated this behavior to a stronger mechanical coupling of N-cadherin with the actin cytoskeleton. Lastly, we show that the spatial distribution of Vangl2 within the growth cone is selectively affected by an N-cadherin-coated substrate. Altogether, our data show that Vangl2 acts as a negative regulator of axonal outgrowth by regulating the strength of the molecular clutch between N-cadherin and the actin cytoskeleton.
Collapse
Affiliation(s)
- Steve Dos-Santos Carvalho
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Maite M Moreau
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Yeri Esther Hien
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Mikael Garcia
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Aubailly
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Deborah J Henderson
- Biosciences Institute, Newcastle University, Centre for Life, Newcastle upon Tyne, United Kingdom
| | - Vincent Studer
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Nathalie Sans
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| | - Olivier Thoumine
- CNRS, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France.,Univ. Bordeaux, Interdisciplinary Institute for Neuroscience, UMR 5297, Bordeaux, France
| | - Mireille Montcouquiol
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France.,Univ. Bordeaux, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
18
|
Abstract
Drosophila melanogaster embryos develop initially as a syncytium of totipotent nuclei and subsequently, once cellularized, undergo morphogenetic movements associated with gastrulation to generate the three somatic germ layers of the embryo: mesoderm, ectoderm, and endoderm. In this chapter, we focus on the first phase of gastrulation in Drosophila involving patterning of early embryos when cells differentiate their gene expression programs. This patterning process requires coordination of multiple developmental processes including genome reprogramming at the maternal-to-zygotic transition, combinatorial action of transcription factors to support distinct gene expression, and dynamic feedback between this genetic patterning by transcription factors and changes in cell morphology. We discuss the gene regulatory programs acting during patterning to specify the three germ layers, which involve the regulation of spatiotemporal gene expression coupled to physical tissue morphogenesis.
Collapse
Affiliation(s)
- Angelike Stathopoulos
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States.
| | - Susan Newcomb
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| |
Collapse
|
19
|
Strutt H, Gamage J, Strutt D. Reciprocal action of Casein Kinase Iε on core planar polarity proteins regulates clustering and asymmetric localisation. eLife 2019; 8:45107. [PMID: 31090542 PMCID: PMC6542583 DOI: 10.7554/elife.45107] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 05/14/2019] [Indexed: 01/08/2023] Open
Abstract
The conserved core planar polarity pathway is essential for coordinating polarised cell behaviours and the formation of polarised structures such as cilia and hairs. Core planar polarity proteins localise asymmetrically to opposite cell ends and form intercellular complexes that link the polarity of neighbouring cells. This asymmetric segregation is regulated by phosphorylation through poorly understood mechanisms. We show that loss of phosphorylation of the core protein Strabismus in the Drosophila pupal wing increases its stability and promotes its clustering at intercellular junctions, and that Prickle negatively regulates Strabismus phosphorylation. Additionally, loss of phosphorylation of Dishevelled - which normally localises to opposite cell edges to Strabismus - reduces its stability at junctions. Moreover, both phosphorylation events are independently mediated by Casein Kinase Iε. We conclude that Casein Kinase Iε phosphorylation acts as a switch, promoting Strabismus mobility and Dishevelled immobility, thus enhancing sorting of these proteins to opposite cell edges.
Collapse
Affiliation(s)
- Helen Strutt
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Jessica Gamage
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
20
|
Pinheiro D, Bellaïche Y. Mechanical Force-Driven Adherens Junction Remodeling and Epithelial Dynamics. Dev Cell 2019; 47:3-19. [PMID: 30300588 DOI: 10.1016/j.devcel.2018.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/02/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022]
Abstract
During epithelial tissue development, repair, and homeostasis, adherens junctions (AJs) ensure intercellular adhesion and tissue integrity while allowing for cell and tissue dynamics. Mechanical forces play critical roles in AJs' composition and dynamics. Recent findings highlight that beyond a well-established role in reinforcing cell-cell adhesion, AJ mechanosensitivity promotes junctional remodeling and polarization, thereby regulating critical processes such as cell intercalation, division, and collective migration. Here, we provide an integrated view of mechanosensing mechanisms that regulate cell-cell contact composition, geometry, and integrity under tension and highlight pivotal roles for mechanosensitive AJ remodeling in preserving epithelial integrity and sustaining tissue dynamics.
Collapse
Affiliation(s)
- Diana Pinheiro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, 75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, 75005 Paris, France.
| |
Collapse
|
21
|
Nissen SB, Rønhild S, Trusina A, Sneppen K. Theoretical tool bridging cell polarities with development of robust morphologies. eLife 2018; 7:38407. [PMID: 30477635 PMCID: PMC6286147 DOI: 10.7554/elife.38407] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 11/13/2018] [Indexed: 12/11/2022] Open
Abstract
Despite continual renewal and damages, a multicellular organism is able to maintain its complex morphology. How is this stability compatible with the complexity and diversity of living forms? Looking for answers at protein level may be limiting as diverging protein sequences can result in similar morphologies. Inspired by the progressive role of apical-basal and planar cell polarity in development, we propose that stability, complexity, and diversity are emergent properties in populations of proliferating polarized cells. We support our hypothesis by a theoretical approach, developed to effectively capture both types of polar cell adhesions. When applied to specific cases of development – gastrulation and the origins of folds and tubes – our theoretical tool suggests experimentally testable predictions pointing to the strength of polar adhesion, restricted directions of cell polarities, and the rate of cell proliferation to be major determinants of morphological diversity and stability. Cells have the power to organise themselves to form complex and stable structures, whether it is to create a fully shaped baby from a single egg, or to allow adult salamanders to grow a new limb after losing a leg. This ability has been scrutinised at many different levels. For example, researchers have looked at the chemical messages exchanged by cells, or they have recorded the different shapes an embryo goes through during development. However, it is still difficult to reconcile the information from these approaches into a description that makes sense at multiple scales. When an embryo develops, sheets of cells fold and unfold to create complex 3D shapes, like the tubes that make our lungs. Moulding sheets into tubes relies on interactions between cells that are not the same in all directions. In fact, two types of asymmetry (or polarity) guide these interactions. Apical-basal polarity runs across a sheet of cells, which means that the top surface of the sheet differs from the bottom. Planar cell polarity runs along the sheet and distinguishes one end from the other. For instance, apical-basal polarity marks the inner and outer surfaces of our skin, while planar cell polarity controls the direction in which our hair grows. Nissen et al. set out to investigate how these polarities help cells in an embryo organise themselves to form complicated folds and tubes. To do this, simple mathematical representations of both apical-basal and planar cell polarities were designed. The representations were then combined to create computer simulations of groups of cells as these divide and interact with each other. Simulations of ‘cells’ with only apical-basal polarity were able to generate different shapes in the ‘tissues’ produced, including many found in living organisms. External conditions, such as how cells were arranged to start with, determined the resulting shape. With both apical-basal and planar cell polarities, the simulations reproduced an important change that occurs during early development. They also replicated how the tubes that transport nutrients and oxygen form. These results show that simple properties of individual cells, such as polarities, can produce different shapes in developing tissues and organs, without the need for a complicated overarching program. Abnormal changes in cell polarity are also associated with diseases such as cancer. The mathematical model developed by Nissen et al. could therefore be a useful tool to study these events.
