1
|
Blackiston D, Dromiack H, Grasso C, Varley TF, Moore DG, Srinivasan KK, Sporns O, Bongard J, Levin M, Walker SI. Revealing non-trivial information structures in aneural biological tissues via functional connectivity. PLoS Comput Biol 2025; 21:e1012149. [PMID: 40228211 PMCID: PMC11996219 DOI: 10.1371/journal.pcbi.1012149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 02/19/2025] [Indexed: 04/16/2025] Open
Abstract
A central challenge in the progression of a variety of open questions in biology, such as morphogenesis, wound healing, and development, is learning from empirical data how information is integrated to support tissue-level function and behavior. Information-theoretic approaches provide a quantitative framework for extracting patterns from data, but so far have been predominantly applied to neuronal systems at the tissue-level. Here, we demonstrate how time series of Ca2+ dynamics can be used to identify the structure and information dynamics of other biological tissues. To this end, we expressed the calcium reporter GCaMP6s in an organoid system of explanted amphibian epidermis derived from the African clawed frog Xenopus laevis, and imaged calcium activity pre- and post- a puncture injury, for six replicate organoids. We constructed functional connectivity networks by computing mutual information between cells from time series derived using medical imaging techniques to track intracellular Ca2+. We analyzed network properties including degree distribution, spatial embedding, and modular structure. We find organoid networks exhibit potential evidence for more connectivity than null models, with our models displaying high degree hubs and mesoscale community structure with spatial clustering. Utilizing functional connectivity networks, our model suggests the tissue retains non-random features after injury, displays long range correlations and structure, and non-trivial clustering that is not necessarily spatially dependent. In the context of this reconstruction method our results suggest increased integration after injury, possible cellular coordination in response to injury, and some type of generative structure of the anatomy. While we study Ca2+ in Xenopus epidermal cells, our computational approach and analyses highlight how methods developed to analyze functional connectivity in neuronal tissues can be generalized to any tissue and fluorescent signal type. We discuss expanded methods of analyses to improve models of non-neuronal information processing highlighting the potential of our framework to provide a bridge between neuroscience and more basal modes of information processing.
Collapse
Affiliation(s)
- Douglas Blackiston
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Institute for Computationally-Designed Organisms, UVM, Burlington, Vermont and Tufts, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Hannah Dromiack
- Department of Physics, Arizona State University, Tempe, Arizona, United States of America
- BEYOND Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, United States of America
| | - Caitlin Grasso
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
| | - Thomas F Varley
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
- Department of Complex Systems and Data Science, University of Vermont, Burlington, Vermont, United States of America
- School of Informatics, Computing, and Engineering, Indiana University, Bloomington, Indiana, United States of America
| | - Douglas G Moore
- BEYOND Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, United States of America
- Alpha 39 Research, Tempe, Arizona, United States of America
| | - Krishna Kannan Srinivasan
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
- Department of Complex Systems and Data Science, University of Vermont, Burlington, Vermont, United States of America
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Joshua Bongard
- Institute for Computationally-Designed Organisms, UVM, Burlington, Vermont and Tufts, Medford, Massachusetts, United States of America
- Department of Computer Science, University of Vermont, Burlington, Vermont, United States of America
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, Massachusetts, United States of America
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts, United States of America
- Institute for Computationally-Designed Organisms, UVM, Burlington, Vermont and Tufts, Medford, Massachusetts, United States of America
- Department of Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Sara I Walker
- BEYOND Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, United States of America
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| |
Collapse
|
2
|
Whitfield K, Crespi EJ. Interspecific comparisons of anuran embryonic epidermal landscapes and energetic trade-offs in response to changes in salinity. Dev Dyn 2025. [PMID: 40095439 DOI: 10.1002/dvdy.70016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 01/09/2025] [Accepted: 02/26/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Freshwater salinization is an emerging stressor in amphibian populations, and embryonic stages are most vulnerable. To better understand the variation in embryonic osmoregulation, we challenged embryos of two phylogenetically diverse anuran species, Xenopus laevis and Lithobates (Rana) sylvaticus, along a gradient of non-lethal salinities. We hypothesized embryos at higher salinities will display epidermal plasticity as a coping response and increase energy expenditure related to osmoregulation demands, thereby reducing energy for growth and development. RESULTS Scanning electron microscopy revealed an extra mucus-secreting cell type and higher ionocyte proportions in the X. laevis epidermis, suggesting more osmoregulatory machinery than L. sylvaticus. Under elevated salinity, X. laevis displayed greater increases in goblet cell proportions, mucus secretion, and reductions in ionocyte apical area compared with L. sylvaticus. Although both species increased oxygen consumption rates and reduced body length with elevated salinity, these effects were proportionally greater in L. sylvaticus at the highest salinity, and only this species slowed developmental rates. CONCLUSION These findings support the hypothesis that frog embryos respond to salinity by altering the cellular landscape of their epidermis. We show that epidermal cell types, as well as the magnitude of epidermal plasticity and energetic trade-offs in response to salinity, vary among amphibian species.
Collapse
Affiliation(s)
- Kourtnie Whitfield
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| | - Erica J Crespi
- School of Biological Sciences, Center for Reproductive Biology, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Walentek P. Mucociliary cell type compositions - bridging the gap between genes and emergent tissue functions. Cells Dev 2025:204019. [PMID: 40058594 DOI: 10.1016/j.cdev.2025.204019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/16/2025]
Abstract
When multiple cell types are brought together to form a tissue-specific collective, the combination of cell functions and cell-cell interactions leads to novel behaviors and properties beyond the simple addition of individual features, often referred to as emergent tissue functions. During evolution, functional adaptations in organs are significantly influenced by changes in cell type compositions, and in diseases, aberrations in cell type compositions result in impaired organ functions. Investigating the mechanisms that regulate cell type compositions could elucidate an important organizational meta-level that bridges gene functions and cellular features de facto facilitating the emergence of collective cell behaviors and novel tissue functions. Due to their unique evolutionary positioning and diverse functions, mucociliary epithelia could provide an optimal system to unravel principle mechanisms of adaptations in cell type compositions that facilitate the evolution of new or optimization of existing tissue functions, and could reveal novel entry points to counteract human diseases. An integrative investigation of signaling, transcriptional, epigenetic and morphogenetic mechanisms across a broad range of mucociliary tissues with different specialized cells and cell type compositions can help us to connect gene functions and contributions to self-organized behaviors in cell collectives determining emergent tissue functions. Taking such route moving forward has the potential to unravel novel principles in mucociliary self-organization and to reveal broadly applicable principles underlying the generation and modification of emergent tissue functions across species and organ systems.
Collapse
Affiliation(s)
- Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany.
| |
Collapse
|
4
|
Bowden S, Brislinger-Engelhardt MM, Hansen M, Temporal-Plo A, Weber D, Hägele S, Lorenz F, Litwin T, Kreutz C, Walentek P. Foxi1 regulates multiple steps of mucociliary development and ionocyte specification through transcriptional and epigenetic mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620464. [PMID: 39484493 PMCID: PMC11527170 DOI: 10.1101/2024.10.27.620464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Foxi1 is a master regulator of ionocytes (ISCs / INCs) across species and organs. Two subtypes of ISCs exist, and both α- and β-ISCs regulate pH- and ion-homeostasis in epithelia. Gain and loss of FOXI1 function are associated with human diseases, including Pendred syndrome, male infertility, renal acidosis and cancers. Foxi1 functions were predominantly studied in the context of ISC specification, however, reports indicate additional functions in early and ectodermal development. Here, we re-investigated the functions of Foxi1 in Xenopus laevis embryonic mucociliary epidermis development and found a novel function for Foxi1 in the generation of Notch-ligand expressing mucociliary multipotent progenitors (MPPs). We demonstrate that Foxi1 has multiple concentration-dependent functions: At low levels, Foxi1 confers ectodermal competence through transcriptional and epigenetic mechanisms, while at high levels, Foxi1 induces a multi-step process of ISC specification and differentiation. We further describe how foxi1 expression is affected through auto- and Notch-regulation, how Ubp1 and Dmrt2 regulate ISC subtype differentiation, and how this developmental program affects Notch signaling as well as mucociliary patterning. Together, we reveal novel functions for Foxi1 in Xenopus mucociliary epidermis formation, relevant to our understanding of vertebrate development and human disease.
Collapse
Affiliation(s)
- Sarah Bowden
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Magdalena Maria Brislinger-Engelhardt
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Mona Hansen
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Africa Temporal-Plo
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Damian Weber
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Sandra Hägele
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
| | - Fabian Lorenz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Tim Litwin
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Clemens Kreutz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Medical Center - University of Freiburg, Stefan-Meier-Strasse 26, 79104, Freiburg, Germany
| | - Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| |
Collapse
|
5
|
Kim Y, Lee HK, Park KY, Ismail T, Lee H, Lee HS. Actin Depolymerizing Factor Destrin Regulates Cilia Development and Function during Vertebrate Embryogenesis. Dev Reprod 2024; 28:109-119. [PMID: 39444639 PMCID: PMC11495882 DOI: 10.12717/dr.2024.28.3.109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/22/2024] [Indexed: 10/25/2024]
Abstract
The actin cytoskeleton plays fundamental roles in ciliogenesis and the actin depolymerizing factor destrin regulates actin dynamics by treadmilling actin filaments and increasing globular actin pools. However, the specific developmental roles of destrin in ciliogenesis have not been fully elucidated. Here, we investigated the function of destrin in ciliogenesis using Xenopus laevis and human retinal pigmented epithelial (hRPE1) cells. We discovered the loss of destrin increased the number of multiciliated cells in the Xenopus epithelium and impeded cilia motility. Additionally, destrin depletion remarkably reduced the length of primary cilia in the Xenopus neural tube and hRPE1 cells by affecting actin dynamics. Immunofluorescence using markers of ciliary components indicated that destrin controls the directionality and polarity of basal bodies and axonemal elongation by modulating actin dynamics, independent of basal body docking. In conclusion, destrin plays a significant role during vertebrate ciliogenesis regulating both primary and multicilia development. Our data suggest new insights for understanding the roles of actin dynamics in cilia development.
