1
|
Shah Z, Wang C, Ullah H, You H, Philonenko ES, Regan OV, Volchkov P, Dai Y, Yu J, Samokhvalov IM. RUNX1 is a key inducer of human hematopoiesis controlling non-hematopoietic mesodermal development. Stem Cells 2025; 43:sxaf019. [PMID: 40220285 DOI: 10.1093/stmcls/sxaf019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/21/2025] [Indexed: 04/14/2025]
Abstract
The RUNX1/AML1 transcription factor is one of the key regulators of definitive hematopoietic development in mice. However, its role in early human hematopoiesis remains poorly investigated. In this study, we integrated a tdTomato reporter cassette into the RUNX1 locus of human pluripotent stem cells (hPSCs) to monitor and block the expression of the gene during hPSC differentiation. This approach demonstrated that expression of RUNX1 starts early in mesodermal specification focusing later on hemogenic endothelium (HE) and nascent hematopoietic cells. Lack of RUNX1 halted the development of CD43+ and CD235-CD45+ hematopoietic cells, preventing the production of clonogenic hematopoietic progenitors including the multilineage ones. The abrogation of RUNX1 resulted in the failure of definitive lineages, specifically T and NK cells. Remarkably, we instead observed the accumulation of RUNX1-null HE cells at the stage of blood cell generation. Moreover, the loss of the gene biased the development toward the lineage of CD43-CD146+CD90+CD73+ mesenchymal cells. RNA-seq analysis of RUNX1-null cells revealed the downregulation of top-level hematopoietic transcription factor genes and the reciprocal upregulation of genes associated with non-hematopoietic cells of mesodermal origin. Forced expression of RUNX1c in differentiating RUNX1-null hPSCs effectively rescued the development of CD45+ myeloid cells and megakaryocytes. Our data demonstrate that RUNX1 is a top hematopoietic inducer that simultaneously controls the expansion of non-hematopoietic lineages.
Collapse
Affiliation(s)
- Zahir Shah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, United States
- Hematologic Malignancies Research Institute, City of Hope National Medical Center, Los Angeles, CA 91010, United States
| | - Cuihua Wang
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Hanif Ullah
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center, Los Angeles, CA 91010, United States
| | - Hao You
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
- Key Laboratory for Stem Cells and Tissue Engineering, Sun Yat-Sen University, Guangzhou 510080, People's Republic of China
| | - Elena S Philonenko
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| | - Olga V Regan
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Pavel Volchkov
- Department of Fundamental Medicine, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Yong Dai
- The first affiliated hospital, School of Medicine, Anhui University of Science and Technology, Huainan, Anhui 232001, People's Republic of China
| | - Jianhua Yu
- Division of Hematology and Oncology, Department of Medicine, Chao Family Comprehensive Cancer Center, University of California, Irvine, Orange, CA 92697, United States
| | - Igor M Samokhvalov
- CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cells and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People's Republic of China
| |
Collapse
|
2
|
Laverde V, Loges L, Sumanas S. The zebrafish ETS transcription factor Fli1b functions upstream of Scl/Tal1 during embryonic hematopoiesis. Biol Open 2025; 14:bio061948. [PMID: 40079219 PMCID: PMC12010910 DOI: 10.1242/bio.061948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
During embryonic development, vascular endothelial and hematopoietic cells are thought to originate from a common precursor, the hemangioblast. The evolutionarily conserved ETS transcription factor FLI1 has been previously implicated in hemangioblast formation and hematopoietic and vascular development. However, its role in regulating the hemangioblast transition into hematovascular lineages is still incompletely understood. Its zebrafish paralog Fli1b (also known as Fli1rs) functions partially redundantly with the ETS transcription factor Etv2 (also known as Etsrp) during vasculogenesis and angiogenesis. However, its role in embryonic hematopoiesis has not been previously investigated. Here, we show that zebrafish fli1b mutants have a reduced formation of primitive erythrocytes and hematopoietic stem and progenitor cells, and display reduced expression of key regulators of hematopoiesis, including scl (also known as tal1), gata1a and runx1. Expression of scl was sufficient to partially rescue defects in erythroid differentiation in fli1b mutants, arguing that scl functions downstream of fli1b during primitive erythropoiesis. In addition, myelopoiesis was strongly misregulated in fli1b mutants. Although the formation of the earliest myeloid progenitors - neutrophils and macrophages - was greatly reduced in fli1b mutants, this was compensated by the increased emergence of myeloid cells from the alternative hematopoietic site - the endocardium. Intriguingly, myeloid cells in fli1b mutants retained vascular endothelial marker expression, suggesting that they are present in a hemangioblast-like state. In summary, our results demonstrate a novel role of fli1b transcription factor in regulating embryonic hematopoiesis.
Collapse
Affiliation(s)
- Valentina Laverde
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Luiza Loges
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| | - Saulius Sumanas
- Department of Pathology and Cell Biology, USF Health Heart Institute, University of South Florida, Tampa, FL 33602, USA
| |
Collapse
|
3
|
Oh C, Kim MS, Shin U, Kang JW, Kim YH, Ko HS, Ra JS, Ahn S, Choi EY, Yu S, Nam U, Choi T, Myung K, Lee Y. SMC2 and Condensin II Subunits Are Essential for the Development of Hematopoietic Stem and Progenitor Cells in Zebrafish. J Cell Physiol 2025; 240:e70023. [PMID: 40134128 PMCID: PMC11937623 DOI: 10.1002/jcp.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 02/27/2025] [Accepted: 03/10/2025] [Indexed: 03/27/2025]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) play a pivotal role in blood cell production, maintaining the health and homeostasis of individuals. Dysregulation of HSPC function can lead to blood-related diseases, including cancer. Despite its importance, our understanding of the genes and pathways underlying HSPC development and the associated pathological mechanisms remains limited. To elucidate these unknown mechanisms, we analyzed databases of patients with blood disorders and performed functional gene studies using zebrafish. We employed bioinformatics tools to explore three public databases focusing on patients with myelodysplastic syndrome (MDS) and related model studies. This analysis identified significant alterations in several genes, especially SMC2 and other condensin-related genes, in patients with MDS. To further investigate the role of Smc2 in hematopoiesis, we generated smc2 loss-of-function zebrafish mutants using CRISPR mutagenesis. Further analyses of the mutants revealed that smc2 depletion induced G2/M cell cycle arrest in HSPCs, leading to their maintenance and expansion failure. Notably, although the condensin II subunits (ncaph2, ncapg2, and ncapd3) were essential for HSPC maintenance, the condensin I subunits did not affect HSPC development. These findings emphasize the crucial role of condensin II in ensuring healthy hematopoiesis via promoting HSPC proliferation.
Collapse
Affiliation(s)
- Chang‐Kyu Oh
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Institute for Future EarthPusan National UniversityPusanRepublic of Korea
| | - Man S. Kim
- Clinical Research Institute, Kyung Hee University Hospital at GangdongKyung Hee UniversitySeoulRepublic of Korea
| | - Unbeom Shin
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Ji Wan Kang
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Department of Anatomy, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Hwa Soo Ko
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Jae Sun Ra
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
| | - Soyul Ahn
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Institute for Future EarthPusan National UniversityPusanRepublic of Korea
| | - Eun Young Choi
- Department of Biochemistry, School of MedicinePusan National UniversityYangsanRepublic of Korea
| | - Sanghyeon Yu
- Department of Biomedical Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Uijeong Nam
- Department of Biomedical Science and TechnologyKyung Hee UniversitySeoulRepublic of Korea
| | - Taesoo Choi
- Department of Urology, School of MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic ScienceUlsanRepublic of Korea
- Department of Biomedical EngineeringUlsan National Institute for Science and TechnologyUlsanRepublic of Korea
| | - Yoonsung Lee
- Clinical Research Institute, Kyung Hee University Hospital at GangdongKyung Hee UniversitySeoulRepublic of Korea
| |
Collapse
|
4
|
Chen K, Wu J, Zhang Y, Liu W, Chen X, Zhang W, Huang Z. Cebpa is required for haematopoietic stem and progenitor cell generation and maintenance in zebrafish. Open Biol 2024; 14:240215. [PMID: 39500381 PMCID: PMC11537755 DOI: 10.1098/rsob.240215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 11/09/2024] Open
Abstract
The CCAAT enhancer binding protein alpha (CEBPA) is crucial for myeloid differentiation and the balance of haematopoietic stem and progenitor cell (HSPC) quiescence and self-renewal, and its dysfunction can drive leukemogenesis. However, its role in HSPC generation has not been fully elucidated. Here, we utilized various zebrafish cebpa mutants to investigate the function of Cebpa in the HSPC compartment. Co-localization analysis showed that cebpa expression is enriched in nascent HSPCs. Complete loss of Cebpa function resulted in a significant reduction in early HSPC generation and the overall HSPC pool during embryonic haematopoiesis. Interestingly, while myeloid differentiation was impaired in cebpa N-terminal mutants expressing the truncated zP30 protein, the number of HSPCs was not affected, indicating a redundant role of Cebpa P42 and P30 isoforms in HSPC development. Additionally, epistasis experiments confirmed that Cebpa functions downstream of Runx1 to regulate HSPC emergence. Our findings uncover a novel role of Cebpa isoforms in HSPC generation and maintenance, and provide new insights into HSPC development.
Collapse
Affiliation(s)
- Kemin Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Jieyi Wu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Yuxian Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wei Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Xiaohui Chen
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| | - Wenqing Zhang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, Guangdong518055, People’s Republic of China
| | - Zhibin Huang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, Guangdong510006, People’s Republic of China
| |
Collapse
|
5
|
Zhang W, Liu X, Xue W, Gao L, Li D, Jing C, Zhao J, Pan W. Permissive role of CTCF-Hoxb7a-Cdkn2a/b axis in the emergence of hematopoietic stem and progenitor cells during zebrafish embryogenesis. J Genet Genomics 2024; 51:974-977. [PMID: 38852666 DOI: 10.1016/j.jgg.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Wenjuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaofen Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenzhi Xue
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Gao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dantong Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Changbin Jing
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Jian Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Weijun Pan
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
6
|
Yu T, Chen J, Wang Y, Xu J. The embryonic zebrafish brain is exclusively colonized by pu.1-dependent and lymphatic-independent population of microglia. SCIENCE ADVANCES 2024; 10:eado0519. [PMID: 39196933 PMCID: PMC11352844 DOI: 10.1126/sciadv.ado0519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 07/24/2024] [Indexed: 08/30/2024]
Abstract
Microglia, the crucial immune cells inhabiting the central nervous system (CNS), perform a range of vital functions, encompassing immune defense and neuronal regulation. Microglia subsets with diverse functions and distinct developmental regulations have been identified recently. It is generally accepted that all microglia originate from hematopoiesis and depend on the myeloid transcription factor PU.1. However, a recent study reported the existence of mrc1+ microglia in zebrafish embryos, which are seemingly independent of Pu.1 and reliant on lymphatic vessels, sparking great interest in the possibility of lymphatic-originated microglia. To address this, we took advantage of a pu.1 knock-in zebrafish allele for a detailed investigation. Our results conclusively showed that almost all zebrafish embryonic microglia (~95% on average) express pu.1. Further, lineage tracing and mutant analysis revealed that these microglia neither emerged from nor depended on lymphatic vessels. In essence, our study refutes the presence of pu.1-independent but lymphatic-dependent microglia.
