1
|
Li C, Li J, Du S, Ma Y, Guo Y, Zhang X, Wang B, Zhu S, An H, Chen M, Guo J, Han L, Ge J, Qian X, Schedl T, Guo X, Wang Q. FTDC1/2, oocyte-specific cofactors of DNMT1 required for epigenetic regulation and embryonic development. Cell Death Differ 2025:10.1038/s41418-025-01518-3. [PMID: 40295817 DOI: 10.1038/s41418-025-01518-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
The unique epigenetic patterns during gametogenesis and embryonic development indicate the existence of specialized methylation machinery. In the present study, we describe the discovery of two oocyte-specific cofactors of DNA methyltransferase 1 (DNMT1), encoded by uncharacterized genes, ferritin domain containing 1 and 2 (Ftdc1 and Ftdc2). Genetic ablation of Ftdc1 or Ftdc2 causes midgestation defects and female infertility. FTDC1 or FTDC2 depletion induces the progressive loss of DNA methylation including imprinted regions in early embryos. This loss correlates with a marked reduction in DNMT1 protein due to increased degradation, likely via the ubiquitin-proteasome pathway. Mechanistically, we find that FTDC1, FTDC2 and DNMT1 form a complex by direct interactions, thereby stabilizing each other. Surprisingly, knockout of Ftdc1 or Ftdc2 displayed stronger DNA demethylation phenotypes and earlier embryonic lethality than the Dnmt1-null mutant, implying their unique functions. These data suggest that FTDC1/2 are crucial players specifically involved in maintaining genomic methylation during embryogenesis, offering new insights into the epigenetic control of mammalian development.
Collapse
Affiliation(s)
- Congyang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Jiashuo Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Siyu Du
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Yunfei Ma
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Xiangzheng Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Bing Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Shuai Zhu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Huiqing An
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Ming Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Junjie Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Longsen Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Juan Ge
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China
| | - Xu Qian
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Tim Schedl
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, Nanjing, China.
| | - Qiang Wang
- Changzhou Maternity and Child Health Care Hospital, Changzhou Medical Center, State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, China.
- Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
2
|
O'Leary EM, Bonthuis PJ. Mom genes and dad genes: genomic imprinting in the regulation of social behaviors. Epigenomics 2025:1-19. [PMID: 40249667 DOI: 10.1080/17501911.2025.2491294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 03/31/2025] [Indexed: 04/20/2025] Open
Abstract
Genomic imprinting is an epigenetic phenomenon in mammals that affects brain development and behavior. Imprinting involves the regulation of allelic expression for some genes in offspring that depends on whether alleles are inherited from mothers compared to fathers, and is thought to provide parental control over offspring social behavior phenotypes. Imprinted gene expression is prevalent in the mammalian brain, and human imprinted gene mutations are associated with neurodevelopmental disorders and neurodivergent social behavior in Prader-Willi Syndrome, Angelman Syndrome, and autism. Here, we provide a review of the evidence that imprinted genes influence social behaviors across major neurodevelopmental stages in humans and mouse animal models that include parent-infant interactions, juvenile sociability, and adult aggression, dominance, and sexual behavior.
Collapse
Affiliation(s)
- Erin M O'Leary
- Neuroscience Program, University of Illinois, Urbana, IL, USA
| | - Paul J Bonthuis
- Neuroscience Program, University of Illinois, Urbana, IL, USA
- Department of Comparative Biosciences, University of Illinois, Urbana-Champaign, Urbana, IL, USA
- Gene Networks in Neural & Development Plasticity Theme at Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
3
|
Kang SW, Helm BR, Wang Y, Xiao S, Zhang W, Vasudev A, Lau KS, Liu Q, Richie ER, Hale LP, Manley NR. Insulin-like growth factor 2 as a driving force for exponential expansion and differentiation of the neonatal thymus. Development 2025; 152:dev204347. [PMID: 40110795 PMCID: PMC12045631 DOI: 10.1242/dev.204347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Like all organs, the thymus grows in size and function rapidly during development, but this growth comes to a halt after birth. However, the molecular mechanisms behind such a transition in the thymus remain obscure. Using single-cell RNA sequencing (scRNA-seq) of the murine thymic stroma, we identified that major transcriptomic changes occur in the endothelium and mesenchyme across the transition to homeostasis. Differentially expressed gene and intercellular network analyses of temporally resolved scRNA-seq data revealed fibroblast-derived insulin-like growth factor 2 (IGF2) as a candidate driving neonatal thymic expansion. We demonstrated that IGF2 activity promotes a cortical thymic epithelial cell-specific proliferation and is tightly regulated at the thymic growth transition. Bulk RNA-seq of human thymi across the transition also revealed that IGF2 drives thymic expansion, suggesting an evolutionarily conserved role. Our study highlights the role of fibroblast-derived IGF2 in promoting cortical thymic epithelial cell proliferation and differentiation, resulting in early thymic expansion that is followed by downregulation to establish homeostasis.
Collapse
Affiliation(s)
- Seung Woo Kang
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Bryan R. Helm
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shiyun Xiao
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Wen Zhang
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Anusha Vasudev
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ken S. Lau
- Epithlielial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ellen R. Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura P. Hale
- Department of Pathology and the Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nancy R. Manley
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
4
|
Abdolmaleky HM, Nohesara S, Zhou JR, Thiagalingam S. Epigenetics in evolution and adaptation to environmental challenges: pathways for disease prevention and treatment. Epigenomics 2025; 17:317-333. [PMID: 39948759 PMCID: PMC11970782 DOI: 10.1080/17501911.2025.2464529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/04/2025] [Indexed: 04/02/2025] Open
Abstract
Adaptation to challenging environmental conditions is crucial for the survival/fitness of all organisms. Alongside genetic mutations that provide adaptive potential during environmental challenges, epigenetic modifications offer dynamic, reversible, and rapid mechanisms for regulating gene expression in response to environmental changes in both evolution and daily life, without altering DNA sequences or relying on accidental favorable mutations. The widespread conservation of diverse epigenetic mechanisms - like DNA methylation, histone modifications, and RNA interference across diverse species, including plants - underscores their significance in evolutionary biology. Remarkably, environmentally induced epigenetic alterations are passed to daughter cells and inherited transgenerationally through germline cells, shaping offspring phenotypes while preserving adaptive epigenetic memory. Throughout anthropoid evolution, epigenetic modifications have played crucial roles in: i) suppressing transposable elements and viral genomes intruding into the host genome; ii) inactivating one of the X chromosomes in female cells to balance gene dosage; iii) genetic imprinting to ensure expression from one parental allele; iv) regulating functional alleles to compensate for dysfunctional ones; and v) modulating the epigenome and transcriptome in response to influence from the gut microbiome among other functions. Understanding the interplay between environmental factors and epigenetic processes may provide valuable insights into developmental plasticity, evolutionary dynamics, and disease susceptibility.
Collapse
Affiliation(s)
- Hamid Mostafavi Abdolmaleky
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Medicine, Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shabnam Nohesara
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Jin-Rong Zhou
- Nutrition/Metabolism Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sam Thiagalingam
- Department of Medicine (Biomedical Genetics), Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
- Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
5
|
Emami M, Tavalaee M, Forouzanfar M, Shahhoseini M, Nasr-Esfahani MH. Evaluation of DNA Methylation and Expression of DLK1 and MEG3 Genes in Placenta and Umbilical Cord Blood Samples of Infertile People after ICSI-AOA Method. Reprod Sci 2025; 32:1129-1146. [PMID: 40011392 DOI: 10.1007/s43032-025-01819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 02/07/2025] [Indexed: 02/28/2025]
Abstract
Assissted oocyte activation (AOA) has emerged as a promising method to overcome fertilization failures that can occur after intracytoplasmic sperm injection (ICSI) due to the sperm's inability to adequately stimulate the oocyte. Fertilization failure after ICSI accounts for approximately 30% of human oocyte failures, contributing to an estimated total fertilization failure rate of 2-3%. However, concerns remain regarding the potential epigenetic changes that could influence both placental and fetal development. This study aims to examine the methylation and expression changes of key imprinted genes (DLK1 and MEG3) in umbilical cord blood and placental tissue. Therefore, the methylation and expression changes of DLK1 and MEG3 were compared among ICSI, ICSI-AOA, and natural fertilization groups. The analysis involved DNA methylation and real-time PCR. Results indicated no significant differences in overall methylation levels between the groups, although individual CpG positions displayed significant variations. Similarly, gene expression levels did not differ significantly across the groups. The study concludes that ICSI-AOA does not significantly impact the DNA methylation or gene expression of the imprinted genes (DLK1 and MEG3), suggesting that both ICSI and ICSI-AOA appear to be safe and reliable for infertility treatments. However, further research is essential to explore the long-term effects and safety profiles associated with ICSI-AOA.
Collapse
Affiliation(s)
- Maryam Emami
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran
| | - Marziyeh Tavalaee
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
| | - Mohsen Forouzanfar
- Department of Biology, Marvdasht Branch, Islamic Azad University, Marvdasht, Iran.
| | - Maryam Shahhoseini
- Department of Genetics, Reproductive Biomedicine Research Centre, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
- Department of Biochemistry, Faculty of Basic Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Mohammad H Nasr-Esfahani
- Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.
- Pooyesh & Rooyesh Fertility Center, Isfahan Health Center, Isfahan, Iran.
| |
Collapse
|
6
|
Seckl MJ, Kaur B, Ghorani E, Bergamini A, Mangili G. Controversies in malignant ovarian germ cell tumors. Int J Gynecol Cancer 2025; 35:101670. [PMID: 40020416 DOI: 10.1016/j.ijgc.2025.101670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 03/03/2025] Open
Abstract
Malignant ovarian germ cell tumors (MOGCT) are rare and often aggressive cancers that predominantly affect young women. Fortunately, combined surgery and chemotherapy results in high cure rates. In this review, we will consider some of the many controversies and poorly understood areas in the management of MOGCT that have arisen largely because of the lack of randomized trial data. This paucity of strong evidence is unsurprising, given the rarity of MOGCT and their multiple subtypes which differ biologically and in their clinical behavior. We will explore what is known about the biology and prognostic factors, and how the disease differs from its much more common and robust evidence-based male testicular counterpart. The type and extent of surgery, the value of surveillance in early-stage disease, and the role of neoadjuvant chemotherapy in advanced cases remain uncertain. In addition, optimizing outcomes in relapsed disease following initial chemotherapy is a key area for future development, as survival in this situation is worse than that in patients with testicular germ cell tumors. Fertility preservation remains of central importance, but the best way to achieve it remains debated. Finally, the type and duration of surveillance after treatment remain unclear. These and other controversies are discussed below.
Collapse
Affiliation(s)
- Michael J Seckl
- Charing Cross Hospital Campus of Imperial College London, Department of Medical Oncology, London, United Kingdom.
| | - Baljeet Kaur
- Northwest London Pathology, Department of Histopathology, London, United Kingdom
| | - Ehsan Ghorani
- Hammersmith Hospital Campus of Imperial College London, Department of Surgery and Cancer Tumour Immunology Group, London, United Kingdom
| | - Alice Bergamini
- Vita Salute San Raffaele University, Faculty of Medicine and Surgery, Milan, Italy; San Raffaele Hospital, Department of Obstetrics and Gynecology, Milan, Italy
| | - Giorgia Mangili
- Vita Salute San Raffaele University, Faculty of Medicine and Surgery, Milan, Italy
| |
Collapse
|
7
|
Choza JI, Virani M, Kuhn NC, Adams M, Kochmanski J, Bernstein AI. Parkinson's disease-associated alterations in DNA methylation and hydroxymethylation in human brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.05.21.595193. [PMID: 39975085 PMCID: PMC11838189 DOI: 10.1101/2024.05.21.595193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Epigenetic mechanisms are mediators of interactions between aging, genetics, and environmental factors in sporadic Parkinson's disease (PD). Multiple studies have explored the DNA modifications in PD, but few focus on 5-hydroxymethylcytosine (5-hmC), which is important in the central nervous system and sensitive to environmental exposures. To date, studies have not differentiated between 5-methylcytosine (5-mC) and 5-hmC or have analyzed them separately. In this study, we modeled paired 5-mC and 5-hmC data simultaneously. We identified 108 cytosines with significant PD-associated shifts between these marks in an enriched neuronal population from PD postmortem parietal cortex, within 83 genes and 34 enhancers associated with 67 genes. These data potentially link epigenetic regulation of genes related to LRRK2 and endolysosomal sort (RAB32 and AGAP1), and genes involved in neuroinflammation, the inflammasome, and neurodevelopment with early changes in PD and suggest that there are significant shifts between 5mC and 5hmC associated with PD in genes not captured by standard methods.
