1
|
Gems D. How aging causes osteoarthritis: An evolutionary physiology perspective. Osteoarthritis Cartilage 2025:S1063-4584(25)01024-6. [PMID: 40381687 DOI: 10.1016/j.joca.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/29/2025] [Accepted: 05/05/2025] [Indexed: 05/20/2025]
Abstract
Late-life diseases result from the poorly understood process of senescence (aging), which is largely genetically determined. According to a recently proposed evolutionary physiology-based account, the multifactorial model, senescence is largely caused by evolved but non-adaptive programmatic mechanisms specified by the wild-type (i.e. normal) genome. These act together with disruptions to wild-type function (due e.g. to infectious pathogens, mechanical injury and malnutrition) in a variety of combinations to generate diverse late-life diseases. Here, I explore the utility of this model by testing its capacity to provide an account of one complex, late-life disease, osteoarthritis (OA), and suggest a framework for understanding OA etiology. In this cartilage-focused framework, a core OA disease mechanism is a futile (non-adaptive) developmental program of endochondral ossification, in which hypertrophic articular cartilage chondrocytes alter joint architecture. Programmatic changes prime chondrocytes for futile program activation, which can be triggered by secondary causes of OA (e.g. joint mechanical injury). I suggest that an evolutionary cause of this priming, involving antagonistic pleiotropy, is selection to maximize early-life tissue repair benefits at the expense of late-life programmatic costs.
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Department of Genetics, Evolution and Environment, University College London, Gower Street, London, UK.
| |
Collapse
|
2
|
Dave R, Pandey K, Patel R, Solanki R, Gour N, Bhatia D. Phase Separation in Biological Systems: Implications for Disease Pathogenesis. Chembiochem 2025:e2400883. [PMID: 40180594 DOI: 10.1002/cbic.202400883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/05/2025]
Abstract
Phase separation is the phenomenon where distinct liquid phases, within solution, play a critical role in the organization and function of biomolecular condensates within cells. Dysregulation of phase separation has been implicated, which can be witnessed in various diseases including neurodegenerative disorders, metabolic syndromes, and cancer. This review provides a comprehensive analysis of the role of phase separation in disease pathogenesis, which focuses on single amino acids, carbohydrates, and nucleotides. Molecular mechanisms underlying phase separation are also discussed with specific examples of diseases associated with dysregulated phase separation. Furthermore, consideration of therapeutic strategies targeting phase separation for disease intervention is explored.
Collapse
Affiliation(s)
- Raj Dave
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Kshipra Pandey
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Ritu Patel
- Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat, 382355, India
| | - Nidhi Gour
- Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, 382740, India
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology, Palaj, Gujarat, 382355, India
| |
Collapse
|
3
|
Xu L, Zhang Y, Yang H, Liu Q, Fan P, Yu J, Zhang M, Yu S, Wu Y, Wang M. Proliferative behaviours of CD90-expressing chondrocytes under the control of the TSC1-mTOR/PTHrP-nuclear localisation segment pathway. Osteoarthritis Cartilage 2025; 33:437-446. [PMID: 39730094 DOI: 10.1016/j.joca.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/12/2024] [Accepted: 11/13/2024] [Indexed: 12/29/2024]
Abstract
OBJECTIVE Some cells in temporomandibular joint (TMJ) cartilage undergo proliferation in response to negative pressure, which can be induced in vivo by creating bilateral anterior elevation (BAE). TMJ cartilage harbours CD90-expressing cells, and CD90 expression increases under certain controlled conditions. The parathyroid hormone-related peptide (PTHrP) nuclear localisation segment (NLS) promotes chondrocyte proliferation, and mammalian target of rapamycin (mTOR) signalling plays a regulatory role in promoting PTHrP transcription. The purpose of this study was to determine the role of the mTOR/PTHrP-NLS axis in the proliferative responses of CD90+ chondrocytes in TMJ cartilage to BAE. METHODS CD90+ cells were isolated from TMJ cartilage and subjected to negative pressure followed by RNA sequencing (RNA-seq). A PTHrP-NLS conditional mutation (CD90-CreER;Pthlh84STOP-fl/fl) mouse model was developed to obtain CD90+ cell-specific PTHrP-NLS conditional mutation (Pthlh84STOP) littermate. CD90-Cre;Tsc1fl/fl mice and CD90-Cre;mTORfl/fl mice were generated to obtain Mtor conditional knockout (Mtor-CKO) and Tsc1-CKO littermates. RESULTS Using RNA-seq, the mTOR signalling pathway was identified as the most significant biological process occurring in superficial zone cells of the TMJ condylar cartilage under negative pressure. Proliferation of CD90+ cells was stimulated in Tsc1-CKO littermates but inhibited in both Mtor-CKO and Pthlh84STOP littermates. BAE did not promote chondrocyte proliferation in either Mtor-CKO or Pthlh84STOP littermates. Administration of the PTHrP87-139 peptide to Mtor-CKO mice restored chondrocyte proliferation and rescued the promoting effect of BAE in TMJ cartilage. CONCLUSIONS CD90+ chondrocytes in TMJ cartilage proliferate in response to negative pressure under the control of the TSC1-mTOR/PTHrP-NLS pathway.