Collapse
Affiliation(s)
- Tao Yu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University–The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jiahao Chen
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Yuexin Wang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Jin Xu
- Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, China
| |
Collapse
|
7
|
Shastry S, Samal D, Pethe P. Histone H2A deubiquitinase BAP1 is essential for endothelial cell differentiation from human pluripotent stem cells. In Vitro Cell Dev Biol Anim 2024:10.1007/s11626-024-00935-x. [PMID: 38976206 DOI: 10.1007/s11626-024-00935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 05/25/2024] [Indexed: 07/09/2024]
Abstract
Polycomb group proteins (PcGs) add repressive post translational histone modifications such as H2AK119ub1, and histone H2A deubiquitinases remove it. Mice lacking histone H2A deubiquitinases such as Usp16 and Bap1 die in embryonic stage, while mice lacking Usp3, Mysm1, Usp12, and Usp21 have been shown to be deficient in hematopoietic lineage differentiation, cell cycle regulation, and DNA repair. Thus, it is likely that histone deubiquitinases may also be required for human endothelial cell differentiation; however, there are no reports about the role of histone H2A deubiquitinase BAP1 in human endothelial cell development. We differentiated human pluripotent stem cells into the endothelial lineage which expressed stable inducible shRNA against BAP1. Our results show that BAP1 is required for human endothelial cell differentiation.
Collapse
Affiliation(s)
- Shruti Shastry
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
- Worcester Polytechnic Institute (WPI), Boston, USA
| | - Dharitree Samal
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International (Deemed University), Pune, India.
| |
Collapse
|
8
|
Sharma A, Mistriel-Zerbib S, Najar RA, Engal E, Bentata M, Taqatqa N, Dahan S, Cohen K, Jaffe-Herman S, Geminder O, Baker M, Nevo Y, Plaschkes I, Kay G, Drier Y, Berger M, Salton M. Isoforms of the TAL1 transcription factor have different roles in hematopoiesis and cell growth. PLoS Biol 2023; 21:e3002175. [PMID: 37379322 DOI: 10.1371/journal.pbio.3002175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/30/2023] [Indexed: 06/30/2023] Open
Abstract
T-cell acute lymphoblastic leukemia (T-ALL) protein 1 (TAL1) is a central transcription factor in hematopoiesis. The timing and level of TAL1 expression orchestrate the differentiation to specialized blood cells and its overexpression is a common cause of T-ALL. Here, we studied the 2 protein isoforms of TAL1, short and long, which are generated by the use of alternative promoters as well as by alternative splicing. We analyzed the expression of each isoform by deleting an enhancer or insulator, or by opening chromatin at the enhancer location. Our results show that each enhancer promotes expression from a specific TAL1 promoter. Expression from a specific promoter gives rise to a unique 5' UTR with differential regulation of translation. Moreover, our study suggests that the enhancers regulate TAL1 exon 3 alternative splicing by inducing changes in the chromatin at the splice site, which we demonstrate is mediated by KMT2B. Furthermore, our results indicate that TAL1-short binds more strongly to TAL1 E-protein partners and functions as a stronger transcription factor than TAL1-long. Specifically TAL1-short has a unique transcription signature promoting apoptosis. Finally, when we expressed both isoforms in mice bone marrow, we found that while overexpression of both isoforms prevents lymphoid differentiation, expression of TAL-short alone leads to hematopoietic stem cell exhaustion. Furthermore, we found that TAL1-short promoted erythropoiesis and reduced cell survival in the CML cell line K562. While TAL1 and its partners are considered promising therapeutic targets in the treatment of T-ALL, our results show that TAL1-short could act as a tumor suppressor and suggest that altering TAL1 isoform's ratio could be a preferred therapeutic approach.
Collapse
Affiliation(s)
- Aveksha Sharma
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shani Mistriel-Zerbib
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Rauf Ahmad Najar
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Eden Engal
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mercedes Bentata
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nadeen Taqatqa
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sara Dahan
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Klil Cohen
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shiri Jaffe-Herman
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ophir Geminder
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mai Baker
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yuval Nevo
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Inbar Plaschkes
- Info-CORE, Bioinformatics Unit of the I-CORE Computation Center, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Gillian Kay
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yotam Drier
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Michael Berger
- Faculty of Medicine, The Lautenberg Center for Immunology and Cancer Research, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Maayan Salton
- Faculty of Medicine, Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Xia J, Liu M, Zhu C, Liu S, Ai L, Ma D, Zhu P, Wang L, Liu F. Activation of lineage competence in hemogenic endothelium precedes the formation of hematopoietic stem cell heterogeneity. Cell Res 2023; 33:448-463. [PMID: 37016019 PMCID: PMC10235423 DOI: 10.1038/s41422-023-00797-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/01/2023] [Indexed: 04/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are considered as a heterogeneous population, but precisely when, where and how HSPC heterogeneity arises remain largely unclear. Here, using a combination of single-cell multi-omics, lineage tracing and functional assays, we show that embryonic HSPCs originate from heterogeneous hemogenic endothelial cells (HECs) during zebrafish embryogenesis. Integrated single-cell transcriptome and chromatin accessibility analysis demonstrates transcriptional heterogeneity and regulatory programs that prime lymphoid/myeloid fates at the HEC level. Importantly, spi2+ HECs give rise to lymphoid/myeloid-primed HSPCs (L/M-HSPCs) and display a stress-responsive function under acute inflammation. Moreover, we uncover that Spi2 is required for the formation of L/M-HSPCs through tightly controlling the endothelial-to-hematopoietic transition program. Finally, single-cell transcriptional comparison of zebrafish and human HECs and human induced pluripotent stem cell-based hematopoietic differentiation results support the evolutionary conservation of L/M-HECs and a conserved role of SPI1 (spi2 homolog in mammals) in humans. These results unveil the lineage origin, biological function and molecular determinant of HSPC heterogeneity and lay the foundation for new strategies for induction of transplantable lineage-primed HSPCs in vitro.
Collapse
Affiliation(s)
- Jun Xia
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengyao Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Caiying Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Shicheng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lanlan Ai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Dongyuan Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Feng Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- School of Life Sciences, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
10
|
Chuang CK, Chen SF, Su YH, Chen WH, Lin WM, Wang IC, Shyue SK. The Role of SCL Isoforms in Embryonic Hematopoiesis. Int J Mol Sci 2023; 24:ijms24076427. [PMID: 37047400 PMCID: PMC10094407 DOI: 10.3390/ijms24076427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 03/16/2023] [Accepted: 03/26/2023] [Indexed: 04/01/2023] Open
Abstract
Three waves of hematopoiesis occur in the mouse embryo. The primitive hematopoiesis appears as blood islands in the extra embryonic yolk sac at E7.5. The extra embryonic pro-definitive hematopoiesis launches in late E8 and the embryonic definitive one turns on at E10.5 indicated by the emergence of hemogenic endothelial cells on the inner wall of the extra embryonic arteries and the embryonic aorta. To study the roles of SCL protein isoforms in murine hematopoiesis, the SCL-large (SCL-L) isoform was selectively destroyed with the remaining SCL-small (SCL-S) isoform intact. It was demonstrated that SCL-S was specifically expressed in the hemogenic endothelial cells (HECs) and SCL-L was only detected in the dispersed cells after budding from HECs. The SCLΔ/Δ homozygous mutant embryos only survived to E10.5 with normal extra embryonic vessels and red blood cells. In wild-type mouse embryos, a layer of neatly aligned CD34+ and CD43+ cells appeared on the endothelial wall of the aorta of the E10.5 fetus. However, the cells at the same site expressed CD31 rather than CD34 and/or CD43 in the E10.5 SCLΔ/Δ embryo, indicating that only the endothelial lineage was developed. These results reveal that the SCL-S is sufficient to sustain the primitive hematopoiesis and SCL-L is necessary to launch the definitive hematopoiesis.
Collapse
|
11
|
Serina Secanechia YN, Bergiers I, Rogon M, Arnold C, Descostes N, Le S, López-Anguita N, Ganter K, Kapsali C, Bouilleau L, Gut A, Uzuotaite A, Aliyeva A, Zaugg JB, Lancrin C. Identifying a novel role for the master regulator Tal1 in the Endothelial to Hematopoietic Transition. Sci Rep 2022; 12:16974. [PMID: 36217016 PMCID: PMC9550822 DOI: 10.1038/s41598-022-20906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
Progress in the generation of Hematopoietic Stem and Progenitor Cells (HSPCs) in vitro and ex vivo has been built on the knowledge of developmental hematopoiesis, underscoring the importance of understanding this process. HSPCs emerge within the embryonic vasculature through an Endothelial-to-Hematopoietic Transition (EHT). The transcriptional regulator Tal1 exerts essential functions in the earliest stages of blood development, but is considered dispensable for the EHT. Nevertheless, Tal1 is expressed with its binding partner Lmo2 and it homologous Lyl1 in endothelial and transitioning cells at the time of EHT. Here, we investigated the function of these genes using a mouse embryonic-stem cell (mESC)-based differentiation system to model hematopoietic development. We showed for the first time that the expression of TAL1 in endothelial cells is crucial to ensure the efficiency of the EHT process and a sustained hematopoietic output. Our findings uncover an important function of Tal1 during the EHT, thus filling the current gap in the knowledge of the role of this master gene throughout the whole process of hematopoietic development.
Collapse
Affiliation(s)
- Yasmin Natalia Serina Secanechia
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Isabelle Bergiers
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419619.20000 0004 0623 0341Present Address: Therapeutics Discovery, Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Turnhoutseweg 30, 2340 Beerse, Belgium
| | - Matt Rogon
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Centre for Biomolecular Network Analysis, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christian Arnold
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Nicolas Descostes
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, Bioinformatics Services, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Stephanie Le
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Natalia López-Anguita
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy ,grid.419538.20000 0000 9071 0620Present Address: Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Kerstin Ganter
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Chrysi Kapsali
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Lea Bouilleau
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Aaron Gut
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Auguste Uzuotaite
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Ayshan Aliyeva
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| | - Judith B. Zaugg
- grid.4709.a0000 0004 0495 846XEuropean Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Christophe Lancrin
- grid.418924.20000 0004 0627 3632European Molecular Biology Laboratory, EMBL Rome - Epigenetics and Neurobiology Unit, via E. Ramarini 32, 00015 Monterotondo, Italy
| |
Collapse
|
12
|
Stosik M, Tokarz-Deptuła B, Deptuła W. Haematopoiesis in Zebrafish (Danio Rerio). Front Immunol 2022; 13:902941. [PMID: 35720291 PMCID: PMC9201100 DOI: 10.3389/fimmu.2022.902941] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
Haematopoiesis in fish and mammals is a complex process, and many aspects regarding its model and the differentiation of haematopoietic stem cells (HSCs) still remain enigmatic despite advanced studies. The effects of microenvironmental factors or HSCs niche and signalling pathways on haematopoiesis are also unclear. This review presents Danio rerio as a model organism for studies on haematopoiesis in vertebrates and discusses the development of this process during the embryonic period and in adult fish. It describes the role of the microenvironment of the haematopoietic process in regulating the formation and function of HSCs/HSPCs (hematopoietic stem/progenitor cells) and highlights facts and research areas important for haematopoiesis in fish and mammals.
Collapse
Affiliation(s)
- Michał Stosik
- Institute of Biological Science, Faculty of Biological Sciences, University of Zielona Góra, Zielona Góra, Poland
| | | | - Wiesław Deptuła
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| |
Collapse
|
13
|
Hemogenic and aortic endothelium arise from a common hemogenic angioblast precursor and are specified by the Etv2 dosage. Proc Natl Acad Sci U S A 2022; 119:e2119051119. [PMID: 35333649 PMCID: PMC9060440 DOI: 10.1073/pnas.2119051119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
SignificanceHematopoietic stem cells (HSCs) are generated from specialized endothelial cells, called hemogenic endothelial cells (HECs). It has been debated whether HECs and non-HSC-forming conventional endothelial cells (cECs) arise from a common precursor or represent distinct lineages. Moreover, the molecular basis underlying their distinct fate determination is poorly understood. We use photoconvertible labeling, time-lapse imaging, and single-cell RNA-sequencing analysis to trace the lineage of HECs. We discovered that HECs and cECs arise from a common hemogenic angioblast precursor, and their distinct fate is determined by high or low dosage of Etv2, respectively. Our results illuminate the lineage origin and a mechanism on the fate determination of HECs, which may enhance the understanding on the ontogeny of HECs in vertebrates.