Collapse
Affiliation(s)
- Silas Boye Nissen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Steven Rønhild
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Ala Trusina
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark.,StemPhys, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Kim Sneppen
- Center for Models of Life, Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Ressurreição M, Warrington S, Strutt D. Rapid Disruption of Dishevelled Activity Uncovers an Intercellular Role in Maintenance of Prickle in Core Planar Polarity Protein Complexes. Cell Rep 2018; 25:1415-1424.e6. [PMID: 30403998 PMCID: PMC6231328 DOI: 10.1016/j.celrep.2018.10.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/17/2018] [Accepted: 10/09/2018] [Indexed: 12/24/2022] Open
Abstract
Planar polarity, the coordinated polarization of cells in the plane of a tissue, is important for normal tissue development and function. Proteins of the core planar polarity pathway become asymmetrically localized at the junctions between cells to form intercellular complexes that coordinate planar polarity between cell neighbors. Here, we combine tools to rapidly disrupt the activity of the core planar polarity protein Dishevelled, with quantitative measurements of protein dynamics and levels, and mosaic analysis, to investigate Dishevelled function in maintenance of planar polarity. We provide mechanistic insight into the hierarchical relationship of Dishevelled with other members of the core planar polarity complex. Notably, we show that removal of Dishevelled in one cell causes rapid release of Prickle into the cytoplasm in the neighboring cell. This release of Prickle generates a self-propagating wave of planar polarity complex destabilization across the tissue. Thus, Dishevelled actively maintains complex integrity across intercellular junctions. Inducible genetic tools can efficiently disrupt Dishevelled activity in vivo Dishevelled activity continuously promotes core planar polarity complex stability Prickle is maintained in intercellular complexes cell non-autonomously by Dishevelled Unbound Prickle results in intercellular propagation of complex destabilization
Collapse
Affiliation(s)
- Margarida Ressurreição
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Samantha Warrington
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - David Strutt
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
23
|
Development and Function of the Drosophila Tracheal System. Genetics 2018; 209:367-380. [PMID: 29844090 DOI: 10.1534/genetics.117.300167] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
The tracheal system of insects is a network of epithelial tubules that functions as a respiratory organ to supply oxygen to various target organs. Target-derived signaling inputs regulate stereotyped modes of cell specification, branching morphogenesis, and collective cell migration in the embryonic stage. In the postembryonic stages, the same set of signaling pathways controls highly plastic regulation of size increase and pattern elaboration during larval stages, and cell proliferation and reprograming during metamorphosis. Tracheal tube morphogenesis is also regulated by physicochemical interaction of the cell and apical extracellular matrix to regulate optimal geometry suitable for air flow. The trachea system senses both the external oxygen level and the metabolic activity of internal organs, and helps organismal adaptation to changes in environmental oxygen level. Cellular and molecular mechanisms underlying the high plasticity of tracheal development and physiology uncovered through research on Drosophila are discussed.
Collapse
|
24
|
Urbano JM, Naylor HW, Scarpa E, Muresan L, Sanson B. Suppression of epithelial folding at actomyosin-enriched compartment boundaries downstream of Wingless signalling in Drosophila. Development 2018; 145:dev155325. [PMID: 29691225 PMCID: PMC5964650 DOI: 10.1242/dev.155325] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
Epithelial folding shapes embryos and tissues during development. Here, we investigate the coupling between epithelial folding and actomyosin-enriched compartmental boundaries. The mechanistic relationship between the two is unclear, because actomyosin-enriched boundaries are not necessarily associated with folds. Also, some cases of epithelial folding occur independently of actomyosin contractility. We investigated the shallow folds called parasegment grooves that form at boundaries between anterior and posterior compartments in the early Drosophila embryo. We demonstrate that formation of these folds requires the presence of an actomyosin enrichment along the boundary cell-cell contacts. These enrichments, which require Wingless signalling, increase interfacial tension not only at the level of the adherens junctions but also along the lateral surfaces. We find that epithelial folding is normally under inhibitory control because different genetic manipulations, including depletion of the Myosin II phosphatase Flapwing, increase the depth of folds at boundaries. Fold depth correlates with the levels of Bazooka (Baz), the Par-3 homologue, along the boundary cell-cell contacts. Moreover, Wingless and Hedgehog signalling have opposite effects on fold depth at the boundary that correlate with changes in Baz planar polarity.