Collapse
Affiliation(s)
- Juliana I Choza
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Mahek Virani
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
| | - Nathan C Kuhn
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI
| | - Joseph Kochmanski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| | - Alison I Bernstein
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ
- Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI
| |
Collapse
|
8
|
Wang X, Bhandari RK. Methylome profile of medaka eggs and sperm. Epigenetics 2024; 19:2417151. [PMID: 39428969 PMCID: PMC11497970 DOI: 10.1080/15592294.2024.2417151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/25/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Eggs and sperm are responsible for the continuation of generations. Following the epigenetic reprogramming of the embryo, core epigenetic information present in the sperm and eggs is transmitted to offspring somatic cells prior to the blastula stage, which specifically influences gene expression in the cells. Differences in the patterns of DNA methylation between the paternal and maternal genomes are critical to regulating allele-specific gene expression in the developing embryo, constituting the basis of genomic imprinting in mammals. While the information on allele-specific epigenetic information has been limited to mammals, it is not clearly understood whether non-mammalian vertebrate gametes possess any sex-specific allelic epigenetic information and whether somatic cells maintain the allele-specific epigenetic information, particularly DNA methylation. To determine the landscape of DNA methylation in paternal and maternal alleles in a non-mammalian vertebrate, we profiled the methylome of egg in medaka fish and compared it with our previously published medaka sperm methylome. We identified a set of gamete-specific differentially methylated regions (DMRs) in the genome- medaka eggs maintained a significantly lower global methylation profile than the sperm. Based on our sequencing depth and data, 10 DMRs were hypermethylated, and 237 DMRs were hypomethylated in the eggs compared to the sperm methylome. Somatic cells in blastula maintained some of those parental gamete-specific DNA methylation profiles. Those DMRs are associated with 70 genes, suggesting that they may have imprinted-like functions and warrant further investigation.
Collapse
Affiliation(s)
- Xuegeng Wang
- Institute of Modern Aquaculture Science and Engineering, Guangdong-Macao Joint Laboratory for Aquaculture Breeding Development and Innovation, College of Life Sciences, South China Normal University, Guangzhou, P. R. China
| | - Ramji K. Bhandari
- Division of Biological Sciences, University of Missouri, Columbia, MO, USA
| |
Collapse
|
9
|
Klibaner-Schiff E, Simonin EM, Akdis CA, Cheong A, Johnson MM, Karagas MR, Kirsh S, Kline O, Mazumdar M, Oken E, Sampath V, Vogler N, Wang X, Nadeau KC. Environmental exposures influence multigenerational epigenetic transmission. Clin Epigenetics 2024; 16:145. [PMID: 39420431 PMCID: PMC11487774 DOI: 10.1186/s13148-024-01762-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Epigenetic modifications control gene expression and are essential for turning genes on and off to regulate and maintain differentiated cell types. Epigenetics are also modified by a multitude of environmental exposures, including diet and pollutants, allowing an individual's environment to influence gene expression and resultant phenotypes and clinical outcomes. These epigenetic modifications due to gene-environment interactions can also be transmitted across generations, raising the possibility that environmental influences that occurred in one generation may be transmitted beyond the second generation, exerting a long-lasting effect. In this review, we cover the known mechanisms of epigenetic modification acquisition, reprogramming and persistence, animal models and human studies used to understand multigenerational epigenetic transmission, and examples of environmentally induced epigenetic change and its transmission across generations. We highlight the importance of environmental health not only on the current population but also on future generations that will experience health outcomes transmitted through epigenetic inheritance.
Collapse
Affiliation(s)
- Eleanor Klibaner-Schiff
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Elisabeth M Simonin
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Ana Cheong
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Mary M Johnson
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Dartmouth College, Hanover, NH, 03756, USA
| | - Sarah Kirsh
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Olivia Kline
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Maitreyi Mazumdar
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Emily Oken
- Department of Population Medicine, Harvard Pilgrim Health Care Institute and Harvard Medical School, Boston, MA, USA
| | - Vanitha Sampath
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Nicholas Vogler
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Center On the Early Life Origins of Disease, Johns Hopkins Bloomberg School of Public Health, Baltimore, MA, USA
- Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, MA, USA.
| |
Collapse
|
10
|
Legault LM, Dupas T, Breton-Larrivée M, Filion-Bienvenue F, Lemieux A, Langford-Avelar A, McGraw S. Sex-specific DNA methylation and gene expression changes in mouse placentas after early preimplantation alcohol exposure. ENVIRONMENT INTERNATIONAL 2024; 192:109014. [PMID: 39321537 DOI: 10.1016/j.envint.2024.109014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/27/2024]
Abstract
During pregnancy, exposure to alcohol represents an environmental insult capable of negatively impacting embryonic development. This influence can stem from disruption of molecular profiles, ultimately leading to manifestation of fetal alcohol spectrum disorder. Despite the central role of the placenta in proper embryonic development and successful pregnancy, studies on the placenta in a prenatal alcohol exposure and fetal alcohol spectrum disorder context are markedly lacking. Here, we employed a well-established model for preimplantation alcohol exposure, specifically targeting embryonic day 2.5, corresponding to the 8-cell stage. The exposure was administered to pregnant C57BL/6 female mice through subcutaneous injection, involving two doses of either 2.5 g/kg 50 % ethanol or an equivalent volume of saline at 2-hour intervals. Morphology, DNA methylation and gene expression patterns were assessed in male and female late-gestation (E18.5) placentas. While overall placental morphology was not altered, we found a significant decrease in male ethanol-exposed embryo weights. When looking at molecular profiles, we uncovered numerous differentially methylated regions (DMRs; 991 in males; 1309 in females) and differentially expressed genes (DEGs; 1046 in males; 340 in females) in the placentas. Remarkably, only 21 DMRs and 54 DEGs were common to both sexes, which were enriched for genes involved in growth factor response pathways. Preimplantation alcohol exposure had a greater impact on imprinted genes expression in male placentas (imprinted DEGs: 18 in males; 1 in females). Finally, by using machine learning model (L1 regularization), we were able to precisely discriminate control and ethanol-exposed placentas based on their specific DNA methylation patterns. This is the first study demonstrating that preimplantation alcohol exposure alters the DNA methylation and transcriptomic profiles of late-gestation placentas in a sex-specific manner. Our findings highlight that the DNA methylation profiles of the placenta could serve as a potent predictive molecular signature for early preimplantation alcohol exposure.
Collapse
Affiliation(s)
- Lisa-Marie Legault
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Thomas Dupas
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Mélanie Breton-Larrivée
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Fannie Filion-Bienvenue
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Anthony Lemieux
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada.
| | - Alexandra Langford-Avelar
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| | - Serge McGraw
- CHU Ste-Justine Azrieli Research Center, 3175 Chemin de la Côte-Sainte-Catherine, Montréal, QC H3T 1C5, Canada; Department of Biochemistry and Molecular Medicine, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada; Department of Obstetrics and Gynecology, Université de Montréal, 2900 Boulevard Edouard‑Montpetit, Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
11
|
Matsuzaki H, Kimura M, Morihashi M, Tanimoto K. Imprinted DNA methylation of the H19 ICR is established and maintained in vivo in the absence of Kaiso. Epigenetics Chromatin 2024; 17:20. [PMID: 38840164 PMCID: PMC11151560 DOI: 10.1186/s13072-024-00544-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Paternal allele-specific DNA methylation of the imprinting control region (H19 ICR) controls genomic imprinting at the Igf2/H19 locus. We previously demonstrated that the mouse H19 ICR transgene acquires imprinted DNA methylation in preimplantation mouse embryos. This activity is also present in the endogenous H19 ICR and protects it from genome-wide reprogramming after fertilization. We also identified a 118-bp sequence within the H19 ICR that is responsible for post-fertilization imprinted methylation. Two mutations, one in the five RCTG motifs and the other a 36-bp deletion both in the 118-bp segment, caused complete and partial loss, respectively, of methylation following paternal transmission in each transgenic mouse. Interestingly, these mutations overlap with the binding site for the transcription factor Kaiso, which is reportedly involved in maintaining paternal methylation at the human H19 ICR (IC1) in cultured cells. In this study, we investigated if Kaiso regulates imprinted DNA methylation of the H19 ICR in vivo. RESULTS Neither Kaiso deletion nor mutation of Kaiso binding sites in the 118-bp region affected DNA methylation of the mouse H19 ICR transgene. The endogenous mouse H19 ICR was methylated in a wild-type manner in Kaiso-null mutant mice. Additionally, the human IC1 transgene acquired imprinted DNA methylation after fertilization in the absence of Kaiso. CONCLUSIONS Our results indicate that Kaiso is not essential for either post-fertilization imprinted DNA methylation of the transgenic H19 ICR in mouse or for methylation imprinting of the endogenous mouse H19 ICR.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Institute of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan.
| | - Minami Kimura
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Mizuki Morihashi
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Institute of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tennoudai 1-1-1, Tsukuba, Ibaraki, 305-8577, Japan
| |
Collapse
|
12
|
Li Y, Tian X, Luo J, Bao T, Wang S, Wu X. Molecular mechanisms of aging and anti-aging strategies. Cell Commun Signal 2024; 22:285. [PMID: 38790068 PMCID: PMC11118732 DOI: 10.1186/s12964-024-01663-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
Aging is a complex and multifaceted process involving a variety of interrelated molecular mechanisms and cellular systems. Phenotypically, the biological aging process is accompanied by a gradual loss of cellular function and the systemic deterioration of multiple tissues, resulting in susceptibility to aging-related diseases. Emerging evidence suggests that aging is closely associated with telomere attrition, DNA damage, mitochondrial dysfunction, loss of nicotinamide adenine dinucleotide levels, impaired macro-autophagy, stem cell exhaustion, inflammation, loss of protein balance, deregulated nutrient sensing, altered intercellular communication, and dysbiosis. These age-related changes may be alleviated by intervention strategies, such as calorie restriction, improved sleep quality, enhanced physical activity, and targeted longevity genes. In this review, we summarise the key historical progress in the exploration of important causes of aging and anti-aging strategies in recent decades, which provides a basis for further understanding of the reversibility of aging phenotypes, the application prospect of synthetic biotechnology in anti-aging therapy is also prospected.
Collapse
Affiliation(s)
- Yumeng Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Xutong Tian
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Juyue Luo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Tongtong Bao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Shujin Wang
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Xin Wu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
13
|
Peters L, Venkatachalam A, Ben-Neriah Y. Tissue-Predisposition to Cancer Driver Mutations. Cells 2024; 13:106. [PMID: 38247798 PMCID: PMC10814991 DOI: 10.3390/cells13020106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Driver mutations are considered the cornerstone of cancer initiation. They are defined as mutations that convey a competitive fitness advantage, and hence, their mutation frequency in premalignant tissue is expected to exceed the basal mutation rate. In old terms, that translates to "the survival of the fittest" and implies that a selective process underlies the frequency of cancer driver mutations. In that sense, each tissue is its own niche that creates a molecular selective pressure that may favor the propagation of a mutation or not. At the heart of this stands one of the biggest riddles in cancer biology: the tissue-predisposition to cancer driver mutations. The frequency of cancer driver mutations among tissues is non-uniform: for instance, mutations in APC are particularly frequent in colorectal cancer, and 99% of chronic myeloid leukemia patients harbor the driver BCR-ABL1 fusion mutation, which is rarely found in solid tumors. Here, we provide a mechanistic framework that aims to explain how tissue-specific features, ranging from epigenetic underpinnings to the expression of viral transposable elements, establish a molecular basis for selecting cancer driver mutations in a tissue-specific manner.