Collapse
|
14
|
SLUG and Truncated TAL1 Reduce Glioblastoma Stem Cell Growth Downstream of Notch1 and Define Distinct Vascular Subpopulations in Glioblastoma Multiforme. Cancers (Basel) 2021; 13:cancers13215393. [PMID: 34771555 PMCID: PMC8582547 DOI: 10.3390/cancers13215393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/21/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary Glioblastoma multiforme is the most aggressive form of brain tumor and is still incurable. These neoplasms are particularly difficult to treat efficiently because of their highly heterogeneous and resistant characteristics. Advances in genomics have highlighted the complex molecular landscape of these tumors and the need to further develop effective and targeted therapies for each patient. A specific population of cells with enriched stem cell properties within tumors, i.e., glioblastoma stem cells (GSC), drives this cellular heterogeneity and therapeutical resistance, and thus constitutes an attractive target for the design of innovative treatments. However, the signals driving the maintenance and resistance of these cells are still unclear. We provide new findings regarding the expression of two transcription factors in these cells and directly in glioblastoma patient samples. We show that these proteins downregulate GSC growth and ultimately participate in the progression of gliomas. The forthcoming results will contribute to a better understanding of gliomagenesis. Abstract Glioblastomas (GBM) are high-grade brain tumors, containing cells with distinct phenotypes and tumorigenic potentials, notably aggressive and treatment-resistant multipotent glioblastoma stem cells (GSC). The molecular mechanisms controlling GSC plasticity and growth have only partly been elucidated. Contact with endothelial cells and the Notch1 pathway control GSC proliferation and fate. We used three GSC cultures and glioma resections to examine the expression, regulation, and role of two transcription factors, SLUG (SNAI2) and TAL1 (SCL), involved in epithelial to mesenchymal transition (EMT), hematopoiesis, vascular identity, and treatment resistance in various cancers. In vitro, SLUG and a truncated isoform of TAL1 (TAL1-PP22) were strongly upregulated upon Notch1 activation in GSC, together with LMO2, a known cofactor of TAL1, which formed a complex with truncated TAL1. SLUG was also upregulated by TGF-β1 treatment and by co-culture with endothelial cells. In patient samples, the full-length isoform TAL1-PP42 was expressed in all glioma grades. In contrast, SLUG and truncated TAL1 were preferentially overexpressed in GBMs. SLUG and TAL1 are expressed in the tumor microenvironment by perivascular and endothelial cells, respectively, and to a minor extent, by a fraction of epidermal growth factor receptor (EGFR) -amplified GBM cells. Mechanistically, both SLUG and truncated TAL1 reduced GSC growth after their respective overexpression. Collectively, this study provides new evidence for the role of SLUG and TAL1 in regulating GSC plasticity and growth.
Collapse
|
15
|
Pethe P, Noel VS, Kale V. Deterministic role of sonic hedgehog signalling pathway in specification of hemogenic versus endocardiogenic endothelium from differentiated human embryonic stem cells. Cells Dev 2021; 166:203685. [PMID: 33994358 DOI: 10.1016/j.cdev.2021.203685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/14/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
Embryonic stem cells (ESCs) have been shown to have an ability to form a large number of functional endothelial cells in vitro, but generating organ-specific endothelial cells remains a challenge. Sonic hedgehog (SHH) pathway is one of the crucial developmental pathways that control differentiation of many embryonic cell types such as neuroectodermal, primitive gut tube and developing limb buds; SHH pathway is important for functioning of adult cell of skin, bone, liver as well as it regulates haematopoiesis. Misregulation of SHH pathway leads to cancers such as hepatic, pancreatic, basal cell carcinoma, medulloblastoma, etc. However, its role in differentiation of human ESCs into endothelial cells has not been completely elucidated. Here, we examined the role of SHH signalling pathway in endothelial differentiation of hESCs by growing them in the presence of an SHH agonist (purmorphamine) and an SHH antagonist (SANT-1) for a period of 6 days. Interestingly, we found that activation of SHH pathway led to a higher expression of set of transcription factors such as BRACHYURY, GATA2 and RUNX1, thus favouring hemogenic endothelium; whereas inhibition of SHH pathway led to a reduced expression of set of markers such as RUNX1 and BRACHURY, and an increased expression of set of markers - NFATC1, c-KIT, GATA4, CD31 & CD34, thus favouring endocardiogenic endothelium. The results of this study have revealed the previously unreported deterministic role of SHH pathway in specification of endothelial cells differentiated from human ESCs into hemogenic vs. endocardiogenic lineage; this finding could have major implications for clinical applications.
Collapse
Affiliation(s)
- Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| | - Vinnie Sharon Noel
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| | - Vaijayanti Kale
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India.
| |
Collapse
|
16
|
Pang M, Bai L, Zong W, Wang X, Bu Y, Xiong C, Zheng J, Li J, Gao W, Feng Z, Chen L, Zhang J, Cheng H, Zhu X, Xiong JW. Light-sheet fluorescence imaging charts the gastrula origin of vascular endothelial cells in early zebrafish embryos. Cell Discov 2020; 6:74. [PMID: 33133634 PMCID: PMC7588447 DOI: 10.1038/s41421-020-00204-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
It remains challenging to construct a complete cell lineage map of the origin of vascular endothelial cells in any vertebrate embryo. Here, we report the application of in toto light-sheet fluorescence imaging of embryos to trace the origin of vascular endothelial cells (ECs) at single-cell resolution in zebrafish. We first adapted a previously reported method to embryo mounting and light-sheet imaging, created an alignment, fusion, and extraction all-in-one software (AFEIO) for processing big data, and performed quantitative analysis of cell lineage relationships using commercially available Imaris software. Our data revealed that vascular ECs originated from broad regions of the gastrula along the dorsal–ventral and anterior–posterior axes, of which the dorsal–anterior cells contributed to cerebral ECs, the dorsal–lateral cells to anterior trunk ECs, and the ventral–lateral cells to posterior trunk and tail ECs. Therefore, this work, to our knowledge, charts the first comprehensive map of the gastrula origin of vascular ECs in zebrafish, and has potential applications for studying the origin of any embryonic organs in zebrafish and other model organisms.
Collapse
Affiliation(s)
- Meijun Pang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Linlu Bai
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Weijian Zong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Xu Wang
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Ye Bu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Connie Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jiyuan Zheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jieyi Li
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Weizheng Gao
- School of Engineering, Peking University, Beijing 100871, China
| | - Zhiheng Feng
- School of Engineering, Peking University, Beijing 100871, China
| | - Liangyi Chen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jue Zhang
- School of Engineering, Peking University, Beijing 100871, China
| | - Heping Cheng
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Xiaojun Zhu
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China
| | - Jing-Wei Xiong
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing 100871, China.,Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
17
|
Yu T, Kuang H, Chen J, Lin X, Wu Y, Chen K, Zhang M, Zhang W, Wen Z. Tripartite-motif family protein 35-28 regulates microglia development by preventing necrotic death of microglial precursors in zebrafish. J Biol Chem 2020; 295:8846-8856. [PMID: 32398256 DOI: 10.1074/jbc.ra119.012043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 05/04/2020] [Indexed: 02/02/2023] Open
Abstract
Microglia are tissue-resident macrophages in the central nervous system (CNS) that play essential roles in the regulation of CNS development and homeostasis. Yet, the genetic networks governing microglia development remain incompletely defined. Here, we report the identification and characterization of a microglia-defective zebrafish mutant wulonghkz12 (wulhkz12 ) isolated from an ethylnitrosourea (ENU)-based genetic screen. We show that wulhkz12 mutants harbors a missense point mutation in the gene region encoding the PRY/SPRY domain of the tripartite-motif family protein 35-28 (trim35-28) gene. Time-lapse imaging revealed that the loss of Trim35-28 function causes lytic necrosis of microglial precursors/peripheral macrophages, as indicated by cytoplasmic swelling and membrane rupture of these precursors and accompanied by neutrophil infiltration and systemic inflammation. Intriguingly, the lytic necrosis of microglial precursors in trim35-28-deficient mutants appeared to depend neither on the canonical pyroptotic nor necroptotic pathways, as inhibition of the key component in each pathway could not rescue the microglia phenotype in trim35-28-deficient mutants. Finally, results from tissue-specific rescue experiments suggested that Trim35-28 acts cell-autonomously in the survival of microglial precursors. Taken together, the findings of our study reveal Trim35-28 as a regulatory protein essential for microglia development.
Collapse
Affiliation(s)
- Tao Yu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Haoyue Kuang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Jiahao Chen
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, Guangzhou, China
| | - Xi Lin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yi Wu
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
| | - Keyu Chen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Mingjie Zhang
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wenqing Zhang
- Department of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangdong, Guangzhou, China.
| | - Zilong Wen
- Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University- The Hong Kong University of Science and Technology Medical Center, Shenzhen, China; Division of Life Science, State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen, China.
| |
Collapse
|
18
|
Daniel MG, Rapp K, Schaniel C, Moore KA. Induction of developmental hematopoiesis mediated by transcription factors and the hematopoietic microenvironment. Ann N Y Acad Sci 2019; 1466:59-72. [PMID: 31621095 DOI: 10.1111/nyas.14246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/30/2019] [Accepted: 09/13/2019] [Indexed: 12/11/2022]
Abstract
The induction of hematopoiesis in various cell types via transcription factor (TF) reprogramming has been demonstrated by several strategies. The eventual goal of these approaches is to generate a product for unmet needs in hematopoietic cell transplantation therapies. The most successful strategies hew closely to clues provided from developmental hematopoiesis in terms of factor expression and environmental cues. In this review, we aim to summarize the TFs that play important roles in developmental hematopoiesis primarily and to also touch on adult hematopoiesis. Several aspects of cellular and molecular biology coalesce in this process, with TFs and surrounding cellular signals playing a major role in the overall development of the hematopoietic lineage. We attempt to put these elements into the context of reprogramming and highlight their roles.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,The Graduate School of Biomedical Science, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Christoph Schaniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York.,Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York City, New York.,Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York City, New York
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York City, New York.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York City, New York
| |
Collapse
|
19
|
Daniel MG, Sachs D, Bernitz JM, Fstkchyan Y, Rapp K, Satija N, Law K, Patel F, Gomes AM, Kim HS, Pereira CF, Chen B, Lemischka IR, Moore KA. Induction of human hemogenesis in adult fibroblasts by defined factors and hematopoietic coculture. FEBS Lett 2019; 593:3266-3287. [PMID: 31557312 DOI: 10.1002/1873-3468.13621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 12/13/2022]
Abstract
Transcription factor (TF)-based reprogramming of somatic tissues holds great promise for regenerative medicine. Previously, we demonstrated that the TFs GATA2, GFI1B, and FOS convert mouse and human fibroblasts to hemogenic endothelial-like precursors that generate hematopoietic stem progenitor (HSPC)-like cells over time. This conversion is lacking in robustness both in yield and biological function. Herein, we show that inclusion of GFI1 to the reprogramming cocktail significantly expands the HSPC-like population. AFT024 coculture imparts functional potential to these cells and allows quantification of stem cell frequency. Altogether, we demonstrate an improved human hemogenic induction protocol that could provide a valuable human in vitro model of hematopoiesis for disease modeling and a platform for cell-based therapeutics. DATABASE: Gene expression data are available in the Gene Expression Omnibus (GEO) database under the accession number GSE130361.
