1
|
Nakada Y, Martinez MJ, Johnson JE. ASCL1 protein domains with distinct functions in neuronal differentiation and subtype specification. Dev Biol 2025; 523:32-42. [PMID: 40187474 DOI: 10.1016/j.ydbio.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 03/21/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
ASCL1 is a neural basic helix-loop-helix (bHLH) transcription factor that plays essential roles during neural development, including neural differentiation and neuronal subtype specification. bHLH factors are defined by their motifs, including a basic region interacting with DNA and an HLH domain involved in protein-protein interactions. We previously defined specific regions within the bHLH domain of ASCL1 as important for its specific functions directing neuronal differentiation in the chick neural tube. Here, we build upon these findings to show how specific mutations within the basic region block DNA binding but not heterodimer formation with E-protein partners TCF3 (E12/E47) and TCF12 (HEB) yet have differential abilities to show dominant negative phenotypes. Additionally, truncating domains outside the bHLH define a nuclear localization signal, a requirement for the C-terminal acidic residues, and the non-essentiality of the N-terminal glutamine/alanine repeats. This structure/function analysis identifies functional domains for ASCL1 activity.
Collapse
Affiliation(s)
- Yuji Nakada
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Madison J Martinez
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jane E Johnson
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, TX, 75390, USA; Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
2
|
Yang X, Li Y, Peng Y, Chang Y, He B, Zhang T, Zhang S, Geng C, Liu Y, Li X, Hao J, Ma L. An integrative analysis of ASCL1 in breast cancer and inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Front Immunol 2025; 16:1546794. [PMID: 39963143 PMCID: PMC11830715 DOI: 10.3389/fimmu.2025.1546794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Objective Our previous study found that Achaete-scute complex homolog 1 (ASCL1) is involved in classifying BC subtypes with different prognostic and pathological characteristics. However, the biological role of ASCL1 in BC still remains largely unexplored. This study aims to elucidate the function of ASCL1 in BC using bioinformatics analyses, as well as in vitro and in vivo experimental approaches. Methods Data from the TCGA, GEO, and Human Protein Atlas databases were utilized to evaluate ASCL1 expression in BC and its association with patient prognosis. Genetic alterations in ASCL1 were assessed through the COSMIC and cBioPortal databases, while the TIMER2.0 database provided insights into the relationship between ASCL1 expression and key gene mutations in BC. The GDSC database was used to examine correlations between ASCL1 levels and sensitivity to standard chemotherapeutic agents. Associations between ASCL1 expression and cytokines, immunomodulatory factors, MHC molecules, and receptors were analyzed using Pearson and Spearman correlation methods. The TIP database was employed to investigate the connection between ASCL1 expression and immunoreactivity scores, and six computational approaches were applied to evaluate immune cell infiltration. Functional assays were conducted on BC cell lines MCF-7 and MDA-MB-231, and nude mouse models were used for in vivo studies. Results ASCL1 was found to be upregulated in BC and correlated with unfavorable prognosis and mutations in key oncogenes. Its expression was linked to immunomodulatory factors, immune cell infiltration, and immunoreactivity scores in the tumor microenvironment. Additionally, ASCL1 influenced tumor immune dynamics and chemosensitivity in BC. Overexpression of ASCL1 enhanced BC cell proliferation, migration and invasion, while its knockdown had the opposite effect. Notably, inhibition of ASCL1 increased BC cell sensitivity to paclitaxel both in vitro and in vivo. In addition, inhibition of ASCL1 activated ferroptosis in BC, including altered mitochondrial morphology, increased MDA and ROS levels, decreased GSH levels and reduced GSH/GSSG ratio. Mechanistically, inhibition of ASCL1 decreases the phosphorylation of CREB1, thus reducing the expression of GPX4. In summary, inhibition of ASCL1 increases paclitaxel sensitivity by activating ferroptosis via the CREB1/GPX4 axis. Conclusions ASCL1 exerts oncogenic effects in BC and represents a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Xiaolu Yang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yilun Li
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yaqi Peng
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Yuan Chang
- Department of Breast Disease Center, Affiliated Hospital of Hebei University of Engineering, Handan, China
| | - Binglu He
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Tianqi Zhang
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Shiyu Zhang
- Department of Breast Disease Center, Xingtai Renmin Hospital, Xingtai, China
| | - Cuizhi Geng
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yunjiang Liu
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaolong Li
- Department of Breast Disease Center, The Fourth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Jun Hao
- Department of Pathology, Hebei Medical University, Shijiazhuang, China
| | - Li Ma
- Department of Breast Disease Center, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
3
|
Myers BL, Brayer KJ, Paez-Beltran LE, Villicana E, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara RK, Borromeo MD, Lu QR, Bachoo RM, Johnson JE, Vue TY. Transcription factors ASCL1 and OLIG2 drive glioblastoma initiation and co-regulate tumor cell types and migration. Nat Commun 2024; 15:10363. [PMID: 39609428 PMCID: PMC11605073 DOI: 10.1038/s41467-024-54750-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 11/20/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex genetic alterations. The basic-helix-loop-helix (bHLH) transcription factors ASCL1 and OLIG2 are dynamically co-expressed in GBMs; however, their combinatorial roles in regulating the plasticity and heterogeneity of GBM cells are unclear. Here, we show that induction of somatic mutations in subventricular zone (SVZ) progenitor cells leads to the dysregulation of ASCL1 and OLIG2, which then function redundantly and are required for brain tumor formation in a mouse model of GBM. Subsequently, the binding of ASCL1 and OLIG2 to each other's loci and to downstream target genes then determines the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in specifying highly migratory neural stem cell (NSC)/astrocyte-like tumor cell types, which are marked by upregulation of ribosomal protein, oxidative phosphorylation, cancer metastasis, and therapeutic resistance genes.
Collapse
Affiliation(s)
- Bianca L Myers
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kathryn J Brayer
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Luis E Paez-Beltran
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Estrella Villicana
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Matthew S Keith
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Hideaki Suzuki
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Jessie Newville
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rebekka H Anderson
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Yunee Lo
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Conner M Mertz
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Q Richard Lu
- Department of Pediatrics, Brain Tumor Center, EHCB, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Tou Yia Vue
- Department of Neurosciences, University of New Mexico Health Sciences Center, Albuquerque, NM, USA.
- University of New Mexico Comprehensive Cancer Center, Albuquerque, NM, USA.
| |
Collapse
|
4
|
Man JHK, Breur M, van Gelder CAGH, Marcon G, Maderna E, Giaccone G, Altelaar M, van der Knaap MS, Bugiani M. Region-specific and age-related differences in astrocytes in the human brain. Neurobiol Aging 2024; 140:102-115. [PMID: 38763075 DOI: 10.1016/j.neurobiolaging.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 05/21/2024]
Abstract
Astrocyte heterogeneity and its relation to aging in the normal human brain remain poorly understood. We here analyzed astrocytes in gray and white matter brain tissues obtained from donors ranging in age between the neonatal period to over 100 years. We show that astrocytes are differently distributed with higher density in the white matter. This regional difference in cellular density becomes less prominent with age. Additionally, we confirm the presence of morphologically distinct astrocytes, with gray matter astrocytes being morphologically more complex. Notably, gray matter astrocytes morphologically change with age, while white matter astrocytes remain relatively consistent in morphology. Using regional mass spectrometry-based proteomics, we did, however, identify astrocyte specific proteins with regional differences in abundance, reflecting variation in cellular density or expression level. Importantly, the expression of some astrocyte specific proteins region-dependently decreases with age. Taken together, we provide insights into region- and age-related differences in astrocytes in the human brain.
Collapse
Affiliation(s)
- Jodie H K Man
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Marjolein Breur
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Gabriella Marcon
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy; DAME, University of Udine, Udine, Italy
| | - Emanuela Maderna
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giorgio Giaccone
- Division of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands; Netherlands Proteomics Center, Utrecht, the Netherlands
| | - Marjo S van der Knaap
- Department of Child Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Molecular and Cellular Mechanisms, Amsterdam Neuroscience, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam UMC, Amsterdam, the Netherlands.
| |
Collapse
|
5
|
Liang XG, Hoang K, Meyerink BL, Kc P, Paraiso K, Wang L, Jones IR, Zhang Y, Katzman S, Finn TS, Tsyporin J, Qu F, Chen Z, Visel A, Kriegstein A, Shen Y, Pilaz LJ, Chen B. A conserved molecular logic for neurogenesis to gliogenesis switch in the cerebral cortex. Proc Natl Acad Sci U S A 2024; 121:e2321711121. [PMID: 38713624 PMCID: PMC11098099 DOI: 10.1073/pnas.2321711121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/02/2024] [Indexed: 05/09/2024] Open
Abstract
During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.
