1
|
Kretschmer M, Vollmar AM, Zahler S. Endothelial Sprout Formation Is Regulated by Substrate Stiffness and Notch Signaling. Int J Mol Sci 2025; 26:3155. [PMID: 40243923 PMCID: PMC11988845 DOI: 10.3390/ijms26073155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Angiogenesis, the process of vessel formation from pre-existing ones, is modulated by the local stiffness of the extracelluar matrix. We have previously shown that Notch signaling, a key pathway in angiogenesis, responds to substrate stiffness in endothelial cells. In the current work, we investigate the contribution of Notch signaling in angiogenesis-related in vitro assays by using VEGF and Notch inhibitors as perturbations. In addition, we investigate Notch signaling in relation to the stiffness of the respective endothelial microenvironment. While the tube formation assay on Matrigel is clearly influenced by substrate stiffness, Notch signaling seems to play no major role in this context. In contrast, spheroid sprouting is influenced by stiffness as well as Notch signaling; with decreasing stiffness, both sprouting and Notch signaling are increased. This finding adds a functional aspect to the mechanosensitivity of Notch signaling.
Collapse
Affiliation(s)
| | | | - Stefan Zahler
- Department of Pharmacy, Ludwig-Maximilians-University, Butenandtstr. 5, 81377 Munich, Germany; (M.K.)
| |
Collapse
|
2
|
Hanada K, Saito Y, Takagi T, Go M, Nakano Y, Inagawa T, Hirai H, Fruttiger M, Itoh S, Itoh F. Reduced lung metastasis in endothelial cell-specific transforming growth factor β type II receptor-deficient mice with decreased CD44 expression. iScience 2024; 27:111502. [PMID: 39758992 PMCID: PMC11699617 DOI: 10.1016/j.isci.2024.111502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/20/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Transforming growth factor β (TGF-β) is abundantly present in the tumor microenvironment, contributing to cancer progression. However, the regulatory mechanism by which TGF-β affects vascular endothelial cells (ECs) in the tumor microenvironment is not well understood. Herein, we generated tamoxifen-inducible TGF-β type II receptor (TβRII) knockout mice, specifically targeting ECs (TβRIIiΔEC), by crossbreeding TβRII-floxed mice with Pdgfb-icreER mice. We established tumor-bearing mice by transplanting Lewis lung carcinoma (LLC) cells. TβRIIiΔEC mice exhibited increased tumor angiogenesis with fragile new blood vessels, increased bleeding, and hypoxia compared to control mice. Consequently, the compromised tumor microenvironment precipitated a notable surge in circulating tumor cells. Paradoxically, lung metastasis showed a significant decline. This intriguing discrepancy was explained by a reduction in the engraftment between cancer cells and ECs. Disruption of TGF-β signaling downregulated CD44 on ECs, hindering cancer cell adhesion. These findings highlight TGF-β's role in promoting metastasis by modulating EC function.
Collapse
Affiliation(s)
- Kako Hanada
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuki Saito
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takahiro Takagi
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mitsuki Go
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yota Nakano
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Toshihiko Inagawa
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Hideyo Hirai
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Marcus Fruttiger
- UCL Institute of Ophthalmology, University College London, 11-43 Bath Street, London EC1V 9EL, UK
| | - Susumu Itoh
- Laboratory of Biochemistry, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Fumiko Itoh
- Laboratory of Stem Cell Regulation, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
- Laboratory of Cardiovascular Medicine, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
3
|
Ouarné M, Pena A, Ramalho D, Conchinha NV, Costa T, Enjalbert R, Figueiredo AM, Saraiva MP, Carvalho Y, Bernabeu MO, Henao Misikova L, Oh SP, Franco CA. A non-genetic model of vascular shunts informs on the cellular mechanisms of formation and resolution of arteriovenous malformations. Cardiovasc Res 2024; 120:1967-1984. [PMID: 39308243 PMCID: PMC11629978 DOI: 10.1093/cvr/cvae160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 04/11/2024] [Accepted: 05/23/2024] [Indexed: 12/11/2024] Open
Abstract
AIMS Arteriovenous malformations (AVMs), a disorder characterized by direct shunts between arteries and veins, are associated with genetic mutations. However, the mechanisms leading to AV shunt formation and how shunts can be reverted are poorly understood. METHODS AND RESULTS Here, we report that oxygen-induced retinopathy (OIR) protocol leads to the consistent and stereotypical formation of AV shunts in non-genetically altered mice. OIR-induced AV shunts show all the canonical markers of AVMs. Genetic and pharmacological interventions demonstrated that changes in the volume of venous endothelial cells (EC)-hypertrophic venous cells-are the initiating step promoting AV shunt formation, whilst EC proliferation or migration played minor roles. Inhibition of the mTOR pathway prevents pathological increases in EC volume and significantly reduces the formation of AV shunts. Importantly, we demonstrate that ALK1 signalling cell-autonomously regulates EC volume in pro-angiogenic conditions, establishing a link with hereditary haemorrhagic telangiectasia-related AVMs. Finally, we demonstrate that a combination of EC volume control and EC migration is associated with the regression of AV shunts. CONCLUSION Our findings highlight that an increase in the EC volume is the key mechanism driving the initial stages of AV shunt formation, leading to asymmetric capillary diameters. Based on our results, we propose a coherent and unifying timeline leading to the fast conversion of a capillary vessel into an AV shunt. Our data advocate for further investigation into the mechanisms regulating EC volume in health and disease as a way to identify therapeutic approaches to prevent and revert AVMs.
Collapse
Affiliation(s)
- Marie Ouarné
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Andreia Pena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - Daniela Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - Nadine V Conchinha
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Tiago Costa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Romain Enjalbert
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
| | - Ana M Figueiredo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Marta Pimentel Saraiva
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Yulia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh EH16 4UX, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh EH8 9BT, UK
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| | - S Paul Oh
- Barrow Aneurysm & AVM Research Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ 85013, USA
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon 1649-028, Portugal
- Católica Biomedical Research Centre, Universidade Católica Portuguesa, Católica Medical School, Lisbon 1649-023, Portugal
| |
Collapse
|
4
|
Liu H, Wang C, Wang R, Zhang Y, Jian B, Zhou Z, Wu Z, Liang M. HnRNPA1 Prevents Endothelial-to-mesenchymal Transition-induced VSMC Activation and Neointimal Hyperplasia in Vein Grafts. J Cardiovasc Transl Res 2024; 17:1400-1414. [PMID: 39046653 DOI: 10.1007/s12265-024-10545-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
Endothelial-to-mesenchymal transition (EndoMT) is associated with neointimal hyperplasia and vein graft failure, and heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) has emerged as a major modulator of EMT. We aimed to investigate the functional consequence of EndoMT in neointimal hyperplasia and the precise role of hnRNPA1 in the regulation of EndoMT and neointimal hyperplasia. We investigated the spatial and temporal distribution characteristics of EndoMT cells in a mouse model of vein graft transplantation. In vitro, we studied the interaction between EndoMT cells and VSMCs, and the underlying mechanism was investigated by cytokine antibody assays. In cultured HUVECs, we studied the effect of hnRNPA1 on EndoMT and the cellular interactions by using siRNA-mediated knockdown and adenovirus-mediated overexpression. We further investigated the role of hnRNPA1 in EndoMT and neointimal hyperplasia in vivo with an AAV-mediated EC-specific hnRNPA1 overexpression murine model. We demonstrated the presence of EndoMT cells during the initial stage of neointimal formation, and that EndoMT cells promoted the proliferation and migration of VSMCs in vitro. Mechanistic studies revealed that EndoMT cells express and secrete a higher level of PDGF-B. Furthermore, we found a regulatory role for hnRNPA1 in EndoMT in vitro and in vivo. Similarly, we found that hnRNPA1 overexpression in ECs reduced the expression and secretion of PDGF-B during EndoMT, effectively inhibiting EndoMT cell-mediated activation of VSMCs in vitro and neointimal formation in vivo. Taken together, these findings indicate that EndoMT cells can activate VSMCs through a paracrine mechanism mediated by hnRNPA1 and lead to neointimal hyperplasia.
Collapse
Affiliation(s)
- Haoliang Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Chaoqun Wang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Rui Wang
- Department of Cardiology, Guangzhou Hospital of Integrated Traditional and West Medicine, Guangzhou, 510080, Guangdong, China
| | - Yi Zhang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Bohao Jian
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhuoming Zhou
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zhongkai Wu
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Mengya Liang
- Department of Cardiac Surgery, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Eder I, Yu V, Antonello J, Chen F, Gau D, Chawla P, Joy M, Lucas PC, Boone D, Lee AV, Roy P. mDia2 is an important mediator of MRTF-A-dependent regulation of breast cancer cell migration. Mol Biol Cell 2024; 35:ar133. [PMID: 39196658 PMCID: PMC11481706 DOI: 10.1091/mbc.e24-01-0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 08/30/2024] Open
Abstract
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type versus functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both two-dimensional and three-dimensional cell migration, while the SAP-domain function is important selectively for three-dimensional cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction with MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases versus primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human BC, justifying future development of specific small molecule inhibitors of the MRTF-SRF transcriptional complex as potential therapeutic agents in BC.
Collapse
Affiliation(s)
- Ian Eder
- Bioengineering, University of Pittsburgh, PA 15219
| | - Virginia Yu
- Bioengineering, University of Pittsburgh, PA 15219
| | | | - Fangyuan Chen
- School of Medicine, University of Pittsburgh, PA 15261
- School of Medicine, Tsinghua University, China, Beijing 100084
| | - David Gau
- Bioengineering, University of Pittsburgh, PA 15219
| | - Pooja Chawla
- Bioengineering, University of Pittsburgh, PA 15219
| | - Marion Joy
- Hillman Cancer Center, University of Pittsburgh, PA 15232
| | - Peter C. Lucas
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905
| | - David Boone
- Biomedical Informatics, University of Pittsburgh, PA 15206
| | | | - Partha Roy
- Bioengineering, University of Pittsburgh, PA 15219
- Pathology, University of Pittsburgh, PA 15213
| |
Collapse
|
6
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. EMBO J 2024; 43:3175-3191. [PMID: 38886581 PMCID: PMC11294477 DOI: 10.1038/s44318-024-00142-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/20/2024] [Accepted: 05/13/2024] [Indexed: 06/20/2024] Open
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function, and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs), and Plexin D1 located at cell-cell junctions mediates many of these events. However, available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial-specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology, and disease.
Collapse
Affiliation(s)
- Keiichiro Tanaka
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Minghao Chen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Andrew Prendergast
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Zhenwu Zhuang
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Ali Nasiri
- Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Divyesh Joshi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Jared Hintzen
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Minhwan Chung
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Abhishek Kumar
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Arya Mani
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Anthony Koleske
- Department of Molecular Biochemistry and Biophysics, Yale University, New Haven, CT, USA
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Stefania Nicoli
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA
| | - Martin A Schwartz
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, School of Medicine, Yale University, New Haven, CT, 06511, USA.
- Department of Cell Biology, Yale University, New Haven, CT, USA.
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| |
Collapse
|
7
|
Eder I, Yu V, Antonello J, Chen F, Gau D, Chawla P, Joy M, Lucas P, Boone D, Lee AV, Roy P. mDia2 is an important mediator of MRTF-A-dependent regulation of breast cancer cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.21.572883. [PMID: 38187641 PMCID: PMC10769385 DOI: 10.1101/2023.12.21.572883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Dysregulated actin cytoskeleton gives rise to aberrant cell motility and metastatic spread of tumor cells. This study evaluates the effect of overexpression of wild-type vs functional mutants of MRTF-A on migration and invasion of breast cancer (BC) cells. Our studies indicate that SRF's interaction is critical for MRTF-A-induced promotion of both 2D and 3D cell migration, while the SAP-domain function is important selectively for 3D cell migration. Increased MRTF-A activity is associated with more effective membrane protrusion, a phenotype that is attributed predominantly to SRF's interaction of MRTF. We demonstrate formin-family protein mDia2 as an important mediator of MRTF-stimulated actin polymerization at the leading edge and cell migration. Multiplexed quantitative immunohistochemistry and transcriptome analyses of clinical BC specimens further demonstrate a positive correlation between nuclear localization of MRTF with malignant traits of cancer cells and enrichment of MRTF-SRF gene signature in pair-matched distant metastases vs primary tumors. In conclusion, this study establishes a novel mechanism of MRTF-dependent regulation of cell migration and provides evidence for the association between MRTF activity and increased malignancy in human breast cancer, justifying future development of a specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer. SIGNIFICANCE Actin cytoskeletal dysregulation gives rise to metastatic dissemination of cancer cells. This study mechanistically investigates the impact of specific functional disruption of MRTF (a transcriptional co-factor of SRF) on breast cancer cell migration.This study establishes a novel mechanism linking mDia2 to MRTF-dependent regulation of cell migration and provides clinical evidence for the association between MRTF activity and increased malignancy in human breast cancer.Findings from these studies justify future exploration of specific small molecule inhibitor of the MRTF-SRF transcriptional complex as a potential therapeutic agent in breast cancer.