Collapse
Affiliation(s)
- Youni Kim
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Hyun-Kyung Lee
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Kyeong-Yeon Park
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Tayaba Ismail
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Hongchan Lee
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| | - Hyun-Shik Lee
- KNU G-LAMP Project Group, KNU Institute
of Basic Sciences, School of Life Sciences, BK21 FOUR KNU Creative
BioResearch Group, College of Natural Sciences, Kyungpook National
University, Daegu 41566, Korea
| |
Collapse
|
6
|
Obukhova AL, Khabarova MY, Semenova MN, Starunov VV, Voronezhskaya EE, Ivashkin EG. Spontaneous intersibling polymorphism in the development of dopaminergic neuroendocrine cells in sea urchin larvae: impacts on the expansion of marine benthic species. Front Neurosci 2024; 18:1348999. [PMID: 38660226 PMCID: PMC11039814 DOI: 10.3389/fnins.2024.1348999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 03/27/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction The plasticity of the nervous system plays a crucial role in shaping adaptive neural circuits and corresponding animal behaviors. Understanding the mechanisms underlying neural plasticity during development and its implications for animal adaptation constitutes an intriguing area of research. Sea urchin larvae offer a fascinating subject for investigation due to their remarkable evolutionary and ecological diversity, as well as their diverse developmental forms and behavioral patterns. Materials and methods We conducted immunochemical and histochemical analyses of serotonin-containing (5-HT-neurons) and dopamine-containing (DA-positive) neurons to study their developmental dynamics in two sea urchin species: Mesocentrotus nudus and Paracentrotus lividus. Our approach involved detailed visualization of 5-HT- and DA-positive neurons at gastrula-pluteus stages, coupled with behavioral assays to assess larval upward and downward swimming in the water column, with a focus on correlating cell numbers with larval swimming ability. Results The study reveals a heterochronic polymorphism in the appearance of post-oral DA-positive neuroendocrine cells and confirms the stable differentiation pattern of apical 5-HT neurons in larvae of both species. Notably, larvae of the same age exhibit a two- to four-fold difference in DA neurons. An increased number of DA neurons and application of dopamine positively correlate with larval downward swimming, whereas 5-HT-neurons and serotonin application induce upward swimming. The ratio of 5-HT/DA neurons determines the stage-dependent vertical distribution of larvae within the water column. Consequently, larvae from the same generation with a higher number of DA-positive neurons tend to remain at the bottom compared to those with fewer DA-positive neurons. Discussion The proportion of 5-HT and DA neurons within larvae of the same age underlies the different potentials of individuals for upward and downward swimming. A proposed model illustrates how coordination in humoral regulation, based on heterochrony in DA-positive neuroendocrine cell differentiation, influences larval behavior, mitigates competition between siblings, and ensures optimal population expansion. The study explores the evolutionary and ecological implications of these neuroendocrine adaptations in marine species.
Collapse
Affiliation(s)
- Alexandra L. Obukhova
- Koltsov Institute of Developmental Biology, Russian Academy Sciences, Moscow, Russia
| | - Marina Yu. Khabarova
- Koltsov Institute of Developmental Biology, Russian Academy Sciences, Moscow, Russia
| | - Marina N. Semenova
- Koltsov Institute of Developmental Biology, Russian Academy Sciences, Moscow, Russia
| | - Viktor V. Starunov
- Department of Invertebrate Zoology, St-Petersburg State University, Saint Petersburg, Russia
- Zoological Institute, Russian Academy Sciences, Saint Petersburg, Russia
| | | | - Evgeny G. Ivashkin
- Koltsov Institute of Developmental Biology, Russian Academy Sciences, Moscow, Russia
- Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
7
|
Burcklé C, Raitière J, Michaux G, Kodjabachian L, Le Bivic A. Crb3 is required to organize the apical domain of multiciliated cells. J Cell Sci 2024; 137:jcs261046. [PMID: 37840525 DOI: 10.1242/jcs.261046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023] Open
Abstract
Cell shape changes mainly rely on the remodeling of the actin cytoskeleton. Multiciliated cells (MCCs) of the mucociliary epidermis of Xenopus laevis embryos, as they mature, dramatically reshape their apical domain to grow cilia, in coordination with the underlying actin cytoskeleton. Crumbs (Crb) proteins are multifaceted transmembrane apical polarity proteins known to recruit actin linkers and promote apical membrane growth. Here, we identify the homeolog Crb3.L as an important player for the migration of centrioles or basal bodies (collectively centrioles/BBs) and apical domain morphogenesis in MCCs. Crb3.L is present in cytoplasmic vesicles close to the ascending centrioles/BBs, where it partially colocalizes with Rab11a. Crb3.L morpholino-mediated depletion in MCCs caused abnormal migration of centrioles/BBs, a reduction of their apical surface, disorganization of their apical actin meshwork and defective ciliogenesis. Rab11a morpholino-mediated depletion phenocopied Crb3.L loss-of-function in MCCs. Thus, the control of centrioles/BBs migration by Crb3.L might be mediated by Rab11a-dependent apical trafficking. Furthermore, we show that both phospho-activated ERM (pERM; Ezrin-Radixin-Moesin) and Crb3.L are recruited to the growing apical domain of MCCs, where Crb3.L likely anchors pERM, allowing actin-dependent expansion of the apical membrane.
Collapse
Affiliation(s)
- Céline Burcklé
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| | - Juliette Raitière
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| | - Grégoire Michaux
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, F-35000 Rennes, France
| | - Laurent Kodjabachian
- Aix Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Turing Centre for Living Systems, Marseille, F-13288 France
| | - André Le Bivic
- Aix-Marseille University, CNRS, UMR 7288, Developmental Biology Institute of Marseille (IBDM), Marseille, F-13288 France
| |
Collapse
|
8
|
Lee J, Møller AF, Chae S, Bussek A, Park TJ, Kim Y, Lee HS, Pers TH, Kwon T, Sedzinski J, Natarajan KN. A single-cell, time-resolved profiling of Xenopus mucociliary epithelium reveals nonhierarchical model of development. SCIENCE ADVANCES 2023; 9:eadd5745. [PMID: 37027470 PMCID: PMC10081853 DOI: 10.1126/sciadv.add5745] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
The specialized cell types of the mucociliary epithelium (MCE) lining the respiratory tract enable continuous airway clearing, with its defects leading to chronic respiratory diseases. The molecular mechanisms driving cell fate acquisition and temporal specialization during mucociliary epithelial development remain largely unknown. Here, we profile the developing Xenopus MCE from pluripotent to mature stages by single-cell transcriptomics, identifying multipotent early epithelial progenitors that execute multilineage cues before specializing into late-stage ionocytes and goblet and basal cells. Combining in silico lineage inference, in situ hybridization, and single-cell multiplexed RNA imaging, we capture the initial bifurcation into early epithelial and multiciliated progenitors and chart cell type emergence and fate progression into specialized cell types. Comparative analysis of nine airway atlases reveals an evolutionary conserved transcriptional module in ciliated cells, whereas secretory and basal types execute distinct function-specific programs across vertebrates. We uncover a continuous nonhierarchical model of MCE development alongside a data resource for understanding respiratory biology.
Collapse
Affiliation(s)
- Julie Lee
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Andreas Fønss Møller
- Danish Institute of Advanced Study (DIAS) and Functional Genomics and Metabolism Research Unit, University of Southern Denmark, Odense, Denmark
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing, China
| | - Shinhyeok Chae
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Alexandra Bussek
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Tae Joo Park
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Youni Kim
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Hyun-Shik Lee
- KNU-Center for Nonlinear Dynamics, School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Tune H. Pers
- The Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Taejoon Kwon
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- Center for Genomic Integrity, Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Jakub Sedzinski
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), University of Copenhagen, Copenhagen, Denmark
| | - Kedar Nath Natarajan
- Danish Institute of Advanced Study (DIAS) and Functional Genomics and Metabolism Research Unit, University of Southern Denmark, Odense, Denmark
- DTU Bioengineering, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
9
|
Seidl C, Da Silva F, Zhang K, Wohlgemuth K, Omran H, Niehrs C. Mucociliary Wnt signaling promotes cilia biogenesis and beating. Nat Commun 2023; 14:1259. [PMID: 36878953 PMCID: PMC9988884 DOI: 10.1038/s41467-023-36743-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
It is widely thought that Wnt/Lrp6 signaling proceeds through the cytoplasm and that motile cilia are signaling-inert nanomotors. Contrasting both views, we here show in the mucociliary epidermis of X. tropicalis embryos that motile cilia transduce a ciliary Wnt signal that is distinct from canonical β-catenin signaling. Instead, it engages a Wnt-Gsk3-Ppp1r11-Pp1 signaling axis. Mucociliary Wnt signaling is essential for ciliogenesis and it engages Lrp6 co-receptors that localize to cilia via a VxP ciliary targeting sequence. Live-cell imaging using a ciliary Gsk3 biosensor reveals an immediate response of motile cilia to Wnt ligand. Wnt treatment stimulates ciliary beating in X. tropicalis embryos and primary human airway mucociliary epithelia. Moreover, Wnt treatment improves ciliary function in X. tropicalis ciliopathy models of male infertility and primary ciliary dyskinesia (ccdc108, gas2l2). We conclude that X. tropicalis motile cilia are Wnt signaling organelles that transduce a distinct Wnt-Pp1 response.
Collapse
Affiliation(s)
- Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kai Wohlgemuth
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Heymut Omran
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany. .,Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
10
|
Brislinger-Engelhardt MM, Lorenz F, Haas M, Bowden S, Tasca A, Kreutz C, Walentek P. Temporal Notch signaling regulates mucociliary cell fates through Hes-mediated competitive de-repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.15.528675. [PMID: 36824900 PMCID: PMC9949065 DOI: 10.1101/2023.02.15.528675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Tissue functions are determined by the types and ratios of cells present, but little is known about self-organizing principles establishing correct cell type compositions. Mucociliary airway clearance relies on the correct balance between secretory and ciliated cells, which is regulated by Notch signaling across mucociliary systems. Using the airway-like Xenopus epidermis, we investigate how cell fates depend on signaling, how signaling levels are controlled, and how Hes transcription factors regulate cell fates. We show that four mucociliary cell types each require different Notch levels and that their specification is initiated sequentially by a temporal Notch gradient. We describe a novel role for Foxi1 in the generation of Delta-expressing multipotent progenitors through Hes7.1. Hes7.1 is a weak repressor of mucociliary genes and overcomes maternal repression by the strong repressor Hes2 to initiate mucociliary development. Increasing Notch signaling then inhibits Hes7.1 and activates first Hes4, then Hes5.10, which selectively repress cell fates. We have uncovered a self-organizing mechanism of mucociliary cell type composition by competitive de-repression of cell fates by a set of differentially acting repressors. Furthermore, we present an in silico model of this process with predictive abilities.
