1
|
Ott DP, Desai S, Solinger JA, Kaech A, Spang A. Coordination between ESCRT function and Rab conversion during endosome maturation. EMBO J 2025; 44:1574-1607. [PMID: 39910226 PMCID: PMC11914609 DOI: 10.1038/s44318-025-00367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 12/12/2024] [Accepted: 01/02/2025] [Indexed: 02/07/2025] Open
Abstract
The endosomal pathway is essential for regulating cell signaling and cellular homeostasis. Rab5 positive early endosomes receive proteins from the plasma membrane. Dependent on a ubiquitin mark on the protein, they will be either recycled or sorted into intraluminal vesicles (ILVs) by endosomal sorting complex required for transport (ESCRT) proteins. During endosome maturation Rab5 is replaced by Rab7 on endosomes that are able to fuse with lysosomes to form endolysosomes. However, whether ESCRT-driven ILV formation and Rab5-to-Rab7 conversion are coordinated remains unknown. Here we show that loss of early ESCRTs led to enlarged Rab5 positive endosomes and prohibited Rab conversion. Reduction of ubiquitinated cargo alleviated this phenotype. Moreover, ubiquitinated proteins on the endosomal limiting membrane prevented the displacement of the Rab5 guanine nucleotide exchange factor (GEF) RABX-5 by the GEF for Rab7, SAND-1/CCZ-1. Overexpression of Rab7 could partially overcome this block, even in the absence of SAND-1 or CCZ1, suggesting the presence of a second Rab7 GEF. Our data reveal a hierarchy of events in which cargo corralling by ESCRTs is upstream of Rab conversion, suggesting that ESCRT-0 and ubiquitinated cargo could act as timers that determine the onset of Rab conversion.
Collapse
Affiliation(s)
- Daniel P Ott
- Biozentrum, University of Basel, Basel, Switzerland
| | - Samit Desai
- Biozentrum, University of Basel, Basel, Switzerland
| | | | - Andres Kaech
- Center for Microscopy and Image Analysis, University of Zurich, Zürich, Switzerland
| | - Anne Spang
- Biozentrum, University of Basel, Basel, Switzerland.
| |
Collapse
|
2
|
Miao Y, Du Y, Wang B, Liang J, Liang Y, Dang S, Liu J, Li D, He K, Ding M. Spatiotemporal recruitment of the ubiquitin-specific protease USP8 directs endosome maturation. eLife 2024; 13:RP96353. [PMID: 39576689 PMCID: PMC11584181 DOI: 10.7554/elife.96353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2024] Open
Abstract
The spatiotemporal transition of small GTPase Rab5 to Rab7 is crucial for early-to-late endosome maturation, yet the precise mechanism governing Rab5-to-Rab7 switching remains elusive. USP8, a ubiquitin-specific protease, plays a prominent role in the endosomal sorting of a wide range of transmembrane receptors and is a promising target in cancer therapy. Here, we identified that USP8 is recruited to Rab5-positive carriers by Rabex5, a guanine nucleotide exchange factor (GEF) for Rab5. The recruitment of USP8 dissociates Rabex5 from early endosomes (EEs) and meanwhile promotes the recruitment of the Rab7 GEF SAND-1/Mon1. In USP8-deficient cells, the level of active Rab5 is increased, while the Rab7 signal is decreased. As a result, enlarged EEs with abundant intraluminal vesicles accumulate and digestive lysosomes are rudimentary. Together, our results reveal an important and unexpected role of a deubiquitinating enzyme in endosome maturation.
Collapse
Affiliation(s)
- Yue Miao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yongtao Du
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Baolei Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jingjing Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Yu Liang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Song Dang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jiahao Liu
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- University of Chinese Academy of Sciences, Beijing, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Kangmin He
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mei Ding
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ubiquitination of the ubiquitin-binding machinery: how early ESCRT components are controlled. Essays Biochem 2022; 66:169-177. [PMID: 35352804 PMCID: PMC9400068 DOI: 10.1042/ebc20210042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/16/2022] [Indexed: 12/22/2022]
Abstract
To be able to quickly and accurately respond to the environment, cells need to tightly control the amount and localization of plasma membrane proteins. The post-translation modification by the protein modifier ubiquitin is the key signal for guiding membrane-associated cargo to the lysosome/vacuole for their degradation. The machinery responsible for such sorting contains several subunits that function as ubiquitin receptors, many of which are themselves subjected to ubiquitination. This review will focus on what is currently known about the modulation of the machinery itself by ubiquitination and how this might affect its function with a special emphasis on current findings from the plant field.
Collapse
|
4
|
O-GlcNAcylation regulates epidermal growth factor receptor intracellular trafficking and signaling. Proc Natl Acad Sci U S A 2022; 119:e2107453119. [PMID: 35239437 PMCID: PMC8915906 DOI: 10.1073/pnas.2107453119] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
SignificanceEpidermal growth factor receptor (EGFR) is one of the most important membrane receptors that transduce growth signals into cells to sustain cell growth, proliferation, and survival. EGFR signal termination is initiated by EGFR internalization, followed by trafficking through endosomes, and degradation in lysosomes. How this process is regulated is still poorly understood. Here, we show that hepatocyte growth factor regulated tyrosine kinase substrate (HGS), a key protein in the EGFR trafficking pathway, is dynamically modified by a single sugar N-acetylglucosamine. This modification inhibits EGFR trafficking from endosomes to lysosomes, leading to the accumulation of EGFR and prolonged signaling. This study provides an important insight into diseases with aberrant growth factor signaling, such as cancer, obesity, and diabetes.