Collapse
Affiliation(s)
- Michael G Daniel
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David Sachs
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jeffrey M Bernitz
- Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, Basel, Switzerland
| | - Yesai Fstkchyan
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katrina Rapp
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Namita Satija
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kenneth Law
- Rocket Pharmaceuticals Ltd, New York, NY, USA
| | - Foram Patel
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andreia M Gomes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Cantanhede, Portugal
| | - Huen-Suk Kim
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos-Filipe Pereira
- Division of Molecular Medicine and Gene Therapy, Lund University, Sweden.,Wallenberg Center for Molecular Medicine, Lund University, Sweden
| | - Benjamin Chen
- Division of Infectious Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ihor R Lemischka
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Pharmacology and Systems Therapeutics, Icahn School of Medicine, New York, NY, USA
| | - Kateri A Moore
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
20
|
Bonkhofer F, Rispoli R, Pinheiro P, Krecsmarik M, Schneider-Swales J, Tsang IHC, de Bruijn M, Monteiro R, Peterkin T, Patient R. Blood stem cell-forming haemogenic endothelium in zebrafish derives from arterial endothelium. Nat Commun 2019; 10:3577. [PMID: 31395869 PMCID: PMC6687740 DOI: 10.1038/s41467-019-11423-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 07/10/2019] [Indexed: 02/07/2023] Open
Abstract
Haematopoietic stem cells are generated from the haemogenic endothelium (HE) located in the floor of the dorsal aorta (DA). Despite being integral to arteries, it is controversial whether HE and arterial endothelium share a common lineage. Here, we present a transgenic zebrafish runx1 reporter line to isolate HE and aortic roof endothelium (ARE)s, excluding non-aortic endothelium. Transcriptomic analysis of these populations identifies Runx1-regulated genes and shows that HE initially expresses arterial markers at similar levels to ARE. Furthermore, runx1 expression depends on prior arterial programming by the Notch ligand dll4. Runx1-/- mutants fail to downregulate arterial genes in the HE, which remains integrated within the DA, suggesting that Runx1 represses the pre-existing arterial programme in HE to allow progression towards the haematopoietic fate. These findings strongly suggest that, in zebrafish, aortic endothelium is a precursor to HE, with potential implications for pluripotent stem cell differentiation protocols for the generation of transplantable HSCs.
Collapse
Affiliation(s)
- Florian Bonkhofer
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Rossella Rispoli
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- Division of Genetics and Molecular Medicine, NIHR Biomedical Research Centre, Guy's and St Thomas' NHS Foundation Trust and King's College London, London, UK
| | - Philip Pinheiro
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Monika Krecsmarik
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
- BHF Centre of Research Excellence, Oxford, UK
| | - Janina Schneider-Swales
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Ingrid Ho Ching Tsang
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Marella de Bruijn
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Rui Monteiro
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- BHF Centre of Research Excellence, Oxford, UK.
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Tessa Peterkin
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK
| | - Roger Patient
- Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DS, UK.
- BHF Centre of Research Excellence, Oxford, UK.
| |
Collapse
|
21
|
Abstract
The formation and remodeling of a functional circulatory system is critical for sustaining prenatal and postnatal life. During embryogenesis, newly differentiated endothelial cells require further specification to create the unique features of distinct vessel subtypes needed to support tissue morphogenesis. In this review, we explore signaling pathways and transcriptional regulators that modulate endothelial cell differentiation and specification, as well as applications of these processes to stem cell biology and regenerative medicine. We also summarize recent technical advances, including the growing utilization of single-cell sequencing to study vascular heterogeneity and development.
Collapse
Affiliation(s)
- Jingyao Qiu
- From the Department of Genetics (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Department of Medicine (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Yale Cardiovascular Research Center (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT
| | - Karen K Hirschi
- From the Department of Genetics (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Department of Medicine (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Yale Cardiovascular Research Center (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT.,Vascular Biology and Therapeutics Program (J.Q., K.K.H.), Yale University School of Medicine, New Haven, CT
| |
Collapse
|
22
|
Wang T, Yan B, Lou L, Lin X, Yu T, Wu S, Lu Q, Liu W, Huang Z, Zhang M, Zhang W, Wen Z. Nlrc3-like is required for microglia maintenance in zebrafish. J Genet Genomics 2019; 46:291-299. [PMID: 31278008 DOI: 10.1016/j.jgg.2019.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 06/17/2019] [Accepted: 06/17/2019] [Indexed: 01/06/2023]
Abstract
Microglia are tissue-resident macrophages residing in the central nervous system (CNS) and play critical roles in removing cellular debris and infectious agents as well as regulating neurogenesis and neuronal activities. Yet, the molecular basis underlying the establishment of microglia pool and the maintenance of their homeostasis in the CNS remain largely undefined. Here we report the identification and characterization of a mutant zebrafish, which harbors a point mutation in the nucleotide-binding oligomerization domain (NOD) like receptor gene nlrc3-like, resulting in the loss of microglia in a temperature sensitive manner. Temperature shift assay reveals that the late onset of nlrc3-like deficiency leads to excessive microglia cell death. Further analysis shows that the excessive microglia death in nlrc3-like deficient mutants is attributed, at least in part, to aberrant activation of canonical inflammasome pathway. Our study indicates that proper regulation of inflammasome cascade is critical for the maintenance of microglia homeostasis.
Collapse
Affiliation(s)
- Tienan Wang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Bo Yan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China; Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Liang Lou
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Xi Lin
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Tao Yu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Shuting Wu
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei Liu
- Department of Developmental Biology, School of Basic Medical Sciences, South China University of Technology, Guangzhou, 510630, China
| | - Zhibin Huang
- Department of Developmental Biology, School of Basic Medical Sciences, South China University of Technology, Guangzhou, 510630, China
| | - Mingjie Zhang
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wenqing Zhang
- Department of Developmental Biology, School of Basic Medical Sciences, South China University of Technology, Guangzhou, 510630, China.
| | - Zilong Wen
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, Center of Systems Biology and Human Health, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
23
|
MAPK p38alpha Kinase Influences Haematopoiesis in Embryonic Stem Cells. Stem Cells Int 2019; 2019:5128135. [PMID: 31281375 PMCID: PMC6589316 DOI: 10.1155/2019/5128135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/14/2019] [Accepted: 04/28/2019] [Indexed: 01/23/2023] Open
Abstract
The activation of p38alpha kinase mediates cell response to various extracellular factors including many interleukins and growth factors important for haematopoiesis. The role of p38alpha kinase was previously analysed in particular haematopoietic cells. In this study and for the first time, the role of p38alpha kinase in haematopoiesis was studied using a model of continuous haematopoietic development in pluripotent embryonic stem cells in vitro. The expression of transcripts associated with haematopoiesis and the potential for the formation of specific haematopoietic cell colonies were compared between wild-type and mutant p38alpha gene-depleted cells. The absence of p38alpha kinase led to the inhibition of hemangioblast formation during the first step of haematopoiesis. Later, during differentiation, due to the lack of p38alpha kinase, erythrocyte maturation was impaired. Mutant p38α−/− cells also exhibited decreased potential with respect to the expansion of granulocyte colony-forming units. This effect was reversed in the absence of erythropoietin as shown by colony-forming unit assay in media for colony-forming unit granulocytes/macrophages. p38alpha kinase thus plays an important role in the differentiation of common myeloid precursor cells into granulocyte lineages.
Collapse
|
24
|
Grainger S, Nguyen N, Richter J, Setayesh J, Lonquich B, Oon CH, Wozniak JM, Barahona R, Kamei CN, Houston J, Carrillo-Terrazas M, Drummond IA, Gonzalez D, Willert K, Traver D. EGFR is required for Wnt9a-Fzd9b signalling specificity in haematopoietic stem cells. Nat Cell Biol 2019; 21:721-730. [PMID: 31110287 PMCID: PMC6559346 DOI: 10.1038/s41556-019-0330-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022]
Abstract
Wnt signalling drives a plethora of processes in development, homeostasis, and disease; however, the role and mechanism of individual ligand/receptor (Wnt/Frizzled, Fzd) interactions in specific biological processes remain poorly understood. Wnt9a is specifically required for the amplification of blood progenitor cells during development. Using genetic studies in zebrafish and human embryonic stem cells, paired with in vitro cell biology and biochemistry, we have determined that Wnt9a signals specifically through Fzd9b to elicit β-catenin-dependent Wnt signalling that regulates haematopoietic stem and progenitor cell emergence. We demonstrate that the epidermal growth factor receptor (EGFR) is required as a co-factor for Wnt9a/Fzd9b signalling. EGFR-mediated phosphorylation of one tyrosine residue on the Fzd9b intracellular tail in response to Wnt9a promotes internalization of the Wnt9a/Fzd9b/LRP signalosome and subsequent signal transduction. These findings provide mechanistic insights for specific Wnt/Fzd signals, which will be crucial for specific therapeutic targeting and regenerative medicine.
Collapse
Affiliation(s)
- Stephanie Grainger
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Nicole Nguyen
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jenna Richter
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Jordan Setayesh
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Brianna Lonquich
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Chet Huan Oon
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Jacob M Wozniak
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA.,Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Rocio Barahona
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Caramai N Kamei
- Massachusetts General Hospital Nephrology Division, Charlestown, MA, USA
| | - Jack Houston
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.,Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Marvic Carrillo-Terrazas
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Iain A Drummond
- Massachusetts General Hospital Nephrology Division, Charlestown, MA, USA.,Harvard Medical School, Department of Genetics, Boston, MA, USA
| | - David Gonzalez
- Skaggs School of Pharmacy and Pharmaceutical Science, University of California, San Diego, La Jolla, CA, USA.,Department of Pharmacology, University of California, San Diego, La Jolla, CA, USA
| | - Karl Willert
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA.