Collapse
Affiliation(s)
- Jose M Urbano
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Huw W Naylor
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Elena Scarpa
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Leila Muresan
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
- Cambridge Advanced Imaging Centre, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Anatomy Building, Downing Street, Cambridge, CB2 3DY, UK
| |
Collapse
|
25
|
Brunt L, Scholpp S. The function of endocytosis in Wnt signaling. Cell Mol Life Sci 2018; 75:785-795. [PMID: 28913633 PMCID: PMC5809524 DOI: 10.1007/s00018-017-2654-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 10/31/2022]
Abstract
Wnt growth factors regulate one of the most important signaling networks during development, tissue homeostasis and disease. Despite the biological importance of Wnt signaling, the mechanism of endocytosis during this process is ill described. Wnt molecules can act as paracrine signals, which are secreted from the producing cells and transported through neighboring tissue to activate signaling in target cells. Endocytosis of the ligand is important at several stages of action: One central function of endocytic trafficking in the Wnt pathway occurs in the source cell. Furthermore, the β-catenin-dependent Wnt ligands require endocytosis for signal activation and to regulate gene transcription in the responding cells. Alternatively, Wnt/β-catenin-independent signaling regulates endocytosis of cell adherence plaques to control cell migration. In this comparative review, we elucidate these three fundamental interconnected functions, which together regulate cellular fate and cellular behavior. Based on established hypotheses and recent findings, we develop a revised picture for the complex function of endocytosis in the Wnt signaling network.
Collapse
Affiliation(s)
- Lucy Brunt
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK
| | - Steffen Scholpp
- Living Systems Institute, School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, EX4 4QD, UK.
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany.
| |
Collapse
|
26
|
Wang M, Chen DQ, Chen L, Liu D, Zhao H, Zhang ZH, Vaziri ND, Guo Y, Zhao YY, Cao G. Novel RAS Inhibitors Poricoic Acid ZG and Poricoic Acid ZH Attenuate Renal Fibrosis via a Wnt/β-Catenin Pathway and Targeted Phosphorylation of smad3 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:1828-1842. [PMID: 29383936 DOI: 10.1021/acs.jafc.8b00099] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Renal fibrosis is a common end point of the progression of chronic kidney disease (CKD). Suppressing the development and progression of renal fibrosis is essential in the treatment of kidney disease. Our previous study demonstrated that the ethyl acetate extract of the surface layer of Poria cocos exhibited beneficial antitubulointerstitial fibrosis. In this study, we isolated new diterpene (PZF) and triterpenes (PZG and PZH) and examined their antifibrotic effect. TGF-β1 upregulated the collagen I protein expression in HK-2 cells, and PZG and PZH treatment significantly inhibited the upregulated collagen I expression (TGF group 0.59 ± 0.08 vs TGF+PZG group 0.36 ± 0.08, P < 0.01; TGF+PZH group 0.39 ± 0.12, P < 0.01). Triterpenes, PZG and PZH, exhibited a stronger inhibitory effect on renal fibrosis and podocyte injury than PZF. PZG and PZH further showed a stronger inhibitory effect on the activation of the renin-angiotensin system (RAS) than PZF. Additionally, PZG and PZH markedly inhibited the activation of Wnt/β-catenin signaling, which played an important role in fibrogenesis. Interestingly, PZG and PZH suppressed the TGF-β/Smad pathway by selectively inhibiting the phosphorylation of Smad3 through blocking the interactions of SARA with TGFβI and Smad3. The analysis of the structure-activity relationship demonstrated that their antifibrotic effects were closely associated with the first six-membered ring structure and the number of carboxyl groups in this type of compounds. Additionally, fifteen known triterpenes were identified. These novel tetracyclic triterpenoid compounds provided the potential lead compounds for the research and development of antifibrosis drug, and they possessed the potential to be utilized as RAS inhibitors.
Collapse
Affiliation(s)
- Ming Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan-Qian Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Lin Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Dan Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Hui Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Zhi-Hao Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
| | - Nosratola D Vaziri
- Division of Nephrology and Hypertension, School of Medicine, University of California-Irvine , Irvine, California 92897, United States
| | - Yan Guo
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Life Science, Northwest University , No. 229 Taibai North Road, Xi'an, Shaanxi 710069, China
- Department of Internal Medicine, University of New Mexico , Comprehensive Cancer Center, Albuquerque, New Mexico 87131, United States
| | | | - Gang Cao
- School of Pharmacy, Zhejiang Chinese Medical University , No. 548 Binwen Road, Hangzhou, Zhejiang 310053, China
| |
Collapse
|
27
|
Li Y, Li A, Junge J, Bronner M. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage. eLife 2017; 6. [PMID: 28994649 PMCID: PMC5634781 DOI: 10.7554/elife.23279] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.
Collapse
Affiliation(s)
- Yuwei Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ang Li
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, United States
| | - Jason Junge
- Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
28
|
Integrating planar polarity and tissue mechanics in computational models of epithelial morphogenesis. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.coisb.2017.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
29
|
Shindo A. Models of convergent extension during morphogenesis. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2017; 7. [PMID: 28906063 PMCID: PMC5763355 DOI: 10.1002/wdev.293] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 07/23/2017] [Accepted: 08/06/2017] [Indexed: 11/29/2022]
Abstract
Convergent extension (CE) is a fundamental and conserved collective cell movement that forms elongated tissues during embryonic development. Thus far, studies have demonstrated two different mechanistic models of collective cell movements during CE. The first, termed the crawling mode, was discovered in the process of notochord formation in Xenopus laevis embryos, and has been the established model of CE for decades. The second model, known as the contraction mode, was originally reported in studies of germband extension in Drosophila melanogaster embryos and was recently demonstrated to be a conserved mechanism of CE among tissues and stages of development across species. This review summarizes the two modes of CE by focusing on the differences in cytoskeletal behaviors and relative expression of cell adhesion molecules. The upstream molecules regulating these machineries are also discussed. There are abundant studies of notochord formation in X. laevis embryos, as this was one of the pioneering model systems in this field. Therefore, the present review discusses these findings as an approach to the fundamental biological question of collective cell regulation. WIREs Dev Biol 2018, 7:e293. doi: 10.1002/wdev.293 This article is categorized under:
Early Embryonic Development > Gastrulation and Neurulation Comparative Development and Evolution > Model Systems
Collapse
Affiliation(s)
- Asako Shindo
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho Chikusa-ku, Nagoya, Japan
| |
Collapse
|
30
|
Jülicher F, Eaton S. Emergence of tissue shape changes from collective cell behaviours. Semin Cell Dev Biol 2017; 67:103-112. [DOI: 10.1016/j.semcdb.2017.04.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Revised: 12/09/2016] [Accepted: 04/24/2017] [Indexed: 10/19/2022]
|
31
|
Farrell DL, Weitz O, Magnasco MO, Zallen JA. SEGGA: a toolset for rapid automated analysis of epithelial cell polarity and dynamics. Development 2017; 144:1725-1734. [PMID: 28465336 PMCID: PMC5450846 DOI: 10.1242/dev.146837] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/07/2017] [Indexed: 01/08/2023]
Abstract
Epithelial remodeling determines the structure of many organs in the body through changes in cell shape, polarity and behavior and is a major area of study in developmental biology. Accurate and high-throughput methods are necessary to systematically analyze epithelial organization and dynamics at single-cell resolution. We developed SEGGA, an easy-to-use software for automated image segmentation, cell tracking and quantitative analysis of cell shape, polarity and behavior in epithelial tissues. SEGGA is free, open source, and provides a full suite of tools that allow users with no prior computational expertise to independently perform all steps of automated image segmentation, semi-automated user-guided error correction, and data analysis. Here we use SEGGA to analyze changes in cell shape, cell interactions and planar polarity during convergent extension in the Drosophila embryo. These studies demonstrate that planar polarity is rapidly established in a spatiotemporally regulated pattern that is dynamically remodeled in response to changes in cell orientation. These findings reveal an unexpected plasticity that maintains coordinated planar polarity in actively moving populations through the continual realignment of cell polarity with the tissue axes.