Collapse
|
5
|
Zhao Y, Peng D, Liu Y, Zhang Q, Liu B, Deng Y, Ding W, Zhou Z, Liu Q. Usp8 promotes tumor cell migration through activating the JNK pathway. Cell Death Dis 2022; 13:286. [PMID: 35361778 PMCID: PMC8971431 DOI: 10.1038/s41419-022-04749-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/23/2022]
Abstract
Tumor metastasis is the most cause of high mortality for cancer patients. Identification of novel factors that modulate tumor cell migration is of great significance for therapeutic strategies. Here, we find that the ubiquitin-specific protease 8 (Usp8) promotes tumor cell migration through activating the c-Jun N-terminal kinase (JNK) pathway. Genetic epistasis analyses uncover Usp8 acts upstream of Tak1 to control the JNK pathway. Consistently, biochemical results reveal that Usp8 binds Tak1 to remove ubiquitin modification from Tak1, leading to its stabilization. In addition, human USP8 also triggers tumor cell migration and activates the JNK pathway. Finally, we show that knockdown of USP8 in human breast cancer cells suppresses cell migration. Taken together, our findings demonstrate that a conserved Usp8-Tak1-JNK axis promotes tumor cell migration, and providing USP8 as a potential therapeutic target for cancer treatment.
Collapse
|
6
|
Liu M, Su Y, Peng J, Zhu AJ. Protein modifications in Hedgehog signaling: Cross talk and feedback regulation confer divergent Hedgehog signaling activity. Bioessays 2021; 43:e2100153. [PMID: 34738654 DOI: 10.1002/bies.202100153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The complexity of the Hedgehog (Hh) signaling cascade has increased over the course of evolution; however, it does not suffice to accommodate the dynamic yet robust requirements of differential Hh signaling activity needed for embryonic development and adult homeostatic maintenance. One solution to solve this dilemma is to apply multiple forms of post-translational modifications (PTMs) to the core Hh signaling components, modulating their abundance, localization, and signaling activity. This review summarizes various forms of protein modifications utilized to regulate Hh signaling, with a special emphasis on crosstalk between different forms of PTMs and their feedback regulation by Hh signaling.
Collapse
Affiliation(s)
- Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jingyu Peng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
7
|
Martín-Rodríguez C, Song M, Anta B, González-Calvo FJ, Deogracias R, Jing D, Lee FS, Arevalo JC. TrkB deubiquitylation by USP8 regulates receptor levels and BDNF-dependent neuronal differentiation. J Cell Sci 2020; 133:jcs247841. [PMID: 33288548 PMCID: PMC7774901 DOI: 10.1242/jcs.247841] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 11/13/2020] [Indexed: 01/04/2023] Open
Abstract
Ubiquitylation of receptor tyrosine kinases (RTKs) regulates both the levels and functions of these receptors. The neurotrophin receptor TrkB (also known as NTRK2), a RTK, is ubiquitylated upon activation by brain-derived neurotrophic factor (BDNF) binding. Although TrkB ubiquitylation has been demonstrated, there is a lack of knowledge regarding the precise repertoire of proteins that regulates TrkB ubiquitylation. Here, we provide mechanistic evidence indicating that ubiquitin carboxyl-terminal hydrolase 8 (USP8) modulates BDNF- and TrkB-dependent neuronal differentiation. USP8 binds to the C-terminus of TrkB using its microtubule-interacting domain (MIT). Immunopurified USP8 deubiquitylates TrkB in vitro, whereas knockdown of USP8 results in enhanced ubiquitylation of TrkB upon BDNF treatment in neurons. As a consequence of USP8 depletion, TrkB levels and its activation are reduced. Moreover, USP8 protein regulates the differentiation and correct BDNF-dependent dendritic formation of hippocampal neurons in vitro and in vivo We conclude that USP8 positively regulates the levels and activation of TrkB, modulating BDNF-dependent neuronal differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Carlos Martín-Rodríguez
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Minseok Song
- Department of Life Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Korea
| | - Begoña Anta
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Francisco J González-Calvo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Rubén Deogracias
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
| | - Deqiang Jing
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Juan Carlos Arevalo
- Departmento de Biología Celular y Patología, Instituto de Neurociencias de Castilla y León, University of Salamanca, Salamanca 37007, Spain
- Institute of Biomedical Research of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
8
|
Li Y, Sun X, Gao D, Ding Y, Liu J, Chen J, Luo J, Zhang J, Liu Q, Zhou Z. Dual functions of Rack1 in regulating Hedgehog pathway. Cell Death Differ 2020; 27:3082-3096. [PMID: 32467643 PMCID: PMC7560836 DOI: 10.1038/s41418-020-0563-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 01/20/2023] Open
Abstract
Hedgehog (Hh) pathway plays multiple roles in many physiological processes and its dysregulation leads to congenital disorders and cancers. Hh regulates the cellular localization of Smoothened (Smo) and the stability of Cubitus interruptus (Ci) to fine-tune the signal outputs. However, the underlying mechanisms are still unclear. Here, we show that the scaffold protein Rack1 plays dual roles in Hh signaling. In the absence of Hh, Rack1 promotes Ci and Cos2 to form a Ci–Rack1–Cos2 complex, culminating in Slimb-mediated Ci proteolysis. In the presence of Hh, Rack1 dissociates from Ci–Rack1–Cos2 complex and forms a trimeric complex with Smo and Usp8, leading to Smo deubiquitination and cell surface accumulation. Furthermore, we find the regulation of Rack1 on Hh pathway is conserved from Drosophila to mammalian cells. Our findings demonstrate that Rack1 plays dual roles during Hh signal transduction and provide Rack1 as a potential drug target for Hh-related diseases.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Xiaohan Sun
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Dongqing Gao
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Yan Ding
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Jinxiao Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China
| | - Jiong Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 210061, Nanjing, China
| | - Jun Luo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, Nanjing University, 210061, Nanjing, China
| | - Junzheng Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100094, Beijing, China
| | - Qingxin Liu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| | - Zizhang Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, 271018, Tai'an, China.