Collapse
Affiliation(s)
- Lingfeng Xu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Yuejiao Zhang
- Department of Oral Anatomy and Physiology and TMD, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Hongxu Yang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Qian Liu
- Department of Stomatology, Air Force Medical Center, PLA, The Fourth Military Medical University, Beijing, China
| | - Peinan Fan
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Jia Yu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Mian Zhang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Shibin Yu
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China
| | - Yaoping Wu
- Department of Joint Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, China.
| | - Meiqing Wang
- Department of Oral Anatomy and Physiology and TMD, College of Stomatology, the Fourth Military Medical University, Xi'an, China; Department of Oral Anatomy and Physiology and TMD, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China.
| |
Collapse
|
4
|
Zhang B, Hu P, Wu X, Zheng L, Li X, Wang K, Han X, Wang Y, Hong Y, Qiao R. Mining of candidate genes related to body size in Chinese native pig breeds based on public data. Sci Rep 2025; 15:9793. [PMID: 40118904 PMCID: PMC11928613 DOI: 10.1038/s41598-025-88583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/29/2025] [Indexed: 03/24/2025] Open
Abstract
To study the key genes that influence the body size of local pig breeds in China. Genome-wide SNP chip data from a total of 129 pigs from eight breeds, consisting of four large body size breeds (MZ, HT, ST, RC) and four small body size breeds (XI, BX, WZ, DN) were analyzed. Principal Component Analysis (PCA) was employed to assess the genetic clustering of the eight breeds. Fst and XP-CLR were used to detect selective signals between the large ans small body size breeds groups. The PCA results indicated a clear clustering of small breeds and a dispersion distribution among large breeds. Fst and XP-CLR identified 142 overlapping regions within a 500 kb up & down stream of significant loci. These regions encompassed 520 annotated genes, which were enriched in 34 biological pathways. Gene network analysis highlighted nine key genes, of which five (NPR3, TNFSF11, TBC1D7, FGF2, IGF1R) are known to be associated with bone growth and body size traits in animals. Additionally, four novel candidate genes (IKBKB, SFRP1, LRP6, SPRY1) were identified that might be related to pig body size. Our findings provide a theoretical basis for further revealing the genetic mechanism of pig body size traits.
Collapse
Affiliation(s)
- Ben Zhang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panyang Hu
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiangzhe Wu
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lixiang Zheng
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yining Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuan Hong
- College of Animal Science and Technology, FuJian Vocational College of Agriculture, FuZhou, 350119, China.
| | - Ruimin Qiao
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
5
|
Li Q, Jiang S, Lei K, Han H, Chen Y, Lin W, Xiong Q, Qi X, Gan X, Sheng R, Wang Y, Zhang Y, Ma J, Li T, Lin S, Zhou C, Chen D, Yuan Q. Metabolic rewiring during bone development underlies tRNA m7G-associated primordial dwarfism. J Clin Invest 2024; 134:e177220. [PMID: 39255038 PMCID: PMC11473147 DOI: 10.1172/jci177220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 08/26/2024] [Indexed: 09/12/2024] Open
Abstract
Translation of mRNA to protein is tightly regulated by transfer RNAs (tRNAs), which are subject to various chemical modifications that maintain structure, stability, and function. Deficiency of tRNA N7-methylguanosine (m7G) modification in patients causes a type of primordial dwarfism, but the underlying mechanism remains unknown. Here we report that the loss of m7G rewires cellular metabolism, leading to the pathogenesis of primordial dwarfism. Conditional deletion of the catalytic enzyme Mettl1 or missense mutation of the scaffold protein Wdr4 severely impaired endochondral bone formation and bone mass accrual. Mechanistically, Mettl1 knockout decreased abundance of m7G-modified tRNAs and inhibited translation of mRNAs relating to cytoskeleton and Rho GTPase signaling. Meanwhile, Mettl1 knockout enhanced cellular energy metabolism despite incompetent proliferation and osteogenic commitment. Further exploration revealed that impairment of Rho GTPase signaling upregulated the level of branched-chain amino acid transaminase 1 (BCAT1) that rewired cell metabolism and restricted intracellular α-ketoglutarate (αKG). Supplementation of αKG ameliorated the skeletal defect of Mettl1-deficient mice. In addition to the selective translation of metabolism-related mRNAs, we further revealed that Mettl1 knockout globally regulated translation via integrated stress response (ISR) and mammalian target of rapamycin complex 1 (mTORC1) signaling. Restoring translation by targeting either ISR or mTORC1 aggravated bone defects of Mettl1-deficient mice. Overall, our study unveils a critical role of m7G tRNA modification in bone development by regulation of cellular metabolism and indicates suspension of translation initiation as a quality control mechanism in response to tRNA dysregulation.