Collapse
Affiliation(s)
- Dene L Farrell
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Ori Weitz
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| | - Marcelo O Magnasco
- Center for Studies in Physics and Biology, The Rockefeller University, New York, NY 10065, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY 10065, USA
| |
Collapse
|
32
|
Brüser L, Bogdan S. Adherens Junctions on the Move-Membrane Trafficking of E-Cadherin. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a029140. [PMID: 28096264 DOI: 10.1101/cshperspect.a029140] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cadherin-based adherens junctions are conserved structures that mediate epithelial cell-cell adhesion in invertebrates and vertebrates. Despite their pivotal function in epithelial integrity, adherens junctions show a remarkable plasticity that is a prerequisite for tissue architecture and morphogenesis. Epithelial cadherin (E-cadherin) is continuously turned over and undergoes cycles of endocytosis, sorting and recycling back to the plasma membrane. Mammalian cell culture and genetically tractable model systems such as Drosophila have revealed conserved, but also distinct, mechanisms in the regulation of E-cadherin membrane trafficking. Here, we discuss our current knowledge about molecules and mechanisms controlling endocytosis, sorting and recycling of E-cadherin during junctional remodeling.
Collapse
Affiliation(s)
- Lena Brüser
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany
| | - Sven Bogdan
- Institut für Neurobiologie, Universität Münster, Badestraße 9, 48149 Münster, Germany.,Institut für Physiologie und Pathophysiologie, Abteilung Molekulare Zellphysiologie, Phillips-Universität Marburg, Emil-Mannkopff-Straße 2, 35037 Marburg, Germany
| |
Collapse
|
33
|
Kong D, Wolf F, Großhans J. Forces directing germ-band extension in Drosophila embryos. Mech Dev 2016; 144:11-22. [PMID: 28013027 DOI: 10.1016/j.mod.2016.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/06/2023]
Abstract
Body axis elongation by convergent extension is a conserved developmental process found in all metazoans. Drosophila embryonic germ-band extension is an important morphogenetic process during embryogenesis, by which the length of the germ-band is more than doubled along the anterior-posterior axis. This lengthening is achieved by typical convergent extension, i.e. narrowing the lateral epidermis along the dorsal-ventral axis and simultaneous extension along the anterior-posterior axis. Germ-band extension is largely driven by cell intercalation, whose directionality is determined by the planar polarity of the tissue and ultimately by the anterior-posterior patterning system. In addition, extrinsic tensile forces originating from the invaginating endoderm induce cell shape changes, which transiently contribute to germ-band extension. Here, we review recent progress in understanding of the role of mechanical forces in germ-band extension.
Collapse
Affiliation(s)
- Deqing Kong
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany
| | - Fred Wolf
- Department of Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organisation, Faculty of Physics, Bernstein Center for Computational Neuroscience, University of Göttingen, Am Faßberg 17, 37077 Göttingen, Germany
| | - Jörg Großhans
- Institute for Developmental Biochemistry, Medical School, University of Göttingen, Justus-von-Liebig Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
34
|
Fuentealba J, Toro-Tapia G, Rodriguez M, Arriagada C, Maureira A, Beyer A, Villaseca S, Leal JI, Hinrichs MV, Olate J, Caprile T, Torrejón M. Expression profiles of the Gα subunits during Xenopus tropicalis embryonic development. Gene Expr Patterns 2016; 22:15-25. [PMID: 27613600 DOI: 10.1016/j.gep.2016.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/31/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
Heterotrimeric G protein signaling plays major roles during different cellular events. However, there is a limited understanding of the molecular mechanisms underlying G protein control during embryogenesis. G proteins are highly conserved and can be grouped into four subfamilies according to sequence homology and function. To further studies on G protein function during embryogenesis, the present analysis identified four Gα subunits representative of the different subfamilies and determined their spatiotemporal expression patterns during Xenopus tropicalis embryogenesis. Each of the Gα subunit transcripts was maternally and zygotically expressed, and, as development progressed, dynamic expression patterns were observed. In the early developmental stages, the Gα subunits were expressed in the animal hemisphere and dorsal marginal zone. While expression was observed at the somite boundaries, in vascular structures, in the eye, and in the otic vesicle during the later stages, expression was mainly found in neural tissues, such as the neural tube and, especially, in the cephalic vesicles, neural crest region, and neural crest-derived structures. Together, these results support the pleiotropism and complexity of G protein subfamily functions in different cellular events. The present study constitutes the most comprehensive description to date of the spatiotemporal expression patterns of Gα subunits during vertebrate development.