Collapse
Affiliation(s)
- Xiaoyi G. Liang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Kendy Hoang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Brandon L. Meyerink
- Division of Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD57104
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD57105
| | - Pratiksha Kc
- Division of Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD57104
| | - Kitt Paraiso
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
| | - Li Wang
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA94143
- Department of Neurology, University of California, San Francisco, CA94143
| | - Ian R. Jones
- Institute for Human Genetics, University of California, San Francisco, CA94143
| | - Yue Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Sol Katzman
- Genome Institute, University of California, Santa Cruz, CA95064
| | - Thomas S. Finn
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Jeremiah Tsyporin
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Fangyuan Qu
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Zhaoxu Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA94720
- U.S. Department of Energy Joint Genome Institute, Berkeley, CA94720
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA95343
| | - Arnold Kriegstein
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA94143
- Department of Neurology, University of California, San Francisco, CA94143
| | - Yin Shen
- Department of Neurology, University of California, San Francisco, CA94143
- Institute for Human Genetics, University of California, San Francisco, CA94143
| | - Louis-Jan Pilaz
- Division of Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, SD57104
- Department of Basic Biomedical Sciences, University of South Dakota Sanford School of Medicine, Sioux Falls, SD57105
| | - Bin Chen
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| |
Collapse
|
6
|
Bertho M, Caldeira V, Hsu LJ, Löw P, Borgius L, Kiehn O. Excitatory Spinal Lhx9-Derived Interneurons Modulate Locomotor Frequency in Mice. J Neurosci 2024; 44:e1607232024. [PMID: 38438260 PMCID: PMC11063822 DOI: 10.1523/jneurosci.1607-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/18/2024] [Accepted: 02/15/2024] [Indexed: 03/06/2024] Open
Abstract
Locomotion allows us to move and interact with our surroundings. Spinal networks that control locomotion produce rhythm and left-right and flexor-extensor coordination. Several glutamatergic populations, Shox2 non-V2a, Hb9-derived interneurons, and, recently, spinocerebellar neurons have been proposed to be involved in the mouse rhythm generating networks. These cells make up only a smaller fraction of the excitatory cells in the ventral spinal cord. Here, we set out to identify additional populations of excitatory spinal neurons that may be involved in rhythm generation or other functions in the locomotor network. We use RNA sequencing from glutamatergic, non-glutamatergic, and Shox2 cells in the neonatal mice from both sexes followed by differential gene expression analyses. These analyses identified transcription factors that are highly expressed by glutamatergic spinal neurons and differentially expressed between Shox2 neurons and glutamatergic neurons. From this latter category, we identified the Lhx9-derived neurons as having a restricted spinal expression pattern with no Shox2 neuron overlap. They are purely glutamatergic and ipsilaterally projecting. Ablation of the glutamatergic transmission or acute inactivation of the neuronal activity of Lhx9-derived neurons leads to a decrease in the frequency of locomotor-like activity without change in coordination pattern. Optogenetic activation of Lhx9-derived neurons promotes locomotor-like activity and modulates the frequency of the locomotor activity. Calcium activities of Lhx9-derived neurons show strong left-right out-of-phase rhythmicity during locomotor-like activity. Our study identifies a distinct population of spinal excitatory neurons that regulates the frequency of locomotor output with a suggested role in rhythm-generation in the mouse alongside other spinal populations.
Collapse
Affiliation(s)
- Maëlle Bertho
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Vanessa Caldeira
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Li-Ju Hsu
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Peter Löw
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Lotta Borgius
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Ole Kiehn
- Department of Neuroscience, Karolinska Institutet, 17177 Stockholm, Sweden
- Department of Neuroscience, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
7
|
Frith TJR, Briscoe J, Boezio GLM. From signalling to form: the coordination of neural tube patterning. Curr Top Dev Biol 2023; 159:168-231. [PMID: 38729676 DOI: 10.1016/bs.ctdb.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
The development of the vertebrate spinal cord involves the formation of the neural tube and the generation of multiple distinct cell types. The process starts during gastrulation, combining axial elongation with specification of neural cells and the formation of the neuroepithelium. Tissue movements produce the neural tube which is then exposed to signals that provide patterning information to neural progenitors. The intracellular response to these signals, via a gene regulatory network, governs the spatial and temporal differentiation of progenitors into specific cell types, facilitating the assembly of functional neuronal circuits. The interplay between the gene regulatory network, cell movement, and tissue mechanics generates the conserved neural tube pattern observed across species. In this review we offer an overview of the molecular and cellular processes governing the formation and patterning of the neural tube, highlighting how the remarkable complexity and precision of vertebrate nervous system arises. We argue that a multidisciplinary and multiscale understanding of the neural tube development, paired with the study of species-specific strategies, will be crucial to tackle the open questions.
Collapse
Affiliation(s)
| | - James Briscoe
- The Francis Crick Institute, London, United Kingdom.
| | | |
Collapse
|
8
|
Guo R, Han D, Song X, Gao Y, Li Z, Li X, Yang Z, Xu Z. Context-dependent regulation of Notch signaling in glial development and tumorigenesis. SCIENCE ADVANCES 2023; 9:eadi2167. [PMID: 37948517 PMCID: PMC10637744 DOI: 10.1126/sciadv.adi2167] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
In the mammalian brain, Notch signaling maintains the cortical stem cell pool and regulates the glial cell fate choice and differentiation. However, the function of Notch in regulating glial development and its involvement in tumorigenesis have not been well understood. Here, we show that Notch inactivation by genetic deletion of Rbpj in stem cells decreases astrocytes but increases oligodendrocytes with altered internal states. Inhibiting Notch in glial progenitors does not affect cell generation but instead accelerates the growth of Notch-deprived oligodendrocyte progenitor cells (OPCs) and OPC-related glioma. We also identified a cross-talk between oligodendrocytes and astrocytes, with premyelinating oligodendrocytes secreting BMP4, which is repressed by Notch, to up-regulate GFAP expression in adjacent astrocytes. Moreover, Notch inactivation in stem cells causes a glioma subtype shift from astroglia-associated to OPC-correlated patterns and vice versa. Our study reveals Notch's context-dependent function, promoting astrocytes and astroglia-associated glioma in stem cells and repressing OPCs and related glioma in glial progenitors.
Collapse
Affiliation(s)
| | | | | | - Yanjing Gao
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhenmeiyu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiaosu Li
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhengang Yang
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhejun Xu
- Key Laboratory of Birth Defects, Children’s Hospital of Fudan University, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
9
|
Tran LN, Loew SK, Franco SJ. Notch Signaling Plays a Dual Role in Regulating the Neuron-to-Oligodendrocyte Switch in the Developing Dorsal Forebrain. J Neurosci 2023; 43:6854-6871. [PMID: 37640551 PMCID: PMC10573779 DOI: 10.1523/jneurosci.0144-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 07/26/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
Neural progenitor cells in the developing dorsal forebrain generate excitatory neurons followed by oligodendrocytes (OLs) and astrocytes. However, the specific mechanisms that regulate the timing of this neuron-glia switch are not fully understood. In this study, we show that the proper balance of Notch signaling in dorsal forebrain progenitors is required to generate oligodendrocytes during late stages of embryonic development. Using ex vivo and in utero approaches in mouse embryos of both sexes, we found that Notch inhibition reduced the number of oligodendrocyte lineage cells in the dorsal pallium. However, Notch overactivation also prevented oligodendrogenesis and maintained a progenitor state. These results point toward a dual role for Notch signaling in both promoting and inhibiting oligodendrogenesis, which must be fine-tuned to generate oligodendrocyte lineage cells at the right time and in the right numbers. We further identified the canonical Notch downstream factors HES1 and HES5 as negative regulators in this process. CRISPR (clustered regularly interspaced short palindromic repeat)/Cas9-mediated knockdown of Hes1 and Hes5 caused increased expression of the pro-oligodendrocyte factor ASCL1 and led to precocious oligodendrogenesis. Conversely, combining Notch overactivation with ASCL1 overexpression robustly promoted oligodendrogenesis, indicating a separate mechanism of Notch that operates synergistically with ASCL1 to specify an oligodendrocyte fate. We propose a model in which Notch signaling works together with ASCL1 to specify progenitors toward the oligodendrocyte lineage but also maintains a progenitor state through Hes-dependent repression of Ascl1 so that oligodendrocytes are not made too early, thus contributing to the precise timing of the neuron-glia switch.SIGNIFICANCE STATEMENT Neural progenitors make oligodendrocytes after neurogenesis starts to wind down, but the mechanisms that control the timing of this switch are poorly understood. In this study, we identify Notch signaling as a critical pathway that regulates the balance between progenitor maintenance and oligodendrogenesis. Notch signaling is required for the oligodendrocyte fate, but elevated Notch signaling prevents oligodendrogenesis and maintains a progenitor state. We provide evidence that these opposing functions are controlled by different mechanisms. Before the switch, Notch signaling through Hes factors represses oligodendrogenesis. Later, Notch signaling through an unknown mechanism promotes oligodendrogenesis synergistically with the transcription factor ASCL1. Our study underscores the complexity of Notch and reveals its importance in regulating the timing and numbers of oligodendrocyte production.