Collapse
Affiliation(s)
- Magdalena Maria Brislinger-Engelhardt
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Fabian Lorenz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Institute of Medicine and Medical Center Freiburg, Stefan-Meier Strasse 26, 79104 Freiburg, Germany
| | - Maximilian Haas
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
| | - Sarah Bowden
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| | - Alexia Tasca
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
| | - Clemens Kreutz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- IMBI Institute of Medical Biometry and Statistics, Institute of Medicine and Medical Center Freiburg, Stefan-Meier Strasse 26, 79104 Freiburg, Germany
| | - Peter Walentek
- Department of Medicine IV, University Freiburg Medical Center, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Schänzlestrasse 18, 79104 Freiburg, Germany
- SGBM Spemann Graduate School for Biology and Medicine, University of Freiburg, Albertstrasse 19A, 79104 Freiburg, Germany
- IMPRS-IEM International Max Planck Research School of Immunobiology, Epigenetics and Metabolism, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108 Freiburg, Germany
| |
Collapse
|
11
|
Multiciliated cells use filopodia to probe tissue mechanics during epithelial integration in vivo. Nat Commun 2022; 13:6423. [PMID: 36307428 PMCID: PMC9616887 DOI: 10.1038/s41467-022-34165-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/17/2022] [Indexed: 12/25/2022] Open
Abstract
During embryonic development, regeneration, and homeostasis, cells have to migrate and physically integrate into the target tissues where they ultimately execute their function. While much is known about the biochemical pathways driving cell migration in vivo, we are only beginning to understand the mechanical interplay between migrating cells and their surrounding tissue. Here, we reveal that multiciliated cell precursors in the Xenopus embryo use filopodia to pull at the vertices of the overlying epithelial sheet. This pulling is effectively used to sense vertex stiffness and identify the preferred positions for cell integration into the tissue. Notably, we find that pulling forces equip multiciliated cells with the ability to remodel the epithelial junctions of the neighboring cells, enabling them to generate a permissive environment that facilitates integration. Our findings reveal the intricate physical crosstalk at the cell-tissue interface and uncover previously unknown functions for mechanical forces in orchestrating cell integration.
Collapse
|
12
|
Hantel F, Liu H, Fechtner L, Neuhaus H, Ding J, Arlt D, Walentek P, Villavicencio-Lorini P, Gerhardt C, Hollemann T, Pfirrmann T. Cilia-localized GID/CTLH ubiquitin ligase complex regulates protein homeostasis of sonic hedgehog signaling components. J Cell Sci 2022; 135:jcs259209. [PMID: 35543157 PMCID: PMC9264362 DOI: 10.1242/jcs.259209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/24/2022] [Indexed: 01/18/2023] Open
Abstract
Cilia are evolutionarily conserved organelles that orchestrate a variety of signal transduction pathways, such as sonic hedgehog (SHH) signaling, during embryonic development. Our recent studies have shown that loss of GID ubiquitin ligase function results in aberrant AMP-activated protein kinase (AMPK) activation and elongated primary cilia, which suggests a functional connection to cilia. Here, we reveal that the GID complex is an integral part of the cilium required for primary cilia-dependent signal transduction and the maintenance of ciliary protein homeostasis. We show that GID complex subunits localize to cilia in both Xenopus laevis and NIH3T3 cells. Furthermore, we report SHH signaling pathway defects that are independent of AMPK and mechanistic target of rapamycin (MTOR) activation. Despite correct localization of SHH signaling components at the primary cilium and functional GLI3 processing, we find a prominent reduction of some SHH signaling components in the cilium and a significant decrease in SHH target gene expression. Since our data reveal a critical function of the GID complex at the primary cilium, and because suppression of GID function in X. laevis results in ciliopathy-like phenotypes, we suggest that GID subunits are candidate genes for human ciliopathies that coincide with defects in SHH signal transduction.
Collapse
Affiliation(s)
- Friederike Hantel
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Huaize Liu
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Lisa Fechtner
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Herbert Neuhaus
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Jie Ding
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Danilo Arlt
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, 79106 Freiburg, Germany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
| | | | - Christoph Gerhardt
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| | - Thomas Hollemann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
| | - Thorsten Pfirrmann
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, 06114 Halle, Germany
- Department of Medicine, Health and Medical University, 14471 Potsdam, Germany
| |
Collapse
|
13
|
Walentek P. Signaling Control of Mucociliary Epithelia: Stem Cells, Cell Fates, and the Plasticity of Cell Identity in Development and Disease. Cells Tissues Organs 2022; 211:736-753. [PMID: 33902038 PMCID: PMC8546001 DOI: 10.1159/000514579] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/19/2021] [Indexed: 01/25/2023] Open
Abstract
Mucociliary epithelia are composed of multiciliated, secretory, and stem cells and line various organs in vertebrates such as the respiratory tract. By means of mucociliary clearance, those epithelia provide a first line of defense against inhaled particles and pathogens. Mucociliary clearance relies on the correct composition of cell types, that is, the proper balance of ciliated and secretory cells. A failure to generate and to maintain correct cell type composition and function results in impaired clearance and high risk to infections, such as in congenital diseases (e.g., ciliopathies) as well as in acquired diseases, including asthma, chronic obstructive pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF). While it remains incompletely resolved how precisely cell types are specified and maintained in development and disease, many studies have revealed important mechanisms regarding the signaling control in mucociliary cell types in various species. Those studies not only provided insights into the signaling contribution to organ development and regeneration but also highlighted the remarkable plasticity of cell identity encountered in mucociliary maintenance, including frequent trans-differentiation events during homeostasis and specifically in disease. This review will summarize major findings and provide perspectives regarding the future of mucociliary research and the treatment of chronic airway diseases associated with tissue remodeling.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
14
|
Boselli F, Jullien J, Lauga E, Goldstein RE. Fluid Mechanics of Mosaic Ciliated Tissues. PHYSICAL REVIEW LETTERS 2021; 127:198102. [PMID: 34797132 PMCID: PMC7616087 DOI: 10.1103/physrevlett.127.198102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
In tissues as diverse as amphibian skin and the human airway, the cilia that propel fluid are grouped in sparsely distributed multiciliated cells (MCCs). We investigate fluid transport in this "mosaic" architecture, with emphasis on the trade-offs that may have been responsible for its evolutionary selection. Live imaging of MCCs in embryos of the frog Xenopus laevis shows that cilia bundles behave as active vortices that produce a flow field accurately represented by a local force applied to the fluid. A coarse-grained model that self-consistently couples bundles to the ambient flow reveals that hydrodynamic interactions between MCCs limit their rate of work so that they best shear the tissue at a finite but low area coverage, a result that mirrors findings for other sparse distributions such as cell receptors and leaf stomata.
Collapse
Affiliation(s)
- Francesco Boselli
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Jerome Jullien
- Wellcome Trust/Cancer Research UK Gurdon Institute, Tennis Court Road, Cambridge CB2 1QN, United Kingdom
- Department of Zoology, University of Cambridge, Cambridge CB2 1QN, United Kingdom
- Inserm, Nantes Université, CHU Nantes, CRTI-UMR 1064, F-44000 Nantes, France
| | - Eric Lauga
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| | - Raymond E. Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge CB3 0WA, United Kingdom
| |
Collapse
|
15
|
Chuyen A, Rulquin C, Daian F, Thomé V, Clément R, Kodjabachian L, Pasini A. The Scf/Kit pathway implements self-organized epithelial patterning. Dev Cell 2021; 56:795-810.e7. [PMID: 33756121 DOI: 10.1016/j.devcel.2021.02.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 12/22/2020] [Accepted: 02/22/2021] [Indexed: 01/11/2023]
Abstract
How global patterns emerge from individual cell behaviors is poorly understood. In the Xenopus embryonic epidermis, multiciliated cells (MCCs) are born in a random pattern within an inner mesenchymal layer and subsequently intercalate at regular intervals into an outer epithelial layer. Using video microscopy and mathematical modeling, we found that regular pattern emergence involves mutual repulsion among motile immature MCCs and affinity toward outer-layer intercellular junctions. Consistently, Arp2/3-mediated actin remodeling is required for MCC patterning. Mechanistically, we show that the Kit tyrosine kinase receptor, expressed in MCCs, and its ligand Scf, expressed in outer-layer cells, are both required for regular MCC distribution. Membrane-associated Scf behaves as a potent adhesive cue for MCCs, while its soluble form promotes their mutual repulsion. Finally, Kit expression is sufficient to confer order to a disordered heterologous cell population. This work reveals how a single signaling system can implement self-organized large-scale patterning.
Collapse
|
16
|
Walentek P. Xenopus epidermal and endodermal epithelia as models for mucociliary epithelial evolution, disease, and metaplasia. Genesis 2021; 59:e23406. [PMID: 33400364 DOI: 10.1002/dvg.23406] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 11/08/2022]
Abstract
The Xenopus embryonic epidermis is a powerful model to study mucociliary biology, development, and disease. Particularly, the Xenopus system is being used to elucidate signaling pathways, transcription factor functions, and morphogenetic mechanisms regulating cell fate specification, differentiation and cell function. Thereby, Xenopus research has provided significant insights into potential underlying molecular mechanisms for ciliopathies and chronic airway diseases. Recent studies have also established the embryonic epidermis as a model for mucociliary epithelial remodeling, multiciliated cell trans-differentiation, cilia loss, and mucus secretion. Additionally, the tadpole foregut epithelium is lined by a mucociliary epithelium, which shows remarkable features resembling mammalian airway epithelia, including its endodermal origin and a variable cell type composition along the proximal-distal axis. This review aims to summarize the advantages of the Xenopus epidermis for mucociliary epithelial biology and disease modeling. Furthermore, the potential of the foregut epithelium as novel mucociliary model system is being highlighted. Additional perspectives are presented on how to expand the range of diseases that can be modeled in the frog system, including proton pump inhibitor-associated pneumonia as well as metaplasia in epithelial cells of the airway and the gastroesophageal region.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Hospital Freiburg, Freiburg University Faculty of Medicine, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| |
Collapse
|
17
|
Unraveling spatial cellular pattern by computational tissue shuffling. Commun Biol 2020; 3:605. [PMID: 33097821 PMCID: PMC7584651 DOI: 10.1038/s42003-020-01323-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 09/23/2020] [Indexed: 11/08/2022] Open
Abstract
Cell biology relies largely on reproducible visual observations. Unlike cell culture, tissues are heterogeneous, making difficult the collection of biological replicates that would spotlight a precise location. In consequence, there is no standard approach for estimating the statistical significance of an observed pattern in a tissue sample. Here, we introduce SET (for Synthesis of Epithelial Tissue), a method that can accurately reconstruct the cell tessellation formed by an epithelium in a microscopy image as well as thousands of alternative synthetic tessellations made of the exact same cells. SET can build an accurate null distribution to statistically test if any local pattern is necessarily the result of a process, or if it could be explained by chance in the given context. We provide examples in various tissues where visible, and invisible, cell and subcellular patterns are unraveled in a statistically significant manner using a single image and without any parameter settings.