Collapse
Affiliation(s)
- Jaime Fuentealba
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Gabriela Toro-Tapia
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Marion Rodriguez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Cecilia Arriagada
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Alejandro Maureira
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Andrea Beyer
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Soraya Villaseca
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Juan I Leal
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Maria V Hinrichs
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Juan Olate
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Teresa Caprile
- Departamento de Biología Celular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Marcela Torrejón
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
| |
Collapse
|
35
|
Liu M, Li Y, Liu A, Li R, Su Y, Du J, Li C, Zhu AJ. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development. eLife 2016; 5. [PMID: 27536874 PMCID: PMC5008907 DOI: 10.7554/elife.17200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/14/2016] [Indexed: 12/22/2022] Open
Abstract
Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. DOI:http://dx.doi.org/10.7554/eLife.17200.001 Animal development involves different signaling pathways that coordinate complex behaviors of the cells, such as changes in cell number or cell shape. One such pathway involves a protein called Wingless/Wnt, which controls cell fate and growth and is also involved in tumor formation in humans. In recent decades, scientists have made a lot of progress in understanding how this signaling pathway operates. However, it is not well understood how the Wingless/Wnt signaling pathway interacts with other regulatory networks during development. Now, Liu, Li et al. unveil a new regulatory network that controls the Wingless/Wnt pathway in fruit flies and in mammalian cells grown in the laboratory. The experiments show that an RNA binding protein family named the Exon Junction Complex positively regulates a protein called Dishevelled, which serves as a hub in the Wingless/Wnt pathway. The Exon Junction Complex keeps the amount of Dishevelled protein in check via an interaction with another protein referred to as Discs large. Further experiments indicated that Discs large binds to and protects Dishevelled from being degraded inside the cell. Liu et al.'s findings highlight a new control mechanism for the Wingless/Wnt signaling pathway. In the future, the findings may also aid the development of new approaches to prevent or treat birth defects and cancer. DOI:http://dx.doi.org/10.7554/eLife.17200.002
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China
| | - Yajuan Li
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Aiguo Liu
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China
| | - Ruifeng Li
- School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China.,Center for Bioinformatics, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| | - Ying Su
- School of Life Sciences, Peking University, Beijing, China
| | - Juan Du
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China.,Center for Bioinformatics, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| | - Alan Jian Zhu
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China
| |
Collapse
|
36
|
West JJ, Harris TJC. Cadherin Trafficking for Tissue Morphogenesis: Control and Consequences. Traffic 2016; 17:1233-1243. [DOI: 10.1111/tra.12407] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 04/20/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022]
Affiliation(s)
- Junior J. West
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
37
|
Davey CF, Mathewson AW, Moens CB. PCP Signaling between Migrating Neurons and their Planar-Polarized Neuroepithelial Environment Controls Filopodial Dynamics and Directional Migration. PLoS Genet 2016; 12:e1005934. [PMID: 26990447 PMCID: PMC4798406 DOI: 10.1371/journal.pgen.1005934] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 02/24/2016] [Indexed: 11/18/2022] Open
Abstract
The planar cell polarity (PCP) pathway is a cell-contact mediated mechanism for transmitting polarity information between neighboring cells. PCP “core components” (Vangl, Fz, Pk, Dsh, and Celsr) are essential for a number of cell migratory events including the posterior migration of facial branchiomotor neurons (FBMNs) in the plane of the hindbrain neuroepithelium in zebrafish and mice. While the mechanism by which PCP signaling polarizes static epithelial cells is well understood, how PCP signaling controls highly dynamic processes like neuronal migration remains an important outstanding question given that PCP components have been implicated in a range of directed cell movements, particularly during vertebrate development. Here, by systematically disrupting PCP signaling in a rhombomere-restricted manner we show that PCP signaling is required both within FBMNs and the hindbrain rhombomere 4 environment at the time when they initiate their migration. Correspondingly, we demonstrate planar polarized localization of PCP core components Vangl2 and Fzd3a in the hindbrain neuroepithelium, and transient localization of Vangl2 at the tips of retracting FBMN filopodia. Using high-resolution timelapse imaging of FBMNs in genetic chimeras we uncover opposing cell-autonomous and non-cell-autonomous functions for Fzd3a and Vangl2 in regulating FBMN protrusive activity. Within FBMNs, Fzd3a is required to stabilize filopodia while Vangl2 has an antagonistic, destabilizing role. However, in the migratory environment Fzd3a acts to destabilize FBMN filopodia while Vangl2 has a stabilizing role. Together, our findings suggest a model in which PCP signaling between the planar polarized neuroepithelial environment and FBMNs directs migration by the selective stabilization of FBMN filopodia. Planar cell polarity (PCP) is a common feature of many animal tissues. This type of polarity is most obvious in cells that are organized into epithelial sheets, where PCP signaling components act to orient cells in the plane of the tissue. Although, PCP is best understood for its function in polarizing stable epithelia, PCP is also required for the dynamic process of cell migration in animal development and disease. The goal of this study was to determine how PCP functions to control cell migration. We used the migration of facial branchiomotor neurons in the zebrafish hindbrain, which requires almost the entire suite of PCP core components, to address this question. We present evidence that PCP signaling within migrating neurons, and between migrating neurons and cells of their migratory environment promote migration by regulating filopodial dynamics. Our results suggest that broadly conserved interactions between PCP components control the cytoskeleton in motile cells and non-motile epithelia alike.