Collapse
Affiliation(s)
- Luuli N Tran
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Sarah K Loew
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Santos J Franco
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Molecular Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Gates Summer Internship Program, Gates Institute, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
- Program in Pediatric Stem Cell Biology, Children's Hospital Colorado, Aurora, Colorado 80045
| |
Collapse
|
10
|
Myers BL, Brayer KJ, Paez-Beltran LE, Keith MS, Suzuki H, Newville J, Anderson RH, Lo Y, Mertz CM, Kollipara R, Borromeo MD, Bachoo RM, Johnson JE, Vue TY. Glioblastoma initiation, migration, and cell types are regulated by core bHLH transcription factors ASCL1 and OLIG2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.30.560206. [PMID: 37873200 PMCID: PMC10592871 DOI: 10.1101/2023.09.30.560206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Glioblastomas (GBMs) are highly aggressive, infiltrative, and heterogeneous brain tumors driven by complex driver mutations and glioma stem cells (GSCs). The neurodevelopmental transcription factors ASCL1 and OLIG2 are co-expressed in GBMs, but their role in regulating the heterogeneity and hierarchy of GBM tumor cells is unclear. Here, we show that oncogenic driver mutations lead to dysregulation of ASCL1 and OLIG2, which function redundantly to initiate brain tumor formation in a mouse model of GBM. Subsequently, the dynamic levels and reciprocal binding of ASCL1 and OLIG2 to each other and to downstream target genes then determine the cell types and degree of migration of tumor cells. Single-cell RNA sequencing (scRNA-seq) reveals that a high level of ASCL1 is key in defining GSCs by upregulating a collection of ribosomal protein, mitochondrial, neural stem cell (NSC), and cancer metastasis genes - all essential for sustaining the high proliferation, migration, and therapeutic resistance of GSCs.
Collapse
|
11
|
Andersen J, Thom N, Shadrach JL, Chen X, Onesto MM, Amin ND, Yoon SJ, Li L, Greenleaf WJ, Müller F, Pașca AM, Kaltschmidt JA, Pașca SP. Single-cell transcriptomic landscape of the developing human spinal cord. Nat Neurosci 2023; 26:902-914. [PMID: 37095394 DOI: 10.1038/s41593-023-01311-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/20/2023] [Indexed: 04/26/2023]
Abstract
Understanding spinal cord assembly is essential to elucidate how motor behavior is controlled and how disorders arise. The human spinal cord is exquisitely organized, and this complex organization contributes to the diversity and intricacy of motor behavior and sensory processing. But how this complexity arises at the cellular level in the human spinal cord remains unknown. Here we transcriptomically profiled the midgestation human spinal cord with single-cell resolution and discovered remarkable heterogeneity across and within cell types. Glia displayed diversity related to positional identity along the dorso-ventral and rostro-caudal axes, while astrocytes with specialized transcriptional programs mapped into white and gray matter subtypes. Motor neurons clustered at this stage into groups suggestive of alpha and gamma neurons. We also integrated our data with multiple existing datasets of the developing human spinal cord spanning 22 weeks of gestation to investigate the cell diversity over time. Together with mapping of disease-related genes, this transcriptomic mapping of the developing human spinal cord opens new avenues for interrogating the cellular basis of motor control in humans and guides human stem cell-based models of disease.
Collapse
Affiliation(s)
- Jimena Andersen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - Nicholas Thom
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | | | - Xiaoyu Chen
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Massimo Mario Onesto
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
- Neurosciences Graduate Program, Stanford University, Stanford, CA, USA
| | - Neal D Amin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Se-Jin Yoon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA
| | - Li Li
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
| | - Fabian Müller
- Department of Genetics, Stanford University, Stanford, CA, USA
- Center for Bioinformatics, Saarland University, Saarbrücken, Germany
| | - Anca M Pașca
- Department of Pediatrics, Division of Neonatology, Stanford University, Stanford, CA, USA
| | | | - Sergiu P Pașca
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA.
- Stanford Brain Organogenesis, Wu Tsai Neurosciences Institute, Stanford, CA, USA.
| |
Collapse
|
12
|
Paronett EM, Bryan CA, Maynard TM, LaMantia AS. Identity, lineage and fates of a temporally distinct progenitor population in the embryonic olfactory epithelium. Dev Biol 2023; 495:76-91. [PMID: 36627077 PMCID: PMC9926479 DOI: 10.1016/j.ydbio.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 01/09/2023]
Abstract
We defined a temporally and transcriptionally divergent precursor cohort in the medial olfactory epithelium (OE) shortly after it differentiates as a distinct tissue at mid-gestation in the mouse. This temporally distinct population of Ascl1+ cells in the dorsomedial OE is segregated from Meis1+/Pax7+ progenitors in the lateral OE, and does not appear to be generated by Pax7+ lateral OE precursors. The medial Ascl1+ precursors do not yield a substantial number of early-generated ORNs. Instead, they first generate additional proliferative precursors as well as a distinct population of frontonasal mesenchymal cells associated with the migratory mass that surrounds the nascent olfactory nerve. Parallel to these in vivo distinctions, isolated medial versus lateral OE precursors in vitro retain distinct proliferative capacities and modes of division that reflect their in vivo identities. At later fetal stages, these early dorsomedial Ascl1+ precursors cells generate spatially restricted subsets of ORNs as well as other non-neuronal cell classes. Accordingly, the initial compliment of ORNs and other OE cell types is derived from at least two distinct early precursor populations: lateral Meis1/Pax7+ precursors that generate primarily early ORNs, and a temporally, spatially, and transcriptionally distinct subset of medial Ascl1+ precursors that initially generate additional OE progenitors and apparent migratory mass cells before yielding a subset of ORNs and likely supporting cell classes.
Collapse
Affiliation(s)
- Elizabeth M Paronett
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC, 20037, USA
| | - Corey A Bryan
- Laboratory of Developmental Disorders and Genetics, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA
| | - Thomas M Maynard
- Center for Neurobiology Research, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA
| | - Anthony-S LaMantia
- Center for Neurobiology Research, The Fralin Biomedical Research Institute, Virginia Tech-Carilion School of Medicine, Roanoke, VA, USA; Department of Biological Sciences Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
13
|
Tanabe K, Nobuta H, Yang N, Ang CE, Huie P, Jordan S, Oldham MC, Rowitch DH, Wernig M. Generation of functional human oligodendrocytes from dermal fibroblasts by direct lineage conversion. Development 2022; 149:275808. [PMID: 35748297 PMCID: PMC9357374 DOI: 10.1242/dev.199723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 05/03/2022] [Indexed: 01/08/2023]
Abstract
Oligodendrocytes, the myelinating cells of the central nervous system, possess great potential for disease modeling and cell transplantation-based therapies for leukodystrophies. However, caveats to oligodendrocyte differentiation protocols ( Ehrlich et al., 2017; Wang et al., 2013; Douvaras and Fossati, 2015) from human embryonic stem and induced pluripotent stem cells (iPSCs), which include slow and inefficient differentiation, and tumorigenic potential of contaminating undifferentiated pluripotent cells, are major bottlenecks towards their translational utility. Here, we report the rapid generation of human oligodendrocytes by direct lineage conversion of human dermal fibroblasts (HDFs). We show that the combination of the four transcription factors OLIG2, SOX10, ASCL1 and NKX2.2 is sufficient to convert HDFs to induced oligodendrocyte precursor cells (iOPCs). iOPCs resemble human primary and iPSC-derived OPCs based on morphology and transcriptomic analysis. Importantly, iOPCs can differentiate into mature myelinating oligodendrocytes in vitro and in vivo. Finally, iOPCs derived from patients with Pelizaeus Merzbacher disease, a hypomyelinating leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene, showed increased cell death compared with iOPCs from healthy donors. Thus, human iOPCs generated by direct lineage conversion represent an attractive new source for human cell-based disease models and potentially myelinating cell grafts.