Collapse
Affiliation(s)
| | | | - Yinon Ben-Neriah
- Lautenberg Center for Immunology and Cancer Research, Institute for Medical Research (IMRIC), The Faculty of Medicine, Hebrew University of Jerusalem, P.O. Box 12272, Jerusalem 91120, Israel; (L.P.); (A.V.)
| |
Collapse
|
14
|
D’Occhio MJ, Campanile G, Baruselli PS, Porto Neto LR, Hayes BJ, Snr AC, Fortes MRS. Pleomorphic adenoma gene1 in reproduction and implication for embryonic survival in cattle: a review. J Anim Sci 2024; 102:skae103. [PMID: 38586898 PMCID: PMC11056886 DOI: 10.1093/jas/skae103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/05/2024] [Indexed: 04/09/2024] Open
Abstract
The pleomorphic adenoma gene1 (PLAG1) encodes a DNA-binding, C2H2 zinc-finger protein which acts as a transcription factor that regulates the expression of diverse genes across different organs and tissues; hence, the name pleomorphic. Rearrangements of the PLAG1 gene, and/or overexpression, are associated with benign tumors and cancers in a variety of tissues. This is best described for pleomorphic adenoma of the salivary glands in humans. The most notable expression of PLAG1 occurs during embryonic and fetal development, with lesser expression after birth. Evidence has accumulated of a role for PLAG1 protein in normal early embryonic development and placentation in mammals. PLAG1 protein influences the expression of the ike growth factor 2 (IGF2) gene and production of IGF2 protein. IGF2 is an important mitogen in ovarian follicles/oocytes, embryos, and fetuses. The PLAG1-IGF2 axis, therefore, provides one pathway whereby PLAG1 protein can influence embryonic survival and pregnancy. PLAG1 also influences over 1,000 other genes in embryos including those associated with ribosomal assembly and proteins. Brahman (Bos indicus) heifers homozygous for the PLAG1 variant, rs109815800 (G > T), show greater fertility than contemporary heifers with either one, or no copy, of the variant. Greater fertility in heifers homozygous for rs109815800 could be the result of early puberty and/or greater embryonic survival. The present review first looks at the broader roles of the PLAG1 gene and PLAG1 protein and then focuses on the emerging role of PLAG1/PLAG1 in embryonic development and pregnancy. A deeper understanding of factors which influence embryonic development is required for the next transformational increase in embryonic survival and successful pregnancy for both in vivo and in vitro derived embryos in cattle.
Collapse
Affiliation(s)
- Michael J D’Occhio
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, NSW, Australia
| | - Giuseppe Campanile
- Department of Veterinary Medicine and Animal Production, University of Naples Federico II, Naples, Italy
| | - Pietro S Baruselli
- Faculty of Veterinary Medicine and Animal Science, Department of Animal Reproduction, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| | - Alf Collins Snr
- CBV Brahman, Marlborough, Central Queensland, QLD, Australia
| | - Marina R S Fortes
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Hoyos Sanchez MC, Bayat T, Gee RRF, Fon Tacer K. Hormonal Imbalances in Prader-Willi and Schaaf-Yang Syndromes Imply the Evolution of Specific Regulation of Hypothalamic Neuroendocrine Function in Mammals. Int J Mol Sci 2023; 24:13109. [PMID: 37685915 PMCID: PMC10487939 DOI: 10.3390/ijms241713109] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
The hypothalamus regulates fundamental aspects of physiological homeostasis and behavior, including stress response, reproduction, growth, sleep, and feeding, several of which are affected in patients with Prader-Willi (PWS) and Schaaf-Yang syndrome (SYS). PWS is caused by paternal deletion, maternal uniparental disomy, or imprinting defects that lead to loss of expression of a maternally imprinted region of chromosome 15 encompassing non-coding RNAs and five protein-coding genes; SYS patients have a mutation in one of them, MAGEL2. Throughout life, PWS and SYS patients suffer from musculoskeletal deficiencies, intellectual disabilities, and hormonal abnormalities, which lead to compulsive behaviors like hyperphagia and temper outbursts. Management of PWS and SYS is mostly symptomatic and cures for these debilitating disorders do not exist, highlighting a clear, unmet medical need. Research over several decades into the molecular and cellular roles of PWS genes has uncovered that several impinge on the neuroendocrine system. In this review, we will discuss the expression and molecular functions of PWS genes, connecting them with hormonal imbalances in patients and animal models. Besides the observed hormonal imbalances, we will describe the recent findings about how the loss of individual genes, particularly MAGEL2, affects the molecular mechanisms of hormone secretion. These results suggest that MAGEL2 evolved as a mammalian-specific regulator of hypothalamic neuroendocrine function.
Collapse
Affiliation(s)
- Maria Camila Hoyos Sanchez
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Tara Bayat
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Rebecca R. Florke Gee
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| | - Klementina Fon Tacer
- School of Veterinary Medicine, Texas Tech University, 7671 Evans Dr., Amarillo, TX 79106, USA
- Texas Center for Comparative Cancer Research (TC3R), Amarillo, TX 79106, USA
| |
Collapse
|
16
|
Matsuzaki H, Takahashi T, Kuramochi D, Hirakawa K, Tanimoto K. Five nucleotides found in RCTG motifs are essential for post-fertilization methylation imprinting of the H19 ICR in YAC transgenic mice. Nucleic Acids Res 2023; 51:7236-7253. [PMID: 37334871 PMCID: PMC10415150 DOI: 10.1093/nar/gkad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 06/02/2023] [Indexed: 06/21/2023] Open
Abstract
Genomic imprinting at the mouse Igf2/H19 locus is controlled by the H19 ICR, within which paternal allele-specific DNA methylation originating in sperm is maintained throughout development in offspring. We previously found that a 2.9 kb transgenic H19 ICR fragment in mice can be methylated de novo after fertilization only when paternally inherited, despite its unmethylated state in sperm. When the 118 bp sequence responsible for this methylation in transgenic mice was deleted from the endogenous H19 ICR, the methylation level of its paternal allele was significantly reduced after fertilization, suggesting the activity involving this 118 bp sequence is required for methylation maintenance at the endogenous locus. Here, we determined protein binding to the 118 bp sequence using an in vitro binding assay and inferred the binding motif to be RCTG by using a series of mutant competitors. Furthermore, we generated H19 ICR transgenic mice with a 5-bp substitution mutation that disrupts the RCTG motifs within the 118 bp sequence, and observed loss of methylation from the paternally inherited transgene. These results indicate that imprinted methylation of the H19 ICR established de novo during the post-fertilization period involves binding of specific factors to distinct sequence motifs within the 118 bp sequence.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Takuya Takahashi
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Daichi Kuramochi
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Katsuhiko Hirakawa
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
17
|
Wang SE, Jiang YH. Novel epigenetic molecular therapies for imprinting disorders. Mol Psychiatry 2023; 28:3182-3193. [PMID: 37626134 PMCID: PMC10618104 DOI: 10.1038/s41380-023-02208-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023]
Abstract
Genomic imprinting disorders are caused by the disruption of genomic imprinting processes leading to a deficit or increase of an active allele. Their unique molecular mechanisms underlying imprinted genes offer an opportunity to investigate epigenetic-based therapy for reactivation of an inactive allele or reduction of an active allele. Current treatments are based on managing symptoms, not targeting the molecular mechanisms underlying imprinting disorders. Here, we highlight molecular approaches of therapeutic candidates in preclinical and clinical studies for individual imprinting disorders. These include the significant progress of discovery and testing of small molecules, antisense oligonucleotides, and CRISPR mediated genome editing approaches as new therapeutic strategies. We discuss the significant challenges of translating these promising therapies from the preclinical stage to the clinic, especially for genome editing based approaches.
Collapse
Affiliation(s)
- Sung Eun Wang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
- Department of Pediatrics, Yale University School of Medicine, 333 Cedar street, New Haven, CT, 06520, USA.
| |
Collapse
|
18
|
Chia WK, Chia PY, Abdul Aziz NH, Shuib S, Mustangin M, Cheah YK, Khong TY, Wong YP, Tan GC. Diagnostic Utility of TSSC3 and RB1 Immunohistochemistry in Hydatidiform Mole. Int J Mol Sci 2023; 24:9656. [PMID: 37298606 PMCID: PMC10253801 DOI: 10.3390/ijms24119656] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The general notion of complete hydatidiform moles is that most of them consist entirely of paternal DNA; hence, they do not express p57, a paternally imprinted gene. This forms the basis for the diagnosis of hydatidiform moles. There are about 38 paternally imprinted genes. The aim of this study is to determine whether other paternally imprinted genes could also assist in the diagnostic approach of hydatidiform moles. This study comprised of 29 complete moles, 15 partial moles and 17 non-molar abortuses. Immunohistochemical study using the antibodies of paternal-imprinted (RB1, TSSC3 and DOG1) and maternal-imprinted (DNMT1 and GATA3) genes were performed. The antibodies' immunoreactivity was evaluated on various placental cell types, namely cytotrophoblasts, syncytiotrophoblasts, villous stromal cells, extravillous intermediate trophoblasts and decidual cells. TSSC3 and RB1 expression were observed in all cases of partial moles and non-molar abortuses. In contrast, their expression in complete moles was identified in 31% (TSSC3) and 10.3% (RB1), respectively (p < 0.0001). DOG1 was consistently negative in all cell types in all cases. The expressions of maternally imprinted genes were seen in all cases, except for one case of complete mole where GATA3 was negative. Both TSSC3 and RB1 could serve as a useful adjunct to p57 for the discrimination of complete moles from partial moles and non-molar abortuses, especially in laboratories that lack comprehensive molecular service and in cases where p57 staining is equivocal.
Collapse
Affiliation(s)
- Wai Kit Chia
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Pik Yuen Chia
- Department of Pathology, Hospital Umum Sarawak, Kuching 93586, Sarawak, Malaysia;
| | - Nor Haslinda Abdul Aziz
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia;
| | - Salwati Shuib
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Muaatamarulain Mustangin
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Teck Yee Khong
- Department of Pathology, Women’s and Children’s Hospital, Adelaide, SA 5006, Australia;
| | - Yin Ping Wong
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| | - Geok Chin Tan
- Department of Pathology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia; (W.K.C.); (S.S.); (M.M.)
- Department of Diagnostic Laboratory Services, Hospital Canselor Tuanku Muhriz, Universiti Kebangsaan Malaysia, Bandar Tun Razak 56000, Kuala Lumpur, Malaysia
| |
Collapse
|
19
|
Gao C, Amador C, Walker RM, Campbell A, Madden RA, Adams MJ, Bai X, Liu Y, Li M, Hayward C, Porteous DJ, Shen X, Evans KL, Haley CS, McIntosh AM, Navarro P, Zeng Y. Phenome-wide analyses identify an association between the parent-of-origin effects dependent methylome and the rate of aging in humans. Genome Biol 2023; 24:117. [PMID: 37189164 PMCID: PMC10184337 DOI: 10.1186/s13059-023-02953-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/26/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND The variation in the rate at which humans age may be rooted in early events acting through the genomic regions that are influenced by such events and subsequently are related to health phenotypes in later life. The parent-of-origin-effect (POE)-regulated methylome includes regions enriched for genetically controlled imprinting effects (the typical type of POE) and regions influenced by environmental effects associated with parents (the atypical POE). This part of the methylome is heavily influenced by early events, making it a potential route connecting early exposures, the epigenome, and aging. We aim to test the association of POE-CpGs with early and later exposures and subsequently with health-related phenotypes and adult aging. RESULTS We perform a phenome-wide association analysis for the POE-influenced methylome using GS:SFHS (Ndiscovery = 5087, Nreplication = 4450). We identify and replicate 92 POE-CpG-phenotype associations. Most of the associations are contributed by the POE-CpGs belonging to the atypical class where the most strongly enriched associations are with aging (DNAmTL acceleration), intelligence, and parental (maternal) smoking exposure phenotypes. A proportion of the atypical POE-CpGs form co-methylation networks (modules) which are associated with these phenotypes, with one of the aging-associated modules displaying increased within-module methylation connectivity with age. The atypical POE-CpGs also display high levels of methylation heterogeneity, fast information loss with age, and a strong correlation with CpGs contained within epigenetic clocks. CONCLUSIONS These results identify the association between the atypical POE-influenced methylome and aging and provide new evidence for the "early development of origin" hypothesis for aging in humans.