Collapse
Affiliation(s)
- Qiwen Li
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuang Jiang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kexin Lei
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hui Han
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yaqian Chen
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xingying Qi
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xinyan Gan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Sheng
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yarong Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jieyi Ma
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Tao Li
- West China–Washington Mitochondria and Metabolism Center and Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Shuibin Lin
- Center for Translational Medicine, Precision Medicine Institute, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Demeng Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Jiang H, Ding Y, Lin X, Tian Q, Liu Y, He H, Wu Y, Tian X, Zwingenberger S. Malvidin attenuates trauma-induced heterotopic ossification of tendon in rats by targeting Rheb for degradation via the ubiquitin-proteasome pathway. J Cell Mol Med 2024; 28:e18349. [PMID: 38686493 PMCID: PMC11058603 DOI: 10.1111/jcmm.18349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 03/01/2024] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
The pathogenesis of trauma-induced heterotopic ossification (HO) in the tendon remains unclear, posing a challenging hurdle in treatment. Recognizing inflammation as the root cause of HO, anti-inflammatory agents hold promise for its management. Malvidin (MA), possessing anti-inflammatory properties, emerges as a potential agent to impede HO progression. This study aimed to investigate the effect of MA in treating trauma-induced HO and unravel its underlying mechanisms. Herein, the effectiveness of MA in preventing HO formation was assessed through local injection in a rat model. The potential mechanism underlying MA's treatment was investigated in the tendon-resident progenitor cells of tendon-derived stem cells (TDSCs), exploring its pathway in HO formation. The findings demonstrated that MA effectively hindered the osteogenic differentiation of TDSCs by inhibiting the mTORC1 signalling pathway, consequently impeding the progression of trauma-induced HO of Achilles tendon in rats. Specifically, MA facilitated the degradation of Rheb through the K48-linked ubiquitination-proteasome pathway by modulating USP4 and intercepted the interaction between Rheb and the mTORC1 complex, thus inhibiting the mTORC1 signalling pathway. Hence, MA presents itself as a promising candidate for treating trauma-induced HO in the Achilles tendon, acting by targeting Rheb for degradation through the ubiquitin-proteasome pathway.
Collapse
Affiliation(s)
- Huaji Jiang
- Yue Bei People's Hospital Postdoctoral Innovation Practice BaseSouthern Medical UniversityGuangzhouChina
| | - Yan Ding
- Department of Diagnostics, School of MedicineHunan University of MedicineHuaihuaHunan ProvinceChina
| | - Xuemei Lin
- Department of Pediatric OrthopedicsGuangzhou Women and Children's Medical Center, Guangzhou Medical UniversityGuangzhouChina
| | - Qinyu Tian
- Department of Orthopaedics and Traumatology, Faculty of MedicineThe Chinese University of Hong KongHong KongSARChina
| | - Yakui Liu
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
| | - Hebei He
- Department of Sports Medicine, The First Affiliated Hospital, Guangdong Provincial Key Laboratory of Speed Capability, The Guangzhou Key Laboratory of Precision Orthopedics and Regenerative MedicineJinan UniversityGuangzhouPR China
| | - Yongfu Wu
- Yue Bei People's Hospital Postdoctoral Innovation Practice BaseSouthern Medical UniversityGuangzhouChina
| | - Xinggui Tian
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
| | - Stefan Zwingenberger
- Center for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
- University Center of Orthopaedic, Trauma and Plastic Surgery, University Hospital Carl Gustav Carus at Technische Universität DresdenDresdenGermany
| |
Collapse
|
7
|
Ho H'ng C, Amarasinghe SL, Zhang B, Chang H, Qu X, Powell DR, Rosello-Diez A. Compensatory growth and recovery of cartilage cytoarchitecture after transient cell death in fetal mouse limbs. Nat Commun 2024; 15:2940. [PMID: 38580631 PMCID: PMC10997652 DOI: 10.1038/s41467-024-47311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 03/27/2024] [Indexed: 04/07/2024] Open
Abstract
A major question in developmental and regenerative biology is how organ size and architecture are controlled by progenitor cells. While limb bones exhibit catch-up growth (recovery of a normal growth trajectory after transient developmental perturbation), it is unclear how this emerges from the behaviour of chondroprogenitors, the cells sustaining the cartilage anlagen that are progressively replaced by bone. Here we show that transient sparse cell death in the mouse fetal cartilage is repaired postnatally, via a two-step process. During injury, progression of chondroprogenitors towards more differentiated states is delayed, leading to altered cartilage cytoarchitecture and impaired bone growth. Then, once cell death is over, chondroprogenitor differentiation is accelerated and cartilage structure recovered, including partial rescue of bone growth. At the molecular level, ectopic activation of mTORC1 correlates with, and is necessary for, part of the recovery, revealing a specific candidate to be explored during normal growth and in future therapies.