Collapse
Affiliation(s)
- Koji Tanabe
- I Peace, Inc, Palo Alto, CA 94303, USA.,Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hiroko Nobuta
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA
| | - Nan Yang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cheen Euong Ang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Philip Huie
- Department of Surgical Pathology, Stanford Health Care, Palo Alto, CA 94305, USA
| | - Sacha Jordan
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Michael C Oldham
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - David H Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA 94143, USA.,Departments of Pediatrics and Neurosurgery, University of California San Francisco, San Francisco, CA 94143, USA.,Department of Paediatrics and Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Hills Road, Cambridge CB2 0QQ, UK
| | - Marius Wernig
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Sartoretti MM, Campetella CA, Lanuza GM. Dbx1 controls the development of astrocytes of the intermediate spinal cord by modulating Notch signaling. Development 2022; 149:275961. [DOI: 10.1242/dev.200750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
ABSTRACT
Significant progress has been made in elucidating the basic principles that govern neuronal specification in the developing central nervous system. In contrast, much less is known about the origin of astrocytic diversity. Here, we demonstrate that a restricted pool of progenitors in the mouse spinal cord, expressing the transcription factor Dbx1, produces a subset of astrocytes, in addition to interneurons. Ventral p0-derived astrocytes (vA0 cells) exclusively populate intermediate regions of spinal cord with extraordinary precision. The postnatal vA0 population comprises gray matter protoplasmic and white matter fibrous astrocytes and a group of cells with strict radial morphology contacting the pia. We identified that vA0 cells in the lateral funiculus are distinguished by the expression of reelin and Kcnmb4. We show that Dbx1 mutants have an increased number of vA0 cells at the expense of p0-derived interneurons. Manipulation of the Notch pathway, together with the alteration in their ligands seen in Dbx1 knockouts, suggest that Dbx1 controls neuron-glial balance by modulating Notch-dependent cell interactions. In summary, this study highlights that restricted progenitors in the dorsal-ventral neural tube produce region-specific astrocytic subgroups and that progenitor transcriptional programs highly influence glial fate and are instrumental in creating astrocyte diversity.
Collapse
Affiliation(s)
- Maria Micaela Sartoretti
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| | - Carla A. Campetella
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| | - Guillermo M. Lanuza
- Developmental Neurobiology Lab, Fundación Instituto Leloir and Consejo Nacional de Investigaciones Científicas y Técnicas (IIBBA-CONICET) , Avenida Patricias Argentinas 435, Buenos Aires 1405 , Argentina
| |
Collapse
|
15
|
Bugiani M, Plug BC, Man JHK, Breur M, van der Knaap MS. Heterogeneity of white matter astrocytes in the human brain. Acta Neuropathol 2022; 143:159-177. [PMID: 34878591 DOI: 10.1007/s00401-021-02391-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/17/2021] [Accepted: 11/28/2021] [Indexed: 12/12/2022]
Abstract
Astrocytes regulate central nervous system development, maintain its homeostasis and orchestrate repair upon injury. Emerging evidence support functional specialization of astroglia, both between and within brain regions. Different subtypes of gray matter astrocytes have been identified, yet molecular and functional diversity of white matter astrocytes remains largely unexplored. Nonetheless, their important and diverse roles in maintaining white matter integrity and function are well recognized. Compelling evidence indicate that impairment of normal astrocytic function and their response to injury contribute to a wide variety of diseases, including white matter disorders. In this review, we highlight our current understanding of astrocyte heterogeneity in the white matter of the mammalian brain and how an interplay between developmental origins and local environmental cues contribute to astroglial diversification. In addition, we discuss whether, and if so, how, heterogeneous astrocytes could contribute to white matter function in health and disease and focus on the sparse human research data available. We highlight four leukodystrophies primarily due to astrocytic dysfunction, the so-called astrocytopathies. Insight into the role of astroglial heterogeneity in both healthy and diseased white matter may provide new avenues for therapies aimed at promoting repair and restoring normal white matter function.
Collapse
|
16
|
Hines JH. Evolutionary Origins of the Oligodendrocyte Cell Type and Adaptive Myelination. Front Neurosci 2021; 15:757360. [PMID: 34924932 PMCID: PMC8672417 DOI: 10.3389/fnins.2021.757360] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/29/2021] [Indexed: 12/23/2022] Open
Abstract
Oligodendrocytes are multifunctional central nervous system (CNS) glia that are essential for neural function in gnathostomes. The evolutionary origins and specializations of the oligodendrocyte cell type are among the many remaining mysteries in glial biology and neuroscience. The role of oligodendrocytes as CNS myelinating glia is well established, but recent studies demonstrate that oligodendrocytes also participate in several myelin-independent aspects of CNS development, function, and maintenance. Furthermore, many recent studies have collectively advanced our understanding of myelin plasticity, and it is now clear that experience-dependent adaptations to myelination are an additional form of neural plasticity. These observations beg the questions of when and for which functions the ancestral oligodendrocyte cell type emerged, when primitive oligodendrocytes evolved new functionalities, and the genetic changes responsible for these evolutionary innovations. Here, I review recent findings and propose working models addressing the origins and evolution of the oligodendrocyte cell type and adaptive myelination. The core gene regulatory network (GRN) specifying the oligodendrocyte cell type is also reviewed as a means to probe the existence of oligodendrocytes in basal vertebrates and chordate invertebrates.
Collapse
Affiliation(s)
- Jacob H. Hines
- Biology Department, Winona State University, Winona, MN, United States
| |
Collapse
|
17
|
Kempf J, Knelles K, Hersbach BA, Petrik D, Riedemann T, Bednarova V, Janjic A, Simon-Ebert T, Enard W, Smialowski P, Götz M, Masserdotti G. Heterogeneity of neurons reprogrammed from spinal cord astrocytes by the proneural factors Ascl1 and Neurogenin2. Cell Rep 2021; 36:109409. [PMID: 34289357 PMCID: PMC8316252 DOI: 10.1016/j.celrep.2021.109409] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/14/2021] [Accepted: 06/24/2021] [Indexed: 01/21/2023] Open
Abstract
Astrocytes are a viable source for generating new neurons via direct conversion. However, little is known about the neurogenic cascades triggered in astrocytes from different regions of the CNS. Here, we examine the transcriptome induced by the proneural factors Ascl1 and Neurog2 in spinal cord-derived astrocytes in vitro. Each factor initially elicits different neurogenic programs that later converge to a V2 interneuron-like state. Intriguingly, patch sequencing (patch-seq) shows no overall correlation between functional properties and the transcriptome of the heterogenous induced neurons, except for K-channels. For example, some neurons with fully mature electrophysiological properties still express astrocyte genes, thus calling for careful molecular and functional analysis. Comparing the transcriptomes of spinal cord- and cerebral-cortex-derived astrocytes reveals profound differences, including developmental patterning cues maintained in vitro. These relate to the distinct neuronal identity elicited by Ascl1 and Neurog2 reflecting their developmental functions in subtype specification of the respective CNS region.
Collapse
Affiliation(s)
- J Kempf
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - K Knelles
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - B A Hersbach
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Graduate School of Systemic Neurosciences, LMU Munich, Planegg-Martinsried 82152, Germany
| | - D Petrik
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; School of Biosciences, The Sir Martin Evans Building, Cardiff University, CF10 3AX Cardiff, UK
| | - T Riedemann
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - V Bednarova
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - A Janjic
- Anthropology and Human Genomics, Faculty of Biology, LMU Munich, Planegg-Martinsried 82152, Germany
| | - T Simon-Ebert
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany
| | - W Enard
- Biomedical Center Munich, Bioinformatic Core Facility, LMU Munich, Planegg-Martinsried 82152, Germany
| | - P Smialowski
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; School of Biosciences, The Sir Martin Evans Building, Cardiff University, CF10 3AX Cardiff, UK
| | - M Götz
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany; Excellence Cluster of Systems Neurology (SYNERGY), Munich, Germany.
| | - G Masserdotti
- Biomedical Center Munich, Physiological Genomics, LMU Munich, Planegg-Martinsried 82152, Germany; Institute for Stem Cell Research, Helmholtz Center Munich, Neuherberg 85764, Germany.
| |
Collapse
|
18
|
Curry RN, Glasgow SM. The Role of Neurodevelopmental Pathways in Brain Tumors. Front Cell Dev Biol 2021; 9:659055. [PMID: 34012965 PMCID: PMC8127784 DOI: 10.3389/fcell.2021.659055] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Disruptions to developmental cell signaling pathways and transcriptional cascades have been implicated in tumor initiation, maintenance and progression. Resurgence of aberrant neurodevelopmental programs in the context of brain tumors highlights the numerous parallels that exist between developmental and oncologic mechanisms. A deeper understanding of how dysregulated developmental factors contribute to brain tumor oncogenesis and disease progression will help to identify potential therapeutic targets for these malignancies. In this review, we summarize the current literature concerning developmental signaling cascades and neurodevelopmentally-regulated transcriptional programs. We also examine their respective contributions towards tumor initiation, maintenance, and progression in both pediatric and adult brain tumors and highlight relevant differentiation therapies and putative candidates for prospective treatments.