Collapse
|
8
|
Tanaka K, Chen M, Prendergast A, Zhuang Z, Nasiri A, Joshi D, Hintzen J, Chung M, Kumar A, Mani A, Koleske A, Crawford J, Nicoli S, Schwartz MA. Latrophilin-2 mediates fluid shear stress mechanotransduction at endothelial junctions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.13.598386. [PMID: 38915515 PMCID: PMC11195282 DOI: 10.1101/2024.06.13.598386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Endothelial cell responses to fluid shear stress from blood flow are crucial for vascular development, function and disease. A complex of PECAM-1, VE-cadherin, VEGF receptors (VEGFRs) and PlexinD1 located at cell-cell junctions mediates many of these events. But available evidence suggests that another mechanosensor upstream of PECAM-1 initiates signaling. Hypothesizing that GPCR and Gα proteins may serve this role, we performed siRNA screening of Gα subunits and found that Gαi2 and Gαq/11 are required for activation of the junctional complex. We then developed a new activation assay, which showed that these G proteins are activated by flow. We next mapped the Gα residues required for activation and developed an affinity purification method that used this information to identify latrophilin-2 (Lphn-2/ADGRL2) as the upstream GPCR. Latrophilin-2 is required for all PECAM-1 downstream events tested. In both mice and zebrafish, latrophilin-2 is required for flow-dependent angiogenesis and artery remodeling. Furthermore, endothelial specific knockout demonstrates that latrophilin plays a role in flow-dependent artery remodeling. Human genetic data reveal a correlation between the latrophilin-2-encoding Adgrl2 gene and cardiovascular disease. Together, these results define a pathway that connects latrophilin-dependent G protein activation to subsequent endothelial signaling, vascular physiology and disease.
Collapse
|
9
|
Payne S, Neal A, De Val S. Transcription factors regulating vasculogenesis and angiogenesis. Dev Dyn 2024; 253:28-58. [PMID: 36795082 PMCID: PMC10952167 DOI: 10.1002/dvdy.575] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/06/2023] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Transcription factors (TFs) play a crucial role in regulating the dynamic and precise patterns of gene expression required for the initial specification of endothelial cells (ECs), and during endothelial growth and differentiation. While sharing many core features, ECs can be highly heterogeneous. Differential gene expression between ECs is essential to pattern the hierarchical vascular network into arteries, veins and capillaries, to drive angiogenic growth of new vessels, and to direct specialization in response to local signals. Unlike many other cell types, ECs have no single master regulator, instead relying on differing combinations of a necessarily limited repertoire of TFs to achieve tight spatial and temporal activation and repression of gene expression. Here, we will discuss the cohort of TFs known to be involved in directing gene expression during different stages of mammalian vasculogenesis and angiogenesis, with a primary focus on development.
Collapse
Affiliation(s)
- Sophie Payne
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Alice Neal
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| | - Sarah De Val
- Department of Physiology, Anatomy and GeneticsInstitute of Developmental and Regenerative Medicine, University of OxfordOxfordUK
| |
Collapse
|
10
|
Uçar MC, Hannezo E, Tiilikainen E, Liaqat I, Jakobsson E, Nurmi H, Vaahtomeri K. Self-organized and directed branching results in optimal coverage in developing dermal lymphatic networks. Nat Commun 2023; 14:5878. [PMID: 37735168 PMCID: PMC10514270 DOI: 10.1038/s41467-023-41456-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/05/2023] [Indexed: 09/23/2023] Open
Abstract
Branching morphogenesis is a ubiquitous process that gives rise to high exchange surfaces in the vasculature and epithelial organs. Lymphatic capillaries form branched networks, which play a key role in the circulation of tissue fluid and immune cells. Although mouse models and correlative patient data indicate that the lymphatic capillary density directly correlates with functional output, i.e., tissue fluid drainage and trafficking efficiency of dendritic cells, the mechanisms ensuring efficient tissue coverage remain poorly understood. Here, we use the mouse ear pinna lymphatic vessel network as a model system and combine lineage-tracing, genetic perturbations, whole-organ reconstructions and theoretical modeling to show that the dermal lymphatic capillaries tile space in an optimal, space-filling manner. This coverage is achieved by two complementary mechanisms: initial tissue invasion provides a non-optimal global scaffold via self-organized branching morphogenesis, while VEGF-C dependent side-branching from existing capillaries rapidly optimizes local coverage by directionally targeting low-density regions. With these two ingredients, we show that a minimal biophysical model can reproduce quantitatively whole-network reconstructions, across development and perturbations. Our results show that lymphatic capillary networks can exploit local self-organizing mechanisms to achieve tissue-scale optimization.
Collapse
Affiliation(s)
- Mehmet Can Uçar
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria (IST Austria), Am Campus 1, 3400, Klosterneuburg, Austria.
| | - Emmi Tiilikainen
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Inam Liaqat
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Emma Jakobsson
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Harri Nurmi
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland
| | - Kari Vaahtomeri
- Translational Cancer Medicine Research Program, University of Helsinki, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, 00290, Helsinki, Finland.
| |
Collapse
|
11
|
Barbacena P, Dominguez-Cejudo M, Fonseca CG, Gómez-González M, Faure LM, Zarkada G, Pena A, Pezzarossa A, Ramalho D, Giarratano Y, Ouarné M, Barata D, Fortunato IC, Misikova LH, Mauldin I, Carvalho Y, Trepat X, Roca-Cusachs P, Eichmann A, Bernabeu MO, Franco CA. Competition for endothelial cell polarity drives vascular morphogenesis in the mouse retina. Dev Cell 2022; 57:2321-2333.e9. [PMID: 36220082 PMCID: PMC9552591 DOI: 10.1016/j.devcel.2022.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 07/15/2022] [Accepted: 09/07/2022] [Indexed: 12/02/2022]
Abstract
Blood-vessel formation generates unique vascular patterns in each individual. The principles governing the apparent stochasticity of this process remain to be elucidated. Using mathematical methods, we find that the transition between two fundamental vascular morphogenetic programs-sprouting angiogenesis and vascular remodeling-is established by a shift of collective front-to-rear polarity of endothelial cells in the mouse retina. We demonstrate that the competition between biochemical (VEGFA) and mechanical (blood-flow-induced shear stress) cues controls this collective polarity shift. Shear stress increases tension at focal adhesions overriding VEGFA-driven collective polarization, which relies on tension at adherens junctions. We propose that vascular morphogenetic cues compete to regulate individual cell polarity and migration through tension shifts that translates into tissue-level emergent behaviors, ultimately leading to uniquely organized vascular patterns.
Collapse
Affiliation(s)
- Pedro Barbacena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Maria Dominguez-Cejudo
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Catarina G Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Manuel Gómez-González
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Laura M Faure
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Georgia Zarkada
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Andreia Pena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Champalimaud Foundation, Champalimaud Research, Lisbon, Portugal
| | - Daniela Ramalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ylenia Giarratano
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Marie Ouarné
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - David Barata
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Isabela C Fortunato
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Lenka Henao Misikova
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Ian Mauldin
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK; School of Informatics, The University of Edinburgh, Edinburgh, UK
| | - Yulia Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Xavier Trepat
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain; Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Barcelona, Spain
| | - Pere Roca-Cusachs
- Institute for Bioengineering of Catalonia (IBEC), the Barcelona Institute of Technology (BIST), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Anne Eichmann
- Cardiovascular Research Center, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA; Université de Paris, PARCC, INSERM, 75006 Paris, France
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK; The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| | - Cláudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal; Universidade Católica Portuguesa, Católica Medical School, Católica Biomedical Research Centre, Lisbon, Portugal.
| |
Collapse
|
12
|
Orlich MM, Diéguez-Hurtado R, Muehlfriedel R, Sothilingam V, Wolburg H, Oender CE, Woelffing P, Betsholtz C, Gaengel K, Seeliger M, Adams RH, Nordheim A. Mural Cell SRF Controls Pericyte Migration, Vessel Patterning and Blood Flow. Circ Res 2022; 131:308-327. [PMID: 35862101 PMCID: PMC9348820 DOI: 10.1161/circresaha.122.321109] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pericytes and vascular smooth muscle cells, collectively known as mural cells, are recruited through PDGFB (platelet-derived growth factor B)-PDGFRB (platelet-derived growth factor receptor beta) signaling. MCs are essential for vascular integrity, and their loss has been associated with numerous diseases. Most of this knowledge is based on studies in which MCs are insufficiently recruited or fully absent upon inducible ablation. In contrast, little is known about the physiological consequences that result from impairment of specific MC functions. Here, we characterize the role of the transcription factor SRF (serum response factor) in MCs and study its function in developmental and pathological contexts.
Collapse
Affiliation(s)
- Michael M. Orlich
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
- International Max Planck Research School (IMPRS) “From Molecules to Organisms,” Tuebingen, Germany (M.M.O., A.N.)
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
- Now with Rudbeck Laboratory C11, Dag Hammarskjölds Väg 20, 751 85 Uppsala, Sweden (M.M.O.)
| | - Rodrigo Diéguez-Hurtado
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Muenster, Germany (R.D.-H., R.H.A.)
- Faculty of Medicine, University of Muenster, Muenster, Germany (R.D.-H., R.H.A.)
| | - Regine Muehlfriedel
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Vithiyanjali Sothilingam
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Hartwig Wolburg
- Department of General Pathology and Pathological Anatomy, Institute of Pathology and Neuropathology, University Clinic Tuebingen (UKT), Germany. (H.W.)
| | - Cansu Ebru Oender
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
| | - Pascal Woelffing
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
| | - Christer Betsholtz
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
| | - Konstantin Gaengel
- Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, Uppsala University, Sweden (M.M.O., C.B., K.G.)
| | - Mathias Seeliger
- Institute for Ophthalmic Research, Centre for Ophthalmology, University Clinic Tuebingen (UKT), Germany. (R.M., V.S., M.S.)
| | - Ralf H. Adams
- Department of Tissue Morphogenesis, Max Planck Institute for Molecular Biomedicine, Muenster, Germany (R.D.-H., R.H.A.)
- Faculty of Medicine, University of Muenster, Muenster, Germany (R.D.-H., R.H.A.)
| | - Alfred Nordheim
- Department of Molecular Biology, Interfaculty Institute for Cell Biology, University of Tuebingen, Germany (M.M.O., C.E.O., P.W., A.N.)
- International Max Planck Research School (IMPRS) “From Molecules to Organisms,” Tuebingen, Germany (M.M.O., A.N.)
| |
Collapse
|
13
|
Huang CH, Schuring J, Skinner JP, Mok L, Chong MMW. MYL9 deficiency is neonatal lethal in mice due to abnormalities in the lung and the muscularis propria of the bladder and intestine. PLoS One 2022; 17:e0270820. [PMID: 35802750 PMCID: PMC9269942 DOI: 10.1371/journal.pone.0270820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/20/2022] [Indexed: 11/19/2022] Open
Abstract
Class II myosin complexes are responsible for muscle contraction as well as other non-sarcomeric contractile functions in cells. Myosin heavy chain molecules form the core of these structures, while light chain molecules regulate their stability and function. MYL9 is a light chain isoform that is thought to regulate non-sarcomeric myosin. However, whether this in only in specific cell types or in all cells remains unclear. To address this, we generated MYL9 deficient mice. These mice die soon after birth with abnormalities in multiple organs. All mice exhibited a distended bladder, shortening of the small intestine and alveolar overdistension in the lung. The Myl9 allele in these mice included a LacZ reporter knockin that allowed for mapping of Myl9 gene expression. Using this reporter, we show that MYL9 expression is restricted to the muscularis propria of the small intestine and bladder, as well as in the smooth muscle layer of the bronchi in the lung and major bladder vessels in all organs. This suggests that MYL9 is important for the function of smooth muscle cells in these organs. Smooth muscle dysfunction is therefore likely to be the cause of the abnormalities observed in the intestine, bladder and lung of MYL9 deficient mice and the resulting neonatal lethality.