| |
Collapse
|
9
|
Sakai R, Fukuda R, Unida S, Aki M, Ono Y, Endo A, Kusumi S, Koga D, Fukushima T, Komada M, Okiyoneda T. The integral function of the endocytic recycling compartment is regulated by RFFL-mediated ubiquitylation of Rab11 effectors. J Cell Sci 2019; 132:jcs.228007. [PMID: 30659120 DOI: 10.1242/jcs.228007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 01/03/2019] [Indexed: 12/11/2022] Open
Abstract
Endocytic trafficking is regulated by ubiquitylation (also known as ubiquitination) of cargoes and endocytic machineries. The role of ubiquitylation in lysosomal delivery has been well documented, but its role in the recycling pathway is largely unknown. Here, we report that the ubiquitin (Ub) ligase RFFL regulates ubiquitylation of endocytic recycling regulators. An RFFL dominant-negative (DN) mutant induced clustering of endocytic recycling compartments (ERCs) and delayed endocytic cargo recycling without affecting lysosomal traffic. A BioID RFFL interactome analysis revealed that RFFL interacts with the Rab11 effectors EHD1, MICALL1 and class I Rab11-FIPs. The RFFL DN mutant strongly captured these Rab11 effectors and inhibited their ubiquitylation. The prolonged interaction of RFFL with Rab11 effectors was sufficient to induce the clustered ERC phenotype and to delay cargo recycling. RFFL directly ubiquitylates these Rab11 effectors in vitro, but RFFL knockout (KO) only reduced the ubiquitylation of Rab11-FIP1. RFFL KO had a minimal effect on the ubiquitylation of EHD1, MICALL1, and Rab11-FIP2, and failed to delay transferrin recycling. These results suggest that multiple Ub ligases including RFFL regulate the ubiquitylation of Rab11 effectors, determining the integral function of the ERC.
Collapse
Affiliation(s)
- Ryohei Sakai
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Ryosuke Fukuda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Shin Unida
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Misaki Aki
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Yuji Ono
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| | - Akinori Endo
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Satoshi Kusumi
- Division of Morphological Sciences, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima 890-8544, Japan
| | - Daisuke Koga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, Asahikawa 078-8510, Hokkaido, Japan
| | - Toshiaki Fukushima
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Masayuki Komada
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Tsukasa Okiyoneda
- Department of Biomedical Chemistry, School of Science and Technology, Kwansei Gakuin University, Hyogo 669-1337, Japan
| |
Collapse
|
10
|
Cheng Y, Chen D. Fruit fly research in China. J Genet Genomics 2018; 45:583-592. [PMID: 30455037 DOI: 10.1016/j.jgg.2018.09.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 09/21/2018] [Accepted: 09/29/2018] [Indexed: 11/19/2022]
Abstract
Served as a model organism over a century, fruit fly has significantly pushed forward the development of global scientific research, including in China. The high similarity in genomic features between fruit fly and human enables this tiny insect to benefit the biomedical studies of human diseases. In the past decades, Chinese biologists have used fruit fly to make numerous achievements on understanding the fundamental questions in many diverse areas of biology. Here, we review some of the recent fruit fly studies in China, and mainly focus on those studies in the fields of stem cell biology, cancer therapy and regeneration medicine, neurological disorders and epigenetics.
Collapse
Affiliation(s)
- Ying Cheng
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Dahua Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
11
|
Roles for ER:endosome membrane contact sites in ligand-stimulated intraluminal vesicle formation. Biochem Soc Trans 2018; 46:1055-1062. [PMID: 30242114 PMCID: PMC6195632 DOI: 10.1042/bst20170432] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 07/31/2018] [Accepted: 08/08/2018] [Indexed: 12/12/2022]
Abstract
Multivesicular endosomes/bodies (MVBs) sort membrane proteins between recycling and degradative pathways. Segregation of membrane proteins onto intraluminal vesicles (ILVs) of MVBs removes them from the recycling pathway and facilitates their degradation following fusion of MVBs with lysosomes. Sorting of many cargos onto ILVs depends on the ESCRT (Endosomal Sorting Complex Required for Transport) machinery, although ESCRT-independent mechanisms also exist. In mammalian cells, efficient sorting of ligand-stimulated epidermal growth factor receptors onto ILVs also depends on the tyrosine phosphatase, PTP1B, an ER-localised enzyme that interacts with endosomal targets at membrane contacts between MVBs and the ER. This review focuses on the potential roles played by ER:MVB membrane contact sites in regulating ESCRT-dependent ILV formation.
Collapse
|
12
|
Deubiquitinating Enzymes Related to Autophagy: New Therapeutic Opportunities? Cells 2018; 7:cells7080112. [PMID: 30126257 PMCID: PMC6116007 DOI: 10.3390/cells7080112] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/13/2018] [Accepted: 08/17/2018] [Indexed: 12/21/2022] Open
Abstract
Autophagy is an evolutionary conserved catabolic process that allows for the degradation of intracellular components by lysosomes. This process can be triggered by nutrient deprivation, microbial infections or other challenges to promote cell survival under these stressed conditions. However, basal levels of autophagy are also crucial for the maintenance of proper cellular homeostasis by ensuring the selective removal of protein aggregates and dysfunctional organelles. A tight regulation of this process is essential for cellular survival and organismal health. Indeed, deregulation of autophagy is associated with a broad range of pathologies such as neuronal degeneration, inflammatory diseases, and cancer progression. Ubiquitination and deubiquitination of autophagy substrates, as well as components of the autophagic machinery, are critical regulatory mechanisms of autophagy. Here, we review the main evidence implicating deubiquitinating enzymes (DUBs) in the regulation of autophagy. We also discuss how they may constitute new therapeutic opportunities in the treatment of pathologies such as cancers, neurodegenerative diseases or infections.