Collapse
Affiliation(s)
- Crystal F. Davey
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
| | - Andrew W. Mathewson
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
| | - Cecilia B. Moens
- Division of Basic Science, Fred Hutchinson Cancer Research Center, and University of Washington Molecular and Cellular Biology Graduate Program, Seattle, Washington, United States of America
- * E-mail:
| |
Collapse
|
38
|
Wyatt T, Baum B, Charras G. A question of time: tissue adaptation to mechanical forces. Curr Opin Cell Biol 2016; 38:68-73. [PMID: 26945098 DOI: 10.1016/j.ceb.2016.02.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 10/22/2022]
Abstract
While much attention has been focused on the force-generating mechanisms responsible for shaping developing embryos, less is known about the ways in which cells in animal tissues respond to mechanical stimuli. Forces will arise within a tissue as the result of processes such as local cell death, growth and division, but they can also be an indirect consequence of morphogenetic movements in neighbouring tissues or be imposed from the outside, for example, by gravity. If not dealt with, the accumulation of stress and the resulting tissue deformation can pose a threat to tissue integrity and structure. Here we follow the time-course of events by which cells and tissues return to their preferred state following a mechanical perturbation. In doing so, we discuss the spectrum of biological and physical mechanisms known to underlie mechanical homeostasis in animal tissues.
Collapse
Affiliation(s)
- Tom Wyatt
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK; Centre for Mathematics, Physics and Engineering in the Life Sciences and Experimental Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK
| | - Buzz Baum
- MRC Laboratory for Molecular Cell Biology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK.
| | - Guillaume Charras
- London Centre for Nanotechnology, University College London, Gower Street, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, Gower Street, London WC1E 6BT, UK; Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
39
|
Ossipova O, Chu CW, Fillatre J, Brott BK, Itoh K, Sokol SY. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev Biol 2015; 408:316-27. [PMID: 26079437 PMCID: PMC4810801 DOI: 10.1016/j.ydbio.2015.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
Abstract
The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic syndromes characterized by abnormal migratory cell behaviors.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Fillatre
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara K Brott
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
40
|
Transient junction anisotropies orient annular cell polarization in the Drosophila airway tubes. Nat Cell Biol 2015; 17:1569-76. [DOI: 10.1038/ncb3267] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 10/06/2015] [Indexed: 12/20/2022]
|
41
|
Lye CM, Blanchard GB, Naylor HW, Muresan L, Huisken J, Adams RJ, Sanson B. Mechanical Coupling between Endoderm Invagination and Axis Extension in Drosophila. PLoS Biol 2015; 13:e1002292. [PMID: 26544693 PMCID: PMC4636290 DOI: 10.1371/journal.pbio.1002292] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 10/02/2015] [Indexed: 11/25/2022] Open
Abstract
How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE) as a model. We found previously that cells elongate in the anteroposterior (AP) axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical interactions between tissues during morphogenesis.
Collapse
Affiliation(s)
- Claire M. Lye
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Guy B. Blanchard
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Huw W. Naylor
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Leila Muresan
- Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge, United Kingdom
| | - Jan Huisken
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Richard J. Adams
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Bénédicte Sanson
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
42
|
Chien YH, Keller R, Kintner C, Shook DR. Mechanical strain determines the axis of planar polarity in ciliated epithelia. Curr Biol 2015; 25:2774-2784. [PMID: 26441348 DOI: 10.1016/j.cub.2015.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/27/2015] [Accepted: 09/02/2015] [Indexed: 10/23/2022]
Abstract
Epithelia containing multiciliated cells align beating cilia along a common planar axis specified by the conserved planar cell polarity (PCP) pathway. Specification of the planar axis is also thought to require a long-range cue to align the axis globally, but the nature of this cue in ciliated and other epithelia remains poorly understood. We examined this issue using the Xenopus larval skin, where ciliary flow aligns to the anterior-posterior (A-P) axis. We first show that a planar axis initially arises in the developing skin during gastrulation, based on the appearance of polarized apical microtubules and cell junctions with increased levels of stable PCP components. This axis also arises in severely ventralized embryos, despite their deficient embryonic patterning. Because ventralized embryos still gastrulate, producing a mechanical force that strains the developing skin along the A-P axis, we asked whether this strain alone drives global planar patterning. Isolated skin explanted before gastrulation lacks strain and fails to acquire a global planar axis but responds to exogenous strain by undergoing cell elongation, forming polarized apical microtubules, and aligning stable components of the PCP pathway orthogonal to the axis of strain. The planar axis in embryos can be redirected by applying exogenous strain during a critical period around gastrulation. Finally, we provide evidence that apical microtubules and the PCP pathway interact to align the planar axis. These results indicate that oriented tissue strain generated by the gastrulating mesoderm plays a major role in determining the global axis of planar polarity of the developing skin.
Collapse
Affiliation(s)
- Yuan-Hung Chien
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Ray Keller
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| | - Chris Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
| | - David R Shook
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA
| |
Collapse
|
43
|
Walck-Shannon E, Reiner D, Hardin J. Polarized Rac-dependent protrusions drive epithelial intercalation in the embryonic epidermis of C. elegans. Development 2015; 142:3549-60. [PMID: 26395474 DOI: 10.1242/dev.127597] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 08/26/2015] [Indexed: 12/24/2022]
Abstract
Cell intercalation is a fundamental, coordinated cell rearrangement process that shapes tissues throughout animal development. Studies of intercalation within epithelia have focused almost exclusively on the localized constriction of specific apical junctions. Another widely deployed yet poorly understood alternative mechanism of epithelial intercalation relies on basolateral protrusive activity. Using the dorsal embryonic epidermis of Caenorhabditis elegans, we have investigated this alternative mechanism using high-resolution live cell microscopy and genetic analysis. We find that as dorsal epidermal cells migrate past one another they produce F-actin-rich protrusions polarized at their extending (medial) edges. These protrusions are controlled by the C. elegans Rac and RhoG orthologs CED-10 and MIG-2, which function redundantly to polarize actin polymerization upstream of the WAVE complex and WASP, respectively. We also identify UNC-73, the C. elegans ortholog of Trio, as a guanine nucleotide exchange factor (GEF) upstream of both CED-10 and MIG-2. Further, we identify a novel polarizing cue, CRML-1, which is the ortholog of human capping Arp2/3 myosin I linker (CARMIL), that localizes to the nonprotrusive lateral edges of dorsal cells. CRML-1 genetically suppresses UNC-73 function and, indirectly, actin polymerization. This network identifies a novel, molecularly conserved cassette that regulates epithelial intercalation via basolateral protrusive activity.