Collapse
Affiliation(s)
- Chu-Han Huang
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s), University of Melbourne, Fitzroy, VIC, Australia
| | - Joyce Schuring
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- HAN University of Applied Sciences, Nijmegen, The Netherlands
| | | | - Lawrence Mok
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s), University of Melbourne, Fitzroy, VIC, Australia
| | - Mark M. W. Chong
- St Vincent’s Institute of Medical Research, Fitzroy, VIC, Australia
- Department of Medicine (St Vincent’s), University of Melbourne, Fitzroy, VIC, Australia
| |
Collapse
|
14
|
Ferician AM, Ferician OC, Cumpanas AD, Berzava PL, Nesiu A, Barmayoun A, Cimpean AM. Heterogeneity of Platelet Derived Growth Factor Pathway Gene Expression Profile Defines Three Distinct Subgroups of Renal Cell Carcinomas. Cancer Genomics Proteomics 2022; 19:477-489. [PMID: 35732321 PMCID: PMC9247877 DOI: 10.21873/cgp.20334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM We previously described four different vascular patterns (reticular, diffuse, fasciculate, and trabecular) in renal cell carcinoma (RCC) suggesting an early and heterogeneous acquisition of perivascular cells most probably due to a particular PDGF pathway gene expression profile. The aim of the study was to study PDGF pathway gene expression profiles, separately for each vascular pattern. MATERIALS AND METHODS TaqMan assay for the PDGF pathway was performed on twelve cases of ccRCC previously evaluated by histopathology, immunohistochemistry, and RNAscope. Gene expression profile was correlated with grade, invasion, vascular patterns, and VEGF. RESULTS PIK3C3 and SLC9A3 genes were overexpressed in all vascular patterns, but they were significantly correlated with high VEGF mRNA in the reticular and diffuse pattern. STAT1, JAK2, SHC2, SRF and CHUK (IKK) were exclusively overexpressed in cases with diffuse vascular pattern. SLC9A3, CHUK and STAT3 were overexpressed in G2 tumors. CONCLUSION Three ccRCC subgroups were defined: 1) PIK3C3 (VSP34)/SLC9A3 which may be proper for anti PIK3C3 inhibitors; 2) VEGFhigh subgroup where association of anti VEGF may be a benefit and 3) JAK2/STAT1 subgroup, potentially being eligible for anti JAK/STAT therapy associated with IKK inhibitors.
Collapse
Affiliation(s)
- Adela Maria Ferician
- Department of Orthopedy and Traumatology/Urology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Ovidiu Catalin Ferician
- Department of Orthopedy and Traumatology/Urology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania;
| | - Andrei Dragos Cumpanas
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Patricia Lorena Berzava
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
| | - Alexandru Nesiu
- Department of Urology, Faculty of Medicine "Vasile Goldiş" Western University, Arad, Romania
| | - Ariana Barmayoun
- Klinik fur Psychiatrie, Psychosomatik und Psychotherapie, Uniklinikum Frankfurt, Frankfurt, Germany
| | - Anca Maria Cimpean
- Department of Microscopic Morphology/Histology, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Angiogenesis Research Center, Victor Babes University of Medicine and Pharmacy, Timisoara, Romania
- Center of Expertise for Rare Vascular Disease in Children, Emergency Hospital for Children Louis Turcanu, Timisoara, Romania
| |
Collapse
|
15
|
Deshpande A, Shetty PMV, Frey N, Rangrez AY. SRF: a seriously responsible factor in cardiac development and disease. J Biomed Sci 2022; 29:38. [PMID: 35681202 PMCID: PMC9185982 DOI: 10.1186/s12929-022-00820-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/27/2022] [Indexed: 11/10/2022] Open
Abstract
The molecular mechanisms that regulate embryogenesis and cardiac development are calibrated by multiple signal transduction pathways within or between different cell lineages via autocrine or paracrine mechanisms of action. The heart is the first functional organ to form during development, which highlights the importance of this organ in later stages of growth. Knowledge of the regulatory mechanisms underlying cardiac development and adult cardiac homeostasis paves the way for discovering therapeutic possibilities for cardiac disease treatment. Serum response factor (SRF) is a major transcription factor that controls both embryonic and adult cardiac development. SRF expression is needed through the duration of development, from the first mesodermal cell in a developing embryo to the last cell damaged by infarction in the myocardium. Precise regulation of SRF expression is critical for mesoderm formation and cardiac crescent formation in the embryo, and altered SRF levels lead to cardiomyopathies in the adult heart, suggesting the vital role played by SRF in cardiac development and disease. This review provides a detailed overview of SRF and its partners in their various functions and discusses the future scope and possible therapeutic potential of SRF in the cardiovascular system.
Collapse
Affiliation(s)
- Anushka Deshpande
- Department of Internal Medicine III, Cardiology and Angiology, University Medical Center Schleswig-Holstein, Campus Kiel, Kiel, Germany.,Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner site Hamburg/Kiel/Lübeck, Kiel, Germany
| | - Prithviraj Manohar Vijaya Shetty
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
16
|
Winkler E, Wu D, Gil E, McCoy D, Narsinh K, Sun Z, Mueller K, Ross J, Kim H, Weinsheimer S, Berger M, Nowakowski T, Lim D, Abla A, Cooke D. Endoluminal Biopsy for Molecular Profiling of Human Brain Vascular Malformations. Neurology 2022; 98:e1637-e1647. [PMID: 35145012 PMCID: PMC9052570 DOI: 10.1212/wnl.0000000000200109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Ras-mitogen-activated protein kinase (MAPK) signaling abnormalities occur in most brain arteriovenous malformations (bAVMs). No means exist to molecularly profile bAVMs without open surgery, limiting precision medicine approaches to treatment. Here, we report use of endoluminal biopsy of the vessel lumen of bAVMs to characterize gene expression and blood flow-mediated transcriptional changes in living patients. METHODS Endoluminal biopsy and computational fluid dynamic modeling (CFD) were performed in adults with unruptured AVMs with cerebral angiography. Each patient underwent surgical resection and cell sampling from a contiguous arterial segment. Fluorescence-assisted cell sorting enriched endothelial cells, which were sequenced on an Illumina HiSeq 4000 sequencer. Gene expression was quantified with RNA sequencing (RNAseq). Differential gene expression, ontology, and correlative analyses were performed. Results were validated with quantitative reverse transcription PCR (RT-qPCR). RESULTS Endoluminal biopsy was successful in 4 patients without complication. Endoluminal biopsy yielded 269.0 ± 79.9 cells per biopsy (control 309.2 ± 86.6 cells, bAVM 228.8 ± 133.4 cells). RNAseq identified 106 differentially expressed genes (DEGs) in bAVMs (false discovery rate ≤0.05). DEGs were enriched for bAVM pathogenic cascades, including Ras-MAPK signaling (p < 0.05), and confirmed with RT-qPCR and a panel predictive of MAPK/extracellular signal-regulated kinase inhibitor response. Compared to patient-matched surgically excised tissues, endoluminal biopsy detected 83.3% of genes, and genome-wide expression strongly correlated (Pearson r = 0.77). Wall shear stress measured by CFD correlated with inflammatory pathway upregulation. Comparison of pre-embolization and postembolization samples confirmed flow-mediated gene expression changes. DISCUSSION Endoluminal biopsy allows molecular profiling of bAVMs in living patients. Gene expression profiles are similar to those of tissues acquired with open surgery and identify potentially targetable Ras-MAPK signaling abnormalities in bAVMs. Integration with CFD allows determination of flow-mediated transcriptomic alterations. Endoluminal biopsy may help facilitate trials of precision medicine approaches to bAVMs in humans.
Collapse
Affiliation(s)
- Ethan Winkler
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - David Wu
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Eugene Gil
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - David McCoy
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Kazim Narsinh
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Zhengda Sun
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Kerstin Mueller
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Jayden Ross
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Helen Kim
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Shantel Weinsheimer
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Mitchel Berger
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Tomasz Nowakowski
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Daniel Lim
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Adib Abla
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| | - Daniel Cooke
- From the Department of Neurological Surgery (E.W., D.W., E.G., J.R., M.B., D.L., A.A.), Department of Radiology and Biomedical Imaging (D.M., K.N., Z.S., D.C.), Center for Cerebrovascular Research (H.K., S.W.), Department of Psychiatry (T.N.), Department of Behavioral Sciences (T.N.), and Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research (T.N., D.L.), University of California San Francisco; Siemens Medical Solutions Inc (K.M.), Malvern, PA; and Department of Anatomy (J.R., T.N.), University of California San Francisco, Chan Zuckerberg Biohub
| |
Collapse
|
17
|
Feng M, Dong N, Zhou X, Ma L, Xiang R. Myosin light chain 9 promotes the proliferation, invasion, migration and angiogenesis of colorectal cancer cells by binding to Yes-associated protein 1 and regulating Hippo signaling. Bioengineered 2022; 13:96-106. [PMID: 34974798 PMCID: PMC8805887 DOI: 10.1080/21655979.2021.2008641] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Colorectal cancer is a common type of cancer with high incidence and poor prognosis. Increased expression of myosin light chain 9 (MYL9) has been reported in early-stage and recurrent colorectal cancer tissues. This study aimed to investigate the precise role of MYL9 on the progression of colorectal cancer. MYL9 expression in several colorectal cancer cell lines was detected by Western blotting and RT-qPCR. Following MYL9 overexpression or knockdown, MYL9 expression was determined via RT-qPCR. Cell proliferation was detected with Cell Counting Kit-8 assay. Cell invasion, migration and angiogenesis were, respectively, examined with transwell, wound healing and tube formation assays. The binding between MYL9 and Yes-associated protein 1 (YAP1) was verified by a co-immunoprecipitation assay. The expression of YAP1, connective tissue growth factor and cysteine-rich angiogenic inducer 61 was examined by Western blotting. Subsequently, YAP1 silencing or Hippo antagonist was performed to clarify the regulatory mechanisms of MYL9 in colorectal cancer progression. Experimental results showed that MYL9 expression was elevated in colorectal cancer cell lines. MYL9 overexpression promoted cell proliferation, invasion, migration and angiogenesis, while silencing of MYL9 exerted the opposite effects. Results of co-immunoprecipitation assay indicated that MYL9 could bind to YAP1. Further experiments revealed that MYL9 affected the expression of YAP1 and its downstream signaling proteins. Afterward, YAP1 knockdown or the addition of Hippo antagonist inhibited the proliferation, invasion, migration and angiogenesis of colorectal cancer cells. Overall, MYL9 promotes the proliferation, invasion, migration and angiogenesis of colorectal cancer cells by binding to YAP1 and thereby activating Hippo signaling.