Collapse
Affiliation(s)
- Chee Ho H'ng
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Shanika L Amarasinghe
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
- Bioinformatics Node - Monash Genomics and Bioinformatics Platform, Monash University, Clayton, 3800 VIC, Australia
| | - Boya Zhang
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
| | - Hojin Chang
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
- Biological Optical Microscopy Platform, Faculty of Medicine, Dentistry & Health Sciences. The University of Melbourne, Parkville, 3010, VIC, Australia
| | - Xinli Qu
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia
| | - David R Powell
- Bioinformatics Node - Monash Genomics and Bioinformatics Platform, Monash University, Clayton, 3800 VIC, Australia
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, 3800 VIC, Australia.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Xie M, Kaiser M, Gershtein Y, Schnyder D, Deviatiiarov R, Gazizova G, Shagimardanova E, Zikmund T, Kerckhofs G, Ivashkin E, Batkovskyte D, Newton PT, Andersson O, Fried K, Gusev O, Zeberg H, Kaiser J, Adameyko I, Chagin AS. The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling. Nat Commun 2024; 15:2367. [PMID: 38531868 DOI: 10.1038/s41467-024-46030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Flemingsberg, Sweden
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Markéta Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Yaakov Gershtein
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Schnyder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research (IREC), UCLouvain, Woluwe, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Evgeny Ivashkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Department of Developmental and Comparative Physiology, N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dominyka Batkovskyte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oleg Gusev
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
9
|
Tucker SK, Ghosal R, Swartz ME, Zhang S, Eberhart JK. Zebrafish raptor mutation inhibits the activity of mTORC1, inducing craniofacial defects due to autophagy-induced neural crest cell death. Development 2024; 151:dev202216. [PMID: 38512806 PMCID: PMC11006402 DOI: 10.1242/dev.202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/26/2024] [Indexed: 03/23/2024]
Abstract
The mechanistic target of rapamycin (mTOR) coordinates metabolism and cell growth with environmental inputs. mTOR forms two functional complexes: mTORC1 and mTORC2. Proper development requires both complexes but mTORC1 has unique roles in numerous cellular processes, including cell growth, survival and autophagy. Here, we investigate the function of mTORC1 in craniofacial development. We created a zebrafish raptor mutant via CRISPR/Cas9, to specifically disrupt mTORC1. The entire craniofacial skeleton and eyes were reduced in size in mutants; however, overall body length and developmental timing were not affected. The craniofacial phenotype associates with decreased chondrocyte size and increased neural crest cell death. We found that autophagy is elevated in raptor mutants. Chemical inhibition of autophagy reduced cell death and improved craniofacial phenotypes in raptor mutants. Genetic inhibition of autophagy, via mutation of the autophagy gene atg7, improved facial phenotypes in atg7;raptor double mutants, relative to raptor single mutants. We conclude that finely regulated levels of autophagy, via mTORC1, are crucial for craniofacial development.
Collapse
Affiliation(s)
- Scott K. Tucker
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Ritika Ghosal
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Mary E. Swartz
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Stephanie Zhang
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| | - Johann K. Eberhart
- Department of Molecular Biosciences, Waggoner Center for Alcohol and Addiction Research and Institute for Neuroscience, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
10
|
Zhang Y, Wen J, Lai R, Zhang J, Li K, Zhang Y, Liu A, Bai X. Rheb1 is required for limb growth through regulating chondrogenesis in growth plate. Cell Tissue Res 2024; 395:261-269. [PMID: 38253890 PMCID: PMC10904423 DOI: 10.1007/s00441-024-03861-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Ras homology enriched in the brain (Rheb) is well established as a critical regulator of cell proliferation and differentiation in response to growth factors and nutrients. However, the role of Rheb1 in limb development remains unknown. Here, we found that Rheb1 was dynamically expressed during the proliferation and differentiation of chondrocytes in the growth plate. Given that Prrx1+ limb-bud-like mesenchymal cells are the source of limb chondrocytes and are essential for endochondral ossification, we conditionally deleted Rheb1 using Prrx1-Cre and found a limb dwarfism in Prrx1-Cre; Rheb1fl/fl mice. Normalized to growth plate height, the conditional knockout (cKO) mice exhibited a significant decrease in column count of proliferative zones which was increased in hypertrophic zones resulting in decreased growth plate size, indicating abnormal endochondral ossification. Interestingly, although Rheb1 deletion profoundly inhibited the transcription factor Sox9 in limb cartilage; levels of runx2 and collagen type 2 were both increased. These novel findings highlight the essential role of Rheb1 in limb growth and indicate a complex regulation of Rheb1 in chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Yuwei Zhang
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiaxin Wen
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Ruijun Lai
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jiahuan Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510000, People's Republic of China
| | - Kai Li
- The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Yue Zhang
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Anling Liu
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| | - Xiaochun Bai
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
11
|
Ahn SY, Bagheri Varzaneh M, Zhao Y, Rozynek J, Ravindran S, Banks J, Chaudhry M, Reed DA. NG2/CSPG4 attenuates motility in mandibular fibrochondrocytes under serum starvation conditions. Front Cell Dev Biol 2023; 11:1240920. [PMID: 38020894 PMCID: PMC10662293 DOI: 10.3389/fcell.2023.1240920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 12/01/2023] Open
Abstract
The migration of mandibular fibrochondrocytes is important for the development of the mandible, the homeostasis of the mandibular cartilage, and for the capacity of the tissue to respond to injury. Mandibular fibrochondrocytes have to overcome formidable obstacles during migration including a dense and heterogeneous three-dimensional matrix. Guiding the direction of cell migration and commitment to a migratory phenotype in this microenvironment necessitates a multivalent response to chemotactic and extracellular matrix-mediated stimuli. One of the key matrix components in the cartilage of the temporomandibular joint is type VI collagen. Neuron/glial antigen 2 (NG2/CSPG4) is a transmembrane proteoglycan that binds with collagen VI and has been implicated in a wide range of cell behaviors including cell migration, motility, adhesion, and proliferation. While NG2/CSPG4 has been shown to be a key regulator of mandibular cartilage homeostasis, its role in the migration of mandibular fibrochondrocytes during normal and cell stress conditions has yet to be resolved. Here, we address this gap in knowledge by characterizing NG2/CSPG4-dependent migration in mandibular fibrochondrocytes using primary mandibular fibrochondrocytes isolated from control and full length NG2/CSPG4 knockout mice, in primary mandibular fibrochondrocytes isolated from NG2|DsRed reporter mice and in an immortalized mandibular fibrochondrocyte cell line with a mutated NG2/CSPG4 ectodomain. All three cells demonstrate similar results, with loss of the full length or truncated NG2/CSPG4 increasing the rate of cell migration in serum starvation/cell stress conditions. These findings clearly implicate NG2/CSPG4 as a key molecule in the regulation of cell migration in mandibular fibrochondrocytes in normal and cell stress conditions, underscoring the role of NG2/CSPG4 as a mechanosensitive signaling hub in the mandibular cartilage.