| | - David Traver
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA. .,Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
25
|
Yokomizo T, Watanabe N, Umemoto T, Matsuo J, Harai R, Kihara Y, Nakamura E, Tada N, Sato T, Takaku T, Shimono A, Takizawa H, Nakagata N, Mori S, Kurokawa M, Tenen DG, Osato M, Suda T, Komatsu N. Hlf marks the developmental pathway for hematopoietic stem cells but not for erythro-myeloid progenitors. J Exp Med 2019; 216:1599-1614. [PMID: 31076455 PMCID: PMC6605751 DOI: 10.1084/jem.20181399] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/21/2018] [Accepted: 04/19/2019] [Indexed: 12/26/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and HSC-independent progenitors are generated from hemogenic endothelium. Yokomizo et al. show that Hlf expression distinguishes nascent HSCs from HSC-independent progenitors. HSC specification, regulated by the Evi-1/Hlf axis, is activated only within Hlf+ nascent hematopoietic clusters. Before the emergence of hematopoietic stem cells (HSCs), lineage-restricted progenitors, such as erythro-myeloid progenitors (EMPs), are detected in the embryo or in pluripotent stem cell cultures in vitro. Although both HSCs and EMPs are derived from hemogenic endothelium, it remains unclear how and when these two developmental programs are segregated during ontogeny. Here, we show that hepatic leukemia factor (Hlf) expression specifically marks a developmental continuum between HSC precursors and HSCs. Using the Hlf-tdTomato reporter mouse, we found that Hlf is expressed in intra-aortic hematopoietic clusters and fetal liver HSCs. In contrast, EMPs and yolk sac hematopoietic clusters before embryonic day 9.5 do not express Hlf. HSC specification, regulated by the Evi-1/Hlf axis, is activated only within Hlf+ nascent hematopoietic clusters. These results strongly suggest that HSCs and EMPs are generated from distinct cohorts of hemogenic endothelium. Selective induction of the Hlf+ lineage pathway may lead to the in vitro generation of HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Tomomasa Yokomizo
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan .,Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Naoki Watanabe
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Terumasa Umemoto
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junichi Matsuo
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Ryota Harai
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiko Kihara
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Leading Center for the Development and Research of Cancer Medicine, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Eri Nakamura
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Norihiro Tada
- Laboratory of Genome Research, Research Institute for Diseases of Old Age, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomohiko Sato
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoiku Takaku
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akihiko Shimono
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Hitoshi Takizawa
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naomi Nakagata
- Division of Reproductive Engineering, Center for Animal Resources and Development, Kumamoto University, Kumamoto, Japan
| | - Seiichi Mori
- Division of Cancer Genomics, Cancer Institute of Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Mineo Kurokawa
- Department of Hematology and Oncology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Harvard Stem Cell Institute, Boston, MA
| | - Motomi Osato
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Toshio Suda
- International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan .,Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Norio Komatsu
- Department of Hematology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
26
|
Ferri-Lagneau KF, Haider J, Sang S, Leung T. Rescue of hematopoietic stem/progenitor cells formation in plcg1 zebrafish mutant. Sci Rep 2019; 9:244. [PMID: 30664660 PMCID: PMC6341084 DOI: 10.1038/s41598-018-36338-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/19/2018] [Indexed: 12/23/2022] Open
Abstract
Hematopoietic stem/progenitor cells (HSPC) in zebrafish emerge from the aortic hemogenic endothelium (HE) and migrate towards the caudal hematopoietic tissue (CHT), where they expand and differentiate during definitive hematopoiesis. Phospholipase C gamma 1 (Plcγ1) has been implicated for hematopoiesis in vivo and in vitro and is also required to drive arterial and HSPC formation. Genetic mutation in plcg1-/- (y10 allele) completely disrupts the aortic blood flow, specification of arterial fate, and HSPC formation in zebrafish embryos. We previously demonstrated that ginger treatment promoted definitive hematopoiesis via Bmp signaling. In this paper, we focus on HSPC development in plcg1-/- mutants and show that ginger/10-gingerol (10-G) can rescue the expression of arterial and HSPC markers in the HE and CHT in plcg1-/- mutant embryos. We demonstrate that ginger can induce scl/runx1 expression, and that rescued HE fate is dependent on Bmp and Notch. Bmp and Notch are known to regulate nitric oxide (NO) production and NO can induce hematopoietic stem cell fate. We show that ginger produces a robust up-regulation of NO. Taken together, we suggest in this paper that Bmp, Notch and NO are potential players that mediate the effect of ginger/10-G for rescuing the genetic defects in blood vessel specification and HSPC formation in plcg1-/- mutants. Understanding the molecular mechanisms of HSPC development in vivo is critical for understanding HSPC expansion, which will have a positive impact in regenerative medicine.
Collapse
Affiliation(s)
- Karine F Ferri-Lagneau
- The Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Nutrition Research Building, Kannapolis, NC, 28081, USA
| | - Jamil Haider
- The Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Nutrition Research Building, Kannapolis, NC, 28081, USA
| | - Shengmin Sang
- Laboratory for Functional Foods and Human Health, Center for Excellence in Post-Harvest Technologies, North Carolina A&T State University, North Carolina Research Campus, Nutrition Research Building, Kannapolis, NC, 28081, USA
| | - TinChung Leung
- The Biomedical/Biotechnology Research Institute, North Carolina Central University, North Carolina Research Campus, Nutrition Research Building, Kannapolis, NC, 28081, USA.
- Department of Biological & Biomedical Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
27
|
Kobayashi I, Kobayashi-Sun J, Hirakawa Y, Ouchi M, Yasuda K, Kamei H, Fukuhara S, Yamaguchi M. Dual role of Jam3b in early hematopoietic and vascular development. Development 2019; 147:dev.181040. [DOI: 10.1242/dev.181040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/11/2019] [Indexed: 12/23/2022]
Abstract
In order to efficiently derive hematopoietic stem cells (HSCs) from pluripotent precursors, it is crucial to understand how mesodermal cells acquire hematopoietic and endothelial identities, two divergent, but closely related cell fates. Although Npas4 has been recently identified as a conserved master regulator of hemato-vascular development, the molecular mechanisms underlying cell fate divergence between hematopoietic and vascular endothelial cells are still unclear. Here, we show in zebrafish that mesodermal cell differentiation into hematopoietic and vascular endothelial cells is regulated by Junctional adhesion molecule 3b (Jam3b) via two independent signaling pathways. Mutation of jam3b led to a reduction in npas4l expression in the posterior lateral plate mesoderm and defects in both hematopoietic and vascular development. Mechanistically, we uncover that Jam3b promotes endothelial specification by regulating npas4l expression through repression of the Rap1a-Erk signaling cascade. Jam3b subsequently promotes hematopoietic development, including HSCs, by regulating lrrc15 expression in endothelial precursors through the activation of an integrin-dependent signaling cascade. Our data provide insight into the divergent mechanisms for instructing hematopoietic or vascular fates from mesodermal cells.
Collapse
Affiliation(s)
- Isao Kobayashi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Jingjing Kobayashi-Sun
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Yuto Hirakawa
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Madoka Ouchi
- Division of Life Sciences, Graduate School of Natural Science and Technology, Kanazawa University, Ishikawa, Japan
| | - Koyuki Yasuda
- Faculty of Natural System, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Hiroyasu Kamei
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| | - Shigetomo Fukuhara
- Department of Molecular Pathophysiology, Institute for Advanced Medical Sciences, Nippon Medical School, Kanagawa, Japan
| | - Masaaki Yamaguchi
- Faculty of Biological Science and Technology, Institute of Science and Engineering, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
28
|
Lancino M, Majello S, Herbert S, De Chaumont F, Tinevez JY, Olivo-Marin JC, Herbomel P, Schmidt A. Anisotropic organization of circumferential actomyosin characterizes hematopoietic stem cells emergence in the zebrafish. eLife 2018; 7:37355. [PMID: 30132756 PMCID: PMC6105311 DOI: 10.7554/elife.37355] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 07/28/2018] [Indexed: 12/15/2022] Open
Abstract
Hematopoiesis leads to the formation of blood and immune cells. Hematopoietic stem cells emerge during development, from vascular components, via a process called the endothelial-to-hematopoietic transition (EHT). Here, we reveal essential biomechanical features of the EHT, using the zebrafish embryo imaged at unprecedented spatio-temporal resolution and an algorithm to unwrap the aorta into 2D-cartography. We show that the transition involves anisotropic contraction along the antero-posterior axis, with heterogenous organization of contractile circumferential actomyosin. The biomechanics of the contraction is oscillatory, with unusually long periods in comparison to other apical constriction mechanisms described so far in morphogenesis, and is supported by the anisotropic reinforcement of junctional contacts. Finally, we show that abrogation of blood flow impairs the actin cytoskeleton, the morphodynamics of EHT cells, and the orientation of the emergence. Overall, our results underline the peculiarities of the EHT biomechanics and the influence of the mechanical forces exerted by blood flow. As humans, we have two major types of blood cell: our red blood cells transport oxygen around the body, while our white blood cells fight disease. Both types of cell come from the same stem cells, which first appear early in embryonic development. These stem cells emerge from the walls of major blood vessels, including the aorta – which carries blood from the heart. Stem cells have not yet decided which adult cell to become. Given the right signals, blood stem cells can form red blood cells or any of the different types of white blood cell. Understanding this process could allow scientists to recreate it in the laboratory, making blood stem cells that can give rise to all blood cells found in the body. But, this is not yet possible because we do not know all the conditions needed to make the cells and ensure they survive. One crucial gap in our understanding concerns the importance of blood flow. As the main blood vessel leaving the heart, the aorta experiences mechanical stress every time the heart beats. Lancino et al. wanted to find out whether this influences the development of the blood stem cells. Zebrafish embryos are transparent, making it easy to see their bodies developing under a microscope. Like humans, they also produce both red blood cells and white blood cells meaning Lancino et al. could watch the birth of blood stem cells in these embryos from a part of the aorta called the aortic floor. A new software tool unwrapped pictures of the tube-shaped blood vessel into flat, two-dimensional maps, making it possible to see how the aorta changed over time. This revealed that, as blood stem cells leave the aortic floor, they bend and contract with the direction of the blood flow. Rings of actin and myosin proteins that formed around the stem cells as they are born helped the process along, while stopping the heartbeat changed the way the blood cells emerged. Without any blood flow, the actin proteins did not assemble properly; the stem cells also emerged in the wrong direction and some of them even died. These findings show that physical forces play a role in the formation of blood stem cells. Understanding this process brings scientists a step closer to recreating the conditions for making different kinds of blood cells outside of the body.
Collapse
Affiliation(s)
- Mylene Lancino
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France.,Sorbonne Université, UPMC Paris 06, Complexité du Vivant, Paris, France
| | - Sara Majello
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| | - Sebastien Herbert
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France.,Image Analysis Hub, UTechSPhotonic BioImaging (Imagopole), Citech, Institut Pasteur, Paris, France
| | - Fabrice De Chaumont
- Department of Cell Biology and Infection, Institut Pasteur, Paris, France.,CNRS, UMR3691, Paris, France
| | - Jean-Yves Tinevez
- Image Analysis Hub, UTechSPhotonic BioImaging (Imagopole), Citech, Institut Pasteur, Paris, France
| | | | - Philippe Herbomel
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| | - Anne Schmidt
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France.,CNRS, UMR 3738, Paris, France
| |
Collapse
|
29
|
Gore AV, Pillay LM, Venero Galanternik M, Weinstein BM. The zebrafish: A fintastic model for hematopoietic development and disease. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2018; 7:e312. [PMID: 29436122 DOI: 10.1002/wdev.312] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/30/2017] [Accepted: 12/03/2017] [Indexed: 12/19/2022]
Abstract
Hematopoiesis is a complex process with a variety of different signaling pathways influencing every step of blood cell formation from the earliest precursors to final differentiated blood cell types. Formation of blood cells is crucial for survival. Blood cells carry oxygen, promote organ development and protect organs in different pathological conditions. Hematopoietic stem and progenitor cells (HSPCs) are responsible for generating all adult differentiated blood cells. Defects in HSPCs or their downstream lineages can lead to anemia and other hematological disorders including leukemia. The zebrafish has recently emerged as a powerful vertebrate model system to study hematopoiesis. The developmental processes and molecular mechanisms involved in zebrafish hematopoiesis are conserved with higher vertebrates, and the genetic and experimental accessibility of the fish and the optical transparency of its embryos and larvae make it ideal for in vivo analysis of hematopoietic development. Defects in zebrafish hematopoiesis reliably phenocopy human blood disorders, making it a highly attractive model system to screen small molecules to design therapeutic strategies. In this review, we summarize the key developmental processes and molecular mechanisms of zebrafish hematopoiesis. We also discuss recent findings highlighting the strengths of zebrafish as a model system for drug discovery against hematopoietic disorders. This article is categorized under: Adult Stem Cells, Tissue Renewal, and Regeneration > Stem Cell Differentiation and Reversion Vertebrate Organogenesis > Musculoskeletal and Vascular Nervous System Development > Vertebrates: Regional Development Comparative Development and Evolution > Organ System Comparisons Between Species.