Collapse
Affiliation(s)
- Min Feng
- Department of Gastroenterology, East Hospital of Zibo Central Hospital, Shandong Province, Zibo City, China
| | - Ningfei Dong
- Department of Gastroenterology, East Hospital of Zibo Central Hospital, Shandong Province, Zibo City, China
| | - Xin Zhou
- Department of Gastroenterology, East Hospital of Zibo Central Hospital, Shandong Province, Zibo City, China
| | - Lihong Ma
- Department of Gastroenterology, West Hospital of Zibo Central Hospital, Zibo, Shandong Province, China
| | - Rui Xiang
- Department of Gastroenterology, West Hospital of Zibo Central Hospital, Zibo, Shandong Province, China
| |
Collapse
|
18
|
Ly6c as a New Marker of Mouse Blood Vessels: Qualitative and Quantitative Analyses on Intact and Ischemic Retinas. Int J Mol Sci 2021; 23:ijms23010019. [PMID: 35008441 PMCID: PMC8744623 DOI: 10.3390/ijms23010019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/01/2022] Open
Abstract
Ly6c is an antigen commonly used to differentiate between classical and non-classical monocytes/macrophages. Here we show its potential as a marker of the mouse vasculature, particularly of the retinal vascular plexuses. Ly6c was immunodetected in several tissues of C57BL/6 mice using isolectin IB4 as the control of vasculature staining. In the retina, Ly6c expression was analyzed qualitatively and quantitatively in intact, ischemic, and contralateral retinas from 0 to 30 days after the insult. Ly6c expression was observed in all organs and tissues tested, with a brighter signal and more homogeneous staining than the IB4. In the retinas, Ly6c was well expressed, allowing a detailed study of their anatomy. The three retinal plexuses were morphologically different, and from the superficial to the deep one occupied 15 ± 2, 24 ± 7, and 38 ± 1.4 percent of the retinal surface, respectively. In the injured retinas, there was extravasation of the classically activated monocyte/macrophages (Ly6chigh) and the formation of new vessels in the superficial plexus, increasing the area occupied by it to 25 ± 1%. In the contralateral retinas, the superficial plexus area decreased gradually, reaching significance at 30 days, and Ly6c expression progressively disappeared in the intermediate and deep plexuses. Although the role of Ly6c in vascular endothelial cell function is still not completely understood, we demonstrate here that Ly6c can be used as a new specific marker of the mouse vasculature and to assess, qualitatively and quantitatively, vascular changes in health and disease.
Collapse
|
19
|
Qiang W, Wei R, Chen Y, Chen D. Clinical Pathological Features and Current Animal Models of Type 3 Macular Neovascularization. Front Neurosci 2021; 15:734860. [PMID: 34512255 PMCID: PMC8427186 DOI: 10.3389/fnins.2021.734860] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/29/2021] [Indexed: 02/05/2023] Open
Abstract
Type 3 macular neovascularization (MNV3), or retinal angiomatous proliferation (RAP), is a distinct type of neovascular age-related macular degeneration (AMD), which is a leading cause of vision loss in older persons. During the past decade, systematic investigation into the clinical, multimodal imaging, and histopathological features and therapeutic outcomes has provided important new insight into this disease. These studies favor the retinal origin of MNV3 and suggest the involvement of retinal hypoxia, inflammation, von Hippel–Lindau (VHL)–hypoxia-inducible factor (HIF)–vascular endothelial growth factor (VEGF) pathway, and multiple cell types in the development and progression of MNV3. Several mouse models, including the recently built Rb/p107/Vhl triple knockout mouse model by our group, have induced many of the histological features of MNV3 and provided much insight into the underlying pathological mechanisms. These models have revealed the roles of retinal hypoxia, inflammation, lipid metabolism, VHL/HIF pathway, and retinoblastoma tumor suppressor (Rb)–E2F cell cycle pathway in the development of MNV3. This article will summarize the clinical, multimodal imaging, and pathological features of MNV3 and the diversity of animal models that exist for MNV3, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Wei Qiang
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Ran Wei
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Yongjiang Chen
- The School of Optometry and Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Danian Chen
- Research Laboratory of Ophthalmology and Vision Sciences, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.,Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Sun MA, Wolf G, Wang Y, Senft AD, Ralls S, Jin J, Dunn-Fletcher CE, Muglia LJ, Macfarlan TS. Endogenous retroviruses drive lineage-specific regulatory evolution across primate and rodent placentae. Mol Biol Evol 2021; 38:4992-5004. [PMID: 34320657 DOI: 10.1093/molbev/msab223] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In mammals, the placenta mediates maternal-fetal nutrient and waste exchange and acts in an immunomodulatory way to facilitate maternal-fetal tolerance. The placenta is highly diverse across mammalian species, yet the molecular mechanisms that distinguish the placenta of human from other mammals are not fully understood. Using an interspecies transcriptomic comparison of human, macaque, and mouse late-gestation placentae, we identified hundreds of genes with lineage-specific expression-including dozens that are placentally-enriched and potentially related to pregnancy. We further annotated the enhancers for different human tissues using epigenomic data and demonstrate that the placenta and chorion are unique in that their enhancers display the least conservation. We identified numerous lineage-specific human placental enhancers and found they highly overlap with specific families of endogenous retroviruses (ERVs), including MER21A, MER41A/B and MER39B that were previously linked to immune response and placental function. Among these ERV families, we further demonstrate that MER41A/B insertions create dozens of lineage-specific Serum Response Factor (SRF) binding loci in human, including one adjacent to FBN2, a placenta-specific gene with increased expression in humans that produces the peptide hormone placensin to stimulate glucose secretion and trophoblast invasion. Overall, our results demonstrate the prevalence of lineage-specific placental enhancers which are frequently associated with ERV insertions and likely facilitate the lineage-specific evolution of the mammalian placenta.
Collapse
Affiliation(s)
- Ming-An Sun
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA.,Institute of Comparative Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, China
| | - Gernot Wolf
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Yejun Wang
- School of Basic Medicine, Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Anna D Senft
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Sherry Ralls
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Jinpu Jin
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| | - Caitlin E Dunn-Fletcher
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Physician-Scientist Training Program in Pediatrics, Department of Pediatrics, University of Texas Southwestern, Dallas, Texas, USA
| | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Burroughs Wellcome Fund, Research Triangle Park, NC, 27709, USA
| | - Todd S Macfarlan
- The Eunice Kennedy Shriver National Institutes of Child Health and Human Development, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
21
|
Zhou Q, Perovic T, Fechner I, Edgar LT, Hoskins PR, Gerhardt H, Krüger T, Bernabeu MO. Association between erythrocyte dynamics and vessel remodelling in developmental vascular networks. J R Soc Interface 2021; 18:20210113. [PMID: 34157895 PMCID: PMC8220266 DOI: 10.1098/rsif.2021.0113] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 06/01/2021] [Indexed: 12/14/2022] Open
Abstract
Sprouting angiogenesis is an essential vascularization mechanism consisting of sprouting and remodelling. The remodelling phase is driven by rearrangements of endothelial cells (ECs) within the post-sprouting vascular plexus. Prior work has uncovered how ECs polarize and migrate in response to flow-induced wall shear stress (WSS). However, the question of how the presence of erythrocytes (widely known as red blood cells (RBCs)) and their impact on haemodynamics affect vascular remodelling remains unanswered. Here, we devise a computational framework to model cellular blood flow in developmental mouse retina. We demonstrate a previously unreported highly heterogeneous distribution of RBCs in primitive vasculature. Furthermore, we report a strong association between vessel regression and RBC hypoperfusion, and identify plasma skimming as the driving mechanism. Live imaging in a developmental zebrafish model confirms this association. Taken together, our results indicate that RBC dynamics are fundamental to establishing the regional WSS differences driving vascular remodelling via their ability to modulate effective viscosity.
Collapse
Affiliation(s)
- Qi Zhou
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, UK
| | - Tijana Perovic
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Ines Fechner
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Lowell T. Edgar
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
| | - Peter R. Hoskins
- Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
- Biomedical Engineering, University of Dundee, Dundee, UK
| | - Holger Gerhardt
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Vascular Patterning Laboratory, Department of Oncology and Leuven Cancer Institute (LKI), KU Leuven, Belgium
- DZHK (German Center for Cardiovascular Research), Germany
- Berlin Institute of Health, Germany
| | - Timm Krüger
- School of Engineering, Institute for Multiscale Thermofluids, The University of Edinburgh, Edinburgh, UK
| | - Miguel O. Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, UK
- The Bayes Centre, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Jin H, Goossens P, Juhasz P, Eijgelaar W, Manca M, Karel JMH, Smirnov E, Sikkink CJJM, Mees BME, Waring O, van Kuijk K, Fazzi GE, Gijbels MJJ, Kutmon M, Evelo CTA, Hedin U, Daemen MJAP, Sluimer JC, Matic L, Biessen EAL. Integrative multiomics analysis of human atherosclerosis reveals a serum response factor-driven network associated with intraplaque hemorrhage. Clin Transl Med 2021; 11:e458. [PMID: 34185408 PMCID: PMC8236116 DOI: 10.1002/ctm2.458] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/21/2021] [Accepted: 05/25/2021] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND While single-omics analyses on human atherosclerotic plaque have been very useful to map stage- or disease-related differences in expression, they only partly capture the array of changes in this tissue and suffer from scale-intrinsic limitations. In order to better identify processes associated with intraplaque hemorrhage and plaque instability, we therefore combined multiple omics into an integrated model. METHODS In this study, we compared protein and gene makeup of low- versus high-risk atherosclerotic lesion segments from carotid endarterectomy patients, as judged from the absence or presence of intraplaque hemorrhage, respectively. Transcriptomic, proteomic, and peptidomic data of this plaque cohort were aggregated and analyzed by DIABLO, an integrative multivariate classification and feature selection method. RESULTS We identified a protein-gene associated multiomics model able to segregate stable, nonhemorrhaged from vulnerable, hemorrhaged lesions at high predictive performance (AUC >0.95). The dominant component of this model correlated with αSMA- PDGFRα+ fibroblast-like cell content (p = 2.4E-05) and Arg1+ macrophage content (p = 2.2E-04) and was driven by serum response factor (SRF), possibly in a megakaryoblastic leukemia-1/2 (MKL1/2) dependent manner. Gene set overrepresentation analysis on the selected key features of this model pointed to a clear cardiovascular disease signature, with overrepresentation of extracellular matrix synthesis and organization, focal adhesion, and cholesterol metabolism terms, suggestive of the model's relevance for the plaque vulnerability. Finally, we were able to corroborate the predictive power of the selected features in several independent mRNA and proteomic plaque cohorts. CONCLUSIONS In conclusion, our integrative omics study has identified an intraplaque hemorrhage-associated cardiovascular signature that provides excellent stratification of low- from high-risk carotid artery plaques in several independent cohorts. Further study revealed suppression of an SRF-regulated disease network, controlling lesion stability, in vulnerable plaque, which can serve as a scaffold for the design of targeted intervention in plaque destabilization.
Collapse
Affiliation(s)
- Han Jin
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
| | - Pieter Goossens
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
| | | | - Wouter Eijgelaar
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
| | - Marco Manca
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
| | - Joël M. H. Karel
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | - Evgueni Smirnov
- Department of Data Science and Knowledge EngineeringMaastricht UniversityMaastrichtThe Netherlands
| | | | | | - Olivia Waring
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
| | - Kim van Kuijk
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
| | - Gregorio E. Fazzi
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
| | - Marion J. J. Gijbels
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
- Department of Medical BiochemistryExperimental Vascular BiologyAmsterdam UMCAmsterdamThe Netherlands
- School for Oncology and Developmental Biology (GROW)Maastricht UniversityMaastrichtThe Netherlands
| | - Martina Kutmon
- Department of Bioinformatics (BiGCaT)Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Chris T. A. Evelo
- Department of Bioinformatics (BiGCaT)Maastricht Centre for Systems Biology (MaCSBio)Maastricht UniversityMaastrichtThe Netherlands
| | - Ulf Hedin
- Department of Molecular Medicine and SurgeryKarolinska InstituteSolnaSweden
| | - Mat J. A. P. Daemen
- Department of PathologyAmsterdam Cardiovascular SciencesAmsterdam UMCAmsterdamThe Netherlands
| | - Judith C. Sluimer
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
- BHF Centre for Cardiovascular Science (CVS)University of EdinburghEdinburghScotland
| | - Ljubica Matic
- Department of Molecular Medicine and SurgeryKarolinska InstituteSolnaSweden
| | - Erik A. L. Biessen
- Department of PathologySchool for Cardiovascular Diseases (CARIM)Maastricht UMC+MaastrichtThe Netherlands
- Institute for Molecular Cardiovascular ResearchRWTH Aachen UniversityAachenGermany
| |
Collapse
|
23
|
Ricolo D, Castro-Ribera J, Araújo SJ. Cytoskeletal players in single-cell branching morphogenesis. Dev Biol 2021; 477:22-34. [PMID: 34004181 DOI: 10.1016/j.ydbio.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 05/04/2021] [Indexed: 12/22/2022]
Abstract
Branching networks are a very common feature of multicellular animals and underlie the formation and function of numerous organs including the nervous system, the respiratory system, the vasculature and many internal glands. These networks range from subcellular structures such as dendritic trees to large multicellular tissues such as the lungs. The production of branched structures by single cells, so called subcellular branching, which has been better described in neurons and in cells of the respiratory and vascular systems, involves complex cytoskeletal remodelling events. In Drosophila, tracheal system terminal cells (TCs) and nervous system dendritic arborisation (da) neurons are good model systems for these subcellular branching processes. During development, the generation of subcellular branches by single-cells is characterized by extensive remodelling of the microtubule (MT) network and actin cytoskeleton, followed by vesicular transport and membrane dynamics. In this review, we describe the current knowledge on cytoskeletal regulation of subcellular branching, based on the terminal cells of the Drosophila tracheal system, but drawing parallels with dendritic branching and vertebrate vascular subcellular branching.