Collapse
|
18
|
Tissue mechanics drives regeneration of a mucociliated epidermis on the surface of Xenopus embryonic aggregates. Nat Commun 2020; 11:665. [PMID: 32005801 PMCID: PMC6994656 DOI: 10.1038/s41467-020-14385-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 12/09/2019] [Indexed: 12/20/2022] Open
Abstract
Injury, surgery, and disease often disrupt tissues and it is the process of regeneration that aids the restoration of architecture and function. Regeneration can occur through multiple strategies including stem cell expansion, transdifferentiation, or proliferation of differentiated cells. We have identified a case of regeneration in Xenopus embryonic aggregates that restores a mucociliated epithelium from mesenchymal cells. Following disruption of embryonic tissue architecture and assembly of a compact mesenchymal aggregate, regeneration first restores an epithelium, transitioning from mesenchymal cells at the surface of the aggregate. Cells establish apico-basal polarity within 5 hours and a mucociliated epithelium within 24 hours. Regeneration coincides with nuclear translocation of the putative mechanotransducer YAP1 and a sharp increase in aggregate stiffness, and regeneration can be controlled by altering stiffness. We propose that regeneration of a mucociliated epithelium occurs in response to biophysical cues sensed by newly exposed cells on the surface of a disrupted mesenchymal tissue.
Collapse
|
19
|
Marinković M, Berger J, Jékely G. Neuronal coordination of motile cilia in locomotion and feeding. Philos Trans R Soc Lond B Biol Sci 2019; 375:20190165. [PMID: 31884921 PMCID: PMC7017327 DOI: 10.1098/rstb.2019.0165] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Efficient ciliary locomotion and transport require the coordination of motile cilia. Short-range coordination of ciliary beats can occur by biophysical mechanisms. Long-range coordination across large or disjointed ciliated fields often requires nervous system control and innervation of ciliated cells by ciliomotor neurons. The neuronal control of cilia is best understood in invertebrate ciliated microswimmers, but similar mechanisms may operate in the vertebrate body. Here, we review how the study of aquatic invertebrates contributed to our understanding of the neuronal control of cilia. We summarize the anatomy of ciliomotor systems and the physiological mechanisms that can alter ciliary activity. We also discuss the most well-characterized ciliomotor system, that of the larval annelid Platynereis. Here, pacemaker neurons drive the rhythmic activation of cholinergic and serotonergic ciliomotor neurons to induce ciliary arrests and beating. The Platynereis ciliomotor neurons form a distinct part of the larval nervous system. Similar ciliomotor systems likely operate in other ciliated larvae, such as mollusc veligers. We discuss the possible ancestry and conservation of ciliomotor circuits and highlight how comparative experimental approaches could contribute to a better understanding of the evolution and function of ciliary systems. This article is part of the Theo Murphy meeting issue ‘Unity and diversity of cilia in locomotion and transport’.
Collapse
Affiliation(s)
- Milena Marinković
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Jürgen Berger
- Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Gáspár Jékely
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
20
|
Kurrle Y, Kunesch K, Bogusch S, Schweickert A. Serotonin and MucXS release by small secretory cells depend on
Xpod
, a SSC specific marker gene. Genesis 2019; 58:e23344. [DOI: 10.1002/dvg.23344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Yvonne Kurrle
- Institute of ZoologyUniversity of Hohenheim Stuttgart Germany
| | | | - Susanne Bogusch
- Institute of ZoologyUniversity of Hohenheim Stuttgart Germany
| | | |
Collapse
|
21
|
Sim HJ, Yun S, Kim HE, Kwon KY, Kim GH, Yun S, Kim BG, Myung K, Park TJ, Kwon T. Simple Method To Characterize the Ciliary Proteome of Multiciliated Cells. J Proteome Res 2019; 19:391-400. [DOI: 10.1021/acs.jproteome.9b00589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | | | | | - Gun-Hwa Kim
- Drug & Disease Target Group, Korea Basic Science Institute (KSBI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
- Tunneling Nanotube Research Center, Division of Life Science, Korea University, Seoul 02841, Republic of Korea
| | - Sungho Yun
- Drug & Disease Target Group, Korea Basic Science Institute (KSBI), Cheongju-si, Chungcheongbuk-do 28119, Republic of Korea
| | - Byung Gyu Kim
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Kyungjae Myung
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Tae Joo Park
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| | - Taejoon Kwon
- Center for Genomic Integrity, Institute for Basic Science, Ulsan 44919, Republic of Korea
| |
Collapse
|
22
|
Haas M, Gómez Vázquez JL, Sun DI, Tran HT, Brislinger M, Tasca A, Shomroni O, Vleminckx K, Walentek P. ΔN-Tp63 Mediates Wnt/β-Catenin-Induced Inhibition of Differentiation in Basal Stem Cells of Mucociliary Epithelia. Cell Rep 2019; 28:3338-3352.e6. [PMID: 31553905 PMCID: PMC6935018 DOI: 10.1016/j.celrep.2019.08.063] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/04/2019] [Accepted: 08/21/2019] [Indexed: 12/15/2022] Open
Abstract
Mucociliary epithelia provide a first line of defense against pathogens. Impaired regeneration and remodeling of mucociliary epithelia are associated with dysregulated Wnt/β-catenin signaling in chronic airway diseases, but underlying mechanisms remain elusive, and studies yield seemingly contradicting results. Employing the Xenopus mucociliary epidermis, the mouse airway, and human airway Basal cells, we characterize the evolutionarily conserved roles of Wnt/β-catenin signaling in vertebrates. In multiciliated cells, Wnt is required for cilia formation during differentiation. In Basal cells, Wnt prevents specification of epithelial cell types by activating ΔN-TP63, a master transcription factor, which is necessary and sufficient to mediate the Wnt-induced inhibition of specification and is required to retain Basal cells during development. Chronic Wnt activation leads to remodeling and Basal cell hyperplasia, which are reversible in vivo and in vitro, suggesting Wnt inhibition as a treatment option in chronic lung diseases. Our work provides important insights into mucociliary signaling, development, and disease.
Collapse
Affiliation(s)
- Maximilian Haas
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - José Luis Gómez Vázquez
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Dingyuan Iris Sun
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, USA
| | - Hong Thi Tran
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Magdalena Brislinger
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Alexia Tasca
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Orr Shomroni
- Transcriptome and Genome Core Unit, University Medical Center Göttingen, Göttingen, Germany
| | - Kris Vleminckx
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Peter Walentek
- Internal Medicine IV, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Center for Systems Biological Analysis, Albert Ludwigs University Freiburg, Freiburg, Germany; Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany; Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, USA; CIBSS - Centre for Integrative Biological Signalling Studies, Albert Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
23
|
Angerilli A, Smialowski P, Rupp RA. The Xenopus animal cap transcriptome: building a mucociliary epithelium. Nucleic Acids Res 2019; 46:8772-8787. [PMID: 30165493 PMCID: PMC6158741 DOI: 10.1093/nar/gky771] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 08/24/2018] [Indexed: 01/12/2023] Open
Abstract
With the availability of deep RNA sequencing, model organisms such as Xenopus offer an outstanding opportunity to investigate the genetic basis of vertebrate organ formation from its embryonic beginnings. Here we investigate dynamics of the RNA landscape during formation of the Xenopus tropicalis larval epidermis. Differentiation of non-neural ectoderm starts at gastrulation and takes about one day to produce a functional mucociliary epithelium, highly related to the one in human airways. To obtain RNA expression data, uncontaminated by non-epidermal tissues of the embryo, we use prospective ectodermal explants called Animal Caps (ACs), which differentiate autonomously into a ciliated epidermis. Their global transcriptome is investigated at three key timepoints, with a cumulative sequencing depth of ∼108 reads per developmental stage. This database is provided as online Web Tool to the scientific community. In this paper, we report on global changes in gene expression, an unanticipated diversity of mRNA splicing isoforms, expression patterns of repetitive DNA Elements, and the complexity of circular RNAs during this process. Computationally we derive transcription factor hubs from this data set, which may help in the future to define novel genetic drivers of epidermal differentiation in vertebrates.
Collapse
Affiliation(s)
- Alessandro Angerilli
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany
| | - Pawel Smialowski
- Bioinformatic Core Facility, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany.,Helmholtz Zentrum München, Institute of Stem Cell Research, Ingolstädter Landstraße 1, D-85764 Neuherberg-München, Germany
| | - Ralph Aw Rupp
- Molecular Biology Division, Biomedical Center, Ludwig-Maximilians-University München, D-82152 Martinsried, Germany
| |
Collapse
|
24
|
Ott T, Kaufmann L, Granzow M, Hinderhofer K, Bartram CR, Theiß S, Seitz A, Paramasivam N, Schulz A, Moog U, Blum M, Evers CM. The Frog Xenopus as a Model to Study Joubert Syndrome: The Case of a Human Patient With Compound Heterozygous Variants in PIBF1. Front Physiol 2019; 10:134. [PMID: 30858804 PMCID: PMC6397843 DOI: 10.3389/fphys.2019.00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 02/04/2019] [Indexed: 12/16/2022] Open
Abstract
Joubert syndrome (JS) is a congenital autosomal-recessive or—in rare cases–X-linked inherited disease. The diagnostic hallmark of the so-called molar tooth sign describes the morphological manifestation of the mid- and hind-brain in axial brain scans. Affected individuals show delayed development, intellectual disability, ataxia, hyperpnea, sleep apnea, abnormal eye, and tongue movements as well as hypotonia. At the cellular level, JS is associated with the compromised biogenesis of sensory cilia, which identifies JS as a member of the large group of ciliopathies. Here we report on the identification of novel compound heterozygous variants (p.Y503C and p.Q485*) in the centrosomal gene PIBF1 in a patient with JS via trio whole exome sequencing. We have studied the underlying disease mechanism in the frog Xenopus, which offers fast assessment of cilia functions in a number of embryological contexts. Morpholino oligomer (MO) mediated knockdown of the orthologous Xenopus pibf1 gene resulted in defective mucociliary clearance in the larval epidermis, due to reduced cilia numbers and motility on multiciliated cells. To functionally assess patient alleles, mutations were analyzed in the larval skin: the p.Q485* nonsense mutation resulted in a disturbed localization of PIBF1 to the ciliary base. This mutant failed to rescue the ciliation phenotype following knockdown of endogenous pibf1. In contrast, the missense variant p.Y503C resulted in attenuated rescue capacity compared to the wild type allele. Based on these results, we conclude that in the case of this patient, JS is the result of a pathogenic combination of an amorphic and a hypomorphic PIBF1 allele. Our study underscores the versatility of the Xenopus model to study ciliopathies such as JS in a rapid and cost-effective manner, which should render this animal model attractive for future studies of human ciliopathies.