Collapse
Affiliation(s)
- Rachel N. Curry
- Department of Neuroscience, Baylor College of Medicine, Center for Cell and Gene Therapy, Houston, TX, United States
- Integrative Molecular and Biomedical Sciences, Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, TX, United States
| | - Stacey M. Glasgow
- Neurobiology Section, Division of Biological Sciences, University of California, San Diego, San Diego, CA, United States
- Neurosciences Graduate Program, University of California, San Diego, San Diego, CA, United States
- Biomedical Sciences Graduate Program, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
19
|
Vue TY, Kollipara RK, Borromeo MD, Smith T, Mashimo T, Burns DK, Bachoo RM, Johnson JE. ASCL1 regulates neurodevelopmental transcription factors and cell cycle genes in brain tumors of glioma mouse models. Glia 2020; 68:2613-2630. [PMID: 32573857 PMCID: PMC7587013 DOI: 10.1002/glia.23873] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/08/2020] [Accepted: 05/29/2020] [Indexed: 12/22/2022]
Abstract
Glioblastomas (GBMs) are incurable brain tumors with a high degree of cellular heterogeneity and genetic mutations. Transcription factors that normally regulate neural progenitors and glial development are aberrantly coexpressed in GBM, conferring cancer stem‐like properties to drive tumor progression and therapeutic resistance. However, the functional role of individual transcription factors in GBMs in vivo remains elusive. Here, we demonstrate that the basic‐helix–loop–helix transcription factor ASCL1 regulates transcriptional targets that are central to GBM development, including neural stem cell and glial transcription factors, oncogenic signaling molecules, chromatin modifying genes, and cell cycle and mitotic genes. We also show that the loss of ASCL1 significantly reduces the proliferation of GBMs induced in the brain of a genetically relevant glioma mouse model, resulting in extended survival times. RNA‐seq analysis of mouse GBM tumors reveal that the loss of ASCL1 is associated with downregulation of cell cycle genes, illustrating an important role for ASCL1 in controlling the proliferation of GBM.
Collapse
Affiliation(s)
- Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Rahul K Kollipara
- McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mark D Borromeo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tyler Smith
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Tomoyuki Mashimo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Dennis K Burns
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert M Bachoo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Aslanpour S, Rosin JM, Balakrishnan A, Klenin N, Blot F, Gradwohl G, Schuurmans C, Kurrasch DM. Ascl1 is required to specify a subset of ventromedial hypothalamic neurons. Development 2020; 147:dev180067. [PMID: 32253239 DOI: 10.1242/dev.180067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 03/23/2020] [Indexed: 03/01/2024]
Abstract
Despite clear physiological roles, the ventromedial hypothalamus (VMH) developmental programs are poorly understood. Here, we asked whether the proneural gene achaete-scute homolog 1 (Ascl1) contributes to VMH development. Ascl1 transcripts were detected in embryonic day (E) 10.5 to postnatal day 0 VMH neural progenitors. The elimination of Ascl1 reduced the number of VMH neurons at E12.5 and E15.5, particularly within the VMH-central (VMHC) and -dorsomedial (VMHDM) subdomains, and resulted in a VMH cell fate change from glutamatergic to GABAergic. We observed a loss of Neurog3 expression in Ascl1-/- hypothalamic progenitors and an upregulation of Neurog3 when Ascl1 was overexpressed. We also demonstrated a glutamatergic to GABAergic fate switch in Neurog3-null mutant mice, suggesting that Ascl1 might act via Neurog3 to drive VMH cell fate decisions. We also showed a concomitant increase in expression of the central GABAergic fate determinant Dlx1/2 in the Ascl1-null hypothalamus. However, Ascl1 was not sufficient to induce an ectopic VMH fate when overexpressed outside the normal window of competency. Combined, Ascl1 is required but not sufficient to specify the neurotransmitter identity of VMH neurons, acting in a transcriptional cascade with Neurog3.
Collapse
Affiliation(s)
- Shaghayegh Aslanpour
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Jessica M Rosin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Anjali Balakrishnan
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, ON M4N 3M5, Canada
| | - Natalia Klenin
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Florence Blot
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, Universite de Strasbourg, Illkirch 67400, France
| | - Gerard Gradwohl
- Department of Development and Stem Cells, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM, Universite de Strasbourg, Illkirch 67400, France
| | - Carol Schuurmans
- Sunnybrook Research Institute, Department of Biochemistry, University of Toronto, ON M4N 3M5, Canada
| | - Deborah M Kurrasch
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
21
|
Zarei-Kheirabadi M, Vaccaro AR, Rahimi-Movaghar V, Kiani S, Baharvand H. An Overview of Extrinsic and Intrinsic Mechanisms Involved in Astrocyte Development in the Central Nervous System. Stem Cells Dev 2020; 29:266-280. [PMID: 31847709 DOI: 10.1089/scd.2019.0189] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades, our knowledge about the function of the central nervous system (CNS) and astrocytes has improved, and research has confirmed the key roles that astrocytes play in the physiology and pathology of the CNS. Here, we reviewed the intrinsic and extrinsic mechanisms that regulate the development of astrocytes, which are generated from radial glial cells. These regulatory systems modulate various signaling pathways and transcription factors. In this review, four stages of astrocyte development-specification (patterning and switch), migration, proliferation, and maturation, are discussed. In astrocyte patterning, VA1-VA3 domains create the astrocyte subtypes by differential expression of Slit1 and Reelin in the spinal cord. In the brain, patterning creates several astrocyte subtypes by different organizing centers. At the switch step, the janus kinase-signal transducer and activator of transcription pathway governs the transition of neurogenesis to gliogenesis. Bone marrow protein and Notch pathways are also important players of the progliogenic switch. Intrinsic regulation is mediated by DNA methylation transferases, and polycomb group complexes can intrinsically affect the development of astrocytes. In the next stage, these cells proliferate and migrate to their final location. Astrocyte maturation is accomplished through the development of cellular processes, molecular markers, and functions.
Collapse
Affiliation(s)
- Masoumeh Zarei-Kheirabadi
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alexander R Vaccaro
- Department of Orthopedics, Rothman Orthopedic Institute, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Vafa Rahimi-Movaghar
- Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Kiani
- Department of Brain, Cognitive Sciences and Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| |
Collapse
|
22
|
Heterogeneity of Astrocytes in Grey and White Matter. Neurochem Res 2019; 46:3-14. [PMID: 31797158 DOI: 10.1007/s11064-019-02926-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 02/07/2023]
Abstract
Astrocytes are a diverse and heterogeneous type of glial cells. The major task of grey and white matter areas in the brain are computation of information at neuronal synapses and propagation of action potentials along axons, respectively, resulting in diverse demands for astrocytes. Adapting their function to the requirements in the local environment, astrocytes differ in morphology, gene expression, metabolism, and many other properties. Here we review the differential properties of protoplasmic astrocytes of grey matter and fibrous astrocytes located in white matter in respect to glutamate and energy metabolism, to their function at the blood-brain interface and to coupling via gap junctions. Finally, we discuss how this astrocytic heterogeneity might contribute to the different susceptibility of grey and white matter to ischemic insults.