Collapse
Affiliation(s)
- Delia Ricolo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain
| | - Judith Castro-Ribera
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain
| | - Sofia J Araújo
- Department of Genetics, Microbiology and Statistics, School of Biology, University of Barcelona, 08028, Barcelona, Spain; Institute of Biomedicine University of Barcelona (IBUB), Barcelona, Spain.
| |
Collapse
|
24
|
Abstract
In this report, we describe how endothelial cells, the cells lining the interior of blood vessels, invade into tissues to form new vessels through sprouting angiogenesis. We found that endothelial cells use a specific lamellipodia-related membrane protrusion for invasion, which we termed dactylopodia. These protrusions have a special morphology, originate from filopodia, are linked to membrane-ruffling activity, and are specialized in invading into avascular extracellular matrix. Our work lays the foundations for drug discovery targeting sprouting angiogenesis. Sprouting angiogenesis is fundamental for development and contributes to cancer, diabetic retinopathy, and cardiovascular diseases. Sprouting angiogenesis depends on the invasive properties of endothelial tip cells. However, there is very limited knowledge on how tip cells invade into tissues. Here, we show that endothelial tip cells use dactylopodia as the main cellular protrusion for invasion into nonvascular extracellular matrix. We show that dactylopodia and filopodia protrusions are balanced by myosin IIA (NMIIA) and actin-related protein 2/3 (Arp2/3) activity. Endothelial cell-autonomous ablation of NMIIA promotes excessive dactylopodia formation in detriment of filopodia. Conversely, endothelial cell-autonomous ablation of Arp2/3 prevents dactylopodia development and leads to excessive filopodia formation. We further show that NMIIA inhibits Rac1-dependent activation of Arp2/3 by regulating the maturation state of focal adhesions. Our discoveries establish a comprehensive model of how endothelial tip cells regulate its protrusive activity and will pave the way toward strategies to block invasive tip cells during sprouting angiogenesis.
Collapse
|
25
|
Roux E, Bougaran P, Dufourcq P, Couffinhal T. Fluid Shear Stress Sensing by the Endothelial Layer. Front Physiol 2020; 11:861. [PMID: 32848833 PMCID: PMC7396610 DOI: 10.3389/fphys.2020.00861] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/26/2020] [Indexed: 12/21/2022] Open
Abstract
Blood flow produces mechanical frictional forces, parallel to the blood flow exerted on the endothelial wall of the vessel, the so-called wall shear stress (WSS). WSS sensing is associated with several vascular pathologies, but it is first a physiological phenomenon. Endothelial cell sensitivity to WSS is involved in several developmental and physiological vascular processes such as angiogenesis and vascular morphogenesis, vascular remodeling, and vascular tone. Local conditions of blood flow determine the characteristics of WSS, i.e., intensity, direction, pulsatility, sensed by the endothelial cells that, through their effect of the vascular network, impact WSS. All these processes generate a local-global retroactive loop that determines the ability of the vascular system to ensure the perfusion of the tissues. In order to account for the physiological role of WSS, the so-called shear stress set point theory has been proposed, according to which WSS sensing acts locally on vessel remodeling so that WSS is maintained close to a set point value, with local and distant effects of vascular blood flow. The aim of this article is (1) to review the existing literature on WSS sensing involvement on the behavior of endothelial cells and its short-term (vasoreactivity) and long-term (vascular morphogenesis and remodeling) effects on vascular functioning in physiological condition; (2) to present the various hypotheses about WSS sensors and analyze the conceptual background of these representations, in particular the concept of tensional prestress or biotensegrity; and (3) to analyze the relevance, explanatory value, and limitations of the WSS set point theory, that should be viewed as dynamical, and not algorithmic, processes, acting in a self-organized way. We conclude that this dynamic set point theory and the biotensegrity concept provide a relevant explanatory framework to analyze the physiological mechanisms of WSS sensing and their possible shift toward pathological situations.
Collapse
Affiliation(s)
- Etienne Roux
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France.,UMR 8560 IHPST - Institut d'Histoire et de Philosophie des Sciences et des Techniques, CNRS, Université Paris 1 Panthéon-Sorbonne, Paris, France
| | - Pauline Bougaran
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| | - Pascale Dufourcq
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| | - Thierry Couffinhal
- Inserm, UMR 1034, Biology of Cardiovascular Diseases, University of Bordeaux, Bordeaux, France
| |
Collapse
|
26
|
Fonseca CG, Barbacena P, Franco CA. Endothelial cells on the move: dynamics in vascular morphogenesis and disease. VASCULAR BIOLOGY 2020; 2:H29-H43. [PMID: 32935077 PMCID: PMC7487603 DOI: 10.1530/vb-20-0007] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
The vascular system is a hierarchically organized network of blood vessels that play crucial roles in embryogenesis, homeostasis and disease. Blood vessels are built by endothelial cells – the cells lining the interior of blood vessels – through a process named vascular morphogenesis. Endothelial cells react to different biomechanical signals in their environment by adjusting their behavior to: (1) invade, proliferate and fuse to form new vessels (angiogenesis); (2) remodel, regress and establish a hierarchy in the network (patterning); and (3) maintain network stability (quiescence). Each step involves the coordination of endothelial cell differentiation, proliferation, polarity, migration, rearrangements and shape changes to ensure network integrity and an efficient barrier between blood and tissues. In this review, we highlighted the relevance and the mechanisms involving endothelial cell migration during different steps of vascular morphogenesis. We further present evidence on how impaired endothelial cell dynamics can contribute to pathology.
Collapse
Affiliation(s)
- Catarina G Fonseca
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto Superior Técnico, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Barbacena
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Claudio A Franco
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
27
|
Zhang G, Varkey M, Wang Z, Xie B, Hou R, Atala A. ECM concentration and cell‐mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Biotechnol Bioeng 2020; 117:1148-1158. [DOI: 10.1002/bit.27250] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 12/05/2019] [Accepted: 12/12/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Guangliang Zhang
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Mathew Varkey
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| | - Zhan Wang
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| | - Beibei Xie
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Ruixing Hou
- Ruihua Affiliated Hospital of Soochow University Suzhou China
| | - Anthony Atala
- Wake Forest School of Medicine Wake Forest Institute for Regenerative Medicine Winston‐Salem North Carolina
| |
Collapse
|
28
|
Kruthika BS, Sugur H, Nandaki K, Arimappamagan A, Paturu K, Santosh V. Expression pattern and prognostic significance of myosin light chain 9 (MYL9): a novel biomarker in glioblastoma. J Clin Pathol 2019; 72:677-681. [DOI: 10.1136/jclinpath-2019-205834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 11/03/2022]
Abstract
AimsTumour recurrence is inevitable in glioblastoma (GBM) and mostly noted in the peritumoural brain zone (PT). In our previous microarray-based study, we identified Myosin Light Chain 9 (MYL9) as a highly expressed gene in the PT of GBM. Therefore, we aimed to study the expression pattern and clinical significance of MYL9 in GBM.MethodsPatient samples included three retrospective cohorts: 25 GBM cases with differential biopsies of tumour core and PT, 62 retrospective cases of newly diagnosed GBM with survival information and 20 paired samples (newly diagnosed and recurrent GBM). All tumour tissues, archived as formalin fixed paraffin embedded blocks were retrieved and immunohistochemistry for MYL9 and IDH1 R132H was performed. MYL9 expression was correlated with patient prognosis in our cohort and in The Cancer Genome Atlas (TCGA) and Rembrandt cohorts. It was further evaluated in the 20 paired samples of GBM.ResultsMYL9 showed a cytoplasmic membranous staining of tumour cells. The staining pattern was variable and patchy within tumours. Higher MYL9 expression was associated with poor overall and progression-free survival in our and in TCGA and Rembrandt cohorts. The expression of MYL9 was higher in IDH1 R132H immunonegative cases.ConclusionsWe show MYL9 as a novel biomarker, variably expressed in GBM. The association of high MYL9 expression with poor prognosis in newly diagnosed GBM patients and increased expression in recurrent GBM is indicative of its role in conferring tumour aggressiveness.
Collapse
|
29
|
Carvalho JR, Fortunato IC, Fonseca CG, Pezzarossa A, Barbacena P, Dominguez-Cejudo MA, Vasconcelos FF, Santos NC, Carvalho FA, Franco CA. Non-canonical Wnt signaling regulates junctional mechanocoupling during angiogenic collective cell migration. eLife 2019; 8:e45853. [PMID: 31246175 PMCID: PMC6684320 DOI: 10.7554/elife.45853] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/26/2019] [Indexed: 12/14/2022] Open
Abstract
Morphogenesis of hierarchical vascular networks depends on the integration of multiple biomechanical signals by endothelial cells, the cells lining the interior of blood vessels. Expansion of vascular networks arises through sprouting angiogenesis, a process involving extensive cell rearrangements and collective cell migration. Yet, the mechanisms controlling angiogenic collective behavior remain poorly understood. Here, we show this collective cell behavior is regulated by non-canonical Wnt signaling. We identify that Wnt5a specifically activates Cdc42 at cell junctions downstream of ROR2 to reinforce coupling between adherens junctions and the actin cytoskeleton. We show that Wnt5a signaling stabilizes vinculin binding to alpha-catenin, and abrogation of vinculin in vivo and in vitro leads to uncoordinated polarity and deficient sprouting angiogenesis in Mus musculus. Our findings highlight how non-canonical Wnt signaling coordinates collective cell behavior during vascular morphogenesis by fine-tuning junctional mechanocoupling between endothelial cells.
Collapse
Affiliation(s)
- Joana R Carvalho
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Isabela C Fortunato
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Catarina G Fonseca
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Pedro Barbacena
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | | | | | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Filomena A Carvalho
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| | - Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de MedicinaUniversidade de LisboaLisbonPortugal
| |
Collapse
|
30
|
Barbacena P, Ouarné M, Haigh JJ, Vasconcelos FF, Pezzarossa A, Franco CA. GNrep mouse: A reporter mouse for front-rear cell polarity. Genesis 2019; 57:e23299. [PMID: 30990965 PMCID: PMC6618267 DOI: 10.1002/dvg.23299] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/18/2019] [Accepted: 04/01/2019] [Indexed: 12/14/2022]
Abstract
Cell migration is essential during development, regeneration, homeostasis, and disease. Depending on the microenvironment, cells use different mechanisms to migrate. Yet, all modes of migration require the establishment of an intracellular front-rear polarity axis for directional movement. Although front-rear polarity can be easily identified in in vitro conditions, its assessment in vivo by live-imaging is challenging due to tissue complexity and lack of reliable markers. Here, we describe a novel and unique double fluorescent reporter mouse line to study front-rear cell polarity in living tissues, called GNrep. This mouse line simultaneously labels Golgi complexes and nuclei allowing the assignment of a nucleus-to-Golgi axis to each cell, which functions as a readout for cell front-rear polarity. As a proof-of-principle, we validated the efficiency of the GNrep line using an endothelial-specific Cre mouse line. We show that the GNrep labels the nucleus and the Golgi apparatus of endothelial cells with very high efficiency and high specificity. Importantly, the features of fluorescent intensity and localization for both mCherry and eGFP fluorescent intensity and localization allow automated segmentation and assignment of polarity vectors in complex tissues, making GNrep a great tool to study cell behavior in large-scale automated analyses. Altogether, the GNrep mouse line, in combination with different Cre recombinase lines, is a novel and unique tool to study of front-rear polarity in mice, both in fixed tissues or in intravital live imaging. This new line will be instrumental to understand cell migration and polarity in development, homeostasis, and disease.