Collapse
Affiliation(s)
- Aniket V Gore
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Laura M Pillay
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Marina Venero Galanternik
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| | - Brant M Weinstein
- Division of Developmental Biology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, Maryland
| |
Collapse
|
30
|
Hif-1α and Hif-2α regulate hemogenic endothelium and hematopoietic stem cell formation in zebrafish. Blood 2018; 131:963-973. [PMID: 29339404 DOI: 10.1182/blood-2017-07-797795] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/05/2018] [Indexed: 12/18/2022] Open
Abstract
During development, hematopoietic stem cells (HSCs) derive from specialized endothelial cells (ECs) called hemogenic endothelium (HE) via a process called endothelial-to-hematopoietic transition (EHT). Hypoxia-inducible factor-1α (HIF-1α) has been reported to positively modulate EHT in vivo, but current data indicate the existence of other regulators of this process. Here we show that in zebrafish, Hif-2α also positively modulates HSC formation. Specifically, HSC marker gene expression is strongly decreased in hif-1aa;hif-1ab (hif-1α) and in hif-2aa;hif-2ab (hif-2α) zebrafish mutants and morphants. Moreover, live imaging studies reveal a positive role for hif-1α and hif-2α in regulating HE specification. Knockdown of hif-2α in hif-1α mutants leads to a greater decrease in HSC formation, indicating that hif-1α and hif-2α have partially overlapping roles in EHT. Furthermore, hypoxic conditions, which strongly stimulate HSC formation in wild-type animals, have little effect in the combined absence of Hif-1α and Hif-2α function. In addition, we present evidence for Hif and Notch working in the same pathway upstream of EHT. Both notch1a and notch1b mutants display impaired EHT, which cannot be rescued by hypoxia. However, overexpression of the Notch intracellular domain in ECs is sufficient to rescue the hif-1α and hif-2α morphant EHT phenotype, suggesting that Notch signaling functions downstream of the Hif pathway during HSC formation. Altogether, our data provide genetic evidence that both Hif-1α and Hif-2α regulate EHT upstream of Notch signaling.
Collapse
|
31
|
Wnt9a Is Required for the Aortic Amplification of Nascent Hematopoietic Stem Cells. Cell Rep 2017; 17:1595-1606. [PMID: 27806298 PMCID: PMC6309681 DOI: 10.1016/j.celrep.2016.10.027] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/07/2016] [Accepted: 10/10/2016] [Indexed: 01/08/2023] Open
Abstract
All mature blood cell types in the adult animal arise from hematopoietic stem and progenitor cells (HSPCs). However, the developmental cues regulating HSPC ontogeny are incompletely understood. In particular, the details surrounding a requirement for Wnt/β-catenin signaling in the development of mature HSPCs are controversial and difficult to consolidate. Using zebrafish, we demonstrate that Wnt signaling is required to direct an amplification of HSPCs in the aorta. Wnt9a is specifically required for this process and cannot be replaced by Wnt9b or Wnt3a. This proliferative event occurs independently of initial HSPC fate specification, and the Wnt9a input is required prior to aorta formation. HSPC arterial amplification occurs prior to seeding of secondary hematopoietic tissues and proceeds, in part, through the cell cycle regulator myca (c-myc). Our results support a general paradigm, in which early signaling events, including Wnt, direct later HSPC developmental processes. Hematopoietic stem and progenitor cells (HSPCs) give rise to all of the blood cells of the adult organism; however, how these cells are derived in vivo is still incompletely understood. Using zebrafish, Grainger et al. find that Wnt9a mediates amplification of HSPCs prior to their migration to secondary hematopoietic sites.
Collapse
|
32
|
Perlin JR, Robertson AL, Zon LI. Efforts to enhance blood stem cell engraftment: Recent insights from zebrafish hematopoiesis. J Exp Med 2017; 214:2817-2827. [PMID: 28830909 PMCID: PMC5626407 DOI: 10.1084/jem.20171069] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/24/2017] [Accepted: 08/02/2017] [Indexed: 12/17/2022] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) is an important therapy for patients with a variety of hematological malignancies. HSCT would be greatly improved if patient-specific hematopoietic stem cells (HSCs) could be generated from induced pluripotent stem cells in vitro. There is an incomplete understanding of the genes and signals involved in HSC induction, migration, maintenance, and niche engraftment. Recent studies in zebrafish have revealed novel genes that are required for HSC induction and niche regulation of HSC homeostasis. Manipulation of these signaling pathways and cell types may improve HSC bioengineering, which could significantly advance critical, lifesaving HSCT therapies.
Collapse
Affiliation(s)
- Julie R Perlin
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Anne L Robertson
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Harvard Stem Cell Institute, Harvard Medical School, Boston, MA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA
| |
Collapse
|
33
|
Navarro-Montero O, Ayllon V, Lamolda M, López-Onieva L, Montes R, Bueno C, Ng E, Guerrero-Carreno X, Romero T, Romero-Moya D, Stanley E, Elefanty A, Ramos-Mejia V, Menendez P, Real PJ. RUNX1c Regulates Hematopoietic Differentiation of Human Pluripotent Stem Cells Possibly in Cooperation with Proinflammatory Signaling. Stem Cells 2017; 35:2253-2266. [PMID: 28869683 DOI: 10.1002/stem.2700] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 07/19/2017] [Accepted: 08/02/2017] [Indexed: 02/07/2023]
Abstract
Runt-related transcription factor 1 (Runx1) is a master hematopoietic transcription factor essential for hematopoietic stem cell (HSC) emergence. Runx1-deficient mice die during early embryogenesis due to the inability to establish definitive hematopoiesis. Here, we have used human pluripotent stem cells (hPSCs) as model to study the role of RUNX1 in human embryonic hematopoiesis. Although the three RUNX1 isoforms a, b, and c were induced in CD45+ hematopoietic cells, RUNX1c was the only isoform induced in hematoendothelial progenitors (HEPs)/hemogenic endothelium. Constitutive expression of RUNX1c in human embryonic stem cells enhanced the appearance of HEPs, including hemogenic (CD43+) HEPs and promoted subsequent differentiation into blood cells. Conversely, specific deletion of RUNX1c dramatically reduced the generation of hematopoietic cells from HEPs, indicating that RUNX1c is a master regulator of human hematopoietic development. Gene expression profiling of HEPs revealed a RUNX1c-induced proinflammatory molecular signature, supporting previous studies demonstrating proinflammatory signaling as a regulator of HSC emergence. Collectively, RUNX1c orchestrates hematopoietic specification of hPSCs, possibly in cooperation with proinflammatory signaling. Stem Cells 2017;35:2253-2266.
Collapse
Affiliation(s)
- Oscar Navarro-Montero
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain
| | - Veronica Ayllon
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain
| | - Mar Lamolda
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| | - Lourdes López-Onieva
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain
| | - Rosa Montes
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain
| | - Clara Bueno
- Josep Carreras Leukemia Research Institute and Biomedicine Department, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Elizabeth Ng
- Blood Cell Development and Disease Laboratory, Murdoch Childrens Research Institute. The Royal Children's Hospital, Parkville, Australia
| | - Xiomara Guerrero-Carreno
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain
| | - Tamara Romero
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain
| | - Damià Romero-Moya
- Josep Carreras Leukemia Research Institute and Biomedicine Department, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ed Stanley
- Stem Cell Technology Laboratory, Murdoch Childrens Research Institute. The Royal Children's Hospital, Parkville, Australia
| | - Andrew Elefanty
- Blood Cell Development and Disease Laboratory, Murdoch Childrens Research Institute. The Royal Children's Hospital, Parkville, Australia
| | - Verónica Ramos-Mejia
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain
| | - Pablo Menendez
- Josep Carreras Leukemia Research Institute and Biomedicine Department, School of Medicine, University of Barcelona, Barcelona, Spain.,Instituciò Catalana de Reserca i EstudisAvançats (ICREA), Barcelona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), ISCIII, Barcelona, Spain
| | - Pedro J Real
- Gene Regulation, Stem Cells and Development Group, Department of Genomic Oncology, GENYO: Centre for Genomics and Oncological Research Pfizer-University of Granada-Junta de Andalucía, PTS Granada, Granada, Spain.,Department of Biochemistry and Molecular Biology I, Faculty of Science, University of Granada, Granada, Spain
| |
Collapse
|
34
|
Rowe RG, Mandelbaum J, Zon LI, Daley GQ. Engineering Hematopoietic Stem Cells: Lessons from Development. Cell Stem Cell 2017; 18:707-720. [PMID: 27257760 DOI: 10.1016/j.stem.2016.05.016] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Cell engineering has brought us tantalizingly close to the goal of deriving patient-specific hematopoietic stem cells (HSCs). While directed differentiation and transcription factor-mediated conversion strategies have generated progenitor cells with multilineage potential, to date, therapy-grade engineered HSCs remain elusive due to insufficient long-term self-renewal and inadequate differentiated progeny functionality. A cross-species approach involving zebrafish and mammalian systems offers complementary methodologies to improve understanding of native HSCs. Here, we discuss the role of conserved developmental timing processes in vertebrate hematopoiesis, highlighting how identification and manipulation of stage-specific factors that specify HSC developmental state must be harnessed to engineer HSCs for therapy.
Collapse
Affiliation(s)
- R Grant Rowe
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Joseph Mandelbaum
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA
| | - George Q Daley
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA; Howard Hughes Medical Institute, Boston, MA 02115, USA; Harvard Stem Cell Institute, Cambridge, MA 02138, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Division of Hematology, Brigham and Women's Hospital, Boston, MA 02115, USA; Manton Center for Orphan Disease Research, Boston, MA 02115, USA.
| |
Collapse
|
35
|
Blood on the tracks: hematopoietic stem cell-endothelial cell interactions in homing and engraftment. J Mol Med (Berl) 2017; 95:809-819. [PMID: 28702683 DOI: 10.1007/s00109-017-1559-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/24/2017] [Accepted: 06/08/2017] [Indexed: 01/13/2023]
Abstract
Cells of the hematopoietic system undergo rapid turnover. Each day, humans require the production of about one hundred billion new blood cells for proper function. Hematopoietic stem cells (HSCs) are rare cells that reside in specialized niches and are required throughout life to produce specific progenitor cells that will replenish all blood lineages. There is, however, an incomplete understanding of the molecular and physical properties that regulate HSC migration, homing, engraftment, and maintenance in the niche. Endothelial cells (ECs) are intimately associated with HSCs throughout the life of the stem cell, from the specialized endothelial cells that give rise to HSCs, to the perivascular niche endothelial cells that regulate HSC homeostasis. Recent studies have dissected the unique molecular and physical properties of the endothelial cells in the HSC vascular niche and their role in HSC biology, which may be manipulated to enhance hematopoietic stem cell transplantation therapies.
Collapse
|
36
|
Transforming growth factor-β1 regulates the nascent hematopoietic stem cell niche by promoting gluconeogenesis. Leukemia 2017. [PMID: 28642593 DOI: 10.1038/leu.2017.198] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The understanding of hematopoietic stem cell (HSC) emergence is important to generate HSCs from pluripotent precursors. However, integrated signaling network that regulates the niche of nascent HSCs remains unclear. Herein, we uncovered a novel role of TGF-β1 in the metabolic niche of HSC emergence using the tgf-β1b-/- zebrafish. Our findings first showed that Tgf-β1 transcripts were enriched in the nascent HSCs. Loss of tgf-β1b caused a decrease of nascent HSCs within the aorta-gonad-mesonephros. Moreover, tgf-β1b+ cells were runx1+ HSCs and underwent an endothelial-to-hematopoietic-transition process. Although the autocrine of Tgf-β1 in HSCs rather than endothelial cells was highly demanded to regulate HSC generation, we found that tgf-β1b promoted HSC emergence through the endothelial c-Jun N-terminal kinase/c-Jun signaling. Chromatin immunoprecipitation (ChIP)-sequencing data showed that tgf-β1b/c-Jun targeted g6pc3 of FoxO signaling to promote gluconeogenesis and maintain a high glucose level in the niche. Furthermore, loss of tgf-β1b increased the endoplasmic-reticulum stress and oxidative stress by disturbing metabolic homeostasis. Adding a low dose of TGF-β1 protein could promote the differentiation of mouse embryonic stem cells towards HSCs in vitro. Altogether, our study provided insights into a new feature of TGF-β1 in the regulation of glucose metabolism and nascent HSC niche, which may contribute to therapies of hematological malignancies.