Collapse
|
13
|
Crespo-Yàñez X, Aguilar-Gurrieri C, Jacomin AC, Journet A, Mortier M, Taillebourg E, Soleilhac E, Weissenhorn W, Fauvarque MO. CHMP1B is a target of USP8/UBPY regulated by ubiquitin during endocytosis. PLoS Genet 2018; 14:e1007456. [PMID: 29933386 PMCID: PMC6033466 DOI: 10.1371/journal.pgen.1007456] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 07/05/2018] [Accepted: 05/30/2018] [Indexed: 11/29/2022] Open
Abstract
Integration and down-regulation of cell growth and differentiation signals rely on plasma membrane receptor endocytosis and sorting towards either recycling vesicles or degradative lysosomes via multivesicular bodies (MVB). In this process, the endosomal sorting complex-III required for transport (ESCRT-III) controls membrane deformation and scission triggering intraluminal vesicle (ILV) formation at early endosomes. Here, we show that the ESCRT-III member CHMP1B can be ubiquitinated within a flexible loop known to undergo conformational changes during polymerization. We demonstrate further that CHMP1B is deubiquitinated by the ubiquitin specific protease USP8 (syn. UBPY) and found fully devoid of ubiquitin in a ~500 kDa large complex that also contains its ESCRT-III partner IST1. Moreover, EGF stimulation induces the rapid and transient accumulation of ubiquitinated forms of CHMP1B on cell membranes. Accordingly, CHMP1B ubiquitination is necessary for CHMP1B function in both EGF receptor trafficking in human cells and wing development in Drosophila. Based on these observations, we propose that CHMP1B is dynamically regulated by ubiquitination in response to EGF and that USP8 triggers CHMP1B deubiquitination possibly favoring its subsequent assembly into a membrane-associated ESCRT-III polymer. In multicellular organisms, the interpretation and transmission of cell growth and differentiation signals strongly rely on plasma membrane receptors. Once activated by their ligands, these receptors activate downstream signaling cascades and are rapidly internalized into intracellular vesicles that fuse inside the cell to form the endosomal compartment. From there, the receptors are sorted towards either recycling vesicles or degradative lysosomes via multivesicular bodies. Receptors sorting therefore plays a crucial role in the integration and regulation of intracellular signals during development and numerous physio-pathological processes. It requires extensive membrane remodeling and scission events at the level of the endosomal compartment by so-called ESCRT proteins, including CHMP1B. In this study, we provide evidence for dynamic regulation of CHMP1B function and subcellular localization by ubiquitin linkage. We also show the contribution of the ubiquitin specific protease USP8 in this regulation, which is a known actor of intracellular trafficking and Cushing’s disease.
Collapse
Affiliation(s)
- Xènia Crespo-Yàñez
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Carmen Aguilar-Gurrieri
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Anne-Claire Jacomin
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Agnès Journet
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Magda Mortier
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Emmanuel Taillebourg
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Emmanuelle Soleilhac
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
| | - Winfried Weissenhorn
- Institut de Biologie Structurale (IBS), Univ. Grenoble Alpes, CNRS, CEA, Grenoble, France
| | - Marie-Odile Fauvarque
- Institut de Biosciences et Biotechnologies de Grenoble (BIG), Univ. Grenoble Alpes, INSERM U1038, CEA, Grenoble, France
- * E-mail:
| |
Collapse
|
14
|
Luo Z, Ge M, Chen J, Geng Q, Tian M, Qiao Z, Bai L, Zhang Q, Zhu C, Xiong Y, Wu K, Liu F, Liu Y, Wu J. HRS plays an important role for TLR7 signaling to orchestrate inflammation and innate immunity upon EV71 infection. PLoS Pathog 2017; 13:e1006585. [PMID: 28854257 PMCID: PMC5595348 DOI: 10.1371/journal.ppat.1006585] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/12/2017] [Accepted: 08/16/2017] [Indexed: 12/21/2022] Open
Abstract
Enterovirus 71 (EV71) is an RNA virus that causes hand-foot-mouth disease (HFMD), and even fatal encephalitis in children. Although EV71 pathogenesis remains largely obscure, host immune responses may play important roles in the development of diseases. Recognition of pathogens mediated by Toll-like receptors (TLRs) induces host immune and inflammatory responses. Intracellular TLRs must traffic from the endoplasmic reticulum (ER) to the endolysosomal network from where they initiate complete signaling, leading to inflammatory response. This study reveals a novel mechanism underlying the regulation of TLR7 signaling during EV71 infection. Initially, we show that multiple cytokines are differentially expressed during viral infection and demonstrate that EV71 infection induces the production of proinflammatory cytokines through regulating TLR7-mediated p38 MAPK, and NF-κB signaling pathways. Further studies reveal that the expression of the endosome-associated protein hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) is upregulated and highly correlated with the expression of TLR7 in EV71 infected patients, mice, and cultured cells. Virus-induced HRS subsequently enhances TLR7 complex formation in early- and late-endosome by interacting with TLR7 and TAB1. Moreover, HRS is involved in the regulation of the TLR7/NF-κB/p38 MAPK and the TLR7/NF-κB/IRF3 signaling pathways to induce proinflammatory cytokines and interferons, respectively, resulting in the orchestration of inflammatory and immune responses to the EV71 infection. Therefore, this study demonstrates that HRS acts as a key component of TLR7 signaling to orchestrate immune and inflammatory responses during EV71 infection, and provides new insights into the mechanisms underlying the regulation of host inflammation and innate immunity during EV71 infection. Enterovirus 71 (EV71) is a highly infectious positive-stranded RNA virus that causes hand-foot-mouth disease (HFMD). As a major pathogen, EV71 infection leads to host immune responses in the disease severity. Toll-like receptors (TLRs) can recognize pathogens to induce host immunity and inflammation. Most TLRs must traffic from the endoplasmic reticulum (ER) to endolysosomal network before responding to ligands. The hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) regulates ESCRT-0 complex and endosomal sorting of membrane proteins. HRS is required for ubiquitin-dependent TLR9 targeting to the endolysosome, however, the mechanism by which HRS regulates inflammation and immunity mediated by TLR7 is still largely unknown. Here, we reveal that HRS is a key component of TLR7 signaling to orchestrate immunity and inflammation during EV71 infection. EV71 infection induces the expression of HRS, which subsequently enhances the TLR7 complex formation by binding with TLR7 and TAB1. HRS facilitates TLR7/NF-κB/p38 MAPK and TLR7/NF-κB/IRF3 signaling pathways to produce proinflammatory cytokines and interferons, leading to induction of inflammatory and immune responses. Thus, we identify HRS as a key regulator of TLR7 signaling and illustrate a novel mechanism underlying the regulation of host immunity and inflammation during viral infection.