Collapse
Affiliation(s)
- Pedro Barbacena
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Marie Ouarné
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Jody J Haigh
- Department of Pharmacology and Therapeutics, Research Institute of Oncology and Hematology, CancerCare Manitoba, University of Manitoba, Winnipeg, Manitoba, Canada.,VIB Inflammation Research Center, Ghent University, Ghent, Belgium
| | - Francisca F Vasconcelos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Anna Pezzarossa
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Claudio A Franco
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
31
|
MicroRNA-145 Regulates Pathological Retinal Angiogenesis by Suppression of TMOD3. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:335-347. [PMID: 30981984 PMCID: PMC6460252 DOI: 10.1016/j.omtn.2019.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/22/2019] [Accepted: 03/13/2019] [Indexed: 12/19/2022]
Abstract
Pathological angiogenesis is a hallmark of various vascular diseases, including vascular eye disorders. Dysregulation of microRNAs (miRNAs), a group of small regulatory RNAs, has been implicated in the regulation of ocular neovascularization. This study investigated the specific role of microRNA-145 (miR-145) in regulating vascular endothelial cell (EC) function and pathological ocular angiogenesis in a mouse model of oxygen-induced retinopathy (OIR). Expression of miR-145 was significantly upregulated in OIR mouse retinas compared with room air controls. Treatment with synthetic miR-145 inhibitors drastically decreased levels of pathological neovascularization in OIR, without substantially affecting normal developmental angiogenesis. In cultured human retinal ECs, treatment with miR-145 mimics significantly increased the EC angiogenic function, including proliferation, migration, and tubular formation, whereas miR-145 inhibitors attenuated in vitro angiogenesis. Tropomodulin3 (TMOD3), an actin-capping protein, is a direct miR-145 target and is downregulated in OIR retinas. Treatment with miR-145 mimic led to TMOD3 inhibition, altered actin cytoskeletal architecture, and elongation of ECs. Moreover, inhibition of TMOD3 promoted EC angiogenic function and pathological neovascularization in OIR and abolished the vascular effects of miR-145 inhibitors in vitro and in vivo. Overall, our findings indicate that miR-145 is a novel regulator of TMOD3-dependent cytoskeletal architecture and pathological angiogenesis and a potential target for development of treatments for neovascular eye disorders.
Collapse
|
32
|
Teuwen LA, Geldhof V, Carmeliet P. How glucose, glutamine and fatty acid metabolism shape blood and lymph vessel development. Dev Biol 2019; 447:90-102. [DOI: 10.1016/j.ydbio.2017.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 10/26/2017] [Accepted: 12/01/2017] [Indexed: 12/18/2022]
|
33
|
Budi EH, Mamai O, Hoffman S, Akhurst RJ, Derynck R. Enhanced TGF-β Signaling Contributes to the Insulin-Induced Angiogenic Responses of Endothelial Cells. iScience 2019; 11:474-491. [PMID: 30684493 PMCID: PMC6348203 DOI: 10.1016/j.isci.2018.12.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 11/12/2018] [Accepted: 12/28/2018] [Indexed: 12/17/2022] Open
Abstract
Angiogenesis, the development of new blood vessels, is a key process in disease. We reported that insulin promotes translocation of transforming growth factor β (TGF-β) receptors to the plasma membrane of epithelial and fibroblast cells, thus enhancing TGF-β responsiveness. Since insulin promotes angiogenesis, we addressed whether increased autocrine TGF-β signaling participates in endothelial cell responses to insulin. We show that insulin enhances TGF-β responsiveness and autocrine TGF-β signaling in primary human endothelial cells, by inducing a rapid increase in cell surface TGF-β receptor levels. Autocrine TGF-β/Smad signaling contributed substantially to insulin-induced gene expression associated with angiogenesis, including TGF-β target genes encoding angiogenic mediators; was essential for endothelial cell migration; and participated in endothelial cell invasion and network formation. Blocking TGF-β signaling impaired insulin-induced microvessel outgrowth from neonatal aortic rings and modified insulin-stimulated blood vessel formation in zebrafish. We conclude that enhanced autocrine TGF-β signaling is integral to endothelial cell and angiogenic responses to insulin.
Collapse
Affiliation(s)
- Erine H Budi
- Department of Cell and Tissue Biology, University of California at San Francisco Broad Center, Room RMB-1027, 35 Medical Center Way, San Francisco, CA 94143-0669, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Ons Mamai
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Steven Hoffman
- Department of Cell and Tissue Biology, University of California at San Francisco Broad Center, Room RMB-1027, 35 Medical Center Way, San Francisco, CA 94143-0669, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Rosemary J Akhurst
- Department of Anatomy, University of California at San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA
| | - Rik Derynck
- Department of Cell and Tissue Biology, University of California at San Francisco Broad Center, Room RMB-1027, 35 Medical Center Way, San Francisco, CA 94143-0669, USA; Department of Anatomy, University of California at San Francisco, San Francisco, CA 94143, USA; Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California at San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
34
|
Dinsmore CJ, Soriano P. MAPK and PI3K signaling: At the crossroads of neural crest development. Dev Biol 2018; 444 Suppl 1:S79-S97. [PMID: 29453943 PMCID: PMC6092260 DOI: 10.1016/j.ydbio.2018.02.003] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/06/2018] [Accepted: 02/06/2018] [Indexed: 02/08/2023]
Abstract
Receptor tyrosine kinase-mediated growth factor signaling is essential for proper formation and development of the neural crest. The many ligands and receptors implicated in these processes signal through relatively few downstream pathways, frequently converging on the MAPK and PI3K pathways. Despite decades of study, there is still considerable uncertainty about where and when these signaling pathways are required and how they elicit particular responses. This review summarizes our current understanding of growth factor-induced MAPK and PI3K signaling in the neural crest.
Collapse
Affiliation(s)
- Colin J Dinsmore
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA
| | - Philippe Soriano
- Department of Cell, Developmental and Regenerative Biology, Tisch Cancer Institute, Icahn School of Medicine at Mt. Sinai, New York, NY 10029, USA.
| |
Collapse
|
35
|
Liu J, Wada Y, Katsura M, Tozawa H, Erwin N, Kapron CM, Bao G, Liu J. Rho-Associated Coiled-Coil Kinase (ROCK) in Molecular Regulation of Angiogenesis. Am J Cancer Res 2018; 8:6053-6069. [PMID: 30613282 PMCID: PMC6299434 DOI: 10.7150/thno.30305] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Accepted: 10/16/2018] [Indexed: 02/06/2023] Open
Abstract
Identified as a major downstream effector of the small GTPase RhoA, Rho-associated coiled-coil kinase (ROCK) is a versatile regulator of multiple cellular processes. Angiogenesis, the process of generating new capillaries from the pre-existing ones, is required for the development of various diseases such as cancer, diabetes and rheumatoid arthritis. Recently, ROCK has attracted attention for its crucial role in angiogenesis, making it a promising target for new therapeutic approaches. In this review, we summarize recent advances in understanding the role of ROCK signaling in regulating the permeability, migration, proliferation and tubulogenesis of endothelial cells (ECs), as well as its functions in non-ECs which constitute the pro-angiogenic microenvironment. The therapeutic potential of ROCK inhibitors in angiogenesis-related diseases is also discussed.
Collapse
|
36
|
Gau D, Roy P. SRF'ing and SAP'ing - the role of MRTF proteins in cell migration. J Cell Sci 2018; 131:131/19/jcs218222. [PMID: 30309957 DOI: 10.1242/jcs.218222] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Actin-based cell migration is a fundamental cellular activity that plays a crucial role in a wide range of physiological and pathological processes. An essential feature of the remodeling of actin cytoskeleton during cell motility is the de novo synthesis of factors involved in the regulation of the actin cytoskeleton and cell adhesion in response to growth-factor signaling, and this aspect of cell migration is critically regulated by serum-response factor (SRF)-mediated gene transcription. Myocardin-related transcription factors (MRTFs) are key coactivators of SRF that link actin dynamics to SRF-mediated gene transcription. In this Review, we provide a comprehensive overview of the role of MRTF in both normal and cancer cell migration by discussing its canonical SRF-dependent as well as its recently emerged SRF-independent functions, exerted through its SAP domain, in the context of cell migration. We conclude by highlighting outstanding questions for future research in this field.
Collapse
Affiliation(s)
- David Gau
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA
| | - Partha Roy
- Department of Bioengineering, University of Pittsburgh, PA 15213, USA .,Department of Pathology, University of Pittsburgh, PA, 15213, USA
| |
Collapse
|
37
|
Gegenfurtner FA, Jahn B, Wagner H, Ziegenhain C, Enard W, Geistlinger L, Rädler JO, Vollmar AM, Zahler S. Micropatterning as a tool to identify regulatory triggers and kinetics of actin-mediated endothelial mechanosensing. J Cell Sci 2018; 131:jcs.212886. [PMID: 29724912 DOI: 10.1242/jcs.212886] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 04/25/2018] [Indexed: 12/11/2022] Open
Abstract
Developmental processes, such as angiogenesis, are associated with a constant remodeling of the actin cytoskeleton in response to different mechanical stimuli. The mechanosensitive transcription factors MRTF-A (MKL1) and YAP (also known as YAP1) are important mediators of this challenging adaptation process. However, it is as yet unknown whether both pathways respond in an identical or in a divergent manner to a given microenvironmental guidance cue. Here, we use a micropatterning approach to dissect single aspects of cellular behavior in a spatiotemporally controllable setting. Using the exemplary process of angiogenesis, we show that cell-cell contacts and adhesive surface area are shared regulatory parameters of MRTF and YAP on rigid 2D surfaces. By analyzing MRTF and YAP under laminar flow conditions and during cell migration on dumbbell-shaped microstructures, we demonstrate that they exhibit different translocation kinetics. In conclusion, our work promotes the application of micropatterning techniques as a cell biological tool to study mechanosensitive signaling in the context of angiogenesis.
Collapse
Affiliation(s)
- Florian A Gegenfurtner
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Berenice Jahn
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Helga Wagner
- ibidi GmbH, Am Klopferspitz 19, 82152 Martinsried, Germany
| | - Christoph Ziegenhain
- Ludwig-Maximilians-University Munich, Department of Biology II, Anthropology and Human Genomics, 82152 Martinsried, Germany
| | - Wolfgang Enard
- Ludwig-Maximilians-University Munich, Department of Biology II, Anthropology and Human Genomics, 82152 Martinsried, Germany
| | - Ludwig Geistlinger
- Ludwig-Maximilians-University Munich, Institute for Informatics, Teaching and Research Unit Bioinformatics, 80333 Munich, Germany
| | - Joachim O Rädler
- Ludwig-Maximilians-University Munich, Faculty of Physics, Soft Condensed Matter Group, 80539 Munich, Germany
| | - Angelika M Vollmar
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| | - Stefan Zahler
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Center for Drug Research, 81377 Munich, Germany
| |
Collapse
|
38
|
Vion AC, Alt S, Klaus-Bergmann A, Szymborska A, Zheng T, Perovic T, Hammoutene A, Oliveira MB, Bartels-Klein E, Hollfinger I, Rautou PE, Bernabeu MO, Gerhardt H. Primary cilia sensitize endothelial cells to BMP and prevent excessive vascular regression. J Cell Biol 2018; 217:1651-1665. [PMID: 29500191 PMCID: PMC5940299 DOI: 10.1083/jcb.201706151] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/01/2017] [Accepted: 01/30/2018] [Indexed: 12/30/2022] Open
Abstract
How endothelial cells sense and react to flow during vascular remodeling is poorly understood. Vion et al. show that endothelial cells utilize their primary cilia to stabilize vessel connections during vascular remodeling. Molecularly, they identify enhanced sensitivity to BMP9 in ciliated endothelial cells, selectively under low flow. Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis. IFT88 mutant cells lacking primary cilia displayed reduced polarization against blood flow, selectively at low and intermediate flow levels, and have a stronger migratory behavior. Molecularly, we identify that primary cilia endow endothelial cells with strongly enhanced sensitivity to bone morphogenic protein 9 (BMP9), selectively under low flow. We propose that BMP9 signaling cooperates with the primary cilia at low flow to keep immature vessels open before high shear stress–mediated remodeling.