Collapse
|
37
|
Blaser BW, Moore JL, Hagedorn EJ, Li B, Riquelme R, Lichtig A, Yang S, Zhou Y, Tamplin OJ, Binder V, Zon LI. CXCR1 remodels the vascular niche to promote hematopoietic stem and progenitor cell engraftment. J Exp Med 2017; 214:1011-1027. [PMID: 28351983 PMCID: PMC5379982 DOI: 10.1084/jem.20161616] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2016] [Revised: 12/28/2016] [Accepted: 02/10/2017] [Indexed: 01/26/2023] Open
Abstract
Blaser et al. use live imaging of the zebrafish hematopoietic niche to show that cxcl8/cxcr1 signaling positively regulates HSPC engraftment by increasing HSPC-niche interactions, HSPC mitotic rate, niche size, and expression of cxcl12a in a niche-autonomous manner. The microenvironment is an important regulator of hematopoietic stem and progenitor cell (HSPC) biology. Recent advances marking fluorescent HSPCs have allowed exquisite visualization of HSPCs in the caudal hematopoietic tissue (CHT) of the developing zebrafish. Here, we show that the chemokine cxcl8 and its receptor, cxcr1, are expressed by zebrafish endothelial cells, and we identify cxcl8/cxcr1 signaling as a positive regulator of HSPC colonization. Single-cell tracking experiments demonstrated that this is a result of increases in HSPC–endothelial cell “cuddling,” HSPC residency time within the CHT, and HSPC mitotic rate. Enhanced cxcl8/cxcr1 signaling was associated with an increase in the volume of the CHT and induction of cxcl12a expression. Finally, using parabiotic zebrafish, we show that cxcr1 acts HSPC nonautonomously to improve the efficiency of donor HSPC engraftment. This work identifies a mechanism by which the hematopoietic niche remodels to promote HSPC engraftment and suggests that cxcl8/cxcr1 signaling is a potential therapeutic target in patients undergoing hematopoietic stem cell transplantation.
Collapse
Affiliation(s)
- Bradley W Blaser
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Jessica L Moore
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Elliott J Hagedorn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Brian Li
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Raquel Riquelme
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Asher Lichtig
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Song Yang
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Yi Zhou
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| | - Owen J Tamplin
- Department of Pharmacology, The University of Illinois College of Medicine, Chicago, IL 60612
| | - Vera Binder
- Department of Hematology and Oncology, Dr. von Hauner Children's Hospital, Ludwig-Maximilians University, 80539 Munich, Germany
| | - Leonard I Zon
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital and Dana Farber Cancer Institute, Howard Hughes Medical Institute, Harvard Medical School, Harvard Stem Cell Institute, Stem Cell and Regenerative Biology Department, Harvard University, Boston, MA 02138
| |
Collapse
|
38
|
Yzaguirre AD, de Bruijn MFTR, Speck NA. The Role of Runx1 in Embryonic Blood Cell Formation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 962:47-64. [DOI: 10.1007/978-981-10-3233-2_4] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
39
|
Robertson AL, Avagyan S, Gansner JM, Zon LI. Understanding the regulation of vertebrate hematopoiesis and blood disorders - big lessons from a small fish. FEBS Lett 2016; 590:4016-4033. [PMID: 27616157 DOI: 10.1002/1873-3468.12415] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 08/22/2016] [Accepted: 09/07/2016] [Indexed: 12/12/2022]
Abstract
Hematopoietic stem cells (HSCs) give rise to all differentiated blood cells. Understanding the mechanisms that regulate self-renewal and lineage specification of HSCs is key for developing treatments for many human diseases. Zebrafish have emerged as an excellent model for studying vertebrate hematopoiesis. This review will highlight the unique strengths of zebrafish and important findings that have emerged from studies of blood development and disorders using this system. We discuss recent advances in our understanding of hematopoiesis, including the origin of HSCs, molecular control of their development, and key signaling pathways involved in their regulation. We highlight significant findings from zebrafish models of blood disorders and discuss their application for investigating stem cell dysfunction in disease and for the development of new therapeutics.
Collapse
Affiliation(s)
- Anne L Robertson
- Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, MA, USA
| | - Serine Avagyan
- Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, MA, USA
| | - John M Gansner
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Leonard I Zon
- Howard Hughes Medical Institute, Harvard Stem Cell Institute, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
40
|
Cebpα is essential for the embryonic myeloid progenitor and neutrophil maintenance in zebrafish. J Genet Genomics 2016; 43:593-600. [PMID: 27751705 DOI: 10.1016/j.jgg.2016.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 11/23/2022]
Abstract
In vertebrates, myeloid cells arise from multiple waves of development: the first or embryonic wave of myelopoiesis initiates early from non-hematopoietic stem cell (HSC) precursors and gives rise to myeloid cells transiently during early development; whereas the second or adult wave of myelopoiesis emerges later from HSCs and produces myeloid cells continually during fetal and adult life. In the past decades, a great deal has been learnt about the development of myeloid cells from adult myelopoiesis, yet the genetic network governing embryonic myelopoiesis remains poorly defined. In this report, we present an in vivo study to delineate the role of Cebpα during zebrafish embryonic myelopoiesis. We show that embryonic myelopoiesis in cebpα-deficient zebrafish mutants initiates properly but fails to produce macrophages and neutrophils. The lack of macrophages and neutrophils in the mutants is largely attributed to the cell cycle arrest of embryonic myeloid progenitors, resulting in the impairment of their maintenance and subsequent differentiation. We further show that Cebpα, perhaps acting cooperatively with Runx1, plays a critical role in embryonic neutrophil maintenance. Our findings reveal a new role of Cebpα in embryonic myelopoiesis.
Collapse
|
41
|
Thambyrajah R, Ucanok D, Jalali M, Hough Y, Wilkinson RN, McMahon K, Moore C, Gering M. A gene trap transposon eliminates haematopoietic expression of zebrafish Gfi1aa, but does not interfere with haematopoiesis. Dev Biol 2016; 417:25-39. [PMID: 27432513 PMCID: PMC5003831 DOI: 10.1016/j.ydbio.2016.07.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 06/10/2016] [Accepted: 07/15/2016] [Indexed: 11/02/2022]
Abstract
A transposon-mediated gene trap screen identified the zebrafish line qmc551 that expresses a GFP reporter in primitive erythrocytes and also in haemogenic endothelial cells, which give rise to haematopoietic stem and progenitor cells (HSPCs) that seed sites of larval and adult haematopoiesis. The transposon that mediates this GFP expression is located in intron 1 of the gfi1aa gene, one of three zebrafish paralogs that encode transcriptional repressors homologous to mammalian Gfi1 and Gfi1b proteins. In qmc551 transgenics, GFP expression is under the control of the endogenous gfi1aa promoter, recapitulates early gfi1aa expression and allows live observation of gfi1aa promoter activity. While the transposon integration interferes with the expression of gfi1aa mRNA in haematopoietic cells, homozygous qmc551 fish are viable and fertile, and display normal primitive and definitive haematopoiesis. Retained expression of Gfi1b in primitive erythrocytes and up-regulation of Gfi1ab at the onset of definitive haematopoiesis in homozygous qmc551 carriers, are sufficient to allow normal haematopoiesis. This finding contradicts previously published morpholino data that suggested an essential role for zebrafish Gfi1aa in primitive erythropoiesis.
Collapse
Affiliation(s)
- Roshana Thambyrajah
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Deniz Ucanok
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Maryam Jalali
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Yasmin Hough
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Robert Neil Wilkinson
- Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield, Medical School, Beech Hill Road, Sheffield S10 2RX, UK; Bateson Centre, University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Kathryn McMahon
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Chris Moore
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK
| | - Martin Gering
- School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
42
|
Xu J, Wang T, Wu Y, Jin W, Wen Z. Microglia Colonization of Developing Zebrafish Midbrain Is Promoted by Apoptotic Neuron and Lysophosphatidylcholine. Dev Cell 2016; 38:214-22. [PMID: 27424497 DOI: 10.1016/j.devcel.2016.06.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 05/13/2016] [Accepted: 06/15/2016] [Indexed: 02/08/2023]
Abstract
Microglia are CNS-resident macrophages and play important roles in neural development and function. However, how microglial precursors born in peripheral tissues colonize the CNS remains undefined. Using in vivo imaging and genetic manipulation of zebrafish, we showed that microglial precursors enter the optic tectum of the midbrain, where the majority of microglia reside during early development, via the lateral periphery between the eyes and brain and the ventral periphery of the brain in a circulation-independent manner. The colonization of the optic tectum by microglial precursors is dynamic and driven by apoptotic neuronal death, which occurs naturally in the midbrain during neurogenesis. We further show that lysophosphatidylcholine, a phospholipid known to be released from apoptotic cells, can promote microglial precursor entry into the brain via its cognate receptors grp132b. Our study reveals that microglia colonization of developing zebrafish midbrain is triggered by apoptotic neuronal death, possibly via releasing lysophosphatidylcholine.
Collapse
Affiliation(s)
- Jin Xu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Tienan Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Yi Wu
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Wan Jin
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience and Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, P.R. China.
| |
Collapse
|
43
|
Gritz E, Hirschi KK. Specification and function of hemogenic endothelium during embryogenesis. Cell Mol Life Sci 2016; 73:1547-67. [PMID: 26849156 PMCID: PMC4805691 DOI: 10.1007/s00018-016-2134-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 12/16/2015] [Accepted: 01/07/2016] [Indexed: 01/15/2023]
Abstract
Hemogenic endothelium is a specialized subset of developing vascular endothelium that acquires hematopoietic potential and can give rise to multilineage hematopoietic stem and progenitor cells during a narrow developmental window in tissues such as the extraembryonic yolk sac and embryonic aorta-gonad-mesonephros. Herein, we review current knowledge about the historical and developmental origins of hemogenic endothelium, the molecular events that govern hemogenic specification of vascular endothelial cells, the generation of multilineage hematopoietic stem and progenitor cells from hemogenic endothelium, and the potential for translational applications of knowledge gained from further study of these processes.
Collapse
Affiliation(s)
- Emily Gritz
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA
- Department of Pediatrics, Section of Neonatal-Perinatal Medicine, Yale University School of Medicine, 333 Cedar St., New Haven, CT, 06511, USA
| | - Karen K Hirschi
- Departments of Medicine, Genetics and Biomedical Engineering, Yale Cardiovascular Research Center, Vascular Biology and Therapeutics Program, and Yale Stem Cell Center, Yale University School of Medicine, 300 George St., New Haven, CT, 06511, USA.
| |
Collapse
|
44
|
Chávez MN, Aedo G, Fierro FA, Allende ML, Egaña JT. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration. Front Physiol 2016; 7:56. [PMID: 27014075 PMCID: PMC4781882 DOI: 10.3389/fphys.2016.00056] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/05/2016] [Indexed: 01/04/2023] Open
Abstract
Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.