Collapse
Affiliation(s)
- Shin Young Ahn
- Department of Periodontics, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Mina Bagheri Varzaneh
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Yan Zhao
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Jacob Rozynek
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Jonathan Banks
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - Minahil Chaudhry
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| | - David A. Reed
- Department of Oral Biology, College of Dentistry, University of Illinois Chicago, Chicago, IL, United States
| |
Collapse
|
12
|
Kubi JA, Brah AS, Cheung KMC, Lee YL, Lee KF, Sze SCW, Qiao W, Yeung KWK. A new osteogenic protein isolated from Dioscorea opposita Thunb accelerates bone defect healing through the mTOR signaling axis. Bioact Mater 2023; 27:429-446. [PMID: 37152710 PMCID: PMC10160600 DOI: 10.1016/j.bioactmat.2023.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/13/2023] [Accepted: 04/17/2023] [Indexed: 05/09/2023] Open
Abstract
Delayed bone defect repairs lead to severe health and socioeconomic impacts on patients. Hence, there are increasing demands for medical interventions to promote bone defect healing. Recombinant proteins such as BMP-2 have been recognized as one of the powerful osteogenic substances that promote mesenchymal stem cells (MSCs) to osteoblast differentiation and are widely applied clinically for bone defect repairs. However, recent reports show that BMP-2 treatment has been associated with clinical adverse side effects such as ectopic bone formation, osteolysis and stimulation of inflammation. Here, we have identified one new osteogenic protein, named 'HKUOT-S2' protein, from Dioscorea opposita Thunb. Using the bone defect model, we have shown that the HKUOT-S2 protein can accelerate bone defect repair by activating the mTOR signaling axis of MSCs-derived osteoblasts and increasing osteoblastic biomineralization. The HKUOT-S2 protein can also modulate the transcriptomic changes of macrophages, stem cells, and osteoblasts, thereby enhancing the crosstalk between the polarized macrophages and MSCs-osteoblast differentiation to facilitate osteogenesis. Furthermore, this protein had no toxic effects in vivo. We have also identified HKUOT-S2 peptide sequence TKSSLPGQTK as a functional osteogenic unit that can promote osteoblast differentiation in vitro. The HKUOT-S2 protein with robust osteogenic activity could be a potential alternative osteoanabolic agent for promoting osteogenesis and bone defect repairs. We believe that the HKUOT-S2 protein may potentially be applied clinically as a new class of osteogenic agent for bone defect healing.
Collapse
Affiliation(s)
- John Akrofi Kubi
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Augustine Suurinobah Brah
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Kenneth Man Chee Cheung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| | - Yin Lau Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, Hong Kong S.A.R, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Kai-Fai Lee
- Department of Obstetrics and Gynaecology, Li Ka Shing Faculty of Medicine, HKU, 21 Sassoon Road, Hong Kong S.A.R, PR China
- Shenzhen Key Laboratory of Fertility Regulation, Reproductive Medicine Center, HKU- Shenzhen Hospital, Shenzhen, PR China
| | - Stephen Cho Wing Sze
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R, PR China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon Tong, Hong Kong S.A.R, PR China
| | - Wei Qiao
- Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, Hong Kong S.A.R, PR China
| | - Kelvin Wai-Kwok Yeung
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong (HKU), Hong Kong S.A.R., PR China
- Shenzhen Key Laboratory for Innovative Technology in Orthopaedic Trauma, HKU-Shenzhen Hospital, Shenzhen, 518053, PR China
| |
Collapse
|
13
|
Wu RX, Miao BB, Han FY, Niu SF, Liang YS, Liang ZB, Wang QH. Chromosome-Level Genome Assembly Provides Insights into the Evolution of the Special Morphology and Behaviour of Lepturacanthus savala. Genes (Basel) 2023; 14:1268. [PMID: 37372448 DOI: 10.3390/genes14061268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/13/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Savalani hairtail Lepturacanthus savala is a widely distributed fish along the Indo-Western Pacific coast, and contributes substantially to trichiurid fishery resources worldwide. In this study, the first chromosome-level genome assembly of L. savala was obtained by PacBio SMRT-Seq, Illumina HiSeq, and Hi-C technologies. The final assembled L. savala genome was 790.02 Mb with contig N50 and scaffold N50 values of 19.01 Mb and 32.77 Mb, respectively. The assembled sequences were anchored to 24 chromosomes by using Hi-C data. Combined with RNA sequencing data, 23,625 protein-coding genes were predicted, of which 96.0% were successfully annotated. In total, 67 gene family expansions and 93 gene family contractions were detected in the L. savala genome. Additionally, 1825 positively selected genes were identified. Based on a comparative genomic analysis, we screened a number of candidate genes associated with the specific morphology, behaviour-related immune system, and DNA repair mechanisms in L. savala. Our results preliminarily revealed mechanisms underlying the special morphological and behavioural characteristics of L. savala from a genomic perspective. Furthermore, this study provides valuable reference data for subsequent molecular ecology studies of L. savala and whole-genome analyses of other trichiurid fishes.