Collapse
Affiliation(s)
- Elise Walck-Shannon
- Graduate Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
| | - David Reiner
- Department of Pharmacology and Lineberger Comprehensive Cancer Center, University of North Carolina, 101 Manning Drive, Chapel Hill, NC 27514, USA Center for Translational Cancer Research, Institute of Biosciences and Technology and Department of Medical Physiology, Texas A&M Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030, USA
| | - Jeff Hardin
- Graduate Program in Genetics, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA Department of Zoology, University of Wisconsin-Madison, 1117 W. Johnson Street, Madison, WI 53706, USA
| |
Collapse
|
44
|
Hanlon CD, Andrew DJ. Outside-in signaling--a brief review of GPCR signaling with a focus on the Drosophila GPCR family. J Cell Sci 2015; 128:3533-42. [PMID: 26345366 DOI: 10.1242/jcs.175158] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
G-protein-coupled receptors (GPCRs) are the largest family of receptors in many organisms, including worms, mice and humans. GPCRs are seven-transmembrane pass proteins that are activated by binding a stimulus (or ligand) in the extracellular space and then transduce that information to the inside of the cell through conformational changes. The conformational changes activate heterotrimeric G-proteins, which execute the downstream signaling pathways through the recruitment and activation of cellular enzymes. The highly specific ligand-GPCR interaction prompts an efficient cellular response, which is vital for the health of the cell and organism. In this Commentary, we review general features of GPCR signaling and then focus on the Drosophila GPCRs, which are not as well-characterized as their worm and mammalian counterparts. We discuss findings that the Drosophila odorant and gustatory receptors are not bona fide GPCRs as is the case for their mammalian counterparts. We also present here a phylogenetic analysis of the bona fide Drosophila GPCRs that suggest potential roles for several family members. Finally, we discuss recently discovered roles of GPCRs in Drosophila embryogenesis, a field we expect will uncover many previously unappreciated functions for GPCRs.
Collapse
Affiliation(s)
- Caitlin D Hanlon
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2196, USA
| | - Deborah J Andrew
- Department of Cell Biology, The Johns Hopkins University School of Medicine, 725 N. Wolfe St., Baltimore, MD 21205-2196, USA
| |
Collapse
|
45
|
Thelen S, Abouhamed M, Ciarimboli G, Edemir B, Bähler M. Rho GAP myosin IXa is a regulator of kidney tubule function. Am J Physiol Renal Physiol 2015; 309:F501-13. [PMID: 26136556 DOI: 10.1152/ajprenal.00220.2014] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 06/29/2015] [Indexed: 11/22/2022] Open
Abstract
Mammalian class IX myosin Myo9a is a single-headed, actin-dependent motor protein with Rho GTPase-activating protein activity that negatively regulates Rho GTPase signaling. Myo9a is abundantly expressed in ciliated epithelial cells of several organs. In mice, genetic deletion of Myo9a leads to the formation of hydrocephalus. Whether Myo9a also has essential functions in the epithelia of other organs of the body has not been explored. In the present study, we report that Myo9a-deficient mice develop bilateral renal disease, characterized by dilation of proximal tubules, calyceal dilation, and thinning of the parenchyma and fibrosis. These structural changes are accompanied by polyuria (with normal vasopressin levels) and low-molecular-weight proteinuria. Immunohistochemistry revealed that Myo9a is localized to the circumferential F-actin belt of proximal tubule cells. In kidneys lacking Myo9a, the multiligand binding receptor megalin and its ligand albumin accumulated at the luminal surface of Myo9a-deficient proximal tubular cells, suggesting that endocytosis is dysregulated. In addition, we found, surprisingly, that levels of murine diaphanous-related formin-1, a Rho effector, were decreased in Myo9a-deficient kidneys as well as in Myo9a knockdown LLC-PK1 cells. In summary, deletion of the Rho GTPase-activating protein Myo9a in mice causes proximal tubular dilation and fibrosis, and we speculate that downregulation of murine diaphanous-related formin-1 and impaired protein reabsorption contribute to the pathophysiology.
Collapse
Affiliation(s)
- Sabine Thelen
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| | - Marouan Abouhamed
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| | - Giuliano Ciarimboli
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Bayram Edemir
- Experimental Nephrology, Department of Internal Medicine D, University Hospital Münster, Münster, Germany
| | - Martin Bähler
- Institute of Molecular Cell Biology, Westfalian Wilhelms University, Münster, Germany; and
| |
Collapse
|
46
|
Etournay R, Popović M, Merkel M, Nandi A, Blasse C, Aigouy B, Brandl H, Myers G, Salbreux G, Jülicher F, Eaton S. Interplay of cell dynamics and epithelial tension during morphogenesis of the Drosophila pupal wing. eLife 2015; 4:e07090. [PMID: 26102528 PMCID: PMC4574473 DOI: 10.7554/elife.07090] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 06/18/2015] [Indexed: 11/21/2022] Open
Abstract
How tissue shape emerges from the collective mechanical properties and behavior of individual cells is not understood. We combine experiment and theory to study this problem in the developing wing epithelium of Drosophila. At pupal stages, the wing-hinge contraction contributes to anisotropic tissue flows that reshape the wing blade. Here, we quantitatively account for this wing-blade shape change on the basis of cell divisions, cell rearrangements and cell shape changes. We show that cells both generate and respond to epithelial stresses during this process, and that the nature of this interplay specifies the pattern of junctional network remodeling that changes wing shape. We show that patterned constraints exerted on the tissue by the extracellular matrix are key to force the tissue into the right shape. We present a continuum mechanical model that quantitatively describes the relationship between epithelial stresses and cell dynamics, and how their interplay reshapes the wing.