Collapse
Affiliation(s)
- Zhen Luo
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
| | - Maolin Ge
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Junbo Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qibin Geng
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mingfu Tian
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Zhi Qiao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lan Bai
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chengliang Zhu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ying Xiong
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kailang Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fang Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- * E-mail: (JW); (YL); (FL)
| | - Yingle Liu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (JW); (YL); (FL)
| | - Jianguo Wu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
- Institute of Medical Microbiology, Jinan University, Guangzhou, China
- * E-mail: (JW); (YL); (FL)
| |
Collapse
|
15
|
Horner DS, Pasini ME, Beltrame M, Mastrodonato V, Morelli E, Vaccari T. ESCRT genes and regulation of developmental signaling. Semin Cell Dev Biol 2017; 74:29-39. [PMID: 28847745 DOI: 10.1016/j.semcdb.2017.08.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/06/2017] [Accepted: 08/18/2017] [Indexed: 11/30/2022]
Abstract
ESCRT (Endosomal Sorting Complex Required for Transport) proteins have been shown to control an increasing number of membrane-associated processes. Some of these, and prominently regulation of receptor trafficking, profoundly shape signal transduction. Evidence in fungi, plants and multiple animal models support the emerging concept that ESCRTs are main actors in coordination of signaling with the changes in cells and tissues occurring during development and homeostasis. Consistent with their pleiotropic function, ESCRTs are regulated in multiple ways to tailor signaling to developmental and homeostatic needs. ESCRT activity is crucial to correct execution of developmental programs, especially at key transitions, allowing eukaryotes to thrive and preventing appearance of congenital defects.
Collapse
Affiliation(s)
- David S Horner
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Maria E Pasini
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Monica Beltrame
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy
| | - Valeria Mastrodonato
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Elena Morelli
- IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy
| | - Thomas Vaccari
- Dipartimento di Bioscienze, Universita' degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; IFOM, The FIRC Institute of Molecular Oncology, Via Adamello 16, 20139 Milano, Italy.
| |
Collapse
|
16
|
Du J, Zhang J, He T, Li Y, Su Y, Tie F, Liu M, Harte PJ, Zhu AJ. Stuxnet Facilitates the Degradation of Polycomb Protein during Development. Dev Cell 2017; 37:507-19. [PMID: 27326929 DOI: 10.1016/j.devcel.2016.05.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 04/29/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
Abstract
Polycomb-group (PcG) proteins function to ensure correct deployment of developmental programs by epigenetically repressing target gene expression. Despite the importance, few studies have been focused on the regulation of PcG activity itself. Here, we report a Drosophila gene, stuxnet (stx), that controls Pc protein stability. We find that heightened stx activity leads to homeotic transformation, reduced Pc activity, and de-repression of PcG targets. Conversely, stx mutants, which can be rescued by decreased Pc expression, display developmental defects resembling hyperactivation of Pc. Our biochemical analyses provide a mechanistic basis for the interaction between stx and Pc; Stx facilitates Pc degradation in the proteasome, independent of ubiquitin modification. Furthermore, this mode of regulation is conserved in vertebrates. Mouse stx promotes degradation of Cbx4, an orthologous Pc protein, in vertebrate cells and induces homeotic transformation in Drosophila. Our results highlight an evolutionarily conserved mechanism of regulated protein degradation on PcG homeostasis and epigenetic activity.
Collapse
Affiliation(s)
- Juan Du
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Junzheng Zhang
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Tao He
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yajuan Li
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ying Su
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China
| | - Feng Tie
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Min Liu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Peter J Harte
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Alan Jian Zhu
- State Key Laboratory of Membrane Biology, Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| |
Collapse
|
17
|
Clague MJ, Urbé S. Integration of cellular ubiquitin and membrane traffic systems: focus on deubiquitylases. FEBS J 2017; 284:1753-1766. [PMID: 28064438 PMCID: PMC5484354 DOI: 10.1111/febs.14007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 12/29/2016] [Accepted: 01/06/2017] [Indexed: 12/17/2022]
Abstract
The cell is comprised of integrated multilevel protein networks or systems. The ubiquitin, protein homeostasis and membrane trafficking systems are highly integrated. Here, we look at the influence of reversible ubiquitylation on membrane trafficking and organelle dynamics. We review the regulation of endocytic sorting, selective autophagy and the secretory pathway by ubiquitin signals, with a particular focus on detailing the contribution of deubiquitylating enzymes.