Collapse
|
23
|
Di Bella DJ, Carcagno AL, Bartolomeu ML, Pardi MB, Löhr H, Siegel N, Hammerschmidt M, Marín-Burgin A, Lanuza GM. Ascl1 Balances Neuronal versus Ependymal Fate in the Spinal Cord Central Canal. Cell Rep 2019; 28:2264-2274.e3. [DOI: 10.1016/j.celrep.2019.07.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/07/2019] [Accepted: 07/23/2019] [Indexed: 01/04/2023] Open
|
24
|
Winkler CC, Franco SJ. Loss of Shh signaling in the neocortex reveals heterogeneous cell recovery responses from distinct oligodendrocyte populations. Dev Biol 2019; 452:55-65. [PMID: 31071314 DOI: 10.1016/j.ydbio.2019.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/25/2019] [Accepted: 04/25/2019] [Indexed: 10/26/2022]
Abstract
The majority of oligodendrocytes in the neocortex originate from neural progenitors that reside in the dorsal forebrain. We recently showed that Sonic Hedgehog (Shh) signaling in these dorsal progenitors is required to produce normal numbers of neocortical oligodendrocytes during embryonic development. Conditional deletion of the Shh signaling effector, Smo, in dorsal progenitors caused a dramatic reduction in oligodendrocyte numbers in the embryonic neocortex. In the current study, we show that the depleted oligodendrocyte lineage in Smo conditional mutants is able to recover to control numbers over time. This eventual recovery is achieved in part by expansion of the ventrally-derived wild-type lineage that normally makes up a minority of the total oligodendrocyte population. However, we find that the remaining dorsally-derived mutant cells also increase in numbers over time to contribute equally to the recovery of the total population. Additionally, we found that the ways in which the dorsal and ventral sources cooperate to achieve recovery is different for distinct populations of oligodendrocyte-lineage cells. Oligodendrocyte precursor cells (OPCs) in the neocortical white matter recover completely by expansion of the remaining dorsally-derived Smo mutant cells. On the other hand, mature oligodendrocytes in the white and gray matter recover through an equal contribution from dorsal mutant and ventral wild-type lineages. Interestingly, the only population that did not make a full recovery was OPCs in the gray matter. We find that gray matter OPCs are less proliferative in Smo cKO mutants compared to controls, which may explain their inability to fully recover. Our data indicate that certain populations of the dorsal oligodendrocyte lineage are more affected by loss of Shh signaling than others. Furthermore, these studies shed new light on the complex relationship between dorsal and ventral sources of oligodendrocytes in the developing neocortex.
Collapse
Affiliation(s)
- Caitlin C Winkler
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA
| | - Santos J Franco
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Cell Biology, Stem Cells and Development Graduate Program, University of Colorado School of Medicine, Aurora, CO, 80045, USA; Program of Pediatric Stem Cell Biology, Children's Hospital Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
25
|
Child abuse associates with an imbalance of oligodendrocyte-lineage cells in ventromedial prefrontal white matter. Mol Psychiatry 2018; 23:2018-2028. [PMID: 29158585 DOI: 10.1038/mp.2017.231] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 08/14/2017] [Accepted: 09/06/2017] [Indexed: 12/19/2022]
Abstract
Child abuse (CA) is a major risk factor for depression, and strongly associates with suicidal behavior during adulthood. Neuroimaging studies have reported widespread changes in white matter integrity and brain connectivity in subjects with a history of CA. Although such observations could reflect changes in myelin and oligodendrocyte function, their cellular underpinnings have never been addressed. Using postmortem brain samples from depressed suicides with or without history of CA and matched controls (18 per group), we aimed to characterize the effects of CA on oligodendrocyte-lineage (OL) cells in the ventromedial prefrontal white matter. Using immunoblotting, double-labeling immunofluorescence and stereological estimates of stage-specific markers, we found that CA is associated with increased numbers of mature myelinating oligodendrocytes, accompanied by decreased numbers of more immature OL cells. This was paralleled by an increased expression of transcription factor MASH1, which is involved in the terminal differentiation of the OL, suggesting that CA may trigger an increased maturation, or bias the populations of OL cells toward a more mature phenotype. Some of these effects, which were absent in the brain of depressed suicides with no history of CA, were also found to recover with age, suggesting that changes in the balance of the OL may reflect a transient adaptive mechanism triggered by early-life adversity. In conclusion, our results indicate that CA in depressed suicides is associated with an imbalance of the OL in the ventromedial prefrontal white matter, an effect that could lead to myelin remodeling and long-term connectivity changes within the limbic network.
Collapse
|
26
|
The Dorsal Wave of Neocortical Oligodendrogenesis Begins Embryonically and Requires Multiple Sources of Sonic Hedgehog. J Neurosci 2018; 38:5237-5250. [PMID: 29739868 DOI: 10.1523/jneurosci.3392-17.2018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 04/23/2018] [Accepted: 04/26/2018] [Indexed: 01/06/2023] Open
Abstract
Neural progenitor cells in the developing dorsal forebrain give rise to excitatory neurons, astrocytes, and oligodendrocytes for the neocortex. While we are starting to gain a better understanding about the mechanisms that direct the formation of neocortical neurons and astrocytes, far less is known about the molecular mechanisms that instruct dorsal forebrain progenitors to make oligodendrocytes. In this study, we show that Sonic hedgehog (Shh) signaling is required in dorsal progenitors for their late embryonic transition to oligodendrogenesis. Using genetic lineage-tracing in mice of both sexes, we demonstrate that most oligodendrocytes in the embryonic neocortex derive from Emx1+ dorsal forebrain progenitors. Deletion of the Shh signaling effector Smo specifically in Emx1+ progenitors led to significantly decreased oligodendrocyte numbers in the embryonic neocortex. Conversely, knock-out of the Shh antagonist Sufu was sufficient to increase neocortical oligodendrogenesis. Using conditional knock-out strategies, we found that Shh ligand is supplied to dorsal progenitors through multiple sources. Loss of Shh from Dlx5/6+ interneurons caused a significant reduction in oligodendrocytes in the embryonic neocortex. This phenotype was identical to that observed upon Shh deletion from the entire CNS using Nestin-Cre, indicating that interneurons migrating into the neocortex from the subpallium are the primary neural source of Shh for dorsal oligodendrogenesis. Additionally, deletion of Shh from migrating interneurons together with the choroid plexus epithelium led to a more severe loss of oligodendrocytes, suggesting that the choroid plexus is an important non-neural source of Shh ligand. Together, our studies demonstrate that the dorsal wave of neocortical oligodendrogenesis occurs earlier than previously appreciated and requires highly regulated Shh signaling from multiple embryonic sources.SIGNIFICANCE STATEMENT Most neocortical oligodendrocytes are made by neural progenitors in the dorsal forebrain, but the mechanisms that specify this fate are poorly understood. This study identifies Sonic hedgehog (Shh) signaling as a critical pathway in the transition from neurogenesis to oligodendrogenesis in dorsal forebrain progenitors during late embryonic development. The timing of this neuron-to-glia "switch" coincides with the arrival of migrating interneurons into the dorsal germinal zone, which we identify as a critical source of Shh ligand, which drives oligodendrogenesis. Our data provide evidence for a new model in which Shh signaling increases in the dorsal forebrain late in embryonic development to provide a temporally regulated mechanism that initiates the third wave of neocortical oligodendrogenesis.
Collapse
|
27
|
Kelenis DP, Hart E, Edwards-Fligner M, Johnson JE, Vue TY. ASCL1 regulates proliferation of NG2-glia in the embryonic and adult spinal cord. Glia 2018; 66:1862-1880. [PMID: 29683222 PMCID: PMC6185776 DOI: 10.1002/glia.23344] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 03/08/2018] [Accepted: 04/04/2018] [Indexed: 01/04/2023]
Abstract
NG2‐glia are highly proliferative oligodendrocyte precursor cells (OPCs) that are widely distributed throughout the central nervous system (CNS). During development, NG2‐glia predominantly differentiate into oligodendrocytes (OLs) to myelinate axon fibers, but they can also remain as OPCs persisting into the mature CNS. Interestingly, NG2‐glia in the gray matter (GM) are intrinsically different from those in the white matter (WM) in terms of proliferation, differentiation, gene expression, and electrophysiological properties. Here we investigate the role of the transcriptional regulator, ASCL1, in controlling NG2‐glia distribution and development in the GM and WM. In the spinal cord, ASCL1 levels are higher in WM NG2‐glia than those in the GM. This differential level of ASCL1 in WM and GM NG2‐glia is maintained into adult stages. Long‐term clonal lineage analysis reveals that the progeny of single ASCL1+ oligodendrocyte progenitors (OLPs) and NG2‐glia are primarily restricted to the GM or WM, even though they undergo extensive proliferation to give rise to large clusters of OLs in the postnatal spinal cord. Conditional deletion of Ascl1 specifically in NG2‐glia in the embryonic or adult spinal cord resulted in a significant reduction in the proliferation but not differentiation of these cells. These findings illustrate that ASCL1 is an intrinsic regulator of the proliferative property of NG2‐glia in the CNS.