Collapse
Affiliation(s)
- Tim Ott
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Lilian Kaufmann
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Granzow
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | | | - Claus R Bartram
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Susanne Theiß
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Angelika Seitz
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Nagarajan Paramasivam
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany.,Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Angela Schulz
- Genomics & Proteomics Core Facility, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ute Moog
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Stuttgart, Germany
| | - Christina M Evers
- Institute of Human Genetics, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
25
|
|
26
|
Varga JFA, Bui-Marinos MP, Katzenback BA. Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Front Immunol 2019; 9:3128. [PMID: 30692997 PMCID: PMC6339944 DOI: 10.3389/fimmu.2018.03128] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 12/18/2018] [Indexed: 01/26/2023] Open
Abstract
Amphibian skin is a mucosal surface in direct and continuous contact with a microbially diverse and laden aquatic and/or terrestrial environment. As such, frog skin is an important innate immune organ and first line of defence against pathogens in the environment. Critical to the innate immune functions of frog skin are the maintenance of physical, chemical, cellular, and microbiological barriers and the complex network of interactions that occur across all the barriers. Despite the global decline in amphibian populations, largely as a result of emerging infectious diseases, we understand little regarding the cellular and molecular mechanisms that underlie the innate immune function of amphibian skin and defence against pathogens. In this review, we discuss the structure, cell composition and cellular junctions that contribute to the skin physical barrier, the antimicrobial peptide arsenal that, in part, comprises the chemical barrier, the pattern recognition receptors involved in recognizing pathogens and initiating innate immune responses in the skin, and the contribution of commensal microbes on the skin to pathogen defence. We briefly discuss the influence of environmental abiotic factors (natural and anthropogenic) and pathogens on the immunocompetency of frog skin defences. Although some aspects of frog innate immunity, such as antimicrobial peptides are well-studied; other components and how they contribute to the skin innate immune barrier, are lacking. Elucidating the complex network of interactions occurring at the interface of the frog's external and internal environments will yield insight into the crucial role amphibian skin plays in host defence and the environmental factors leading to compromised barrier integrity, disease, and host mortality.
Collapse
Affiliation(s)
- Joseph F A Varga
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | | | | |
Collapse
|
27
|
Sun DI, Tasca A, Haas M, Baltazar G, Harland RM, Finkbeiner WE, Walentek P. Na+/H+ Exchangers Are Required for the Development and Function of Vertebrate Mucociliary Epithelia. Cells Tissues Organs 2018; 205:279-292. [PMID: 30300884 DOI: 10.1159/000492973] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/19/2018] [Indexed: 11/19/2022] Open
Abstract
Na+/H+ exchangers (NHEs) represent a highly conserved family of ion transporters that regulate pH homeostasis. NHEs as well as other proton transporters were previously linked to the regulation of the Wnt signaling pathway, cell polarity signaling, and mucociliary function. Furthermore, mutations in the gene SLC9A3 (encoding NHE3) were detected as additional risk factors for airway infections in cystic fibrosis patients. Here, we used the Xenopus embryonic mucociliary epidermis as well as human airway epithelial cells (HAECs) as models to investigate the functional roles of NHEs in mucociliary development and regeneration. In Xenopus embryos, NHEs 1-3 were expressed during epidermal development, and loss of NHE function impaired mucociliary clearance in tadpoles. Clearance defects were caused by reduced cilia formation, disrupted alignment of basal bodies in multiciliated cells (MCCs), and dysregulated mucociliary gene expression. These data also suggested that NHEs may contribute to the activation of Wnt signaling in mucociliary epithelia. In HAECs, pharmacological inhibition of NHE function also caused defective ciliation and regeneration in airway MCCs. Collectively, our data revealed a requirement for NHEs in vertebrate mucociliary epithelia and linked NHE activity to cilia formation and function in differentiating MCCs. Our results provide an entry point for the understanding of the contribution of NHEs to signaling, development, and pathogenesis in the human respiratory tract.
Collapse
Affiliation(s)
- Dingyuan I Sun
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA.,Department of Pathology, University of California, San Francisco, California, USA
| | - Alexia Tasca
- Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, Germany
| | - Maximilian Haas
- Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg, Germany
| | - Grober Baltazar
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA.,Children's Medical Research Institute, Westmead, New South Wales, Australia
| | - Richard M Harland
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, USA
| | - Walter E Finkbeiner
- Department of Pathology, University of California, San Francisco, California, USA
| | - Peter Walentek
- Genetics, Genomics and Development Division, Molecular and Cell Biology Department, University of California, Berkeley, California, .,Renal Division, Department of Medicine, University Freiburg Medical Center and ZBSA - Center for Systems Biological Analysis, Freiburg, .,Spemann Graduate School of Biology and Medicine, Albert Ludwigs University Freiburg, Freiburg,
| |
Collapse
|
28
|
Sim HJ, Kim SH, Myung KJ, Kwon T, Lee HS, Park TJ. Xenopus: An alternative model system for identifying muco-active agents. PLoS One 2018; 13:e0193310. [PMID: 29470529 PMCID: PMC5823443 DOI: 10.1371/journal.pone.0193310] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/08/2018] [Indexed: 12/03/2022] Open
Abstract
The airway epithelium in human plays a central role as the first line of defense against environmental contaminants. Most respiratory diseases such as chronic obstructive pulmonary disease (COPD), asthma, and respiratory infections, disturb normal muco-ciliary functions by stimulating the hypersecretion of mucus. Several muco-active agents have been used to treat hypersecretion symptoms in patients. Current muco-active reagents control mucus secretion by modulating either airway inflammation, cholinergic parasympathetic nerve activities or by reducing the viscosity by cleaving crosslinking in mucin and digesting DNAs in mucus. However, none of the current medication regulates mucus secretion by directly targeting airway goblet cells. The major hurdle for screening potential muco-active agents that directly affect the goblet cells, is the unavailability of in vivo model systems suitable for high-throughput screening. In this study, we developed a high-throughput in vivo model system for identifying muco-active reagents using Xenopus laevis embryos. We tested mucus secretion under various conditions and developed a screening strategy to identify potential muco-regulators. Using this novel screening technique, we identified narasin as a potential muco-regulator. Narasin treatment of developing Xenopus embryos significantly reduced mucus secretion. Furthermore, the human lung epithelial cell line, Calu-3, responded similarly to narasin treatment, validating our technique for discovering muco-active reagents.
Collapse
Affiliation(s)
- Hyo Jung Sim
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Sang-Hyun Kim
- CMRI, Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Kyung-Jae Myung
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
| | - Taejoon Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| | - Hyun-Shik Lee
- College of Natural Sciences, Kyungpook National University, Daegu, South Korea
- * E-mail: (TJP); (HSL)
| | - Tae Joo Park
- School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
- Center for Genomic Integrity, Institute for Basic Science, Ulsan, Republic of Korea
- * E-mail: (TJP); (HSL)
| |
Collapse
|
29
|
Functional characterization of the mucus barrier on the Xenopus tropicalis skin surface. Proc Natl Acad Sci U S A 2018; 115:726-731. [PMID: 29311327 PMCID: PMC5789918 DOI: 10.1073/pnas.1713539115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The production of mucus helps to trap pathogens, preventing their entry into the body, while it also acts as an interface for many important physiological events (e.g., gas and nutrient exchange). In mammalian models, a detailed study of mucus and its component parts is hindered by the difficulty in accessing these internally located tissues. The Xenopus tropicalis tadpole skin offers a complementary nonmammalian model system to study mucosal epithelia. Using this, we identify a mucin, similar to human mucins, that protects against infection. This system offers an experimentally tractable approach to study mucins and the mucus barrier and their role in conferring protection at mucosal surfaces. Mucosal surfaces represent critical routes for entry and exit of pathogens. As such, animals have evolved strategies to combat infection at these sites, in particular the production of mucus to prevent attachment and to promote subsequent movement of the mucus/microbe away from the underlying epithelial surface. Using biochemical, biophysical, and infection studies, we have investigated the host protective properties of the skin mucus barrier of the Xenopus tropicalis tadpole. Specifically, we have characterized the major structural component of the barrier and shown that it is a mucin glycoprotein (Otogelin-like or Otogl) with similar sequence, domain organization, and structural properties to human gel-forming mucins. This mucin forms the structural basis of a surface barrier (∼6 μm thick), which is depleted through knockdown of Otogl. Crucially, Otogl knockdown leads to susceptibility to infection by the opportunistic pathogen Aeromonas hydrophila. To more accurately reflect its structure, tissue localization, and function, we have renamed Otogl as Xenopus Skin Mucin, or MucXS. Our findings characterize an accessible and tractable model system to define mucus barrier function and host–microbe interactions.
Collapse
|
30
|
Walentek P. Manipulating and Analyzing Cell Type Composition of the Xenopus Mucociliary Epidermis. Methods Mol Biol 2018; 1865:251-263. [PMID: 30151772 DOI: 10.1007/978-1-4939-8784-9_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Xenopus embryonic epidermis serves as a model to investigate the development, cell biology, and regeneration of vertebrate mucociliary epithelia. Its fast development as well as the ease of manipulation and analysis in this system facilitate novel approaches and sophisticated experiments addressing the principle mechanisms of mucociliary signaling, transcriptional regulation, and morphogenesis. This protocol describes how cell type composition can be manipulated and analyzed, and how mucociliary organoids can be generated and used for "omics"-type of experiments.
Collapse
Affiliation(s)
- Peter Walentek
- Renal Division, Department of Medicine, University Freiburg Medical Center, Freiburg, Germany. .,Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany.
| |
Collapse
|
31
|
Tomankova S, Abaffy P, Sindelka R. The role of nitric oxide during embryonic epidermis development of Xenopus laevis. Biol Open 2017; 6:862-871. [PMID: 28483981 PMCID: PMC5483018 DOI: 10.1242/bio.023739] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Nitric oxide (NO) is a potent radical molecule that participates in various biological processes such as vasodilation, cell proliferation, immune response and neurotransmission. NO mainly activates soluble guanylate cyclase, leading to cGMP production and activation of protein kinase G and its downstream targets. Here we report the essential role of NO during embryonic epidermis development. Xenopus embryonic epidermis has become a useful model reflecting human epithelial tissue composition. The developing epidermis of Xenopus laevis is formed from specialized ionocytes, multi-ciliated, goblet and small secretory cells. We found that NO is mainly produced in multi-ciliated cells and ionocytes. Production of NO during early developmental stages is required for formation of multi-ciliated cells, ionocytes and small secretory cells by regulation of epidermal-specific gene expression. The data from this research indicate a novel role of NO during development, which supports recent findings of NO production in human mucociliary and epithelium development. Summary: Embryonic epidermis development is influenced by nitric oxide, where it has been linked to the development of ionocytes, multi-ciliated cells and small secretory cells.