Collapse
Affiliation(s)
- Michael J Clague
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| | - Sylvie Urbé
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, UK
| |
Collapse
|
18
|
He M, Zhou Z, Shah AA, Zou H, Tao J, Chen Q, Wan Y. The emerging role of deubiquitinating enzymes in genomic integrity, diseases, and therapeutics. Cell Biosci 2016; 6:62. [PMID: 28031783 PMCID: PMC5168870 DOI: 10.1186/s13578-016-0127-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/05/2016] [Indexed: 02/05/2023] Open
Abstract
The addition of mono-ubiquitin or poly-ubiquitin chain to signaling proteins in response to DNA damage signal is thought to be a critical event that facilitates the recognition of DNA damage lesion site, the activation of checkpoint function, termination and checkpoint response and the recruitment of DNA repair proteins. Despite the ubiquitin modifiers, removal of ubiquitin from the functional proteins by the deubiquitinating enzymes (DUBs) plays an important role in orchestrating DNA damage response as well as DNA repair processes. Deregulated ubiquitination and deubiquitination could lead to genome instability that in turn causes tumorigenesis. Recent TCGA study has further revealed the connection between mutations in alteration of DUBs and various types of tumors. In addition, emerging drug design based on DUBs provides a new avenue for anti-cancer therapy. In this review, we will summarize the role of deubiquitination and specificity of DUBs, and highlight the recent discoveries of DUBs in the modulation of ubiquitin-mediated DNA damage response and DNA damage repair. We will furthermore discuss the DUBs involved in the tumorigenesis as well as interception of deubiquitination as a novel strategy for anti-cancer therapy.
Collapse
Affiliation(s)
- Mingjing He
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA ; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Zhuan Zhou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Anil A Shah
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Haojing Zou
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Jin Tao
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| | - Qianming Chen
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 Sichuan People's Republic of China
| | - Yong Wan
- Department of Cell Biology, University of Pittsburgh School of Medicine, 5117 Centre Avenue, Hillman Cancer Center, HCC2.6c, Pittsburgh, PA 15213 USA
| |
Collapse
|
19
|
Jacomin AC, Fauvarque MO, Taillebourg E. A functional endosomal pathway is necessary for lysosome biogenesis in Drosophila. BMC Cell Biol 2016; 17:36. [PMID: 27852225 PMCID: PMC5112658 DOI: 10.1186/s12860-016-0115-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/05/2016] [Indexed: 12/21/2022] Open
Abstract
Background Lysosomes are the major catabolic compartment within eukaryotic cells, and their biogenesis requires the integration of the biosynthetic and endosomal pathways. Endocytosis and autophagy are the primary inputs of the lysosomal degradation pathway. Endocytosis is specifically needed for the degradation of membrane proteins whereas autophagy is responsible for the degradation of cytoplasmic components. We previously identified the deubiquitinating enzyme UBPY/USP8 as being necessary for lysosomal biogenesis and productive autophagy in Drosophila. Because UBPY/USP8 has been widely described for its function in the endosomal system, we hypothesized that disrupting the endosomal pathway itself may affect the biogenesis of the lysosomes. Results In the present study, we blocked the progression of the endosomal pathway at different levels of maturation of the endosomes by expressing in fat body cells either dsRNAs or dominant negative mutants targeting components of the endosomal machinery: Shibire, Rab4, Rab5, Chmp1 and Rab7. We observed that inhibition of endosomal trafficking at different steps in vivo is systematically associated with defects in lysosome biogenesis, resulting in autophagy flux blockade. Conclusion Our results show that the integrity of the endosomal system is required for lysosome biogenesis and productive autophagy in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12860-016-0115-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne-Claire Jacomin
- Université Grenoble-Alpes, F-38041, Grenoble, France.,CEA-DSV-iRTSV-BGE-Gen&Chem, 17, rue des Martyrs, 38054, Grenoble, Cedex 9, France.,INSERM, U1038, F-38054, Grenoble, France.,Present address: School of Life Sciences, University of Warwick, Coventry, UK
| | - Marie-Odile Fauvarque
- Université Grenoble-Alpes, F-38041, Grenoble, France. .,CEA-DSV-iRTSV-BGE-Gen&Chem, 17, rue des Martyrs, 38054, Grenoble, Cedex 9, France. .,INSERM, U1038, F-38054, Grenoble, France.
| | - Emmanuel Taillebourg
- Université Grenoble-Alpes, F-38041, Grenoble, France. .,CEA-DSV-iRTSV-BGE-Gen&Chem, 17, rue des Martyrs, 38054, Grenoble, Cedex 9, France. .,INSERM, U1038, F-38054, Grenoble, France.