Collapse
Affiliation(s)
- Raphaël Etournay
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Matthias Merkel
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Amitabha Nandi
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Corinna Blasse
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Benoît Aigouy
- Institut de Biologie du Développement de Marseille, Marseille, France
| | - Holger Brandl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Gene Myers
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Guillaume Salbreux
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
- Lincoln's Inn Fields Laboratories, The Francis Crick Institute, London, United Kingdom
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
47
|
Myosin-II-mediated cell shape changes and cell intercalation contribute to primitive streak formation. Nat Cell Biol 2015; 17:397-408. [PMID: 25812521 PMCID: PMC4886837 DOI: 10.1038/ncb3138] [Citation(s) in RCA: 139] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 02/16/2015] [Indexed: 12/14/2022]
Abstract
Primitive streak formation in the chick embryo involves large scale highly coordinated flows of over 100.000 cells in the epiblast. These large scale tissue flows and deformations can be correlated with specific anisotropic cell behaviours in the forming mesendoderm through a combined light-sheet microscopy and computational analysis. Relevant behaviours include apical contraction, elongation along the apical-basal axis followed by ingression as well as asynchronous directional cell intercalation of small groups of mesendoderm cells. Cell intercalation is associated with sequential, directional contraction of apical junctions, the onset, localisation and direction of which correlate strongly with the appearance of active Myosin II cables in aligned apical junctions in neighbouring cells. Use of a class specific Myosin inhibitors and gene specific knockdowns show that apical contraction and intercalation are Myosin II dependent and also reveal critical roles for Myosin I and Myosin V family members in the assembly of junctional Myosin II cables.
Collapse
|
48
|
The Control of Growth Symmetry Breaking in the Arabidopsis Hypocotyl. Curr Biol 2015; 25:1746-52. [PMID: 26073136 DOI: 10.1016/j.cub.2015.05.022] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 04/07/2015] [Accepted: 05/12/2015] [Indexed: 11/22/2022]
Abstract
Complex shapes in biology depend on the ability of cells to shift from isotropic to anisotropic growth during development. In plants, this growth symmetry breaking reflects changes in the extensibility of the cell walls. The textbook view is that the direction of turgor-driven cell expansion depends on the cortical microtubule (CMT)-mediated orientation of cellulose microfibrils. Here, we show that this view is incomplete at best. We used atomic force microscopy (AFM) to study changes in cell-wall mechanics associated with growth symmetry breaking within the hypocotyl epidermis. We show that, first, growth symmetry breaking is preceded by an asymmetric loosening of longitudinal, as compared to transverse, anticlinal walls, in the absence of a change in CMT orientation. Second, this wall loosening is triggered by the selective de-methylesterification of cell-wall pectin in longitudinal walls, and, third, the resultant mechanical asymmetry is required for the growth symmetry breaking. Indeed, preventing or promoting pectin de-methylesterification, respectively, increased or decreased the stiffness of all the cell walls, but in both cases reduced the growth anisotropy. Finally, we show that the subsequent CMT reorientation contributes to the consolidation of the growth axis but is not required for the growth symmetry breaking. We conclude that growth symmetry breaking is controlled at a cellular scale by bipolar pectin de-methylesterification, rather than by the cellulose-dependent mechanical anisotropy of the cell walls themselves. Such a cell asymmetry-driven mechanism is comparable to that underlying tip growth in plants but also anisotropic cell growth in animal cells.
Collapse
|
49
|
de Madrid BH, Greenberg L, Hatini V. RhoGAP68F controls transport of adhesion proteins in Rab4 endosomes to modulate epithelial morphogenesis of Drosophila leg discs. Dev Biol 2015; 399:283-95. [PMID: 25617722 PMCID: PMC4352398 DOI: 10.1016/j.ydbio.2015.01.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/15/2014] [Accepted: 01/10/2015] [Indexed: 02/06/2023]
Abstract
Elongation and invagination of epithelial tissues are fundamental developmental processes that contribute to the morphogenesis of embryonic and adult structures and are dependent on coordinated remodeling of cell-cell contacts. The morphogenesis of Drosophila leg imaginal discs depends on extensive remodeling of cell contacts and thus provides a useful system with which to investigate the underlying mechanisms. The small Rho GTPase regulator RhoGAP68F has been previously implicated in leg morphogenesis. It consists of on an N-terminal Sec14 domain and a C-terminal GAP domain. Here we examined the molecular function and role of RhoGAP68F in epithelial remodeling. We find that depletion of RhoGAP68F impairs epithelial remodeling from a pseudostratified to simple, while overexpression of RhoGAP68F causes tears of lateral cell-cell contacts and thus impairs epithelial integrity. We show that the RhoGAP68F protein localizes to Rab4 recycling endosomes and forms a complex with the Rab4 protein. The Sec14 domain is sufficient for localizing to Rab4 endosomes, while the activity of the GAP domain is dispensable. RhoGAP68F, in turn, inhibits the scission and movement of Rab4 endosomes involved in transport the adhesion proteins Fasciclin3 and E-cadherin back to cell-cell contacts. Expression of RhoGAP68F is upregulated during prepupal development suggesting that RhoGAP68F decreases the transport of key adhesion proteins to the cell surface during this developmental stage to decrease the strength of adhesive cell-cell contacts and thereby facilitate epithelial remodeling and leg morphogenesis.
Collapse
Affiliation(s)
- Beatriz Hernandez de Madrid
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | - Lina Greenberg
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA
| | - Victor Hatini
- Department of Developmental, Molecular and Chemical Biology, Program in Cell, Molecular and Developmental Biology, Program in Genetics, Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111, USA.
| |
Collapse
|
50
|
Tug of war--the influence of opposing physical forces on epithelial cell morphology. Dev Biol 2015; 401:92-102. [PMID: 25576028 DOI: 10.1016/j.ydbio.2014.12.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Revised: 12/24/2014] [Accepted: 12/28/2014] [Indexed: 01/13/2023]
Abstract
The shape of a single animal cell is determined both by its internal cytoskeleton and through physical interactions with its environment. In a tissue context, this extracellular environment is made up largely of other cells and the extracellular matrix. As a result, the shape of cells residing within an epithelium will be determined both by forces actively generated within the cells themselves and by their deformation in response to forces generated elsewhere in the tissue as they propagate through cell-cell junctions. Together these complex patterns of forces combine to drive epithelial tissue morphogenesis during both development and homeostasis. Here we review the role of both active and passive cell shape changes and mechanical feedback control in tissue morphogenesis in different systems.
Collapse
|