Collapse
Affiliation(s)
- Chenhao Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Rosie M Walker
- Centre for Clinical Brain Sciences, Chancellor's Building, 49 Little France Crescent, Edinburgh BioQuarter, Edinburgh, UK
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- School of Psychology, University of Exeter, Perry Road, Exeter, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Xiaomeng Bai
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Ying Liu
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Miaoxin Li
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Xueyi Shen
- Division of Psychiatry, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chris S Haley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | | | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | - Yanni Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
20
|
Bina M. Defining Candidate Imprinted loci in Bos taurus. Genes (Basel) 2023; 14:1036. [PMID: 37239396 PMCID: PMC10217866 DOI: 10.3390/genes14051036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 04/30/2023] [Indexed: 05/28/2023] Open
Abstract
Using a whole-genome assembly of Bos taurus, I applied my bioinformatics strategy to locate candidate imprinting control regions (ICRs) genome-wide. In mammals, genomic imprinting plays essential roles in embryogenesis. In my strategy, peaks in plots mark the locations of known, inferred, and candidate ICRs. Genes in the vicinity of candidate ICRs correspond to potential imprinted genes. By displaying my datasets on the UCSC genome browser, one could view peak positions with respect to genomic landmarks. I give two examples of candidate ICRs in loci that influence spermatogenesis in bulls: CNNM1 and CNR1. I also give examples of candidate ICRs in loci that influence muscle development: SIX1 and BCL6. By examining the ENCODE data reported for mice, I deduced regulatory clues about cattle. I focused on DNase I hypersensitive sites (DHSs). Such sites reveal accessibility of chromatin to regulators of gene expression. For inspection, I chose DHSs in chromatin from mouse embryonic stem cells (ESCs) ES-E14, mesoderm, brain, heart, and skeletal muscle. The ENCODE data revealed that the SIX1 promoter was accessible to the transcription initiation apparatus in mouse ESCs, mesoderm, and skeletal muscles. The data also revealed accessibility of BCL6 locus to regulatory proteins in mouse ESCs and examined tissues.
Collapse
Affiliation(s)
- Minou Bina
- Department of Chemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
21
|
Breton‐Larrivée M, Elder E, Legault L, Langford‐Avelar A, MacFarlane AJ, McGraw S. Mitigating the detrimental developmental impact of early fetal alcohol exposure using a maternal methyl donor-enriched diet. FASEB J 2023; 37:e22829. [PMID: 36856720 PMCID: PMC11977608 DOI: 10.1096/fj.202201564r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/23/2023] [Accepted: 02/03/2023] [Indexed: 03/02/2023]
Abstract
Fetal alcohol exposure at any stage of pregnancy can lead to fetal alcohol spectrum disorder (FASD), a group of life-long conditions characterized by congenital malformations, as well as cognitive, behavioral, and emotional impairments. The teratogenic effects of alcohol have long been publicized; yet fetal alcohol exposure is one of the most common preventable causes of birth defects. Currently, alcohol abstinence during pregnancy is the best and only way to prevent FASD. However, alcohol consumption remains astoundingly prevalent among pregnant women; therefore, additional measures need to be made available to help protect the developing embryo before irreparable damage is done. Maternal nutritional interventions using methyl donors have been investigated as potential preventative measures to mitigate the adverse effects of fetal alcohol exposure. Here, we show that a single acute preimplantation (E2.5; 8-cell stage) fetal alcohol exposure (2 × 2.5 g/kg ethanol with a 2h interval) in mice leads to long-term FASD-like morphological phenotypes (e.g. growth restriction, brain malformations, skeletal delays) in late-gestation embryos (E18.5) and demonstrate that supplementing the maternal diet with a combination of four methyl donor nutrients, folic acid, choline, betaine, and vitamin B12, prior to conception and throughout gestation effectively reduces the incidence and severity of alcohol-induced morphological defects without altering DNA methylation status of imprinting control regions and regulation of associated imprinted genes. This study clearly supports that preimplantation embryos are vulnerable to the teratogenic effects of alcohol, emphasizes the dangers of maternal alcohol consumption during early gestation, and provides a potential proactive maternal nutritional intervention to minimize FASD progression, reinforcing the importance of adequate preconception and prenatal nutrition.
Collapse
Affiliation(s)
- Mélanie Breton‐Larrivée
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
| | - Elizabeth Elder
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
| | - Lisa‐Marie Legault
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
| | - Alexandra Langford‐Avelar
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
| | - Amanda J. MacFarlane
- Agriculture, Food, and Nutrition Evidence CenterTexas A&M UniversityTexasFort WorthUSA
- Department of NutritionTexas A&M UniversityCollege StationTexasUSA
| | - Serge McGraw
- Centre Hospitalier Universitaire Sainte‐Justine Research CenterMontrealCanada
- Department of Biochemistry and Molecular MedicineUniversité de MontréalMontrealCanada
- Department of Obstetrics and GynecologyUniversité de MontréalMontrealCanada
| |
Collapse
|
22
|
Irani D, Balasinor N, Bansal V, Tandon D, Patil A, Singh D. Whole genome bisulfite sequencing of sperm reveals differentially methylated regions in male partners of idiopathic recurrent pregnancy loss cases. Fertil Steril 2023; 119:420-432. [PMID: 36528109 DOI: 10.1016/j.fertnstert.2022.12.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 12/04/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To study the genome wide alterations in sperm DNA methylation in male partners of idiopathic recurrent pregnancy loss (iRPL) cases and note regions as potential diagnostic markers. DESIGN Case-control study and methylome analysis of human sperm. SETTING Obstetrics and Gynaecology clinics. PATIENT(S) Control group consists of apparently healthy fertile men having fathered a child within the last 2 years (n = 39); and case group consists of male partners of iRPL cases having ≥2 consecutive 1st trimester pregnancy losses (n = 47). INTERVENTION(S) None. MAIN OUTCOME MEASURE(S) Sperm DNA samples of controls and cases were selected for whole genome bisulfite sequencing analysis based on the previously set thresholds of global methylation levels and methylation levels of imprinted genes (KvDMR and ZAC). Whole genome bisulfite sequencing of selected sperm genomic DNA was performed to identify differentially methylated CpG sites of iRPL cases compared with fertile controls. Pathway analysis of all the differentially methylated genes was done by Database for Annotation, Visualization, and Integrated Discovery annotation tool and Kyoto Encyclopedia of Genes and Genomes tool. Differentially methylated CpGs within genes relevant to embryo and placenta development were selected to further validate their methylation levels in study population by pyrosequencing. RESULT(S) A total of 9497 differentially methylated CpGs with highest enrichment in intronic regions were obtained. In addition, 5352 differentially methylated regions and 2087 differentially methylated genes were noted. Signaling pathways involved in development were enriched on pathway analysis. Select CpGs within genes PPARG, KCNQ1, SETD2, and MAP3K4 showed distinct hypomethylated subpopulations within iRPL study population. CONCLUSION(S) Our study highlights the altered methylation landscape of iRPL sperm, and their possible implications in pathways of embryo and placental development. The CpG sites that are hypomethylated specifically in sperm of iRPL subpopulation can be further assessed as predictive biomarkers.
Collapse
Affiliation(s)
- Delna Irani
- Department of Neuroendocrinology, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Nafisa Balasinor
- Department of Neuroendocrinology, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Vandana Bansal
- Department of Obstetrics and Gynaecology, Nowrosjee Wadia Maternity Hospital, Mumbai, India
| | - Deepti Tandon
- Department of Clinical Research, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Anushree Patil
- Department of Clinical Research, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India
| | - Dipty Singh
- Department of Neuroendocrinology, ICMR - National Institute for Research in Reproductive and Child Health, Mumbai, India.
| |
Collapse
|
23
|
Jena SR, Nayak J, Kumar S, Kar S, Samanta L. Comparative proteome profiling of seminal components reveal impaired immune cell signalling as paternal contributors in recurrent pregnancy loss patients. Am J Reprod Immunol 2023; 89:e13613. [PMID: 35998016 DOI: 10.1111/aji.13613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/06/2022] [Accepted: 08/15/2022] [Indexed: 02/01/2023] Open
Abstract
PROBLEM Recurrent pregnancy loss (RPL) is usually evaluated from a women's perspective, however, recent evidence implies involvement of male factors as paternally expressed genes predominate placenta. During fertilization, prior to implantation the immune system purposefully produces early pregnancy factors with potent immunomodulatory properties for adaptation to antigenically dissimilar embryo. Therefore, it is hypothesized that paternal immunological factors play a role in RPL. METHOD OF STUDY Comparative proteome profiling (label free liquid chromatography mass spectroscopy: LC-MS/MS) of the seminal extracellular vesicles (SEVs), extracellular vesicle free seminal plasma (EVF-SP) and spermatozoa was carried out in semen of RPL patients (n = 21) and fertile donors (n = 21). This was followed by pathway and protein-protein interaction analysis, and validation of key proteins' expression (western blot). RESULTS A total of 68, 28 and 49 differentially expressed proteins in SEVs, EVF-SP and spermatozoa of RPL patients, respectively, were found to be involved in inflammatory response, immune cell signalling and apoptosis. In SEVs, underexpressed GDF-15 and overexpressed C3 imply distorted maternal immune response to paternal antigens leading to impaired decidualization. Dysregulated TGFβ signalling in EVF-SP surmises defective modulation of inflammatory response and induction of immune tolerance to seminal antigens in the female reproductive tract through generation of regulatory T cells. Retained histone variants in spermatozoa construe defective expression of early paternal genes, while underexpressed PTN may inflict defective angiogenesis resulting in expulsion of decidua. CONCLUSIONS Impaired modulation of immune response and improper placental development due to altered cytokine levels in seminal components may be the contributing paternal factors in RPL.
Collapse
Affiliation(s)
- Soumya Ranjan Jena
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| | - Jasmine Nayak
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| | - Sugandh Kumar
- School of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Sujata Kar
- Department of Obstetrics & Gynaecology, Kar Clinic and Hospital Pvt. Ltd., Bhubaneswar, India
| | - Luna Samanta
- Redox Biology & Proteomics Laboratory, Department of Zoology, School of Life Sciences, Ravenshaw University, College Square, Cuttack, Odisha, India.,Centre of Excellence in Environment and Public Health, Ravenshaw University, College Square, Cuttack, Odisha, India
| |
Collapse
|
24
|
Human zygotic genome activation is initiated from paternal genome. Cell Discov 2023; 9:13. [PMID: 36717546 PMCID: PMC9887001 DOI: 10.1038/s41421-022-00494-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/09/2022] [Indexed: 02/01/2023] Open
Abstract
Although parental genomes undergo extensive epigenetic reprogramming to be equalized after fertilization, whether they play different roles in human zygotic genome activation (ZGA) remains unknown. Here, we mapped parental transcriptomes by using human parthenogenetic (PG) and androgenetic (AG) embryos during ZGA. Our data show that human ZGA is launched at the 8-cell stage in AG and bi-parental embryos, but at the morula stage in PG embryos. In contrast, mouse ZGA occurs at the same stage in PG and AG embryos. Mechanistically, primate-specific ZNF675 with AG-specific expression plays a role in human ZGA initiated from paternal genome at the 8-cell stage. AG-specifically expressed LSM1 is also critical for human maternal RNA degradation (MRD) and ZGA. The allelic expressions of ZNF675 and LSM1 are associated with their allelically epigenetic states. Notably, the paternally specific expressions of ZNF675 and LSM1 are also observed in diploid embryos. Collectively, human ZGA is initiated from paternal genome.