Collapse
Affiliation(s)
- Ren-Xie Wu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Ben-Ben Miao
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Fang-Yuan Han
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Su-Fang Niu
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yan-Shan Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Zhen-Bang Liang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qing-Hua Wang
- College of Fisheries, Guangdong Ocean University, Zhanjiang 524088, China
| |
Collapse
|
14
|
Zhang Z, He C, Bao C, Li Z, Jin W, Li C, Chen Y. MiRNA Profiling and Its Potential Roles in Rapid Growth of Velvet Antler in Gansu Red Deer ( Cervus elaphus kansuensis). Genes (Basel) 2023; 14:424. [PMID: 36833351 PMCID: PMC9957509 DOI: 10.3390/genes14020424] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
A significant variety of cell growth factors are involved in the regulation of antler growth, and the fast proliferation and differentiation of various tissue cells occur during the yearly regeneration of deer antlers. The unique development process of velvet antlers has potential application value in many fields of biomedical research. Among them, the nature of cartilage tissue and the rapid growth and development process make deer antler a model for studying cartilage tissue development or rapid repair of damage. However, the molecular mechanisms underlying the rapid growth of antlers are still not well studied. MicroRNAs are ubiquitous in animals and have a wide range of biological functions. In this study, we used high-throughput sequencing technology to analyze the miRNA expression patterns of antler growth centers at three distinct growth phases, 30, 60, and 90 days following the abscission of the antler base, in order to determine the regulatory function of miRNA on the rapid growth of antlers. Then, we identified the miRNAs that were differentially expressed at various growth stages and annotated the functions of their target genes. The results showed that 4319, 4640, and 4520 miRNAs were found in antler growth centers during the three growth periods. To further identify the essential miRNAs that could regulate fast antler development, five differentially expressed miRNAs (DEMs) were screened, and the functions of their target genes were annotated. The results of KEGG pathway annotation revealed that the target genes of the five DEMs were significantly annotated to the "Wnt signaling pathway", "PI3K-Akt signaling pathway", "MAPK signaling pathway", and "TGF-β signaling pathway", which were associated with the rapid growth of velvet antlers. Therefore, the five chosen miRNAs, particularly ppy-miR-1, mmu-miR-200b-3p, and novel miR-94, may play crucial roles in rapid antler growth in summer.
Collapse
Affiliation(s)
- Zhenxiang Zhang
- Qinghai Provincial Key Laboratory of Adaptive Management on Alpine Grassland, Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining 810016, China
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Caixia He
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changhong Bao
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Zhaonan Li
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Wenjie Jin
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Changzhong Li
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| | - Yanxia Chen
- College of Eco–Environmental Engineering, Qinghai University, Xining 810016, China
| |
Collapse
|
15
|
Csukasi F, Bosakova M, Barta T, Martin JH, Arcedo J, Barad M, Rico-Llanos GA, Zieba J, Becerra J, Krejci P, Duran I, Krakow D. Skeletal diseases caused by mutations in PTH1R show aberrant differentiation of skeletal progenitors due to dysregulation of DEPTOR. Front Cell Dev Biol 2023; 10:963389. [PMID: 36726589 PMCID: PMC9885499 DOI: 10.3389/fcell.2022.963389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 12/27/2022] [Indexed: 01/18/2023] Open
Abstract
Alterations in the balance between skeletogenesis and adipogenesis is a pathogenic feature in multiple skeletal disorders. Clinically, enhanced bone marrow adiposity in bones impairs mobility and increases fracture risk, reducing the quality of life of patients. The molecular mechanism that underlies the balance between skeletogenesis and adipogenesis is not completely understood but alterations in skeletal progenitor cells' differentiation pathway plays a key role. We recently demonstrated that parathyroid hormone (PTH)/PTH-related peptide (PTHrP) control the levels of DEPTOR, an inhibitor of the mechanistic target of rapamycin (mTOR), and that DEPTOR levels are altered in different skeletal diseases. Here, we show that mutations in the PTH receptor-1 (PTH1R) alter the differentiation of skeletal progenitors in two different skeletal genetic disorders and lead to accumulation of fat or cartilage in bones. Mechanistically, DEPTOR controls the subcellular localization of TAZ (transcriptional co-activator with a PDZ-binding domain), a transcriptional regulator that governs skeletal stem cells differentiation into either bone and fat. We show that DEPTOR regulation of TAZ localization is achieved through the control of Dishevelled2 (DVL2) phosphorylation. Depending on nutrient availability, DEPTOR directly interacts with PTH1R to regulate PTH/PTHrP signaling or it forms a complex with TAZ, to prevent its translocation to the nucleus and therefore inhibit its transcriptional activity. Our data point DEPTOR as a key molecule in skeletal progenitor differentiation; its dysregulation under pathologic conditions results in aberrant bone/fat balance.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Tomas Barta
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jorge H. Martin
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jesus Arcedo
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
| | - Maya Barad
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Gustavo A. Rico-Llanos
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Jennifer Zieba
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| | - Jose Becerra
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Institute of Animal Physiology and Genetics of the CAS, Brno, Czechia
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ivan Duran
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Laboratory of Bioengineering and Tissue Regeneration (LABRET), Department of Cell Biology, Genetics and Physiology, University of Malaga, Institute of Biomedical Research in Malaga (IBIMA-Plataforma BIONAND), Malaga, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Deborah Krakow