Collapse
Affiliation(s)
- Silvie Tomankova
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Průmyslová 595, Vestec 252 50, Czech Republic.,Charles University in Prague, Faculty of Science, Department of Genetics and Microbiology, Vinicna 5, Prague 128 43, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Průmyslová 595, Vestec 252 50, Czech Republic
| | - Radek Sindelka
- Laboratory of Gene Expression, Institute of Biotechnology, Academy of Sciences of the Czech Republic, Průmyslová 595, Vestec 252 50, Czech Republic
| |
Collapse
|
32
|
Verasztó C, Ueda N, Bezares-Calderón LA, Panzera A, Williams EA, Shahidi R, Jékely G. Ciliomotor circuitry underlying whole-body coordination of ciliary activity in the Platynereis larva. eLife 2017; 6. [PMID: 28508746 PMCID: PMC5531833 DOI: 10.7554/elife.26000] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/14/2017] [Indexed: 01/23/2023] Open
Abstract
Ciliated surfaces harbouring synchronously beating cilia can generate fluid flow or drive locomotion. In ciliary swimmers, ciliary beating, arrests, and changes in beat frequency are often coordinated across extended or discontinuous surfaces. To understand how such coordination is achieved, we studied the ciliated larvae of Platynereis dumerilii, a marine annelid. Platynereis larvae have segmental multiciliated cells that regularly display spontaneous coordinated ciliary arrests. We used whole-body connectomics, activity imaging, transgenesis, and neuron ablation to characterize the ciliomotor circuitry. We identified cholinergic, serotonergic, and catecholaminergic ciliomotor neurons. The synchronous rhythmic activation of cholinergic cells drives the coordinated arrests of all cilia. The serotonergic cells are active when cilia are beating. Serotonin inhibits the cholinergic rhythm, and increases ciliary beat frequency. Based on their connectivity and alternating activity, the catecholaminergic cells may generate the rhythm. The ciliomotor circuitry thus constitutes a stop-and-go pacemaker system for the whole-body coordination of ciliary locomotion. DOI:http://dx.doi.org/10.7554/eLife.26000.001 The oceans contain a wide variety of microscopic organisms including bacteria, algae and animal larvae. Many of the microscopic animals that live in water use thousands of beating hair-like projections called cilia instead of muscles to swim around in the water. Understanding how these animals move will aid our understanding of how ocean processes, such as the daily migration of plankton to and from the surface of the water, are regulated. The larvae of a ragworm called Platynereis use cilia to move around. Like other animals, Platynereis has a nervous system containing neurons that form networks to control the body. It is possible that the nervous system is involved in coordinating the activity of the cilia to allow the larvae to manoeuvre in the water, but it was not clear how this could work. Here, Veraszto et al. investigated how Platynereis is able to swim. The experiments show that the larvae can coordinate their cilia so that they all stop beating at the same time and fold into to the body. Then the larvae can stimulate all of their cilia to resume beating. Veraszto et al. used a technique called electron microscopy to study how the nervous system connects to the cilia. This revealed that several giant neurons span the entire length of the larva and connect to cells that bear cilia. When these neurons were active, all the cilia in the body closed. When a different group of neurons in the larva was active, all of the cilia resumed beating. Together, these two groups of neurons were ultimately responsible for the swimming motions of the larvae. Together, the findings of Veraszto et al. show that a few neurons in the nervous system of the larvae provide a sophisticated system for controlling how the larvae swim around. This suggests that the microscopic animals found in marine environments are a lot more sophisticated than previously appreciated. A next challenge is to find out how the neurons that control cilia connect to the rest of the animal’s nervous system and how different cues influence when the larva swims or stops swimming. This would help us understand how the environment influences the distribution of animal larvae in the oceans and how this may change in the future. DOI:http://dx.doi.org/10.7554/eLife.26000.002
Collapse
Affiliation(s)
- Csaba Verasztó
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Nobuo Ueda
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Aurora Panzera
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | - Réza Shahidi
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Gáspár Jékely
- Max Planck Institute for Developmental Biology, Tübingen, Germany
| |
Collapse
|
33
|
Walentek P, Quigley IK. What we can learn from a tadpole about ciliopathies and airway diseases: Using systems biology in Xenopus to study cilia and mucociliary epithelia. Genesis 2017; 55:10.1002/dvg.23001. [PMID: 28095645 PMCID: PMC5276738 DOI: 10.1002/dvg.23001] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 11/14/2016] [Accepted: 11/16/2016] [Indexed: 12/11/2022]
Abstract
Over the past years, the Xenopus embryo has emerged as an incredibly useful model organism for studying the formation and function of cilia and ciliated epithelia in vivo. This has led to a variety of findings elucidating the molecular mechanisms of ciliated cell specification, basal body biogenesis, cilia assembly, and ciliary motility. These findings also revealed the deep functional conservation of signaling, transcriptional, post-transcriptional, and protein networks employed in the formation and function of vertebrate ciliated cells. Therefore, Xenopus research can contribute crucial insights not only into developmental and cell biology, but also into the molecular mechanisms underlying cilia related diseases (ciliopathies) as well as diseases affecting the ciliated epithelium of the respiratory tract in humans (e.g., chronic lung diseases). Additionally, systems biology approaches including transcriptomics, genomics, and proteomics have been rapidly adapted for use in Xenopus, and broaden the applications for current and future translational biomedical research. This review aims to present the advantages of using Xenopus for cilia research, highlight some of the evolutionarily conserved key concepts and mechanisms of ciliated cell biology that were elucidated using the Xenopus model, and describe the potential for Xenopus research to address unresolved questions regarding the molecular mechanisms of ciliopathies and airway diseases.
Collapse
Affiliation(s)
- Peter Walentek
- Department of Molecular and Cell Biology; Genetics, Genomics and Development Division; Developmental and Regenerative Biology Group; University of California, Berkeley, CA 94720, USA
| | - Ian K. Quigley
- Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
34
|
Abstract
Many animal cells assemble single cilia involved in motile and/or sensory functions. In contrast, multiciliated cells (MCCs) assemble up to 300 motile cilia that beat in a coordinate fashion to generate a directional fluid flow. In the human airways, the brain, and the oviduct, MCCs allow mucus clearance, cerebrospinal fluid circulation, and egg transportation, respectively. Impairment of MCC function leads to chronic respiratory infections and increased risks of hydrocephalus and female infertility. MCC differentiation during development or repair involves the activation of a regulatory cascade triggered by the inhibition of Notch activity in MCC progenitors. The downstream events include the simultaneous assembly of a large number of basal bodies (BBs)-from which cilia are nucleated-in the cytoplasm of the differentiating MCCs, their migration and docking at the plasma membrane associated to an important remodeling of the actin cytoskeleton, and the assembly and polarization of motile cilia. The direction of ciliary beating is coordinated both within cells and at the tissue level by a combination of planar polarity cues affecting BB position and hydrodynamic forces that are both generated and sensed by the cilia. Herein, we review the mechanisms controlling the specification and differentiation of MCCs and BB assembly and organization at the apical surface, as well as ciliary assembly and coordination in MCCs.
Collapse
Affiliation(s)
- Alice Meunier
- Institut de Biologie de l'Ecole Normale Supérieure, Institut National de la Santé et de la Recherche Médicale U1024, Centre National de la Recherche Scientifique UMR8197, 75005 Paris, France
| | - Juliette Azimzadeh
- Institut Jacques Monod, Centre National de la Recherche Scientifique UMR7592, Université Paris-Diderot, 75013 Paris, France
| |
Collapse
|
35
|
Walentek P, Quigley IK, Sun DI, Sajjan UK, Kintner C, Harland RM. Ciliary transcription factors and miRNAs precisely regulate Cp110 levels required for ciliary adhesions and ciliogenesis. eLife 2016; 5. [PMID: 27623009 PMCID: PMC5045295 DOI: 10.7554/elife.17557] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 09/12/2016] [Indexed: 01/01/2023] Open
Abstract
Upon cell cycle exit, centriole-to-basal body transition facilitates cilia formation. The centriolar protein Cp110 is a regulator of this process and cilia inhibitor, but its positive roles in ciliogenesis remain poorly understood. Using Xenopus we show that Cp110 inhibits cilia formation at high levels, while optimal levels promote ciliogenesis. Cp110 localizes to cilia-forming basal bodies and rootlets, and is required for ciliary adhesion complexes that facilitate Actin interactions. The opposing roles of Cp110 in ciliation are generated in part by coiled-coil domains that mediate preferential binding to centrioles over rootlets. Because of its dual role in ciliogenesis, Cp110 levels must be precisely controlled. In multiciliated cells, this is achieved by both transcriptional and post-transcriptional regulation through ciliary transcription factors and microRNAs, which activate and repress cp110 to produce optimal Cp110 levels during ciliogenesis. Our data provide novel insights into how Cp110 and its regulation contribute to development and cell function. DOI:http://dx.doi.org/10.7554/eLife.17557.001
Collapse
Affiliation(s)
- Peter Walentek
- Division of Genetics, Genomics and Development, Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Ian K Quigley
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Dingyuan I Sun
- Division of Genetics, Genomics and Development, Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Umeet K Sajjan
- Division of Genetics, Genomics and Development, Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, United States
| | - Christopher Kintner
- Molecular Neurobiology Laboratory, Salk Institute for Biological Studies, La Jolla, United States
| | - Richard M Harland
- Division of Genetics, Genomics and Development, Center for Integrative Genomics, Department of Molecular and Cell Biology, University of California, Berkeley, United States
| |
Collapse
|
36
|
Arendt D, Benito-Gutierrez E, Brunet T, Marlow H. Gastric pouches and the mucociliary sole: setting the stage for nervous system evolution. Philos Trans R Soc Lond B Biol Sci 2016; 370:rstb.2015.0286. [PMID: 26554050 PMCID: PMC4650134 DOI: 10.1098/rstb.2015.0286] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Prerequisite for tracing nervous system evolution is understanding of the body plan, feeding behaviour and locomotion of the first animals in which neurons evolved. Here, a comprehensive scenario is presented for the diversification of cell types in early metazoans, which enhanced feeding efficiency and led to the emergence of larger animals that were able to move. Starting from cup-shaped, gastraea-like animals with outer and inner choanoflagellate-like cells, two major innovations are discussed that set the stage for nervous system evolution. First, the invention of a mucociliary sole entailed a switch from intra- to extracellular digestion and increased the concentration of nutrients flowing into the gastric cavity. In these animals, an initial nerve net may have evolved via division of labour from mechanosensory-contractile cells in the lateral body wall, enabling coordinated movement of the growing body that involved both mucociliary creeping and changes of body shape. Second, the inner surface of the animals folded into metameric series of gastric pouches, which optimized nutrient resorption and allowed larger body sizes. The concomitant acquisition of bilateral symmetry may have allowed more directed locomotion and, with more demanding coordinative tasks, triggered the evolution of specialized nervous subsystems. Animals of this organizational state would have resembled Ediacarian fossils such as Dickinsonia and may have been close to the cnidarian–bilaterian ancestor. In the bilaterian lineage, the mucociliary sole was used mostly for creeping, or frequently lost. One possible remnant is the enigmatic Reissner's fibre in the ventral neural tube of cephalochordates and vertebrates.