Collapse
|
25
|
Paternal UPD14 with sSMC derived from chromosome 14 in Kagami-Ogata syndrome. CHROMOSOME RESEARCH : AN INTERNATIONAL JOURNAL ON THE MOLECULAR, SUPRAMOLECULAR AND EVOLUTIONARY ASPECTS OF CHROMOSOME BIOLOGY 2023; 31:1. [PMID: 36656404 DOI: 10.1007/s10577-023-09712-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023]
|
26
|
Liang D, Aygün N, Matoba N, Ideraabdullah FY, Love MI, Stein JL. Inference of putative cell-type-specific imprinted regulatory elements and genes during human neuronal differentiation. Hum Mol Genet 2023; 32:402-416. [PMID: 35994039 PMCID: PMC9851749 DOI: 10.1093/hmg/ddac207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Genomic imprinting results in gene expression bias caused by parental chromosome of origin and occurs in genes with important roles during human brain development. However, the cell-type and temporal specificity of imprinting during human neurogenesis is generally unknown. By detecting within-donor allelic biases in chromatin accessibility and gene expression that are unrelated to cross-donor genotype, we inferred imprinting in both primary human neural progenitor cells and their differentiated neuronal progeny from up to 85 donors. We identified 43/20 putatively imprinted regulatory elements (IREs) in neurons/progenitors, and 133/79 putatively imprinted genes in neurons/progenitors. Although 10 IREs and 42 genes were shared between neurons and progenitors, most putative imprinting was only detected within specific cell types. In addition to well-known imprinted genes and their promoters, we inferred novel putative IREs and imprinted genes. Consistent with both DNA methylation-based and H3K27me3-based regulation of imprinted expression, some putative IREs also overlapped with differentially methylated or histone-marked regions. Finally, we identified a progenitor-specific putatively imprinted gene overlapping with copy number variation that is associated with uniparental disomy-like phenotypes. Our results can therefore be useful in interpreting the function of variants identified in future parent-of-origin association studies.
Collapse
Affiliation(s)
- Dan Liang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nil Aygün
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Folami Y Ideraabdullah
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Michael I Love
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
27
|
Vargas LN, Silveira MM, Franco MM. Epigenetic Reprogramming and Somatic Cell Nuclear Transfer. Methods Mol Biol 2023; 2647:37-58. [PMID: 37041328 DOI: 10.1007/978-1-0716-3064-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Epigenetics is an area of genetics that studies the heritable modifications in gene expression and phenotype that are not controlled by the primary sequence of DNA. The main epigenetic mechanisms are DNA methylation, post-translational covalent modifications in histone tails, and non-coding RNAs. During mammalian development, there are two global waves of epigenetic reprogramming. The first one occurs during gametogenesis and the second one begins immediately after fertilization. Environmental factors such as exposure to pollutants, unbalanced nutrition, behavioral factors, stress, in vitro culture conditions can negatively affect epigenetic reprogramming events. In this review, we describe the main epigenetic mechanisms found during mammalian preimplantation development (e.g., genomic imprinting, X chromosome inactivation). Moreover, we discuss the detrimental effects of cloning by somatic cell nuclear transfer on the reprogramming of epigenetic patterns and some molecular alternatives to minimize these negative impacts.
Collapse
Affiliation(s)
- Luna N Vargas
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Márcia M Silveira
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Maurício M Franco
- Laboratory of Animal Reproduction, Embrapa Genetic Resources and Biotechnology, Brasília, Distrito Federal, Brazil.
- Institute of Biotechnology, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
- School of Veterinary Medicine, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil.
| |
Collapse
|
28
|
Martella A. CRISPR, epigenetics, and cancer. EPIGENETIC CANCER THERAPY 2023:687-707. [DOI: 10.1016/b978-0-323-91367-6.00007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Sheng KY, Nakano T, Yamaguchi S. A region-dependent allele-biased expression of Dopa decarboxylase in mouse brain. Front Cell Dev Biol 2022; 10:1078927. [PMID: 36568970 PMCID: PMC9768605 DOI: 10.3389/fcell.2022.1078927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/25/2022] [Indexed: 12/12/2022] Open
Abstract
Genomic imprinting is an epigenetic event in which genes are expressed only from either the paternal or maternal allele. Dopa decarboxylase (Ddc), is an imprinted gene that encodes an enzyme which catalyzes the conversion of L-dopa to dopamine. Although Ddc has been reported to be paternally expressed in embryonic and neonatal hearts, its expression pattern in the brain has been controversial. To visualize Ddc-expressing neurons, we established a knock-in mouse carrying a humanized Kusabira orange 1 (hKO1) reporter cassette at the Ddc locus (Ddc-hKO1). The expression of Ddc-hKO1 was detected in all known Ddc-positive cells in the brains of embryonic, neonatal, adult, and aged mice. We further developed an efficient purification method for Ddc-hKO1-positive neurons using a cell sorter. RNA sequencing analysis confirmed the enrichment of dopaminergic, serotonergic and cholinergic neurons in Ddc-hKO1-positive cell population recovered using this method. A detailed analysis of Ddc-hKO1 paternally and maternally derived heterozygous mice combined with immunostaining revealed that Ddc was preferentially expressed from the maternal allele in ventral tegmented area (VTA), substantia nigra pars compacta (SNc), and retrorubral field (RRF); while it was expressed from both alleles in dorsal raphe nucleus (DR). These results indicate that Ddc exhibit an allele-specific expression pattern in different brain regions, presumably reflecting the diverse regulatory mechanisms of imprinting.
Collapse
Affiliation(s)
- Kit-Yeng Sheng
- Department of Pathology, Graduate School of Frontier Biosciences, Osaka, Japan
| | - Toru Nakano
- Department of Pathology, Graduate School of Frontier Biosciences, Osaka, Japan,Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shinpei Yamaguchi
- Graduate School of Medicine, Osaka University, Osaka, Japan,Stem Cells and Reprogramming Laboratory, Department of Biology, Faculty of Science, Toho University, Chiba, Japan,*Correspondence: Shinpei Yamaguchi,
| |
Collapse
|
30
|
Claxton M, Pulix M, Seah MKY, Bernardo R, Zhou P, Aljuraysi S, Liloglou T, Arnaud P, Kelsey G, Messerschmidt DM, Plagge A. Variable allelic expression of imprinted genes at the Peg13, Trappc9, Ago2 cluster in single neural cells. Front Cell Dev Biol 2022; 10:1022422. [PMID: 36313557 PMCID: PMC9596773 DOI: 10.3389/fcell.2022.1022422] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting is an epigenetic process through which genes are expressed in a parent-of-origin specific manner resulting in mono-allelic or strongly biased expression of one allele. For some genes, imprinted expression may be tissue-specific and reliant on CTCF-influenced enhancer-promoter interactions. The Peg13 imprinting cluster is associated with neurodevelopmental disorders and comprises canonical imprinted genes, which are conserved between mouse and human, as well as brain-specific imprinted genes in mouse. The latter consist of Trappc9, Chrac1 and Ago2, which have a maternal allelic expression bias of ∼75% in brain. Findings of such allelic expression biases on the tissue level raise the question of how they are reflected in individual cells and whether there is variability and mosaicism in allelic expression between individual cells of the tissue. Here we show that Trappc9 and Ago2 are not imprinted in hippocampus-derived neural stem cells (neurospheres), while Peg13 retains its strong bias of paternal allele expression. Upon analysis of single neural stem cells and in vitro differentiated neurons, we find not uniform, but variable states of allelic expression, especially for Trappc9 and Ago2. These ranged from mono-allelic paternal to equal bi-allelic to mono-allelic maternal, including biased bi-allelic transcriptional states. Even Peg13 expression deviated from its expected paternal allele bias in a small number of cells. Although the cell populations consisted of a mosaic of cells with different allelic expression states, as a whole they reflected bulk tissue data. Furthermore, in an attempt to identify potential brain-specific regulatory elements across the Trappc9 locus, we demonstrate tissue-specific and general silencer activities, which might contribute to the regulation of its imprinted expression bias.
Collapse
Affiliation(s)
- Michael Claxton
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Michela Pulix
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Michelle K. Y. Seah
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ralph Bernardo
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Peng Zhou
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Sultan Aljuraysi
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
- Department of Physiology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Triantafillos Liloglou
- Faculty of Health, Social Care and Medicine, Edge Hill University, Ormskirk, Lancashire, United Kingdom
| | - Philippe Arnaud
- Université Clermont Auvergne, CNRS, Inserm, GReD, Clermont-Ferrand, France
| | - Gavin Kelsey
- Epigenetics Programme, The Babraham Institute, Cambridge, United Kingdom
- Centre for Trophoblast Research, University of Cambridge, Cambridge, United Kingdom
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, Cambridge, United Kingdom
| | - Daniel M. Messerschmidt
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Institute of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Antonius Plagge
- Department of Molecular Physiology and Cell Signaling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
31
|
Juan AM, Foong YH, Thorvaldsen JL, Lan Y, Leu NA, Rurik JG, Li L, Krapp C, Rosier CL, Epstein JA, Bartolomei MS. Tissue-specific Grb10/Ddc insulator drives allelic architecture for cardiac development. Mol Cell 2022; 82:3613-3631.e7. [PMID: 36108632 PMCID: PMC9547965 DOI: 10.1016/j.molcel.2022.08.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/12/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022]
Abstract
Allele-specific expression of imprinted gene clusters is governed by gametic DNA methylation at master regulators called imprinting control regions (ICRs). Non-gametic or secondary differentially methylated regions (DMRs) at promoters and exonic regions reinforce monoallelic expression but do not control an entire cluster. Here, we unveil an unconventional secondary DMR that is indispensable for tissue-specific imprinting of two previously unlinked genes, Grb10 and Ddc. Using polymorphic mice, we mapped an intronic secondary DMR at Grb10 with paternal-specific CTCF binding (CBR2.3) that forms contacts with Ddc. Deletion of paternal CBR2.3 removed a critical insulator, resulting in substantial shifting of chromatin looping and ectopic enhancer-promoter contacts. Destabilized gene architecture precipitated abnormal Grb10-Ddc expression with developmental consequences in the heart and muscle. Thus, we redefine the Grb10-Ddc imprinting domain by uncovering an unconventional intronic secondary DMR that functions as an insulator to instruct the tissue-specific, monoallelic expression of multiple genes-a feature previously ICR exclusive.
Collapse
Affiliation(s)
- Aimee M Juan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yee Hoon Foong
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joanne L Thorvaldsen
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicolae A Leu
- Department of Biomedical Sciences, Center for Animal Transgenesis and Germ Cell Research, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Joel G Rurik
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Li Li
- Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Krapp
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Casey L Rosier
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan A Epstein
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Cardiovascular Institute, Department of Medicine, Department Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Marisa S Bartolomei
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
32
|
Hubert JN, Demars J. Genomic Imprinting in the New Omics Era: A Model for Systems-Level Approaches. Front Genet 2022; 13:838534. [PMID: 35368671 PMCID: PMC8965095 DOI: 10.3389/fgene.2022.838534] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genomic imprinting represents a noteworthy inheritance mechanism leading to allele-specific regulations dependent of the parental origin. Imprinted loci are especially involved in essential mammalian functions related to growth, development and behavior. In this mini-review, we first offer a summary of current representations associated with genomic imprinting through key results of the three last decades. We then outline new perspectives allowed by the spread of new omics technologies tackling various interacting levels of imprinting regulations, including genomics, transcriptomics and epigenomics. We finally discuss the expected contribution of new omics data to unresolved big questions in the field.
Collapse
|
33
|
Epimutation in inherited metabolic disorders: the influence of aberrant transcription in adjacent genes. Hum Genet 2022; 141:1309-1325. [PMID: 35190856 DOI: 10.1007/s00439-021-02414-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022]
Abstract
Epigenetic diseases can be produced by a stable alteration, called an epimutation, in DNA methylation, in which epigenome alterations are directly involved in the underlying molecular mechanisms of the disease. This review focuses on the epigenetics of two inherited metabolic diseases, epi-cblC, an inherited metabolic disorder of cobalamin (vitamin B12) metabolism, and alpha-thalassemia type α-ZF, an inherited disorder of α2-globin synthesis, with a particular interest in the role of aberrant antisense transcription of flanking genes in the generation of epimutations in CpG islands of gene promoters. In both disorders, the epimutation is triggered by an aberrant antisense transcription through the promoter, which produces an H3K36me3 histone mark involved in the recruitment of DNA methyltransferases. It results from diverse genetic alterations. In alpha-thalassemia type α-ZF, a deletion removes HBA1 and HBQ1 genes and juxtaposes the antisense LUC7L gene to the HBA2 gene. In epi-cblC, the epimutation in the MMACHC promoter is produced by mutations in the antisense flanking gene PRDX1, which induces a prolonged antisense transcription through the MMACHC promoter. The presence of the epimutation in sperm, its transgenerational inheritance via the mutated PRDX1, and the high expression of PRDX1 in spermatogonia but its nearly undetectable transcription in spermatids and spermatocytes, suggest that the epimutation could be maintained during germline reprogramming and despite removal of aberrant transcription. The epivariation seen in the MMACHC promoter (0.95 × 10-3) is highly frequent compared to epivariations affecting other genes of the Online Catalog of Human Genes and Genetic Disorders in an epigenome-wide dataset of 23,116 individuals. This and the comparison of epigrams of two monozygotic twins suggest that the aberrant transcription could also be influenced by post-zygotic environmental exposures.