| |
Collapse
|
20
|
Liu M, Li Y, Liu A, Li R, Su Y, Du J, Li C, Zhu AJ. The exon junction complex regulates the splicing of cell polarity gene dlg1 to control Wingless signaling in development. eLife 2016; 5. [PMID: 27536874 PMCID: PMC5008907 DOI: 10.7554/elife.17200] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 08/14/2016] [Indexed: 12/22/2022] Open
Abstract
Wingless (Wg)/Wnt signaling is conserved in all metazoan animals and plays critical roles in development. The Wg/Wnt morphogen reception is essential for signal activation, whose activity is mediated through the receptor complex and a scaffold protein Dishevelled (Dsh). We report here that the exon junction complex (EJC) activity is indispensable for Wg signaling by maintaining an appropriate level of Dsh protein for Wg ligand reception in Drosophila. Transcriptome analyses in Drosophila wing imaginal discs indicate that the EJC controls the splicing of the cell polarity gene discs large 1 (dlg1), whose coding protein directly interacts with Dsh. Genetic and biochemical experiments demonstrate that Dlg1 protein acts independently from its role in cell polarity to protect Dsh protein from lysosomal degradation. More importantly, human orthologous Dlg protein is sufficient to promote Dvl protein stabilization and Wnt signaling activity, thus revealing a conserved regulatory mechanism of Wg/Wnt signaling by Dlg and EJC. DOI:http://dx.doi.org/10.7554/eLife.17200.001 Animal development involves different signaling pathways that coordinate complex behaviors of the cells, such as changes in cell number or cell shape. One such pathway involves a protein called Wingless/Wnt, which controls cell fate and growth and is also involved in tumor formation in humans. In recent decades, scientists have made a lot of progress in understanding how this signaling pathway operates. However, it is not well understood how the Wingless/Wnt signaling pathway interacts with other regulatory networks during development. Now, Liu, Li et al. unveil a new regulatory network that controls the Wingless/Wnt pathway in fruit flies and in mammalian cells grown in the laboratory. The experiments show that an RNA binding protein family named the Exon Junction Complex positively regulates a protein called Dishevelled, which serves as a hub in the Wingless/Wnt pathway. The Exon Junction Complex keeps the amount of Dishevelled protein in check via an interaction with another protein referred to as Discs large. Further experiments indicated that Discs large binds to and protects Dishevelled from being degraded inside the cell. Liu et al.'s findings highlight a new control mechanism for the Wingless/Wnt signaling pathway. In the future, the findings may also aid the development of new approaches to prevent or treat birth defects and cancer. DOI:http://dx.doi.org/10.7554/eLife.17200.002
Collapse
Affiliation(s)
- Min Liu
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China
| | - Yajuan Li
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Aiguo Liu
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China
| | - Ruifeng Li
- School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China.,Center for Bioinformatics, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| | - Ying Su
- School of Life Sciences, Peking University, Beijing, China
| | - Juan Du
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China
| | - Cheng Li
- School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China.,Center for Bioinformatics, Peking University, Beijing, China.,Center for Statistical Science, Peking University, Beijing, China
| | - Alan Jian Zhu
- State Key Laboratory of Membrane Biology and Minstry of Education Key Laboratory of Cell Proliferation and Differentiation, Peking University, Beijing, China.,School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisplinary Studies, Peking University, Beijing, China
| |
Collapse
|
21
|
Abstract
The Hedgehog (Hh) signaling pathway play critical roles in embryonic development and adult tissue homeostasis. A critical step in Hh signal transduction is how Hh receptor Patched (Ptc) inhibits the atypical G protein-coupled receptor Smoothened (Smo) in the absence of Hh and how this inhibition is release by Hh stimulation. It is unlikely that Ptc inhibits Smo by direct interaction. Here we discuss how Hh regulates the phosphorylation and ubiquitination of Smo, leading to cell surface and ciliary accumulation of Smo in Drosophila and vertebrate cells, respectively. In addition, we discuss how PI(4)P phospholipid acts in between Ptc and Smo to regulate Smo phosphorylation and activation in response to Hh stimulation.
Collapse
Affiliation(s)
- Kai Jiang
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| | - Jianhang Jia
- Markey Cancer Center, Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536, USA
| |
Collapse
|
22
|
Jacomin AC, Bescond A, Soleilhac E, Gallet B, Schoehn G, Fauvarque MO, Taillebourg E. The Deubiquitinating Enzyme UBPY Is Required for Lysosomal Biogenesis and Productive Autophagy in Drosophila. PLoS One 2015; 10:e0143078. [PMID: 26571504 PMCID: PMC4646453 DOI: 10.1371/journal.pone.0143078] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/30/2015] [Indexed: 12/31/2022] Open
Abstract
Autophagy is a catabolic process that delivers cytoplasmic components to the lysosomes. Protein modification by ubiquitination is involved in this pathway: it regulates the stability of autophagy regulators such as BECLIN-1 and it also functions as a tag targeting specific substrates to autophagosomes. In order to identify deubiquitinating enzymes (DUBs) involved in autophagy, we have performed a genetic screen in the Drosophila larval fat body. This screen identified Uch-L3, Usp45, Usp12 and Ubpy. In this paper, we show that Ubpy loss of function results in the accumulation of autophagosomes due to a blockade of the autophagy flux. Furthermore, analysis by electron and confocal microscopy of Ubpy-depleted fat body cells revealed altered lysosomal morphology, indicating that Ubpy inactivation affects lysosomal maintenance and/or biogenesis. Lastly, we have shown that shRNA mediated inactivation of UBPY in HeLa cells affects autophagy in a different way: in UBPY-depleted HeLa cells autophagy is deregulated.