- Department of Orthopaedic Surgery, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Human Genetics, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California at Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Kang X, Ma X, Li H, Jin X, Gao X, Feng D, Wu S. Neuropeptide Y Promotes mTORC1 to Regulate Chondrocyte Proliferation and Hypertrophy. Endocrinology 2023; 164:6967060. [PMID: 36592126 DOI: 10.1210/endocr/bqac213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/03/2023]
Abstract
Peripheral neuropeptide Y (NPY) has been reported to regulate bone metabolism and homeostasis; however, its potential roles in growth plate chondrogenesis remain unclear. Here, we found that NPY expression decreased during chondrocyte differentiation in vitro and in vivo. NPY was required for chondrocyte proliferation; in contrast, knockdown of NPY facilitated chondrocyte hypertrophic differentiation. Administration of recombinant NPY in rat chondrocytes and metatarsal bones uncoupled normal proliferation and hypertrophic differentiation during chondrogenesis and thereby inhibited growth plate chondrogenesis and longitudinal bone growth. Remarkably, NPY activated the mTORC1 pathway in chondrocytes, whereas attenuation of mTORC1 activity by administration of rapamycin in vitro partially abrogated NPY-mediated effects on chondrocyte proliferation and hypertrophic differentiation. In addition, a combination of Y2R antagonist but not Y1R antagonist with NPY abolished NPY-mediated inhibition of metatarsal growth and growth plate chondrogenesis. Mechanistically, NPY activated Erk1/2 by NPY2R, then phosphorylated ERK1/2 activated mTORC1 to initiate PTHrP expression, which in turn promoted chondrocyte proliferation and inhibited chondrocyte hypertrophic differentiation. In conclusion, our data identified NPY as a crucial regulator of chondrogenesis and may provide a promising therapeutic strategy for skeletal diseases.
Collapse
Affiliation(s)
- Xiaomin Kang
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Xiao Ma
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| | - Huixia Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China
| | - Xinxin Jin
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China
| | - Xin Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an 710061, P.R. China
| | - Dongxu Feng
- Hong Hui Hospital, Xi'an Jiaotong University School of Medicine, Xi'an 710061, P.R. China
| | - Shufang Wu
- Center for Translational Medicine, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, P.R. China
| |
Collapse
|
17
|
H’ng CH, Khaladkar A, Rosello-Diez A. Look who's TORking: mTOR-mediated integration of cell status and external signals during limb development and endochondral bone growth. Front Cell Dev Biol 2023; 11:1153473. [PMID: 37152288 PMCID: PMC10154674 DOI: 10.3389/fcell.2023.1153473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/03/2023] [Indexed: 05/09/2023] Open
Abstract
The balance of cell proliferation and size is key for the control of organ development and repair. Moreover, this balance has to be coordinated within tissues and between tissues to achieve robustness in the organ's pattern and size. The tetrapod limb has been used to study these topics during development and repair, and several conserved pathways have emerged. Among them, mechanistic target of rapamycin (mTOR) signaling, despite being active in several cell types and developmental stages, is one of the least understood in limb development, perhaps because of its multiple potential roles and interactions with other pathways. In the body of this review, we have collated and integrated what is known about the role of mTOR signaling in three aspects of tetrapod limb development: 1) limb outgrowth; 2) chondrocyte differentiation after mesenchymal condensation and 3) endochondral ossification-driven longitudinal bone growth. We conclude that, given its ability to interact with the most common signaling pathways, its presence in multiple cell types, and its ability to influence cell proliferation, size and differentiation, the mTOR pathway is a critical integrator of external stimuli and internal status, coordinating developmental transitions as complex as those taking place during limb development. This suggests that the study of the signaling pathways and transcription factors involved in limb patterning, morphogenesis and growth could benefit from probing the interaction of these pathways with mTOR components.
Collapse
Affiliation(s)
- Chee Ho H’ng
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
| | - Ashwini Khaladkar
- Department of Biochemistry, Central University of Hyderabad, Hyderabad, India
| | - Alberto Rosello-Diez
- Australian Regenerative Medicine Institute, Monash University, Clayton, VIC, Australia
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Alberto Rosello-Diez, ,
| |
Collapse
|
18
|
Gems D, Kern CC. Is "cellular senescence" a misnomer? GeroScience 2022; 44:2461-2469. [PMID: 36068483 PMCID: PMC9768054 DOI: 10.1007/s11357-022-00652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 08/25/2022] [Indexed: 01/06/2023] Open
Abstract
One of the most striking findings in biogerontology in the 2010s was the demonstration that elimination of senescent cells delays many late-life diseases and extends lifespan in mice. This implied that accumulation of senescent cells promotes late-life diseases, particularly through action of senescent cell secretions (the senescence-associated secretory phenotype, or SASP). But what exactly is a senescent cell? Subsequent to the initial characterization of cellular senescence, it became clear that, prior to aging, this phenomenon is in fact adaptive. It supports tissue remodeling functions in a variety of contexts, including embryogenesis, parturition, and acute inflammatory processes that restore normal tissue architecture and function, such as wound healing, tissue repair after infection, and amphibian limb regeneration. In these contexts, such cells are normal and healthy and not in any way senescent in the true sense of the word, as originally meant by Hayflick. Thus, it is misleading to refer to them as "senescent." Similarly, the common assertion that senescent cells accumulate with age due to stress and DNA damage is no longer safe, particularly given their role in inflammation-a process that becomes persistent in later life. We therefore suggest that it would be useful to update some terminology, to bring it into line with contemporary understanding, and to avoid future confusion. To open a discussion of this issue, we propose replacing the term cellular senescence with remodeling activation, and SASP with RASP (remodeling-associated secretory phenotype).