Collapse
|
34
|
Lee Y, Trout A, Marti-Gutierrez N, Kang S, Xie P, Mikhalchenko A, Kim B, Choi J, So S, Han J, Xu J, Koski A, Ma H, Yoon JD, Van Dyken C, Darby H, Liang D, Li Y, Tippner-Hedges R, Xu F, Amato P, Palermo GD, Mitalipov S, Kang E. Haploidy in somatic cells is induced by mature oocytes in mice. Commun Biol 2022; 5:95. [PMID: 35079104 PMCID: PMC8789866 DOI: 10.1038/s42003-022-03040-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 01/05/2022] [Indexed: 02/01/2023] Open
Abstract
Haploidy is naturally observed in gametes; however, attempts of experimentally inducing haploidy in somatic cells have not been successful. Here, we demonstrate that the replacement of meiotic spindles in mature metaphases II (MII) arrested oocytes with nuclei of somatic cells in the G0/G1 stage of cell cycle results in the formation of de novo spindles consisting of somatic homologous chromosomes comprising of single chromatids. Fertilization of such oocytes with sperm triggers the extrusion of one set of homologous chromosomes into the pseudo-polar body (PPB), resulting in a zygote with haploid somatic and sperm pronuclei (PN). Upon culture, 18% of somatic-sperm zygotes reach the blastocyst stage, and 16% of them possess heterozygous diploid genomes consisting of somatic haploid and sperm homologs across all chromosomes. We also generate embryonic stem cells and live offspring from somatic-sperm embryos. Our finding may offer an alternative strategy for generating oocytes carrying somatic genomes.
Collapse
Affiliation(s)
- Yeonmi Lee
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Aysha Trout
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Nuria Marti-Gutierrez
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Seoon Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Philip Xie
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA
| | - Aleksei Mikhalchenko
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Bitnara Kim
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Jiwan Choi
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Seongjun So
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, South Korea
| | - Jongsuk Han
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea
| | - Jing Xu
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health and Science University, Portland, OR, 97006, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Amy Koski
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hong Ma
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Junchul David Yoon
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Crystal Van Dyken
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Hayley Darby
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Dan Liang
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Ying Li
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Rebecca Tippner-Hedges
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Fuhua Xu
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Paula Amato
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR, 97239, USA
| | - Gianpiero D Palermo
- The Ronald O. Perelman and Claudia Cohen Center for Reproductive Medicine, Weill Cornell Medicine, New York, NY, 10021, USA.
| | - Shoukhrat Mitalipov
- Center for Embryonic Cell and Gene Therapy, Oregon Health and Science University, Portland, OR, 97239, USA.
| | - Eunju Kang
- Department of Biomedical Science, College of Life Science, CHA University, Seongnam, Gyeonggi, 13488, South Korea.
- Center for Embryo and Stem Cell Research, CHA Advanced Research Institute, CHA University, Seongnam, Gyeonggi, 13488, South Korea.
| |
Collapse
|
35
|
Matsuzaki H, Miyajima Y, Fukamizu A, Tanimoto K. Orientation of mouse H19 ICR affects imprinted H19 gene expression through promoter methylation-dependent and -independent mechanisms. Commun Biol 2021; 4:1410. [PMID: 34921234 PMCID: PMC8683476 DOI: 10.1038/s42003-021-02939-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 11/30/2021] [Indexed: 11/19/2022] Open
Abstract
The mouse Igf2/H19 locus is regulated by genomic imprinting, in which the paternally methylated H19 imprinting control region (ICR) plays a critical role in mono-allelic expression of the genes in the locus. Although the maternal allele-specific insulator activity of the H19 ICR in regulating imprinted Igf2 expression has been well established, the detailed mechanism by which the H19 ICR controls mono-allelic H19 gene expression has not been fully elucidated. In this study, we evaluated the effect of H19 ICR orientation on imprinting regulation in mutant mice in which the H19 ICR sequence was inverted at the endogenous locus. When the inverted-ICR allele was paternally inherited, the methylation level of the H19 promoter was decreased and the H19 gene was derepressed, suggesting that methylation of the H19 promoter is essential for complete repression of H19 gene expression. Unexpectedly, when the inverted allele was maternally inherited, the expression level of the H19 gene was lower than that of the WT allele, even though the H19 promoter remained fully hypomethylated. These observations suggested that the polarity of the H19 ICR is involved in controlling imprinted H19 gene expression on each parental allele, dependent or independent on DNA methylation of the H19 promoter.
Collapse
Affiliation(s)
- Hitomi Matsuzaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| | - Yu Miyajima
- Graduate school of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Keiji Tanimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
36
|
Zeng Y, Amador C, Gao C, Walker RM, Morris SW, Campbell A, Frkatović A, Madden RA, Adams MJ, He S, Bretherick AD, Hayward C, Porteous DJ, Wilson JF, Evans KL, McIntosh AM, Navarro P, Haley CS. Lifestyle and Genetic Factors Modify Parent-of-Origin Effects on the Human Methylome. EBioMedicine 2021; 74:103730. [PMID: 34883445 PMCID: PMC8654798 DOI: 10.1016/j.ebiom.2021.103730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 11/19/2021] [Accepted: 11/19/2021] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND parent-of-origin effects (POE) play important roles in complex disease and thus understanding their regulation and associated molecular and phenotypic variation are warranted. Previous studies mainly focused on the detection of genomic regions or phenotypes regulated by POE. Understanding whether POE may be modified by environmental or genetic exposures is important for understanding of the source of POE-associated variation, but only a few case studies addressing modifiable POE exist. METHODS in order to understand this high order of POE regulation, we screened 101 genetic and environmental factors such as 'predicted mRNA expression levels' of DNA methylation/imprinting machinery genes and environmental exposures. POE-mQTL-modifier interaction models were proposed to test the potential of these factors to modify POE at DNA methylation using data from Generation Scotland: The Scottish Family Health Study(N=2315). FINDINGS a set of vulnerable/modifiable POE-CpGs were identified (modifiable-POE-regulated CpGs, N=3). Four factors, 'lifetime smoking status' and 'predicted mRNA expression levels' of TET2, SIRT1 and KDM1A, were found to significantly modify the POE on the three CpGs in both discovery and replication datasets. We further identified plasma protein and health-related phenotypes associated with the methylation level of one of the identified CpGs. INTERPRETATION the modifiable POE identified here revealed an important yet indirect path through which genetic background and environmental exposures introduce their effect on DNA methylation, motivating future comprehensive evaluation of the role of these modifiers in complex diseases. FUNDING NSFC (81971270),H2020-MSCA-ITN(721815), Wellcome (204979/Z/16/Z,104036/Z/14/Z), MRC (MC_UU_00007/10, MC_PC_U127592696), CSO (CZD/16/6,CZB/4/276, CZB/4/710), SFC (HR03006), EUROSPAN (LSHG-CT-2006-018947), BBSRC (BBS/E/D/30002276), SYSU, Arthritis Research UK, NHLBI, NIH.
Collapse
Affiliation(s)
- Yanni Zeng
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Translational Forensic Medicine Engineering Technology Research Center, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China.
| | - Carmen Amador
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Chenhao Gao
- Faculty of Forensic Medicine, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou 510080, China
| | - Rosie M Walker
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Clinical Brain Sciences, Chancellor's Building, The University of Edinburgh, Edinburgh, UK
| | - Stewart W Morris
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Archie Campbell
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Azra Frkatović
- Genos Glycoscience Research Laboratory, Borongajska cesta 83h, 10000 Zagreb, Croatia
| | - Rebecca A Madden
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J Adams
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Shuai He
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Guangzhou, 510060, China
| | - Andrew D Bretherick
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - David J Porteous
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Centre for Global Health Research, Usher Institute, University of Edinburgh, Edinburgh, UK
| | - Kathryn L Evans
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Andrew M McIntosh
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| | - Chris S Haley
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK; Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
37
|
Aronson BE, Scourzic L, Shah V, Swanzey E, Kloetgen A, Polyzos A, Sinha A, Azziz A, Caspi I, Li J, Pelham-Webb B, Glenn RA, Vierbuchen T, Wichterle H, Tsirigos A, Dawlaty MM, Stadtfeld M, Apostolou E. A bipartite element with allele-specific functions safeguards DNA methylation imprints at the Dlk1-Dio3 locus. Dev Cell 2021; 56:3052-3065.e5. [PMID: 34710357 PMCID: PMC8628258 DOI: 10.1016/j.devcel.2021.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/06/2021] [Accepted: 10/04/2021] [Indexed: 11/23/2022]
Abstract
Loss of imprinting (LOI) results in severe developmental defects, but the mechanisms preventing LOI remain incompletely understood. Here, we dissect the functional components of the imprinting control region of the essential Dlk1-Dio3 locus (called IG-DMR) in pluripotent stem cells. We demonstrate that the IG-DMR consists of two antagonistic elements: a paternally methylated CpG island that prevents recruitment of TET dioxygenases and a maternally unmethylated non-canonical enhancer that ensures expression of the Gtl2 lncRNA by counteracting de novo DNA methyltransferases. Genetic or epigenetic editing of these elements leads to distinct LOI phenotypes with characteristic alternations of allele-specific gene expression, DNA methylation, and 3D chromatin topology. Although repression of the Gtl2 promoter results in dysregulated imprinting, the stability of LOI phenotypes depends on the IG-DMR, suggesting a functional hierarchy. These findings establish the IG-DMR as a bipartite control element that maintains imprinting by allele-specific restriction of the DNA (de)methylation machinery.
Collapse
Affiliation(s)
- Boaz E Aronson
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Laurianne Scourzic
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Veevek Shah
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Emily Swanzey
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA; The Jackson Laboratory, Bar Harbor, ME, USA
| | - Andreas Kloetgen
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Department of Computational Biology of Infection Research, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Alexander Polyzos
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Abhishek Sinha
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Annabel Azziz
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA
| | - Inbal Caspi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiexi Li
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA
| | - Bobbie Pelham-Webb
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD program, New York, NY, USA
| | - Rachel A Glenn
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY 10065, USA; Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Stem Cell Biology and Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hynek Wichterle
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Neurology, Neuroscience and Rehabilitation and Regenerative Medicine, Columbia University Irving Medical Center, Center for Motor Neuron Biology and Disease and Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Aristotelis Tsirigos
- Department of Pathology, New York University School of Medicine, New York, NY 10016, USA; Institute for Computational Medicine and Applied Bioinformatics Laboratories, New York University School of Medicine, New York, NY 10016, USA
| | - Meelad M Dawlaty
- Ruth L and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Bronx, NY 10461, USA; Department of Genetics, Department of Developmental & Molecular Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Matthias Stadtfeld
- Sanford I Weill Department of Medicine, Division of Regenerative Medicine, Weill Cornell Medicine, New York, NY 10021, USA.
| | - Effie Apostolou
- Sanford I Weill Department of Medicine, Division of Hematology/Oncology, Sandra and Edward Meyer Cancer Center, New York, NY 10021, USA.
| |
Collapse
|
38
|
Identifying regulators of parental imprinting by CRISPR/Cas9 screening in haploid human embryonic stem cells. Nat Commun 2021; 12:6718. [PMID: 34795250 PMCID: PMC8602306 DOI: 10.1038/s41467-021-26949-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 10/28/2021] [Indexed: 12/13/2022] Open
Abstract
In mammals, imprinted genes are regulated by differentially methylated regions (DMRs) that are inherited from germ cells, leading to monoallelic expression in accordance with parent-of-origin. Yet, it is largely unknown how imprinted DMRs are maintained in human embryos despite global DNA demethylation following fertilization. Here, we explored the mechanisms involved in imprinting regulation by employing human parthenogenetic embryonic stem cells (hpESCs), which lack paternal alleles. We show that although global loss of DNA methylation in hpESCs affects most imprinted DMRs, many paternally-expressed genes (PEGs) remain repressed. To search for factors regulating PEGs, we performed a genome-wide CRISPR/Cas9 screen in haploid hpESCs. This revealed ATF7IP as an essential repressor of a set of PEGs, which we further show is also required for silencing sperm-specific genes. Our study reinforces an important role for histone modifications in regulating imprinted genes and suggests a link between parental imprinting and germ cell identity. Genetic imprinting ensures monoallelic gene expression critical for normal embryonic development. Here the authors take advantage of human haploid parthenogenic embryonic stem cells lacking paternal alleles to identify, by genome-wide screening, factors involved in the regulation of imprinted genes.