Collapse
Affiliation(s)
- Anne-Claire Jacomin
- Université Grenoble-Alpes, F-38041, Grenoble, France; CEA-DSV-iRTSV-BGE-Gen&Chem, F-38054, Grenoble, France; INSERM, U1038, F-38054, Grenoble, France
| | - Amandine Bescond
- Université Grenoble-Alpes, F-38041, Grenoble, France; CEA-DSV-iRTSV-BGE-Gen&Chem, F-38054, Grenoble, France; INSERM, U1038, F-38054, Grenoble, France
| | - Emmanuelle Soleilhac
- Université Grenoble-Alpes, F-38041, Grenoble, France; CEA-DSV-iRTSV-BGE-Gen&Chem, F-38054, Grenoble, France; INSERM, U1038, F-38054, Grenoble, France
| | - Benoît Gallet
- Université Grenoble Alpes, IBS, F-38044, Grenoble, France; CNRS, IBS, F-38044, Grenoble, France; CEA, IBS, F-38044, Grenoble, France
| | - Guy Schoehn
- Université Grenoble Alpes, IBS, F-38044, Grenoble, France; CNRS, IBS, F-38044, Grenoble, France; CEA, IBS, F-38044, Grenoble, France
| | - Marie-Odile Fauvarque
- Université Grenoble-Alpes, F-38041, Grenoble, France; CEA-DSV-iRTSV-BGE-Gen&Chem, F-38054, Grenoble, France; INSERM, U1038, F-38054, Grenoble, France
- * E-mail: (ET); (MOF)
| | - Emmanuel Taillebourg
- Université Grenoble-Alpes, F-38041, Grenoble, France; CEA-DSV-iRTSV-BGE-Gen&Chem, F-38054, Grenoble, France; INSERM, U1038, F-38054, Grenoble, France
- * E-mail: (ET); (MOF)
| |
Collapse
|
23
|
Abstract
Mop regulates endosomal localization and recycling of Frizzled. Hrs is ubiquitinated and degraded in the absence of Mop. Mop aids in the maintenance of Ubpy to control the ubiquitin homeostasis of Hrs. Mop and Ubpy can rescue each other. Mop’s function is not required in the cell in the absence of the ubiquitin ligase Cbl. Endosomal trafficking of signaling proteins plays an essential role in cellular homeostasis. The seven-pass transmembrane protein Frizzled (Fz) is a critical component of Wnt signaling. Although Wnt signaling is proposed to be regulated by endosomal trafficking of Fz, the molecular events that enable this regulation are not completely understood. Here we show that the endosomal protein Myopic (Mop) regulates Fz trafficking in the Drosophila wing disk by inhibiting the ubiquitination and degradation of Hrs. Deletion of Mop or Hrs results in endosomal accumulation of Fz and therefore reduced Wnt signaling. The in situ proximity ligation assay revealed a strong association between Mop and Hrs in the Drosophila wing disk. Overexpression of Hrs rescues the trafficking defect caused by mop knockdown. Mop aids in the maintenance of Ubpy, which deubiquitinates (and thus stabilizes) Hrs. In the absence of the ubiquitin ligase Cbl, Mop is dispensable. These findings support a previously unknown role for Mop in endosomal trafficking of Fz in Wnt-receiving cells.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Esther M Verheyen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
24
|
Watson JA, Bhattacharyya BJ, Vaden JH, Wilson JA, Icyuz M, Howard AD, Phillips E, DeSilva TM, Siegal GP, Bean AJ, King GD, Phillips SE, Miller RJ, Wilson SM. Motor and Sensory Deficits in the teetering Mice Result from Mutation of the ESCRT Component HGS. PLoS Genet 2015; 11:e1005290. [PMID: 26115514 PMCID: PMC4482608 DOI: 10.1371/journal.pgen.1005290] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 05/18/2015] [Indexed: 11/18/2022] Open
Abstract
Neurons are particularly vulnerable to perturbations in endo-lysosomal transport, as several neurological disorders are caused by a primary deficit in this pathway. In this report, we used positional cloning to show that the spontaneously occurring neurological mutation teetering (tn) is a single nucleotide substitution in hepatocyte growth factor-regulated tyrosine kinase substrate (Hgs/Hrs), a component of the endosomal sorting complex required for transport (ESCRT). The tn mice exhibit hypokenesis, muscle weakness, reduced muscle size and early perinatal lethality by 5-weeks of age. Although HGS has been suggested to be essential for the sorting of ubiquitinated membrane proteins to the lysosome, there were no alterations in receptor tyrosine kinase levels in the central nervous system, and only a modest decrease in tropomyosin receptor kinase B (TrkB) in the sciatic nerves of the tn mice. Instead, loss of HGS resulted in structural alterations at the neuromuscular junction (NMJ), including swellings and ultra-terminal sprouting at motor axon terminals and an increase in the number of endosomes and multivesicular bodies. These structural changes were accompanied by a reduction in spontaneous and evoked release of acetylcholine, indicating a deficit in neurotransmitter release at the NMJ. These deficits in synaptic transmission were associated with elevated levels of ubiquitinated proteins in the synaptosome fraction. In addition to the deficits in neuronal function, mutation of Hgs resulted in both hypermyelinated and dysmyelinated axons in the tn mice, which supports a growing body of evidence that ESCRTs are required for proper myelination of peripheral nerves. Our results indicate that HGS has multiple roles in the nervous system and demonstrate a previously unanticipated requirement for ESCRTs in the maintenance of synaptic transmission. Endocytic trafficking involves the internalization, endosomal sorting and lysosomal degradation of cell surface cargo. Many factors involved in endosomal sorting in mammalian cells have been identified, and mutations in these components are associated with a variety of neurological disorders. While the function of endosomal sorting components has been intensely studied in immortalized cell lines, it is not known what role these factors play in endosomal sorting in the nervous system. In this study, we show that the teetering (tn) gene encodes the hepatocytegrowth factor regulated tyrosine kinasesubstrate (Hgs), a core component of the endosomal sorting pathway. The tn mice exhibit several signs of motor neuron disease, including reduced muscle mass, muscle weakness and motor abnormalities. Although HGS is predicted to be required for the lysosomal degradation of receptor tyrosine kinases, there was no change in the levels of receptor tyrosine kinases in the spinal cords of the tn mice. Instead, we found that HGS is required for synaptic transmission at the neuromuscular junction and for the proper myelination of the peripheral nervous system.
Collapse
Affiliation(s)
- Jennifer A. Watson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Bula J. Bhattacharyya
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Jada H. Vaden
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Julie A. Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Mert Icyuz
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Alan D. Howard
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Edward Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Tara M. DeSilva
- Department of Physical Medicine and Rehabilitation, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Gene P. Siegal
- Departments of Pathology, Surgery and Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrew J. Bean
- Department of Neurobiology and Anatomy and Graduate School of Biomedical Sciences, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Division of Pediatrics, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Gwendalyn D. King
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Scott E. Phillips
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
| | - Richard J. Miller
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University, Evanston, Illinois, United States of America
| | - Scott M. Wilson
- Department of Neurobiology, University of Alabama at Birmingham, Evelyn F. McKnight Brain Institute, Civitan International Research Center, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|