Collapse
Affiliation(s)
- Demetra P Kelenis
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Emma Hart
- Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico
| | | | - Jane E Johnson
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Tou Yia Vue
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Neurosciences, University of New Mexico, Albuquerque, New Mexico
| |
Collapse
|
28
|
Dennis DJ, Han S, Schuurmans C. bHLH transcription factors in neural development, disease, and reprogramming. Brain Res 2018; 1705:48-65. [PMID: 29544733 DOI: 10.1016/j.brainres.2018.03.013] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/07/2018] [Accepted: 03/10/2018] [Indexed: 01/16/2023]
Abstract
The formation of functional neural circuits in the vertebrate central nervous system (CNS) requires that appropriate numbers of the correct types of neuronal and glial cells are generated in their proper places and times during development. In the embryonic CNS, multipotent progenitor cells first acquire regional identities, and then undergo precisely choreographed temporal identity transitions (i.e. time-dependent changes in their identity) that determine how many neuronal and glial cells of each type they will generate. Transcription factors of the basic-helix-loop-helix (bHLH) family have emerged as key determinants of neural cell fate specification and differentiation, ensuring that appropriate numbers of specific neuronal and glial cell types are produced. Recent studies have further revealed that the functions of these bHLH factors are strictly regulated. Given their essential developmental roles, it is not surprising that bHLH mutations and de-regulated expression are associated with various neurological diseases and cancers. Moreover, the powerful ability of bHLH factors to direct neuronal and glial cell fate specification and differentiation has been exploited in the relatively new field of cellular reprogramming, in which pluripotent stem cells or somatic stem cells are converted to neural lineages, often with a transcription factor-based lineage conversion strategy that includes one or more of the bHLH genes. These concepts are reviewed herein.
Collapse
Affiliation(s)
- Daniel J Dennis
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada
| | - Sisu Han
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, 2075 Bayview Ave, Toronto, ON M4N3M5, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
29
|
Kong W, Mou X, Deng J, Di B, Zhong R, Wang S, Yang Y, Zeng W. Differences of immune disorders between Alzheimer's disease and breast cancer based on transcriptional regulation. PLoS One 2017; 12:e0180337. [PMID: 28719625 PMCID: PMC5515412 DOI: 10.1371/journal.pone.0180337] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 06/14/2017] [Indexed: 01/01/2023] Open
Abstract
Although chronic inflammation and immune disorders are of great importance to the pathogenesis of both dementia and cancer, the pathophysiological mechanisms are not clearly understood. In recent years, growing epidemiological evidence and meta-analysis data suggest an inverse association between Alzheimer's disease (AD), which is the most common form of dementia, and cancer. It has been revealed that some common genes and biological processes play opposite roles in AD and cancer; however, the biological immune mechanism for the inverse association is not clearly defined. An unsupervised matrix decomposition two-stage bioinformatics procedure was adopted to investigate the opposite behaviors of the immune response in AD and breast cancer (BC) and to discover the underlying transcriptional regulatory mechanisms. Fast independent component analysis (FastICA) was applied to extract significant genes from AD and BC microarray gene expression data. Based on the extracted data, the shared transcription factors (TFs) from AD and BC were captured. Second, the network component analysis (NCA) algorithm in this study was presented to quantitatively deduce the TF activities and regulatory influences because quantitative dynamic regulatory information for TFs is not available via microarray techniques. Based on the NCA results and reconstructed transcriptional regulatory networks, inverse regulatory processes and some known innate immune responses were described in detail. Many of the shared TFs and their regulatory processes were found to be closely related to the adaptive immune response from dramatically different directions and to play crucial roles in both AD and BC pathogenesis. From the above findings, the opposing cellular behaviors demonstrate an invaluable opportunity to gain insights into the pathogenesis of these two types of diseases and to aid in developing new treatments.
Collapse
Affiliation(s)
- Wei Kong
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Xiaoyang Mou
- Department of Biochemistry, Rowan University and Guava Medicine, Glassboro, New Jersey, United States of America
| | - Jin Deng
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Benteng Di
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Ruxing Zhong
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| | - Yang Yang
- Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Weiming Zeng
- College of Information Engineering, Shanghai Maritime University, Haigang Ave., Shanghai, P. R. China
| |
Collapse
|
30
|
Affeldt BM, Obenaus A, Chan J, Pardo AC. Region specific oligodendrocyte transcription factor expression in a model of neonatal hypoxic injury. Int J Dev Neurosci 2017; 61:1-11. [DOI: 10.1016/j.ijdevneu.2017.05.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 05/11/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022] Open
Affiliation(s)
- Bethann M. Affeldt
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| | - Andre Obenaus
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
- Cell, Molecular and Developmental Biology ProgramUniversity of CaliforniaRiverside, 1140 Bachelor HallRiversideCA92521USA
| | - Jonathan Chan
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| | - Andrea C. Pardo
- Department of PediatricsLoma Linda University11175 Campus St., Coleman Pavilion Room A1109Loma LindaCA92354USA
| |
Collapse
|
31
|
Marsters CM, Rosin JM, Thornton HF, Aslanpour S, Klenin N, Wilkinson G, Schuurmans C, Pittman QJ, Kurrasch DM. Oligodendrocyte development in the embryonic tuberal hypothalamus and the influence of Ascl1. Neural Dev 2016; 11:20. [PMID: 27863528 PMCID: PMC5116181 DOI: 10.1186/s13064-016-0075-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 11/08/2016] [Indexed: 01/28/2023] Open
Abstract
Background Although the vast majority of cells in our brains are glia, we are only beginning to understand programs governing their development, especially within the embryonic hypothalamus. In mice, gliogenesis is a protracted process that begins during embryonic stages and continues into the early postnatal period, with glial progenitors first producing oligodendrocyte precursor cells, which then differentiate into pro-oligodendrocytes, pro-myelinating oligodendrocytes, and finally, mature myelinating oligodendrocytes. The exact timing of the transition from neurogenesis to gliogenesis and the subsequent differentiation of glial lineages remains unknown for most of the Central Nervous System (CNS), and is especially true for the hypothalamus. Methods Here we used mouse embryonic brain samples to determine the onset of gliogenesis and expansion of glial populations in the tuberal hypothalamus using glial markers Sox9, Sox10, Olig2, PdgfRα, Aldh1L1, and MBP. We further employed Ascl1 and Neurog2 mutant mice to probe the influence of these proneual genes on developing embryonic gliogenic populations. Results Using marker analyses for glial precursors, we found that gliogenesis commences just prior to E13.5 in the tuberal hypothalamus, beginning with the detection of glioblast and oligodendrocyte precursor cell markers in a restricted domain adjacent to the third ventricle. Sox9+ and Olig2+ glioblasts are also observed in the mantle region from E13.5 onwards, many of which are Ki67+ proliferating cells, and peaks at E17.5. Using Ascl1 and Neurog2 mutant mice to investigate the influence of these bHLH transcription factors on the progression of gliogenesis in the tuberal hypothalamus, we found that the elimination of Ascl1 resulted in an increase in oligodendrocyte cells throughout the expansive period of oligodendrogenesis. Conclusion Our results are the first to define the timing of gliogenesis in the tuberal hypothalamus and indicate that Ascl1 is required to repress oligodendrocyte differentiation within this brain region. Electronic supplementary material The online version of this article (doi:10.1186/s13064-016-0075-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Candace M Marsters
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Pharmacology & Physiology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Jessica M Rosin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hayley F Thornton
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Shaghayegh Aslanpour
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Natasha Klenin
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Grey Wilkinson
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Carol Schuurmans
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Biological Sciences Platform, Sunnybrook Research Institute, Toronto, ON, M4N 3M5, Canada
| | - Quentin J Pittman
- Department of Pharmacology & Physiology, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Deborah M Kurrasch
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada. .,Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
32
|
Ascl1 Is Required for the Development of Specific Neuronal Subtypes in the Enteric Nervous System. J Neurosci 2016; 36:4339-50. [PMID: 27076429 DOI: 10.1523/jneurosci.0202-16.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 02/25/2016] [Indexed: 12/31/2022] Open
Abstract
UNLABELLED The enteric nervous system (ENS) is organized into neural circuits within the gastrointestinal wall where it controls the peristaltic movements, secretion, and blood flow. Although proper gut function relies on the complex neuronal composition of the ENS, little is known about the transcriptional networks that regulate the diversification into different classes of enteric neurons and glia during development. Here we redefine the role of Ascl1 (Mash1), one of the few regulatory transcription factors described during ENS development. We show that enteric glia and all enteric neuronal subtypes appear to be derived from Ascl1-expressing progenitor cells. In the gut of Ascl1(-/-) mutant mice, neurogenesis is delayed and reduced, and posterior gliogenesis impaired. The ratio of neurons expressing Calbindin, TH, and VIP is selectively decreased while, for instance, 5-HT(+) neurons, which previously were believed to be Ascl1-dependent, are formed in normal numbers. Essentially the same differentiation defects are observed in Ascl1(KINgn2) transgenic mutants, where the proneural activity of Ngn2 replaces Ascl1, demonstrating that Ascl1 is required for the acquisition of specific enteric neuronal subtype features independent of its role in neurogenesis. In this study, we provide novel insights into the expression and function of Ascl1 in the differentiation process of specific neuronal subtypes during ENS development. SIGNIFICANCE STATEMENT The molecular mechanisms underlying the generation of different neuronal subtypes during development of the enteric nervous system are poorly understood despite its pivotal function in gut motility and involvement in gastrointestinal pathology. This report identifies novel roles for the transcription factor Ascl1 in enteric gliogenesis and neurogenesis. Moreover, independent of its proneurogenic activity, Ascl1 is required for the normal expression of specific enteric neuronal subtype characteristics. Distinct enteric neuronal subtypes are formed in a temporally defined order, and we observe that the early-born 5-HT(+) neurons are generated in Ascl1(-/-) mutants, despite the delayed neurogenesis. Enteric nervous system progenitor cells may therefore possess strong intrinsic control over their specification at the initial waves of neurogenesis.