Collapse
|
39
|
Gutherz OR, Deyssenroth M, Li Q, Hao K, Jacobson JL, Chen J, Jacobson SW, Carter RC. Potential roles of imprinted genes in the teratogenic effects of alcohol on the placenta, somatic growth, and the developing brain. Exp Neurol 2021; 347:113919. [PMID: 34752786 DOI: 10.1016/j.expneurol.2021.113919] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/26/2021] [Accepted: 11/02/2021] [Indexed: 12/22/2022]
Abstract
Despite several decades of research and prevention efforts, fetal alcohol spectrum disorders (FASD) remain the most common preventable cause of neurodevelopmental disabilities worldwide. Animal and human studies have implicated fetal alcohol-induced alterations in epigenetic programming as a chief mechanism in FASD. Several studies have demonstrated fetal alcohol-related alterations in methylation and expression of imprinted genes in placental, brain, and embryonic tissue. Imprinted genes are epigenetically regulated in a parent-of-origin-specific manner, in which only the maternal or paternal allele is expressed, and the other allele is silenced. The chief functions of imprinted genes are in placental development, somatic growth, and neurobehavior-three domains characteristically affected in FASD. In this review, we summarize the growing body of literature characterizing prenatal alcohol-related alterations in imprinted gene methylation and/or expression and discuss potential mechanistic roles for these alterations in the teratogenic effects of prenatal alcohol exposure. Future research is needed to examine potential physiologic mechanisms by which alterations in imprinted genes disrupt development in FASD, which may, in turn, elucidate novel targets for intervention. Furthermore, mechanistic alterations in imprinted gene expression and/or methylation in FASD may inform screening assays that identify individuals with FASD neurobehavioral deficits who may benefit from early interventions.
Collapse
Affiliation(s)
- Olivia R Gutherz
- Institute of Human Nutrition, Columbia University Medical Center, United States of America
| | - Maya Deyssenroth
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, United States of America
| | - Qian Li
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Ke Hao
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Joseph L Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - Jia Chen
- Department of Environmental Medicine & Public Health, Icahn School of Medicine at Mount Sinai, United States of America
| | - Sandra W Jacobson
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, United States of America; Department of Human Biology, University of Cape Town Faculty of Health Sciences, South Africa
| | - R Colin Carter
- Institute of Human Nutrition, Columbia University Medical Center, United States of America; Departments of Emergency Medicine and Pediatrics, Columbia University Medical Center, United States of America.
| |
Collapse
|
40
|
Reinsch N, Mayer M, Blunk I. Generalized gametic relationships for flexible analyses of parent-of-origin effects. G3 GENES|GENOMES|GENETICS 2021; 11:6166654. [PMID: 33693544 PMCID: PMC8496240 DOI: 10.1093/g3journal/jkab064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/08/2021] [Indexed: 11/12/2022]
Abstract
Abstract
A class of epigenetic inheritance patterns known as genomic imprinting allows alleles to influence the phenotype in a parent-of-origin-specific manner. Various pedigree-based parent-of-origin analyses of quantitative traits have attempted to determine the share of genetic variance that is attributable to imprinted loci. In general, these methods require four random gametic effects per pedigree member to account for all possible types of imprinting in a mixed model. As a result, the system of equations may become excessively large to solve using all available data. If only the offspring have records, which is frequently the case for complex pedigrees, only two averaged gametic effects (transmitting abilities) per parent are required (reduced model). However, the parents may have records in some cases. Therefore, in this study, we explain how employing single gametic effects solely for informative individuals (i.e., phenotyped individuals), and only average gametic effects otherwise, significantly reduces the complexity compared with classical gametic models. A generalized gametic relationship matrix is the covariance of this mixture of effects. The matrix can also make the reduced model much more flexible by including observations from parents. Worked examples are present to illustrate the theory and a realistic body mass data set in mice is used to demonstrate its utility. We show how to set up the inverse of the generalized gametic relationship matrix directly from a pedigree. An open-source program is used to implement the rules. The application of the same principles to phased marker data leads to a genomic version of the generalized gametic relationships.
Collapse
Affiliation(s)
- Norbert Reinsch
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Manfred Mayer
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| | - Inga Blunk
- Institute of Genetics and Biometry, Leibniz-Institute for Farm Animal Biology, 18196 Dummerstorf, Germany
| |
Collapse
|
41
|
Naveh NSS, Deegan DF, Huhn J, Traxler E, Lan Y, Weksberg R, Ganguly A, Engel N, Kalish JM. The role of CTCF in the organization of the centromeric 11p15 imprinted domain interactome. Nucleic Acids Res 2021; 49:6315-6330. [PMID: 34107024 PMCID: PMC8216465 DOI: 10.1093/nar/gkab475] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 04/22/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
DNA methylation, chromatin-binding proteins, and DNA looping are common components regulating genomic imprinting which leads to parent-specific monoallelic gene expression. Loss of methylation (LOM) at the human imprinting center 2 (IC2) on chromosome 11p15 is the most common cause of the imprinting overgrowth disorder Beckwith-Wiedemann Syndrome (BWS). Here, we report a familial transmission of a 7.6 kB deletion that ablates the core promoter of KCNQ1. This structural alteration leads to IC2 LOM and causes recurrent BWS. We find that occupancy of the chromatin organizer CTCF is disrupted proximal to the deletion, which causes chromatin architecture changes both in cis and in trans. We also profile the chromatin architecture of IC2 in patients with sporadic BWS caused by isolated LOM to identify conserved features of IC2 regulatory disruption. A strong interaction between CTCF sites around KCNQ1 and CDKN1C likely drive their expression on the maternal allele, while a weaker interaction involving the imprinting control region element may impede this connection and mediate gene silencing on the paternal allele. We present an imprinting model in which KCNQ1 transcription is necessary for appropriate CTCF binding and a novel chromatin conformation to drive allele-specific gene expression.
Collapse
Affiliation(s)
- Natali S Sobel Naveh
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Daniel F Deegan
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jacklyn Huhn
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Emily Traxler
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yemin Lan
- Epigenetics Institute, Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rosanna Weksberg
- Division of Clinical and Metabolic Genetics, Genetics and Genome Biology, Hospital for Sick Children, and Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Arupa Ganguly
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nora Engel
- Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Jennifer M Kalish
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.,Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Zfp57 inactivation illustrates the role of ICR methylation in imprinted gene expression during neural differentiation of mouse ESCs. Sci Rep 2021; 11:13802. [PMID: 34226608 PMCID: PMC8257706 DOI: 10.1038/s41598-021-93297-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
ZFP57 is required to maintain the germline-marked differential methylation at imprinting control regions (ICRs) in mouse embryonic stem cells (ESCs). Although DNA methylation has a key role in genomic imprinting, several imprinted genes are controlled by different mechanisms, and a comprehensive study of the relationship between DMR methylation and imprinted gene expression is lacking. To address the latter issue, we differentiated wild-type and Zfp57-/- hybrid mouse ESCs into neural precursor cells (NPCs) and evaluated allelic expression of imprinted genes. In mutant NPCs, we observed a reduction of allelic bias of all the 32 genes that were imprinted in wild-type cells, demonstrating that ZFP57-dependent methylation is required for maintaining or acquiring imprinted gene expression during differentiation. Analysis of expression levels showed that imprinted genes expressed from the non-methylated chromosome were generally up-regulated, and those expressed from the methylated chromosome were down-regulated in mutant cells. However, expression levels of several imprinted genes acquiring biallelic expression were not affected, suggesting the existence of compensatory mechanisms that control their RNA level. Since neural differentiation was partially impaired in Zfp57-mutant cells, this study also indicates that imprinted genes and/or non-imprinted ZFP57-target genes are required for proper neurogenesis in cultured ESCs.
Collapse
|
43
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
44
|
Lee S, Kim YN, Im D, Cho SH, Kim J, Kim JH, Kim K. DNA Methylation and gene expression patterns are widely altered in fetal growth restriction and associated with FGR development. Anim Cells Syst (Seoul) 2021; 25:128-135. [PMID: 34262655 PMCID: PMC8253195 DOI: 10.1080/19768354.2021.1925741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Fetal growth restriction (FGR) is the failure of the fetus toachieve its genetically determined growth potential, which increasesrisks for a variety of genetic diseases, such as type 2 diabetes mellitus, coronary artery disease, and stroke, during the lifetime. The dysregulation of DNA methylationis known to interact with environmental fluctuations, affect gene expressions comprehensively, and be fatal to fetus development in specific cases. Therefore, we set out to find out epigenetic and transcriptomic alterations associated with FGR development. We found a set of differentially expressed genes associated with differentially methylated regions in placentae and cord blood samples. Using dimensional reduction analysis, the expression and methylation variables of the epigenetically altered genes classified the FGR samples from the controls. These genes were also enriched in the biological pathways such as metabolism and developmental processes related to FGR. Furthermore, three genes of INS, MEG3, and ZFP36L2 are implicated in epigenetic imprinting, which has been associated with FGR. These results strongly suggest that DNA methylation is highly dysregulated during FGR development, and abnormal DNA methylation patterns are likely to alter gene expression.
Collapse
Affiliation(s)
- Seoyeong Lee
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea
| | - Young Nam Kim
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - DoHwa Im
- Department of Obstetrics and Gynecology, Busan Paik Hospital, Inje University, Busan, Republic of Korea
| | - Su Han Cho
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jiyeon Kim
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| | - Jeong-Hyun Kim
- Department of Medicine, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Kwoneel Kim
- Department of Biology, Kyung Hee University, Seoul, Republic of Korea.,Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
45
|
Dini P, Kalbfleisch T, Uribe-Salazar JM, Carossino M, Ali HES, Loux SC, Esteller-Vico A, Norris JK, Anand L, Scoggin KE, Rodriguez Lopez CM, Breen J, Bailey E, Daels P, Ball BA. Parental bias in expression and interaction of genes in the equine placenta. Proc Natl Acad Sci U S A 2021; 118:e2006474118. [PMID: 33853939 PMCID: PMC8072238 DOI: 10.1073/pnas.2006474118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Most autosomal genes in the placenta show a biallelic expression pattern. However, some genes exhibit allele-specific transcription depending on the parental origin of the chromosomes on which the copy of the gene resides. Parentally expressed genes are involved in the reciprocal interaction between maternal and paternal genes, coordinating the allocation of resources between fetus and mother. One of the main challenges of studying parental-specific allelic expression (allele-specific expression [ASE]) in the placenta is the maternal cellular remnant at the fetomaternal interface. Horses (Equus caballus) have an epitheliochorial placenta in which both the endometrial epithelium and the epithelium of the chorionic villi are juxtaposed with minimal extension into the uterine mucosa, yet there is no information available on the allelic gene expression of equine chorioallantois (CA). In the current study, we present a dataset of 1,336 genes showing ASE in the equine CA (https://pouya-dini.github.io/equine-gene-db/) along with a workflow for analyzing ASE genes. We further identified 254 potentially imprinted genes among the parentally expressed genes in the equine CA and evaluated the expression pattern of these genes throughout gestation. Our gene ontology analysis implies that maternally expressed genes tend to decrease the length of gestation, while paternally expressed genes extend the length of gestation. This study provides fundamental information regarding parental gene expression during equine pregnancy, a species with a negligible amount of maternal cellular remnant in its placenta. This information will provide the basis for a better understanding of the role of parental gene expression in the placenta during gestation.