Collapse
Affiliation(s)
- Anne-Clémence Vion
- Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, London, England, UK.,German Center for Cardiovascular Research, Berlin, Germany
| | - Silvanus Alt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Alexandra Klaus-Bergmann
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Anna Szymborska
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | - Tuyu Zheng
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Tijana Perovic
- Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Adel Hammoutene
- Institut National de la Santé et de la Recherche Medicale, U970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | | | - Eireen Bartels-Klein
- Max Delbrück Center for Molecular Medicine, Berlin, Germany.,German Center for Cardiovascular Research, Berlin, Germany
| | | | - Pierre-Emmanuel Rautou
- Institut National de la Santé et de la Recherche Medicale, U970, Paris Cardiovascular Research Center, Paris, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Departement Hospitalo-Universitaire Unity, Pôle des Maladies de l'Appareil Digestif, Service d'Hépatologie, Centre de Référence des Maladies Vasculaires du Foie, Hôpital Beaujon, Assistance Publique - Hopitaux de Paris, Clichy, France
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, University of Edinburgh, Edinburgh, Scotland, UK.,Centre for Computational Science, Department of Chemistry, University College London, London, England, UK
| | - Holger Gerhardt
- Max Delbrück Center for Molecular Medicine, Berlin, Germany .,Vascular Biology Laboratory, London Research Institute - Cancer Research UK, Lincoln's Inn Fields Laboratories, London, England, UK.,German Center for Cardiovascular Research, Berlin, Germany.,Vascular Patterning Laboratory, VIB Center for Cancer Biology, Leuven, Belgium.,Vascular Patterning Laboratory, Department of Oncology, KU Leuven, Leuven, Belgium.,Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
39
|
GPR182 is a novel marker for sinusoidal endothelial differentiation with distinct GPCR signaling activity in vitro. Biochem Biophys Res Commun 2018; 497:32-38. [PMID: 29408502 DOI: 10.1016/j.bbrc.2018.01.185] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 01/08/2023]
Abstract
Endothelial cells (EC) along the vascular tree exhibit organ-specific angiodiversity. Compared to most other ECs, liver sinusoidal endothelial cells (LSEC) that constitute the organ-specific microvasculature of the liver are morphologically and functionally unique. Previously, we showed that transcription factor Gata4 acts as a master regulator controlling LSEC differentiation. Upon analysis of the molecular signature of LSEC, we identified GPR182 as a potential LSEC-specific orphan G-protein coupled receptor (GPCR). Here, we demonstrate that GPR182 is expressed by LSEC and by EC with sinusoidal differentiation in spleen, lymph node and bone marrow in healthy human tissues. In a tissue microarray analysis of human hepatocellular carcinoma (HCC) samples, endothelial GPR182 expression was significantly reduced in tumor samples compared to peritumoral liver tissue samples (p = 0.0105). Loss of endothelial GPR182 expression was also seen in fibrotic and cirrhotic liver tissues. In vitro, GPR182 differentially regulated canonical GPCR signaling pathways as shown using reporter luciferase assays in HEK293T cells. Whereas ERK and RhoA signaling were inhibited, CREB and Calcium signaling were activated by ectopic GPR182 overexpression. Our data demonstrate that GPR182 is an endothelial subtype-specific marker for human sinusoidal EC of the liver, spleen, lymph node and bone marrow. In addition, we provide evidence for GPR182-dependent downstream signaling via ERK and SRF pathways that may be involved in regulating endothelial subtype-specific sinusoidal differentiation and sinusoidal functions such as permeability.
Collapse
|
40
|
Kim J, Kim YH, Kim J, Park DY, Bae H, Lee DH, Kim KH, Hong SP, Jang SP, Kubota Y, Kwon YG, Lim DS, Koh GY. YAP/TAZ regulates sprouting angiogenesis and vascular barrier maturation. J Clin Invest 2017; 127:3441-3461. [PMID: 28805663 DOI: 10.1172/jci93825] [Citation(s) in RCA: 282] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/29/2017] [Indexed: 12/28/2022] Open
Abstract
Angiogenesis is a multistep process that requires coordinated migration, proliferation, and junction formation of vascular endothelial cells (ECs) to form new vessel branches in response to growth stimuli. Major intracellular signaling pathways that regulate angiogenesis have been well elucidated, but key transcriptional regulators that mediate these signaling pathways and control EC behaviors are only beginning to be understood. Here, we show that YAP/TAZ, a transcriptional coactivator that acts as an end effector of Hippo signaling, is critical for sprouting angiogenesis and vascular barrier formation and maturation. In mice, endothelial-specific deletion of Yap/Taz led to blunted-end, aneurysm-like tip ECs with fewer and dysmorphic filopodia at the vascular front, a hyper-pruned vascular network, reduced and disarranged distributions of tight and adherens junction proteins, disrupted barrier integrity, subsequent hemorrhage in growing retina and brain vessels, and reduced pathological choroidal neovascularization. Mechanistically, YAP/TAZ activates actin cytoskeleton remodeling, an important component of filopodia formation and junction assembly. Moreover, YAP/TAZ coordinates EC proliferation and metabolic activity by upregulating MYC signaling. Overall, these results show that YAP/TAZ plays multifaceted roles for EC behaviors, proliferation, junction assembly, and metabolism in sprouting angiogenesis and barrier formation and maturation and could be a potential therapeutic target for treating neovascular diseases.
Collapse
Affiliation(s)
- Jongshin Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea
| | - Yoo Hyung Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Jaeryung Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Do Young Park
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Hosung Bae
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Da-Hye Lee
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Science, KAIST, Daejeon, South Korea
| | - Kyun Hoo Kim
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seon Pyo Hong
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Seung Pil Jang
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| | - Yoshiaki Kubota
- Department of Vascular Biology, The Sakaguchi Laboratory, Keio University School of Medicine, Tokyo, Japan
| | - Young-Guen Kwon
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Dae-Sik Lim
- National Creative Research Initiatives Center for Cell Division and Differentiation, Department of Biological Science, KAIST, Daejeon, South Korea
| | - Gou Young Koh
- Center for Vascular Research, Institute for Basic Science, Daejeon, South Korea.,Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
41
|
Pharmacological intervention of MKL/SRF signaling by CCG-1423 impedes endothelial cell migration and angiogenesis. Angiogenesis 2017. [PMID: 28638990 DOI: 10.1007/s10456-017-9560-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
De novo synthesis of cytoskeleton-regulatory proteins triggered by the megakaryoblastic leukemia (MKL)/serum response factor (SRF) transcriptional system in response to pro-angiogenic growth factors lies at the heart of endothelial cell (EC) migration (a critical element of angiogenesis) and neovascularization. This study explores whether pharmacological intervention of MKL/SRF signaling axis by CCG-1423 is able to suppress angiogenesis. Our studies show that CCG-1423 inhibits migration and cord morphogenesis of EC in vitro and sprouting angiogenesis ex vivo and in vivo, suggesting CCG-1423 could be a novel anti-angiogenic agent. Kymography analyses of membrane dynamics of EC revealed that CCG-1423 treatment causes a major defect in membrane protrusion. CCG-1423 treatment led to attenuated expression of several actin-binding proteins that are important for driving membrane protrusion including ArpC2, VASP, and profilin1 (Pfn1) with the most drastic effect seen on the expression of Pfn1. Finally, depletion of Pfn1 alone is also sufficient for a dramatic decrease in sprouting angiogenesis of EC in vitro and ex vivo, further suggesting that Pfn1 depletion may be one of the mechanisms of the anti-angiogenic action of CCG-1423.
Collapse
|
42
|
Expression and prognostic significance of MYL9 in esophageal squamous cell carcinoma. PLoS One 2017; 12:e0175280. [PMID: 28388691 PMCID: PMC5384754 DOI: 10.1371/journal.pone.0175280] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 03/23/2017] [Indexed: 01/02/2023] Open
Abstract
OBJECTIVE Myosin light chain 9 (MYL9) is necessary for cytoskeletal dynamics and experimental metastasis, but its expression in esophageal squamous cell carcinoma (ESCC) has not been addressed. We investigated the expression pattern and clinical significance of MYL9 in patients with ESCC. METHODS We examined MYL9 expression using quantitative real-time PCR and western blotting in NE1 immortalized esophageal epithelial cells, ESCC cell lines, and paired ESCC tissues. MYL9 protein in 136 primary ESCC tissues and other types of solid tumor was detected using immunohistochemistry. The association between MYL9 expression and clinical parameters and survival was evaluated by statistical analysis. RESULTS MYL9 was significantly upregulated in the ESCC cell lines as compared with NE1 cells. In the paired ESCC samples, MYL9 mRNA and protein expression was not significantly different between lesion tissues and the matched adjacent noncancerous tissues. In ESCC tissue, both intratumoral and peritumoral stroma were positive for MYL9. In the 136 ESCC samples, high MYL9 expression in the tumor cells significantly correlated with histological differentiation (p = 0.028), recurrence (p = 0.01), and vital status (p < 0.01). Patients with high MYL9 expression in the tumor cells had poorer overall survival (OS) and recurrence-free survival. Multivariate analysis revealed that high MYL9 expression in tumor cells was an independent and significant risk factor affecting OS after curative treatment (hazard ratio = 2.254, 95% confidence interval = 1.347-3.771, p = 0.002). CONCLUSIONS MYL9 expression might be a promising prognostic marker and therapeutic target in ESCC.
Collapse
|
43
|
Ogura S, Kurata K, Hattori Y, Takase H, Ishiguro-Oonuma T, Hwang Y, Ahn S, Park I, Ikeda W, Kusuhara S, Fukushima Y, Nara H, Sakai H, Fujiwara T, Matsushita J, Ema M, Hirashima M, Minami T, Shibuya M, Takakura N, Kim P, Miyata T, Ogura Y, Uemura A. Sustained inflammation after pericyte depletion induces irreversible blood-retina barrier breakdown. JCI Insight 2017; 2:e90905. [PMID: 28194443 DOI: 10.1172/jci.insight.90905] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In the central nervous system, endothelial cells (ECs) and pericytes (PCs) of blood vessel walls cooperatively form a physical and chemical barrier to maintain neural homeostasis. However, in diabetic retinopathy (DR), the loss of PCs from vessel walls is assumed to cause breakdown of the blood-retina barrier (BRB) and subsequent vision-threatening vascular dysfunctions. Nonetheless, the lack of adequate DR animal models has precluded disease understanding and drug discovery. Here, by using an anti-PDGFRβ antibody, we show that transient inhibition of the PC recruitment to developing retinal vessels sustained EC-PC dissociations and BRB breakdown in adult mouse retinas, reproducing characteristic features of DR such as hyperpermeability, hypoperfusion, and neoangiogenesis. Notably, PC depletion directly induced inflammatory responses in ECs and perivascular infiltration of macrophages, whereby macrophage-derived VEGF and placental growth factor (PlGF) activated VEGFR1 in macrophages and VEGFR2 in ECs. Moreover, angiopoietin-2 (Angpt2) upregulation and Tie1 downregulation activated FOXO1 in PC-free ECs locally at the leaky aneurysms. This cycle of vessel damage was shut down by simultaneously blocking VEGF, PlGF, and Angpt2, thus restoring the BRB integrity. Together, our model provides new opportunities for identifying the sequential events triggered by PC deficiency, not only in DR, but also in various neurological disorders.