Collapse
Affiliation(s)
- Detlev Arendt
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | | | - Thibaut Brunet
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| | - Heather Marlow
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69012 Heidelberg, Germany
| |
Collapse
|
37
|
Ossipova O, Chu CW, Fillatre J, Brott BK, Itoh K, Sokol SY. The involvement of PCP proteins in radial cell intercalations during Xenopus embryonic development. Dev Biol 2015; 408:316-27. [PMID: 26079437 PMCID: PMC4810801 DOI: 10.1016/j.ydbio.2015.06.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 06/10/2015] [Accepted: 06/11/2015] [Indexed: 11/19/2022]
Abstract
The planar cell polarity (PCP) pathway orients cells in diverse epithelial tissues in Drosophila and vertebrate embryos and has been implicated in many human congenital defects and diseases, such as ciliopathies, polycystic kidney disease and malignant cancers. During vertebrate gastrulation and neurulation, PCP signaling is required for convergent extension movements, which are primarily driven by mediolateral cell intercalations, whereas the role for PCP signaling in radial cell intercalations has been unclear. In this study, we examine the function of the core PCP proteins Vangl2, Prickle3 (Pk3) and Disheveled in the ectodermal cells, which undergo radial intercalations during Xenopus gastrulation and neurulation. In the epidermis, multiciliated cell (MCC) progenitors originate in the inner layer, but subsequently migrate to the embryo surface during neurulation. We find that the Vangl2/Pk protein complexes are enriched at the apical domain of intercalating MCCs and are essential for the MCC intercalatory behavior. Addressing the underlying mechanism, we identified KIF13B, as a motor protein that binds Disheveled. KIF13B is required for MCC intercalation and acts synergistically with Vangl2 and Disheveled, indicating that it may mediate microtubule-dependent trafficking of PCP proteins necessary for cell shape regulation. In the neural plate, the Vangl2/Pk complexes were also concentrated near the outermost surface of deep layer cells, suggesting a general role for PCP in radial intercalation. Consistent with this hypothesis, the ectodermal tissues deficient in Vangl2 or Disheveled functions contained more cell layers than normal tissues. We propose that PCP signaling is essential for both mediolateral and radial cell intercalations during vertebrate morphogenesis. These expanded roles underscore the significance of vertebrate PCP proteins as factors contributing to a number of diseases, including neural tube defects, tumor metastases, and various genetic syndromes characterized by abnormal migratory cell behaviors.
Collapse
Affiliation(s)
- Olga Ossipova
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chih-Wen Chu
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Fillatre
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Barbara K Brott
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Keiji Itoh
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Sergei Y Sokol
- Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
38
|
Butler MT, Wallingford JB. Control of vertebrate core planar cell polarity protein localization and dynamics by Prickle 2. Development 2015; 142:3429-39. [PMID: 26293301 PMCID: PMC4631750 DOI: 10.1242/dev.121384] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 08/12/2015] [Indexed: 01/21/2023]
Abstract
Planar cell polarity (PCP) is a ubiquitous property of animal tissues and is essential for morphogenesis and homeostasis. In most cases, this fundamental property is governed by a deeply conserved set of 'core PCP' proteins, which includes the transmembrane proteins Van Gogh-like (Vangl) and Frizzled (Fzd), as well as the cytoplasmic effectors Prickle (Pk) and Dishevelled (Dvl). Asymmetric localization of these proteins is thought to be central to their function, and understanding the dynamics of these proteins is an important challenge in developmental biology. Among the processes that are organized by the core PCP proteins is the directional beating of cilia, such as those in the vertebrate node, airway and brain. Here, we exploit the live imaging capabilities of Xenopus to chart the progressive asymmetric localization of fluorescent reporters of Dvl1, Pk2 and Vangl1 in a planar polarized ciliated epithelium. Using this system, we also characterize the influence of Pk2 on the asymmetric dynamics of Vangl1 at the cell cortex, and we define regions of Pk2 that control its own localization and those impacting Vangl1. Finally, our data reveal a striking uncoupling of Vangl1 and Dvl1 asymmetry. This study advances our understanding of conserved PCP protein functions and also establishes a rapid, tractable platform to facilitate future in vivo studies of vertebrate PCP protein dynamics.
Collapse
Affiliation(s)
- Mitchell T Butler
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA
| | - John B Wallingford
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, USA Howard Hughes Medical Institute, University of Texas at Austin, Austin, Texas 78712, USA
| |
Collapse
|
39
|
Cibois M, Luxardi G, Chevalier B, Thomé V, Mercey O, Zaragosi LE, Barbry P, Pasini A, Marcet B, Kodjabachian L. BMP signalling controls the construction of vertebrate mucociliary epithelia. Development 2015; 142:2352-63. [PMID: 26092849 DOI: 10.1242/dev.118679] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 05/13/2015] [Indexed: 01/14/2023]
Abstract
Despite the importance of mucociliary epithelia in animal physiology, the mechanisms controlling their establishment are poorly understood. Using the developing Xenopus epidermis and regenerating human upper airways, we reveal the importance of BMP signalling for the construction of vertebrate mucociliary epithelia. In Xenopus, attenuation of BMP activity is necessary for the specification of multiciliated cells (MCCs), ionocytes and small secretory cells (SSCs). Conversely, BMP activity is required for the proper differentiation of goblet cells. Our data suggest that the BMP and Notch pathways interact to control fate choices in the developing epidermis. Unexpectedly, BMP activity is also necessary for the insertion of MCCs, ionocytes and SSCs into the surface epithelium. In human, BMP inhibition also strongly stimulates the formation of MCCs in normal and pathological (cystic fibrosis) airway samples, whereas BMP overactivation has the opposite effect. This work identifies the BMP pathway as a key regulator of vertebrate mucociliary epithelium differentiation and morphogenesis.
Collapse
Affiliation(s)
- Marie Cibois
- Aix-Marseille Université, CNRS, IBDM, Marseille 13288, France
| | | | | | - Virginie Thomé
- Aix-Marseille Université, CNRS, IBDM, Marseille 13288, France
| | - Olivier Mercey
- CNRS, IPMC, Sophia-Antipolis 06560, France University of Nice Sophia Antipolis (UNS), IPMC, Sophia-Antipolis 06560, France
| | - Laure-Emmanuelle Zaragosi
- CNRS, IPMC, Sophia-Antipolis 06560, France University of Nice Sophia Antipolis (UNS), IPMC, Sophia-Antipolis 06560, France
| | | | - Andrea Pasini
- Aix-Marseille Université, CNRS, IBDM, Marseille 13288, France
| | - Brice Marcet
- CNRS, IPMC, Sophia-Antipolis 06560, France University of Nice Sophia Antipolis (UNS), IPMC, Sophia-Antipolis 06560, France
| | | |
Collapse
|
40
|
Abstract
During gastrulation and neurulation, foxj1 expression requires ATP4a-dependent Wnt/β-catenin signaling for ciliation of the gastrocoel roof plate (Walentek et al. Cell Rep. 1 (2012) 516-527.) and the mucociliary epidermis (Walentek et al. Dev. Biol. (2015)) of Xenopus laevis embryos. These data suggested that ATP4a and Wnt/β-catenin signaling regulate foxj1 throughout Xenopus development. Here we analyzed whether foxj1 expression was also ATP4a-dependent in other ciliated tissues of the developing Xenopus embryo and tadpole. We found that in the floor plate of the neural tube ATP4a-dependent canonical Wnt signaling was required for foxj1 expression, downstream of or in parallel to Hedgehog signaling. In the developing tadpole brain, ATP4-function was a prerequisite for the establishment of cerebrospinal fluid flow. Furthermore, we describe foxj1 expression and the presence of multiciliated cells in the developing tadpole gastrointestinal tract. Our work argues for a general requirement of ATP4-dependent Wnt/β-catenin signaling for foxj1 expression and motile ciliogenesis throughout Xenopus development.
Collapse
|
41
|
Walentek P, Beyer T, Hagenlocher C, Müller C, Feistel K, Schweickert A, Harland RM, Blum M. ATP4a is required for development and function of the Xenopus mucociliary epidermis - a potential model to study proton pump inhibitor-associated pneumonia. Dev Biol 2015; 408:292-304. [PMID: 25848696 DOI: 10.1016/j.ydbio.2015.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 12/12/2022]
Abstract
Proton pump inhibitors (PPIs), which target gastric H(+)/K(+)ATPase (ATP4), are among the most commonly prescribed drugs. PPIs are used to treat ulcers and as a preventative measure against gastroesophageal reflux disease in hospitalized patients. PPI treatment correlates with an increased risk for airway infections, i.e. community- and hospital-acquired pneumonia. The cause for this correlation, however, remains elusive. The Xenopus embryonic epidermis is increasingly being used as a model to study airway-like mucociliary epithelia. Here we use this model to address how ATP4 inhibition may affect epithelial function in human airways. We demonstrate that atp4a knockdown interfered with the generation of cilia-driven extracellular fluid flow. ATP4a and canonical Wnt signaling were required in the epidermis for expression of foxj1, a transcriptional regulator of motile ciliogenesis. The ATP4/Wnt module activated foxj1 downstream of ciliated cell fate specification. In multiciliated cells (MCCs) of the epidermis, ATP4a was also necessary for normal myb expression, apical actin formation, basal body docking and alignment of basal bodies. Furthermore, ATP4-dependent Wnt/β-catenin signaling in the epidermis was a prerequisite for foxa1-mediated specification of small secretory cells (SSCs). SSCs release serotonin and other substances into the medium, and thereby regulate ciliary beating in MCCs and protect the epithelium against infection. Pharmacological inhibition of ATP4 in the mature mucociliary epithelium also caused a loss of MCCs and led to impaired mucociliary clearance. These data strongly suggest that PPI-associated pneumonia in human patients might, at least in part, be linked to dysfunction of mucociliary epithelia of the airways.