Collapse
Affiliation(s)
- Pouya Dini
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Theodore Kalbfleisch
- Department of Biochemistry and Molecular Genetics, University of Louisville, Louisville, KY 40202
| | - José M Uribe-Salazar
- Department of Biochemistry and Molecular Medicine, Genome Center, Medical Investigation of Neurodevelopmental Disorders Institute, University of California, Davis, CA 95616
| | - Mariano Carossino
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
- Theriogenology Department, Faculty of Veterinary Medicine, University of Mansoura, 35516, Egypt
| | - Shavahn C Loux
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Alejandro Esteller-Vico
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Jamie K Norris
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Lakshay Anand
- Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, KY 40546
| | - Kirsten E Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Carlos M Rodriguez Lopez
- Environmental Epigenetics and Genetics Group, Department of Horticulture, University of Kentucky, Lexington, KY 40546
| | - James Breen
- South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Ernest Bailey
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503
| | - Peter Daels
- Department of Veterinary Medical Imaging and Small Animal Orthopaedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke 9820, Belgium
| | - Barry A Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40503;
| |
Collapse
|
46
|
Eggermann T, Davies JH, Tauber M, van den Akker E, Hokken-Koelega A, Johansson G, Netchine I. Growth Restriction and Genomic Imprinting-Overlapping Phenotypes Support the Concept of an Imprinting Network. Genes (Basel) 2021; 12:genes12040585. [PMID: 33920525 PMCID: PMC8073901 DOI: 10.3390/genes12040585] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 02/07/2023] Open
Abstract
Intrauterine and postnatal growth disturbances are major clinical features of imprinting disorders, a molecularly defined group of congenital syndromes caused by molecular alterations affecting parentally imprinted genes. These genes are expressed monoallelically and in a parent-of-origin manner, and they have an impact on human growth and development. In fact, several genes with an exclusive expression from the paternal allele have been shown to promote foetal growth, whereas maternally expressed genes suppress it. The evolution of this correlation might be explained by the different interests of the maternal and paternal genomes, aiming for the conservation of maternal resources for multiple offspring versus extracting maximal maternal resources. Since not all imprinted genes in higher mammals show the same imprinting pattern in different species, the findings from animal models are not always transferable to human. Therefore, human imprinting disorders might serve as models to understand the complex regulation and interaction of imprinted loci. This knowledge is a prerequisite for the development of precise diagnostic tools and therapeutic strategies for patients affected by imprinting disorders. In this review we will specifically overview the current knowledge on imprinting disorders associated with growth retardation, and its increasing relevance in a personalised medicine direction and the need for a multidisciplinary therapeutic approach.
Collapse
Affiliation(s)
- Thomas Eggermann
- Institute of Human Genetics, Medical Faculty, RWTH Aachen University, 52062 Aachen, Germany
- Correspondence: ; Tel.: +49-241-8088008; Fax: +49-241-8082394
| | - Justin H. Davies
- Department of Paediatric Endocrinology, University Hospital Southampton, Southampton SO16 6YD, UK;
| | - Maithé Tauber
- Research centre of rare diseases PRADORT, Childrens Hospital, CHU Toulouse, Toulouse Institute of Infectious and Inflammatory Diseases (Infinity), INSERM UMR1291-CNRS UMR5051-Tolouse III University, 31062 Toulouse, France;
| | - Erica van den Akker
- Erasmus University Medical Center, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands;
| | - Anita Hokken-Koelega
- Erasmus University Medical Center, Pediatrics, Subdivision of Endocrinology, 3015 GD Rotterdam, The Netherlands;
| | - Gudmundur Johansson
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg and Department of Endocrinology, Sahlgrenska University Hospital, 413 45 Gothenburg, Sweden;
| | - Irène Netchine
- Medical Faculty, AP-HP, Armand Trousseau Hospital-Functional Endocrine Research Unit, INSERM, Research Centre Saint-Antoine, Sorbonne University, 75012 Paris, France;
| |
Collapse
|
47
|
Velasco G, Ulveling D, Rondeau S, Marzin P, Unoki M, Cormier-Daire V, Francastel C. Interplay between Histone and DNA Methylation Seen through Comparative Methylomes in Rare Mendelian Disorders. Int J Mol Sci 2021; 22:3735. [PMID: 33916664 PMCID: PMC8038329 DOI: 10.3390/ijms22073735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 03/30/2021] [Accepted: 04/01/2021] [Indexed: 12/13/2022] Open
Abstract
DNA methylation (DNAme) profiling is used to establish specific biomarkers to improve the diagnosis of patients with inherited neurodevelopmental disorders and to guide mutation screening. In the specific case of mendelian disorders of the epigenetic machinery, it also provides the basis to infer mechanistic aspects with regard to DNAme determinants and interplay between histone and DNAme that apply to humans. Here, we present comparative methylomes from patients with mutations in the de novo DNA methyltransferases DNMT3A and DNMT3B, in their catalytic domain or their N-terminal parts involved in reading histone methylation, or in histone H3 lysine (K) methylases NSD1 or SETD2 (H3 K36) or KMT2D/MLL2 (H3 K4). We provide disease-specific DNAme signatures and document the distinct consequences of mutations in enzymes with very similar or intertwined functions, including at repeated sequences and imprinted loci. We found that KMT2D and SETD2 germline mutations have little impact on DNAme profiles. In contrast, the overlapping DNAme alterations downstream of NSD1 or DNMT3 mutations underlines functional links, more specifically between NSD1 and DNMT3B at heterochromatin regions or DNMT3A at regulatory elements. Together, these data indicate certain discrepancy with the mechanisms described in animal models or the existence of redundant or complementary functions unforeseen in humans.
Collapse
Affiliation(s)
- Guillaume Velasco
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| | - Damien Ulveling
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| | - Sophie Rondeau
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Pauline Marzin
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Motoko Unoki
- Division of Epigenomics and Development, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Valérie Cormier-Daire
- Imagine Institute, Université de Paris, Clinical Genetics, INSERM UMR 1163, Necker Enfants Malades Hospital, 75015 Paris, France; (S.R.); (P.M.); (V.C.-D.)
| | - Claire Francastel
- Université de Paris, Epigenetics and Cell Fate, CNRS UMR7216, 75013 Paris, France; (G.V.); (D.U.)
| |
Collapse
|
48
|
Brekke TD, Moore EC, Campbell-Staton SC, Callahan CM, Cheviron ZA, Good JM. X chromosome-dependent disruption of placental regulatory networks in hybrid dwarf hamsters. Genetics 2021; 218:6168998. [PMID: 33710276 DOI: 10.1093/genetics/iyab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/16/2021] [Indexed: 11/14/2022] Open
Abstract
Embryonic development in mammals is highly sensitive to changes in gene expression within the placenta. The placenta is also highly enriched for genes showing parent-of-origin or imprinted expression, which is predicted to evolve rapidly in response to parental conflict. However, little is known about the evolution of placental gene expression, or if divergence of placental gene expression plays an important role in mammalian speciation. We used crosses between two species of dwarf hamsters (Phodopus sungorus and Phodopus campbelli) to examine the genetic and regulatory underpinnings of severe placental overgrowth in their hybrids. Using quantitative genetic mapping and mitochondrial substitution lines, we show that overgrowth of hybrid placentas was primarily caused by genetic differences on the maternally inherited P. sungorus X chromosome. Mitochondrial interactions did not contribute to abnormal hybrid placental development, and there was only weak correspondence between placental disruption and embryonic growth. Genome-wide analyses of placental transcriptomes from the parental species and first- and second-generation hybrids revealed a central group of co-expressed X-linked and autosomal genes that were highly enriched for maternally biased expression. Expression of this gene network was strongly correlated with placental size and showed widespread misexpression dependent on epistatic interactions with X-linked hybrid incompatibilities. Collectively, our results indicate that the X chromosome is likely to play a prominent role in the evolution of placental gene expression and the accumulation of hybrid developmental barriers between mammalian species.
Collapse
Affiliation(s)
- Thomas D Brekke
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,School of Natural Sciences, Bangor University, Bangor, LL57 2UW, UK
| | - Emily C Moore
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Shane C Campbell-Staton
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA.,Department of Ecology and Evolutionary Biology; Institute for Society and Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Colin M Callahan
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Zachary A Cheviron
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| | - Jeffrey M Good
- Division of Biological Sciences, The University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
49
|
Wu B, Li Y, Li B, Zhang B, Wang Y, Li L, Gao J, Fu Y, Li S, Chen C, Surani MA, Tang F, Li X, Bao S. DNMTs Play an Important Role in Maintaining the Pluripotency of Leukemia Inhibitory Factor-Dependent Embryonic Stem Cells. Stem Cell Reports 2021; 16:582-596. [PMID: 33636115 PMCID: PMC7940253 DOI: 10.1016/j.stemcr.2021.01.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Naive pluripotency can be maintained in medium with two inhibitors plus leukemia inhibitory factor (2i/LIF) supplementation, which primarily affects canonical WNT, FGF/ERK, and JAK/STAT3 signaling. However, whether one of these three supplements alone is sufficient to maintain naive self-renewal remains unclear. Here we show that LIF alone in medium is sufficient for adaptation of 2i/L-ESCs to embryonic stem cells (ESCs) in a hypermethylated state (L-ESCs). Global transcriptomic analysis shows that L-ESCs are close to 2i/L-ESCs and in a stable state between naive and primed pluripotency. Notably, our results demonstrate that DNA methyltransferases (DNMTs) play an important role in LIF-dependent mouse ESC adaptation and self-renewal. LIF-dependent ESC adaptation efficiency is significantly increased in serum treatment and reduced in Dnmt3a or Dnmt3l knockout ESCs. Importantly, unlike epiblast stem cells, L-ESCs contribute to somatic tissues and germ cells in chimeras. L-ESCs cultured under such simple conditions as in this study would provide a more conducive platform to clarify the molecular mechanism of ESCs in in vitro culture.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yunxia Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Huhhot 011517, China
| | - Bojiang Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Baojing Zhang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Yanqiu Wang
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Lin Li
- Guangdong Provincial Key Laboratory of Proteomics, Department of Pathophysiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China; Beijing Advanced Innovation Center for Genomics and Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Junpeng Gao
- Beijing Advanced Innovation Center for Genomics and Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yuting Fu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - Shudong Li
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Chen Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China
| | - M Azim Surani
- Wellcome Trust Cancer Research UK Gurdon Institute, Tennis Court Road, University of Cambridge, Cambridge CB2 1QN, UK
| | - Fuchou Tang
- Beijing Advanced Innovation Center for Genomics and Biomedical Pioneering Innovation Center, College of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China; Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, Beijing 100871, China
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China; Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Huhhot 011517, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Inner Mongolia University, Hohhot 010020, China; Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot 010020, China.
| |
Collapse
|
50
|
Salimi M, Shirazi A, Norouzian M, Jafari A, Edalatkhah H, Mehravar M, Majidi M, Mehrazar MM. H19/Igf2 Expression and Methylation of Histone 3 in Mice Chimeric Blastocysts. Rep Biochem Mol Biol 2021; 9:357-365. [PMID: 33649730 DOI: 10.29252/rbmb.9.3.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Currently, the efficient production of chimeric mice and their survival are still challenging. Recent researches have indicated that preimplantation embryo culture media and manipulation lead to abnormal methylation of histone in the H19/Igf2 promotor region and consequently alter their gene expression pattern. This investigation was designed to evaluate the relationship between the methylation state of histone H3 and H19/Igf2 expression in mice chimeric blastocysts. Methods Mouse 129/Sv embryonic stem cells (mESCs) expressing the green fluorescent protein (mESCs-GFP) were injected into the perivitelline space of 2.5 days post-coitis (dpc) embryos (C57BL/6) using a micromanipulator. H3K4 and H3K9 methylation, and H19 and Igf2 expression was measured by immunocytochemistry and q-PCR, respectively, in blastocysts. Results Histone H3 trimethylation in H3K4 and H3K9 in chimeric blastocysts was significantly less and greater, respectively (p< 0.05), than in controls. H19 expression was significantly less (p< 0.05), while Igf2 expression was less, but not significantly so, in chimeric than in control blastocysts. Conclusion Our results showed, that the alteration ofH3K4me3 and H3K9me3 methylation, change H19/Igf2 expression in chimeric blastocysts.
Collapse
Affiliation(s)
- Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Mohsen Norouzian
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ameneh Jafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Mehravar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Majidi
- Food and Drug Laboratory Research Center, Food and Drug Organization, MOH & ME, Tehran, Iran
| | - Mohammad Mahdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|