Collapse
Affiliation(s)
- Shuntaro Ogura
- Department of Retinal Vascular Biology.,Department of Ophthalmology and Visual Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | | | - Yuki Hattori
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Hiroshi Takase
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Toshina Ishiguro-Oonuma
- Laboratory of Veterinary Physiology, Cooperative Department of Veterinary Medicine, Faculty of Agriculture, Iwate University, Morioka, Japan
| | - Yoonha Hwang
- Graduate School of Nanoscience and Technology, and
| | - Soyeon Ahn
- Graduate School of Nanoscience and Technology, and
| | - Inwon Park
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | | | - Sentaro Kusuhara
- Division of Ophthalmology, Department of Surgery, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoko Fukushima
- Department of Ophthalmology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiromi Nara
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Hideto Sakai
- Drug Discovery Research, Astellas Pharma Inc., Tsukuba, Japan
| | - Takashi Fujiwara
- Faculty of Nursing, Hiroshima Bunka Gakuen University, Kure, Japan
| | - Jun Matsushita
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masatsugu Ema
- Department of Stem Cells and Human Disease Models, Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Masanori Hirashima
- Division of Vascular Biology, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takashi Minami
- Division of Phenotype Disease Analysis, Institute of Resource Development and Analysis, Kumamoto University, Kumamoto, Japan
| | - Masabumi Shibuya
- Institute of Physiology and Medicine, Jobu University, Takasaki, Japan
| | - Nobuyuki Takakura
- Department of Signal Transduction, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Pilhan Kim
- Graduate School of Nanoscience and Technology, and
| | - Takaki Miyata
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuichiro Ogura
- Department of Ophthalmology and Visual Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Akiyoshi Uemura
- Department of Retinal Vascular Biology.,Department of Ophthalmology and Visual Sciences, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| |
Collapse
|
44
|
Shah AV, Birdsey GM, Randi AM. Regulation of endothelial homeostasis, vascular development and angiogenesis by the transcription factor ERG. Vascul Pharmacol 2016; 86:3-13. [PMID: 27208692 PMCID: PMC5404112 DOI: 10.1016/j.vph.2016.05.003] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/08/2016] [Accepted: 05/16/2016] [Indexed: 01/06/2023]
Abstract
Over the last few years, the ETS transcription factor ERG has emerged as a major regulator of endothelial function. Multiple studies have shown that ERG plays a crucial role in promoting angiogenesis and vascular stability during development and after birth. In the mature vasculature ERG also functions to maintain endothelial homeostasis, by transactivating genes involved in key endothelial functions, while repressing expression of pro-inflammatory genes. Its homeostatic role is lineage-specific, since ectopic expression of ERG in non-endothelial tissues such as prostate is detrimental and contributes to oncogenesis. This review summarises the main roles and pathways controlled by ERG in the vascular endothelium, its transcriptional targets and its functional partners and the emerging evidence on the pathways regulating ERG's activity and expression.
Collapse
Affiliation(s)
- Aarti V Shah
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Graeme M Birdsey
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Anna M Randi
- Vascular Sciences, Imperial Centre for Translational and Experimental Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
45
|
Franco CA, Jones ML, Bernabeu MO, Vion AC, Barbacena P, Fan J, Mathivet T, Fonseca CG, Ragab A, Yamaguchi TP, Coveney PV, Lang RA, Gerhardt H. Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling. eLife 2016; 5:e07727. [PMID: 26845523 PMCID: PMC4798962 DOI: 10.7554/elife.07727] [Citation(s) in RCA: 113] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 02/03/2016] [Indexed: 12/22/2022] Open
Abstract
Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.
Collapse
Affiliation(s)
- Claudio A Franco
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Martin L Jones
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
| | - Miguel O Bernabeu
- Centre for Medical Informatics, Usher Institute, The University of Edinburgh, Edinburgh, United Kingdom
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
| | - Anne-Clemence Vion
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
| | - Pedro Barbacena
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Jieqing Fan
- The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
- Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
| | - Catarina G Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| | - Anan Ragab
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
| | - Terry P Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, National Institutes of Health, Frederick, United States
| | - Peter V Coveney
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
| | - Richard A Lang
- The Visual Systems Group, Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, United States
| | - Holger Gerhardt
- Vascular Biology Laboratory, Lincoln's Inn Laboratories, London Research Institute, The Francis Crick Institute, London, United Kingdom
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
- Department of Oncology, Vascular Patterning Laboratory, Vesalius Research Center, Leuven, Belgium
- German Center for Cardiovascular Research, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
46
|
Tomé M, Sepúlveda JC, Delgado M, Andrades JA, Campisi J, González MA, Bernad A. miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells 2015; 32:2229-44. [PMID: 24648336 DOI: 10.1002/stem.1699] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 02/25/2014] [Accepted: 03/02/2014] [Indexed: 12/13/2022]
Abstract
MicroRNAs, small noncoding RNAs, regulate gene expression primarily at the posttranscriptional level. We previously found that miR-335 is critically involved in the regulation and differentiation capacity of human mesenchymal stem cells (hMSCs) in vitro. In this study, we investigated the significance of miR-335 for the therapeutic potential of hMSCs. Analysis of hMSCs in ex vivo culture demonstrated a significant and progressive increase in miR-335 that is prevented by telomerase. Expression levels of miR-335 were also positively correlated with donor age of hMSCs, and were increased by stimuli that induce cell senescence, such as γ-irradiation and standard O2 concentration. Forced expression of miR-335 resulted in early senescence-like alterations in hMSCs, including: increased SA-β-gal activity and cell size, reduced cell proliferation capacity, augmented levels of p16 protein, and the development of a senescence-associated secretory phenotype. Furthermore, overexpression of miR-335 abolished the in vivo chondro-osseous potential of hMSCs, and disabled their immunomodulatory capacity in a murine experimental model of lethal endotoxemia. These effects were accompanied by a severely reduced capacity for cell migration in response to proinflammatory signals and a marked reduction in Protein Kinase D1 phosphorylation, resulting in a pronounced decrease of AP-1 activity. Our results demonstrate that miR-335 plays a key role in the regulation of reparative activities of hMSCs and suggests that it might be considered a marker for the therapeutic potency of these cells in clinical applications.
Collapse
Affiliation(s)
- María Tomé
- Department of Cardiovascular Development and Repair, Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Hasan SS, Siekmann AF. The same but different: signaling pathways in control of endothelial cell migration. Curr Opin Cell Biol 2015; 36:86-92. [DOI: 10.1016/j.ceb.2015.07.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/16/2015] [Accepted: 07/19/2015] [Indexed: 11/24/2022]
|
48
|
Abstract
Intracerebral hemorrhagic stroke and vascular dementia are age- and hypertension-associated manifestations of human cerebral small vessel disease (SVD). Cerebral microvessels are formed by endothelial cells (ECs), which are connected through tight junctions, adherens junctions, and stabilizing basement membrane structures. These endothelial connections ensure both vessel stability and blood-brain barrier (BBB) functions, the latter enabling selective exchange of ions, bioactive molecules, and cells between the bloodstream and brain tissue. Srf(iECKO) mice, permitting conditional EC-specific depletion of the transcription factor Serum Response Factor (SRF), suffer from loss of BBB integrity and intracerebral hemorrhaging. Cerebral microbleeds and larger hemorrhages developed upon postnatal and adult depletion of either SRF or its cofactors Myocardin Related Transcription Factor (MRTF-A/-B), revealing essential requirements of ongoing SRF/MRTF activity for maintenance of cerebral small vessel integrity. In vivo magnetic resonance imaging allowed detection, localization, and time-resolved quantification of BBB permeability and hemorrhage formation in Srf(iECKO) brains. At the molecular level, direct and indirect SRF/MRTF target genes, encoding structural components of tight junctions (Claudins and ZO proteins), adherens junctions (VE-cadherin, α-Actinin), and the basement membrane (Collagen IV), were down-regulated upon SRF depletion. These results identify SRF and its MRTF cofactors as major transcriptional regulators of EC junctional stability, guaranteeing physiological functions of the cerebral microvasculature. We hypothesize that impairments in SRF/MRTF activity contribute to human SVD pathology.
Collapse
|
49
|
Zhang R, Wang N, Zhang M, Zhang LN, Guo ZX, Luo XG, Zhou H, He HP, Zhang TC. Rho/MRTF-A-Induced Integrin Expression Regulates Angiogenesis in Differentiated Multipotent Mesenchymal Stem Cells. Stem Cells Int 2015; 2015:534758. [PMID: 25949242 PMCID: PMC4408638 DOI: 10.1155/2015/534758] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/13/2015] [Accepted: 03/18/2015] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known to undergo endothelial differentiation in response to treatment with vascular endothelial growth factor (VEGF), but their angiogenic ability is poorly characterized. In the present study, we aimed to further investigate the role of Rho/MRTF-A in angiogenesis by MSCs and the effect of the Rho/MRTF-A pathway on the expression of integrins α1β1 and α5β1, which are known to mediate physiological and pathological angiogenesis. Our results showed that increased expression of α1, α5, and β1 was observed during angiogenesis of differentiated MSCs, and the Rho/MRTF-A signaling pathway was demonstrated to be involved in regulating the expression of integrins α1, α5, and β1. Luciferase reporter assay and ChIP assay determined that MRTF-A could bind to and transactivate the integrin α1 and α5 promoters. Treatment with the Rho inhibitor C3 transferase, the Rho-associated protein kinase (ROCK) inhibitor Y27632 or with shMRTF-A inhibited both the upregulation of α1, α5, and β1 as well as angiogenesis. Furthermore, in human umbilical vein endothelial cells (HUVECs), MRTF-A deletion led to marked reductions in cell migration and vessel network formation compared with the control. These data demonstrate that Rho/MRTF-A signaling is an important mediator that controls integrin gene expression during MSC-mediated angiogenic processes.
Collapse
Affiliation(s)
- Rui Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Nan Wang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Man Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Li-Nan Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhi-Xia Guo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xue-Gang Luo
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hao Zhou
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hong-Peng He
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Tong-Cun Zhang
- Key Laboratory of Industrial Microbiology, Ministry of Education and Tianjin City, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
- Department of Biochemistry, Medical College, Wuhan University of Science and Technology, Wuhan 430081, China
| |
Collapse
|
50
|
Franco CA, Jones ML, Bernabeu MO, Geudens I, Mathivet T, Rosa A, Lopes FM, Lima AP, Ragab A, Collins RT, Phng LK, Coveney PV, Gerhardt H. Dynamic endothelial cell rearrangements drive developmental vessel regression. PLoS Biol 2015; 13:e1002125. [PMID: 25884288 PMCID: PMC4401640 DOI: 10.1371/journal.pbio.1002125] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 03/10/2015] [Indexed: 11/19/2022] Open
Abstract
Patterning of functional blood vessel networks is achieved by pruning of superfluous connections. The cellular and molecular principles of vessel regression are poorly understood. Here we show that regression is mediated by dynamic and polarized migration of endothelial cells, representing anastomosis in reverse. Establishing and analyzing the first axial polarity map of all endothelial cells in a remodeling vascular network, we propose that balanced movement of cells maintains the primitive plexus under low shear conditions in a metastable dynamic state. We predict that flow-induced polarized migration of endothelial cells breaks symmetry and leads to stabilization of high flow/shear segments and regression of adjacent low flow/shear segments.
Collapse
Affiliation(s)
- Claudio A. Franco
- Vascular Biology Laboratory, London Research Institute—Cancer Research UK, Lincoln’s Inn Laboratories, London, United Kingdom
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Martin L. Jones
- Vascular Biology Laboratory, London Research Institute—Cancer Research UK, Lincoln’s Inn Laboratories, London, United Kingdom
| | - Miguel O. Bernabeu
- Centre for Computational Science, Department of Chemistry, University College London, London, United Kingdom
- CoMPLEX, University College London, Physics Building, London, United Kingdom
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, No. 9 Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Ilse Geudens
- Vascular Patterning Laboratory, Vesalius Research Center, KU Leuven, Department of Oncology, VIB3, Leuven, Belgium
| | - Thomas Mathivet
- Vascular Patterning Laboratory, Vesalius Research Center, KU Leuven, Department of Oncology, VIB3, Leuven, Belgium
| | - Andre Rosa
- Vascular Biology Laboratory, London Research Institute—Cancer Research UK, Lincoln’s Inn Laboratories, London, United Kingdom
| | - Felicia M. Lopes
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Aida P. Lima
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisboa, Portugal
| | - Anan Ragab
- Vascular Biology Laboratory, London Research Institute—Cancer Research UK, Lincoln’s Inn Laboratories, London, United Kingdom
| | - Russell T. Collins
- Vascular Biology Laboratory, London Research Institute—Cancer Research UK, Lincoln’s Inn Laboratories, London, United Kingdom
| | - Li-Kun Phng
- Vascular Patterning Laboratory, Vesalius Research Center, KU Leuven, Department of Oncology, VIB3, Leuven, Belgium
| | - Peter V. Coveney
- CoMPLEX, University College London, Physics Building, London, United Kingdom
| | - Holger Gerhardt
- Vascular Biology Laboratory, London Research Institute—Cancer Research UK, Lincoln’s Inn Laboratories, London, United Kingdom
- Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, No. 9 Edinburgh Bioquarter, Edinburgh, United Kingdom
| |
Collapse
|