Collapse
|
33
|
Bunk EC, Ertaylan G, Ortega F, Pavlou MA, Gonzalez Cano L, Stergiopoulos A, Safaiyan S, Völs S, van Cann M, Politis PK, Simons M, Berninger B, Del Sol A, Schwamborn JC. Prox1 Is Required for Oligodendrocyte Cell Identity in Adult Neural Stem Cells of the Subventricular Zone. Stem Cells 2016; 34:2115-29. [PMID: 27068685 DOI: 10.1002/stem.2374] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 02/26/2016] [Accepted: 03/10/2016] [Indexed: 01/19/2023]
Abstract
Adult neural stem cells with the ability to generate neurons and glia cells are active throughout life in both the dentate gyrus (DG) and the subventricular zone (SVZ). Differentiation of adult neural stem cells is induced by cell fate determinants like the transcription factor Prox1. Evidence has been provided for a function of Prox1 as an inducer of neuronal differentiation within the DG. We now show that within the SVZ Prox1 induces differentiation into oligodendrocytes. Moreover, we find that loss of Prox1 expression in vivo reduces cell migration into the corpus callosum, where the few Prox1 deficient SVZ-derived remaining cells fail to differentiate into oligodendrocytes. Thus, our work uncovers a novel function of Prox1 as a fate determinant for oligodendrocytes in the adult mammalian brain. These data indicate that the neurogenic and oligodendrogliogenic lineages in the two adult neurogenic niches exhibit a distinct requirement for Prox1, being important for neurogenesis in the DG but being indispensable for oligodendrogliogenesis in the SVZ. Stem Cells 2016;34:2115-2129.
Collapse
Affiliation(s)
- Eva C Bunk
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Gökhan Ertaylan
- Computational Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.,Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
| | - Felipe Ortega
- Institute of Physiological Chemistry and the Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Biochemistry and Molecular Biology IV, Faculty of Veterinary Medicine, Complutense University of Madrid, Madrid, Spain
| | - Maria A Pavlou
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany.,Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Laura Gonzalez Cano
- Computational Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | | | - Shima Safaiyan
- Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | - Sandra Völs
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Marianne van Cann
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany
| | - Panagiotis K Politis
- Center of Basic Research, Biomedical Research Foundation, Academy of Athens, Greece
| | - Mikael Simons
- Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Department of Neurology, University of Göttingen, Göttingen, Germany
| | - Benedikt Berninger
- Institute of Physiological Chemistry and the Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Antonio Del Sol
- Computational Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Jens C Schwamborn
- Institute of Cell Biology, ZMBE, University of Münster, Münster, Germany.,Developmental and Cellular Biology, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| |
Collapse
|
34
|
Dionne N, Dib S, Finsen B, Denarier E, Kuhlmann T, Drouin R, Kokoeva M, Hudson TJ, Siminovitch K, Friedman HC, Peterson AC. Functional organization of anMbpenhancer exposes striking transcriptional regulatory diversity within myelinating glia. Glia 2015; 64:175-94. [DOI: 10.1002/glia.22923] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/04/2015] [Accepted: 09/09/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Nancy Dionne
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Samar Dib
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Bente Finsen
- Department of Neurobiology Research; Institute of Molecular Medicine, University of Southern Denmark; Odense Denmark
| | - Eric Denarier
- Institut National De La Santé Et De La Recherche Médicale, U836-GIN iRTSV-GPC; Site Santé La Tronche, BP170 Grenoble Cedex 9 France
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital, Münster; Pottkamp 2 Münster Germany
| | - Régen Drouin
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences; Université De Sherbrooke; Sherbrooke Quebec Canada
| | - Maia Kokoeva
- Department of Medicine; McGill University/MUHC Research Institute; Montreal Quebec Canada
| | - Thomas J. Hudson
- Ontario Institute for Cancer Research, MaRS Centre; South Tower Toronto Ontario Canada
| | - Kathy Siminovitch
- Department of Medicine; University of Toronto, Samuel Lunenfeld and Toronto General Research Institutes; Toronto Ontario Canada
- Department of Immunology and Molecular Genetics; University of Toronto; Toronto Ontario Canada
| | - Hana C Friedman
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| | - Alan C. Peterson
- Laboratory of Developmental Biology; Ludmer Research and Training Building, McGill University; Montreal Quebec Canada
| |
Collapse
|
35
|
Küspert M, Wegner M. SomethiNG 2 talk about-Transcriptional regulation in embryonic and adult oligodendrocyte precursors. Brain Res 2015; 1638:167-182. [PMID: 26232072 DOI: 10.1016/j.brainres.2015.07.024] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/14/2015] [Accepted: 07/18/2015] [Indexed: 12/26/2022]
Abstract
Glial cells that express the chondroitin sulfate proteoglycan NG2 represent an inherently heterogeneous population. These so-called NG2-glia are present during development and in the adult CNS, where they are referred to as embryonic oligodendrocyte precursors and adult NG2-glia, respectively. They give rise to myelinating oligodendrocytes at all times of life. Over the years much has been learnt about the transcriptional network in embryonic oligodendrocyte precursors, and several transcription factors from the HLH, HMG-domain, zinc finger and homeodomain protein families have been identified as main constituents. Much less is known about the corresponding network in adult NG2-glia. Here we summarize and discuss current knowledge on functions of each of these transcription factor families in NG2-glia, and where possible compare transcriptional regulation in embryonic oligodendrocyte precursors and adult NG2-glia. This article is part of a Special Issue entitled SI:NG2-glia (Invited only).
Collapse
Affiliation(s)
- Melanie Küspert
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| | - Michael Wegner
- Institut für Biochemie, Emil-Fischer-Zentrum, Friedrich-Alexander-Universität Erlangen-Nürnberg, Fahrstrasse 17, Erlangen D-91054, Germany.
| |
Collapse
|
36
|
The Anti-Aging Protein Klotho Enhances Remyelination Following Cuprizone-Induced Demyelination. J Mol Neurosci 2015; 57:185-96. [DOI: 10.1007/s12031-015-0598-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/02/2015] [Indexed: 01/23/2023]
|
37
|
Molofsky AV, Deneen B. Astrocyte development: A Guide for the Perplexed. Glia 2015; 63:1320-9. [PMID: 25963996 DOI: 10.1002/glia.22836] [Citation(s) in RCA: 222] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2015] [Accepted: 03/26/2015] [Indexed: 01/09/2023]
Abstract
Astrocytes are the predominant cell type in the brain and perform key functions vital to CNS physiology, including blood brain barrier formation and maintenance, synaptogenesis, neurotransmission, and metabolic regulation. To fully understand the contributions of astrocytes to brain function, it will be important to bridge the existing gap between development and physiology. In this review, we provide an overview of Astrocyte development, including recent insights into molecular mechanisms of astrocyte specification, regional patterning and proliferation. This developmental perspective is complemented with recent findings that describe the functional maturation of astrocytes and their prospective diversity. Future progress in understanding Astrocyte development will depend on the development of astrocyte- stage specific markers and tools for manipulating astrocytes without affecting neuron production. Ultimately, a mechanistic approach to Astrocyte development will be crucial to developing new treatments for the many neurodevelopmental, neurodegenerative, neuroimmune, and neoplastic diseases involving astrocyte dysfunction.
Collapse
Affiliation(s)
- Anna Victoria Molofsky
- Department of Psychiatry, University of California-San Francisco, San Francisco, California
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas
| |
Collapse
|