Collapse
Affiliation(s)
- Peter Walentek
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany; Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA.
| | - Tina Beyer
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Cathrin Hagenlocher
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Christina Müller
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Kerstin Feistel
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Axel Schweickert
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| | - Richard M Harland
- Department of Molecular and Cell Biology, Center for Integrative Genomics, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Martin Blum
- Institute of Zoology, University of Hohenheim, Garbenstrasse 30, 70593 Stuttgart, Germany
| |
Collapse
|
42
|
Schweickert A, Feistel K. The Xenopus Embryo: An Ideal Model System to Study Human Ciliopathies. CURRENT PATHOBIOLOGY REPORTS 2015. [DOI: 10.1007/s40139-015-0074-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Miyatake K, Kusakabe M, Takahashi C, Nishida E. ERK7 regulates ciliogenesis by phosphorylating the actin regulator CapZIP in cooperation with Dishevelled. Nat Commun 2015; 6:6666. [PMID: 25823377 DOI: 10.1038/ncomms7666] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 02/18/2015] [Indexed: 11/09/2022] Open
Abstract
Cilia are essential for embryogenesis and maintenance of homeostasis, but little is known about the signalling pathways that regulate ciliogenesis. Here, we identify ERK7, an atypical mitogen-activated protein kinase, as a key regulator of ciliogenesis. ERK7 is strongly expressed in ciliated tissues of Xenopus embryos. ERK7 knockdown markedly diminishes both the number and the length of cilia in multiciliated cells, and it inhibits the apical migration of basal bodies. Moreover, ERK7 knockdown results in a loss of the apical actin meshwork, which is required for the proper migration of basal bodies. We find that the actin regulator CapZIP, which has been shown to regulate ciliogenesis in a phosphorylation-dependent manner, is an ERK7 substrate, and that Dishevelled, which has also been shown to regulate ciliogenesis, facilitates ERK7 phosphorylation of CapZIP through binding to both ERK7 and CapZIP. Collectively, these results identify an ERK7/Dishevelled/CapZIP axis that regulates ciliogenesis.
Collapse
Affiliation(s)
- Koichi Miyatake
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Morioh Kusakabe
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Chika Takahashi
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Eisuke Nishida
- Department of Cell and Developmental Biology, Graduate School of Biostudies, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
44
|
Huang BK, Gamm UA, Jonas S, Khokha MK, Choma MA. Quantitative optical coherence tomography imaging of intermediate flow defect phenotypes in ciliary physiology and pathophysiology. JOURNAL OF BIOMEDICAL OPTICS 2015; 20:030502. [PMID: 25751026 PMCID: PMC4352652 DOI: 10.1117/1.jbo.20.3.030502] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 02/19/2015] [Indexed: 05/04/2023]
Abstract
Cilia-driven fluid flow is a critical yet poorly understood aspect of pulmonary physiology. Here, we demonstrate that optical coherence tomography-based particle tracking velocimetry can be used to quantify subtle variability in cilia-driven flow performance in Xenopus, an important animal model of ciliary biology. Changes in flow performance were quantified in the setting of normal development, as well as in response to three types of perturbations: mechanical (increased fluid viscosity), pharmacological (disrupted serotonin signaling), and genetic (diminished ciliary motor protein expression). Of note, we demonstrate decreased flow secondary to gene knockdown of kif3a, a protein involved in ciliogenesis, as well as a dose-response decrease in flow secondary to knockdown of dnah9, an important ciliary motor protein.
Collapse
Affiliation(s)
- Brendan K. Huang
- Yale University, Department of Biomedical Engineering, 55 Prospect Street, New Haven, Connecticut 06511, United States
- Address all correspondence to: Brendan K. Huang, E-mail:
| | - Ute A. Gamm
- Yale School of Medicine, Department of Diagnostic Radiology, P.O. Box 208043, New Haven, Connecticut 06520, United States
| | - Stephan Jonas
- Yale School of Medicine, Department of Diagnostic Radiology, P.O. Box 208043, New Haven, Connecticut 06520, United States
| | - Mustafa K. Khokha
- Yale School of Medicine, Department of Pediatrics, P.O. Box 208064, New Haven, Connecticut 06520, United States
- Yale School of Medicine, Department of Genetics, 333 Cedar Street, New Haven, Connecticut 06510, United States
| | - Michael A. Choma
- Yale University, Department of Biomedical Engineering, 55 Prospect Street, New Haven, Connecticut 06511, United States
- Yale School of Medicine, Department of Diagnostic Radiology, P.O. Box 208043, New Haven, Connecticut 06520, United States
- Yale School of Medicine, Department of Pediatrics, P.O. Box 208064, New Haven, Connecticut 06520, United States
- Yale University, Department of Applied Physics, P.O. Box 208267, New Haven, Connecticut 06520, United States
| |
Collapse
|
45
|
Karpinka JB, Fortriede JD, Burns KA, James-Zorn C, Ponferrada VG, Lee J, Karimi K, Zorn AM, Vize PD. Xenbase, the Xenopus model organism database; new virtualized system, data types and genomes. Nucleic Acids Res 2014; 43:D756-63. [PMID: 25313157 PMCID: PMC4384024 DOI: 10.1093/nar/gku956] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Xenbase (http://www.xenbase.org), the Xenopus frog model organism database, integrates a wide variety of data from this biomedical model genus. Two closely related species are represented: the allotetraploid Xenopus laevis that is widely used for microinjection and tissue explant-based protocols, and the diploid Xenopus tropicalis which is used for genetics and gene targeting. The two species are extremely similar and protocols, reagents and results from each species are often interchangeable. Xenbase imports, indexes, curates and manages data from both species; all of which are mapped via unique IDs and can be queried in either a species-specific or species agnostic manner. All our services have now migrated to a private cloud to achieve better performance and reliability. We have added new content, including providing full support for morpholino reagents, used to inhibit mRNA translation or splicing and binding to regulatory microRNAs. New genomes assembled by the JGI for both species and are displayed in Gbrowse and are also available for searches using BLAST. Researchers can easily navigate from genome content to gene page reports, literature, experimental reagents and many other features using hyperlinks. Xenbase has also greatly expanded image content for figures published in papers describing Xenopus research via PubMedCentral.
Collapse
Affiliation(s)
- J Brad Karpinka
- University of Calgary-Computer Science, Calgary, Alberta, Canada
| | - Joshua D Fortriede
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Kevin A Burns
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Christina James-Zorn
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Virgilio G Ponferrada
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Jacqueline Lee
- University of Calgary-Computer Science, Calgary, Alberta, Canada
| | - Kamran Karimi
- University of Calgary-Computer Science, Calgary, Alberta, Canada
| | - Aaron M Zorn
- Cincinnati Children's Research Foundation-Division of Developmental Biology, Cincinnati, OH, USA
| | - Peter D Vize
- University of Calgary-Computer Science, Calgary, Alberta, Canada University of Calgary-Biological Sciences, Calgary, Alberta, Canada
| |
Collapse
|
46
|
miR-34/449 miRNAs are required for motile ciliogenesis by repressing cp110. Nature 2014; 510:115-20. [PMID: 24899310 PMCID: PMC4119886 DOI: 10.1038/nature13413] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Accepted: 04/29/2014] [Indexed: 01/03/2023]
Abstract
The mir-34/449 family consists of six homologous miRNAs at three genomic loci. Redundancy of miR-34/449 miRNAs and their dominant expression in multiciliated epithelia suggest a functional significance in ciliogenesis. Here we report that mice deficient for all miR-34/449 miRNAs exhibited postnatal mortality, infertility and strong respiratory dysfunction caused by defective mucociliary clearance. In both mouse and Xenopus, miR-34/449-deficient multiciliated cells (MCCs) exhibited a significant decrease in cilia length and number, due to defective basal body maturation and apical docking. The effect of miR-34/449 on ciliogenesis was mediated, at least in part, by post-transcriptional repression of Cp110, a centriolar protein suppressing cilia assembly. Consistent with this, cp110 knockdown in miR-34/449-deficient MCCs restored ciliogenesis by rescuing basal body maturation and docking. Altogether, our findings elucidate conserved cellular and molecular mechanisms through which miR-34/449 regulate motile ciliogenesis.
Collapse
|
47
|
Dubaissi E, Rousseau K, Lea R, Soto X, Nardeosingh S, Schweickert A, Amaya E, Thornton DJ, Papalopulu N. A secretory cell type develops alongside multiciliated cells, ionocytes and goblet cells, and provides a protective, anti-infective function in the frog embryonic mucociliary epidermis. Development 2014; 141:1514-25. [PMID: 24598166 PMCID: PMC3957375 DOI: 10.1242/dev.102426] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 02/02/2014] [Indexed: 02/05/2023]
Abstract
The larval epidermis of Xenopus is a bilayered epithelium, which is an excellent model system for the study of the development and function of mucosal and mucociliary epithelia. Goblet cells develop in the outer layer while multiciliated cells and ionocytes sequentially intercalate from the inner to the outer layer. Here, we identify and characterise a fourth cell type, the small secretory cell (SSC). We show that the development of these cells is controlled by the transcription factor Foxa1 and that they intercalate into the outer layer of the epidermis relatively late, at the same time as embryonic hatching. Ultrastructural and molecular characterisation shows that these cells have an abundance of large apical secretory vesicles, which contain highly glycosylated material, positive for binding of the lectin, peanut agglutinin, and an antibody to the carbohydrate epitope, HNK-1. By specifically depleting SSCs, we show that these cells are crucial for protecting the embryo against bacterial infection. Mass spectrometry studies show that SSCs secrete a glycoprotein similar to Otogelin, which may form the structural component of a mucus-like protective layer, over the surface of the embryo, and several potential antimicrobial substances. Our study completes the characterisation of all the epidermal cell types in the early tadpole epidermis and reinforces the suitability of this system for the in vivo study of complex epithelia, including investigation of innate immune defences.
Collapse
Affiliation(s)
- Eamon Dubaissi
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Karine Rousseau
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Robert Lea
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- The Healing Foundation Centre, University of Manchester, Manchester M13 9PT, UK
| | - Ximena Soto
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Siddarth Nardeosingh
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Axel Schweickert
- University of Hohenheim, Institute of Zoology, Garbenstrasse 30, D-70593 Stuttgart, Germany
| | - Enrique Amaya
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- The Healing Foundation Centre, University of Manchester, Manchester M13 9PT, UK
| | - David J. Thornton
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
- Wellcome Trust Centre for Cell Matrix Research, University of Manchester, Manchester M13 9PT, UK
| | - Nancy Papalopulu
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|