Collapse
Affiliation(s)
- Myra N Chávez
- Department of Plastic Surgery and Hand Surgery, University Hospital rechts der Isar, Technische Universität MünchenMunich, Germany; Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de ChileSantiago, Chile; Department of Biochemistry and Molecular Biology, FONDAP Advanced Center for Chronic Diseases (ACCDiS) and Center for Molecular Studies of the Cell (CEMC), Faculty of Chemical and Pharmaceutical Sciences, Faculty of Medicine, University of ChileSantiago, Chile
| | - Geraldine Aedo
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - Fernando A Fierro
- Department of Cell Biology and Human Anatomy, University of California Davis, Sacramento, CA, USA
| | - Miguel L Allende
- Department of Biology, FONDAP Center for Genome Regulation, Faculty of Science, Universidad de Chile Santiago, Chile
| | - José T Egaña
- Institute for Medical and Biological Engineering, Schools of Engineering, Biological Sciences and Medicine, Pontifícia Universidad Católica de Chile Santiago, Chile
| |
Collapse
|
45
|
Chen T, Wang F, Wu M, Wang ZZ. Development of hematopoietic stem and progenitor cells from human pluripotent stem cells. J Cell Biochem 2016; 116:1179-89. [PMID: 25740540 DOI: 10.1002/jcb.25097] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 01/23/2015] [Indexed: 01/04/2023]
Abstract
Human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), provide a new cell source for regenerative medicine, disease modeling, drug discovery, and preclinical toxicity screening. Understanding of the onset and the sequential process of hematopoietic cells from differentiated hPSCs will enable the achievement of personalized medicine and provide an in vitro platform for studying of human hematopoietic development and disease. During embryogenesis, hemogenic endothelial cells, a specified subset of endothelial cells in embryonic endothelium, are the primary source of multipotent hematopoietic stem cells. In this review, we discuss current status in the generation of multipotent hematopoietic stem and progenitor cells from hPSCs via hemogenic endothelial cells. We also review the achievements in direct reprogramming from non-hematopoietic cells to hematopoietic stem and progenitor cells. Further characterization of hematopoietic differentiation in hPSCs will improve our understanding of blood development and expedite the development of hPSC-derived blood products for therapeutic purpose.
Collapse
Affiliation(s)
- Tong Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Fen Wang
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Mengyao Wu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205
| |
Collapse
|
46
|
Bai H, Liu Y, Xie Y, Hoyle DL, Brodsky RA, Cheng L, Cheng T, Wang ZZ. Definitive Hematopoietic Multipotent Progenitor Cells Are Transiently Generated From Hemogenic Endothelial Cells in Human Pluripotent Stem Cells. J Cell Physiol 2015; 231:1065-76. [PMID: 26395760 DOI: 10.1002/jcp.25199] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 09/21/2015] [Indexed: 12/21/2022]
Abstract
Generation of fully functional hematopoietic multipotent progenitor (MPP) cells from human pluripotent stem cells (hPSCs) has a great therapeutic potential to provide an unlimited cell source for treatment of hematological disorders. We previously demonstrated that CD34(+) CD31(+) CD144(+) population derived from hPSCs contain hemato-endothelial progenitors (HEPs) that give rise to hematopoietic and endothelial cells. Here, we report a differentiation system to generate definitive hematopoietic MPP cells from HEPs via endothelial monolayer. In the presence of angiogenic factors, HEPs formed an endothelial monolayer, from which hematopoietic clusters emerged through the process of endothelial-to-hematopoietic transition (EHT). EHT was significantly enhanced by hematopoietic growth factors. The definitive MPP cells generated from endothelial monolayer were capable of forming multilineage hematopoietic colonies, giving rise to T lymphoid cells, and differentiating into enucleated erythrocytes. Emergence of hematopoietic cells from endothelial monolayer occurred transiently. Hematopoietic potential was lost during prolonged culture of HEPs in endothelial growth conditions. Our study demonstrated that CD34(+) CD31(+) CD144(+) HEPs gave rise to hematopoietic MPP cells via hemogenic endothelial cells that exist transiently. The established differentiation system provides a platform for future investigation of regulatory factors involved in de novo generation of hematopoietic MPP cells and their applications in transplantation.
Collapse
Affiliation(s)
- Hao Bai
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yanfeng Liu
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yinliang Xie
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Dixie L Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Robert A Brodsky
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Linzhao Cheng
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin, China
| | - Zack Z Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
47
|
Direct regulation of p53 by miR-142a-3p mediates the survival of hematopoietic stem and progenitor cells in zebrafish. Cell Discov 2015; 1:15027. [PMID: 27462426 PMCID: PMC4860776 DOI: 10.1038/celldisc.2015.27] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/11/2015] [Indexed: 02/06/2023] Open
Abstract
Hematopoietic stem and progenitor cells have the capacity to self-renew and differentiate into all blood cell lineages, and thus sustain life-long homeostasis of the hematopoietic system. Although intensive studies have focused on the orchestrated genetic network of hematopoietic stem and progenitor cell specification and expansion, relatively little is known on the regulation of hematopoietic stem and progenitor cell survival during embryogenesis. Here, we generated two types of miR-142a-3p genetic mutants in zebrafish and showed that the loss-of-function mutants displayed severe reduction of hematopoietic stem and progenitor cells. Further analysis showed that the diminished proliferation and excessive apoptosis in miR-142a-3p mutants were attributed to the increased p53 signaling. Mechanistically, we demonstrated that miR-142a-3p directly targets p53 during hematopoietic stem and progenitor cell development, and the hematopoietic stem and progenitor cell survival defect in miR-142a-3p mutants could be rescued by loss of p53. Therefore, our work reveals the significance of the miR-142a-3p-p53 pathway in controlling hematopoietic stem and progenitor cell survival, and thus advances our understanding of the role of p53 in vertebrate hematopoiesis.
Collapse
|
48
|
G protein-coupled receptor 183 facilitates endothelial-to-hematopoietic transition via Notch1 inhibition. Cell Res 2015; 25:1093-107. [PMID: 26358189 PMCID: PMC4650626 DOI: 10.1038/cr.2015.109] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 07/28/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
In vertebrates, embryonic hematopoietic stem and progenitor cells (HSPCs) are derived from a subset of endothelial cells, the hemogenic endothelium (HE), through the endothelial-to-hematopoietic transition (EHT). Notch signaling is essential for HSPC development during embryogenesis across vertebrates. However, whether and how it regulates EHT remains unclear. Here, we show that G protein-coupled receptor 183 (Gpr183) signaling serves as an indispensable switch for HSPC emergence by repressing Notch signaling before the onset of EHT. Inhibition of Gpr183 significantly upregulates Notch signaling and abolishes HSPC emergence. Upon activation by its ligand 7α-25-OHC, Gpr183 recruits β-arrestin1 and the E3 ligase Nedd4 to degrade Notch1 in specified HE cells and then facilitates the subsequent EHT. Importantly, 7α-25-OHC stimulation promotes HSPC emergence in vivo and in vitro, providing an attractive strategy for enhancing the in vitro generation of functional HSPCs.
Collapse
|
49
|
Li C, Lan Y, Schwartz-Orbach L, Korol E, Tahiliani M, Evans T, Goll MG. Overlapping Requirements for Tet2 and Tet3 in Normal Development and Hematopoietic Stem Cell Emergence. Cell Rep 2015; 12:1133-43. [PMID: 26257178 DOI: 10.1016/j.celrep.2015.07.025] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 06/19/2015] [Accepted: 07/10/2015] [Indexed: 11/29/2022] Open
Abstract
The Tet family of methylcytosine dioxygenases (Tet1, Tet2, and Tet3) convert 5-methylcytosine to 5-hydroxymethylcytosine. To date, functional overlap among Tet family members has not been examined systematically in the context of embryonic development. To clarify the potential for overlap among Tet enzymes during development, we mutated the zebrafish orthologs of Tet1, Tet2, and Tet3 and examined single-, double-, and triple-mutant genotypes. Here, we identify Tet2 and Tet3 as the major 5-methylcytosine dioxygenases in the zebrafish embryo and uncover a combined requirement for Tet2 and Tet3 in hematopoietic stem cell (HSC) emergence. We demonstrate that Notch signaling in the hemogenic endothelium is regulated by Tet2/3 prior to HSC emergence and show that restoring expression of the downstream gata2b/scl/runx1 transcriptional network can rescue HSCs in tet2/3 double mutant larvae. Our results reveal essential, overlapping functions for tet genes during embryonic development and uncover a requirement for 5hmC in regulating HSC production.
Collapse
Affiliation(s)
- Cheng Li
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Program in Biochemistry and Structural Biology, Cell and Developmental Biology, and Molecular Biology, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - Yahui Lan
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Lianna Schwartz-Orbach
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evgenia Korol
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Mamta Tahiliani
- Department of Biochemistry and Molecular Pharmacology, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mary G Goll
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
50
|
Jing L, Tamplin OJ, Chen MJ, Deng Q, Patterson S, Kim PG, Durand EM, McNeil A, Green JM, Matsuura S, Ablain J, Brandt MK, Schlaeger TM, Huttenlocher A, Daley GQ, Ravid K, Zon LI. Adenosine signaling promotes hematopoietic stem and progenitor cell emergence. ACTA ACUST UNITED AC 2015; 212:649-63. [PMID: 25870200 PMCID: PMC4419349 DOI: 10.1084/jem.20141528] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 03/20/2015] [Indexed: 11/09/2022]
Abstract
Jing and colleagues show that adenosine signaling plays an important evolutionary role in the first step of hematopoietic stem cell generation in the embryonic aorta. Hematopoietic stem cells (HSCs) emerge from aortic endothelium via the endothelial-to-hematopoietic transition (EHT). The molecular mechanisms that initiate and regulate EHT remain poorly understood. Here, we show that adenosine signaling regulates hematopoietic stem and progenitor cell (HSPC) development in zebrafish embryos. The adenosine receptor A2b is expressed in the vascular endothelium before HSPC emergence. Elevated adenosine levels increased runx1+/cmyb+ HSPCs in the dorsal aorta, whereas blocking the adenosine pathway decreased HSPCs. Knockdown of A2b adenosine receptor disrupted scl+ hemogenic vascular endothelium and the subsequent EHT process. A2b adenosine receptor activation induced CXCL8 via cAMP–protein kinase A (PKA) and mediated hematopoiesis. We further show that adenosine increased multipotent progenitors in a mouse embryonic stem cell colony-forming assay and in embryonic day 10.5 aorta-gonad-mesonephros explants. Our results demonstrate that adenosine signaling plays an evolutionary conserved role in the first steps of HSPC formation in vertebrates.
Collapse
Affiliation(s)
- Lili Jing
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Owen J Tamplin
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Michael J Chen
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Qing Deng
- Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706 Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| | - Shenia Patterson
- Department of Medicine, Boston University School of Medicine and the Evans Center for Interdisciplinary Biomedical Research, Boston, MA 02118
| | - Peter G Kim
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Ellen M Durand
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Ashley McNeil
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Julie M Green
- Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706 Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| | - Shinobu Matsuura
- Department of Medicine, Boston University School of Medicine and the Evans Center for Interdisciplinary Biomedical Research, Boston, MA 02118
| | - Julien Ablain
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Margot K Brandt
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Thorsten M Schlaeger
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706 Department of Medical Microbiology and Immunology and Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706
| | - George Q Daley
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| | - Katya Ravid
- Department of Medicine, Boston University School of Medicine and the Evans Center for Interdisciplinary Biomedical Research, Boston, MA 02118
| | - Leonard I Zon
- Stem Cell Program, Division of Hematology/Oncology, Boston Children's Hospital and Dana-Farber Cancer Institute, Boston, MA 02115 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138 Harvard Stem Cell Institute, Howard Hughes Medical Institute, and Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|