Collapse
Affiliation(s)
- David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| | - Carina C. Kern
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, WC1E 6BT UK
| |
Collapse
|
19
|
Katsianou MA, Papavassiliou KA, Gargalionis AN, Agrogiannis G, Korkolopoulou P, Panagopoulos D, Themistocleous MS, Piperi C, Basdra EK, Papavassiliou AG. Polycystin-1 regulates cell proliferation and migration through AKT/mTORC2 pathway in a human craniosynostosis cell model. J Cell Mol Med 2022; 26:2428-2437. [PMID: 35285136 PMCID: PMC8995461 DOI: 10.1111/jcmm.17266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022] Open
Abstract
Craniosynostosis is the premature fusion of skull sutures and has a severe pathological impact on childrens' life. Mechanical forces are capable of triggering biological responses in bone cells and regulate osteoblastogenesis in cranial sutures, leading to premature closure. The mechanosensitive proteins polycystin-1 (PC1) and polycystin-2 (PC2) have been documented to play an important role in craniofacial proliferation and development. Herein, we investigated the contribution of PC1 to the pathogenesis of non-syndromic craniosynostosis and the associated molecular mechanisms. Protein expression of PC1 and PC2 was detected in bone fragments derived from craniosynostosis patients via immunohistochemistry. To explore the modulatory role of PC1 in primary cranial suture cells, we further abrogated the function of PC1 extracellular mechanosensing domain using a specific anti-PC1 IgPKD1 antibody. Effect of IgPKD1 treatment was evaluated with cell proliferation and migration assays. Activation of PI3K/AKT/mTOR pathway components was further detected via Western blot in primary cranial suture cells following IgPKD1 treatment. PC1 and PC2 are expressed in human tissues of craniosynostosis. PC1 functional inhibition resulted in elevated proliferation and migration of primary cranial suture cells. PC1 inhibition also induced activation of AKT, exhibiting elevated phospho (p)-AKT (Ser473) levels, but not 4EBP1 or p70S6K activation. Our findings indicate that PC1 may act as a mechanosensing molecule in cranial sutures by modulating osteoblastic cell proliferation and migration through the PC1/AKT/mTORC2 cascade with a potential impact on the development of non-syndromic craniosynostosis.
Collapse
Affiliation(s)
- Maria A. Katsianou
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Kostas A. Papavassiliou
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Antonios N. Gargalionis
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - George Agrogiannis
- First Department of PathologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Penelope Korkolopoulou
- First Department of PathologyMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | | | | - Christina Piperi
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | - Efthimia K. Basdra
- Department of Biological ChemistryMedical SchoolNational and Kapodistrian University of AthensAthensGreece
| | | |
Collapse
|
20
|
Yamaguchi H, Kitami M, Uchima Koecklin KH, He L, Wang J, Lagor WR, Perrien DS, Komatsu Y. Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice. Dev Biol 2021; 482:91-100. [PMID: 34929174 DOI: 10.1016/j.ydbio.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023]
Abstract
Ciliogenic components, such as the family of intraflagellar transport (IFT) proteins, are recognized to play key roles in endochondral ossification, a critical process to form most bones. However, the unique functions and roles of each IFT during endochondral ossification remain unclear. Here, we show that IFT20 is required for endochondral ossification in mice. Utilizing osteo-chondrocyte lineage-specific Cre mice (Prx1-Cre and Col2-Cre), we deleted Ift20 to examine its function. Although chondrocyte-specific Ift20 deletion with Col2-Cre mice did not cause any overt skeletal defects, mesoderm-specific Ift20 deletion using Prx1-Cre (Ift20:Prx1-Cre) mice resulted in shortened limb outgrowth. Primary cilia were absent on chondrocytes of Ift20:Prx1-Cre mice, and ciliary-mediated Hedgehog signaling was attenuated in Ift20:Prx1-Cre mice. Interestingly, loss of Ift20 also increased Fgf18 expression in the perichondrium that sustained Sox9 expression, thus preventing endochondral ossification. Inhibition of enhanced phospho-ERK1/2 activation partially rescued defective chondrogenesis in Ift20 mutant cells, supporting an important role for FGF signaling. Our findings demonstrate that IFT20 is a critical regulator of temporospatial FGF signaling that is required for endochondral ossification.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Megumi Kitami
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | | | - Li He
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Jianbo Wang
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel S Perrien
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, 30232, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth, Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Hsieh YL, Wei X, Wang Y, Zhang H, Qi S, Xie D, Mishina Y, Mendonça D, Hatch N, Liu F. Chondrocyte Tsc1 controls cranial base bone development by restraining the premature differentiation of synchondroses. Bone 2021; 153:116142. [PMID: 34365025 PMCID: PMC8543925 DOI: 10.1016/j.bone.2021.116142] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/30/2021] [Accepted: 08/02/2021] [Indexed: 02/05/2023]
Abstract
Cranial base bones are formed through endochondral ossification. Synchondroses are growth plates located between cranial base bones that facilitate anterior-posterior growth of the skull. Coordinated proliferation and differentiation of chondrocytes in cranial base synchondroses is essential for cranial base bone growth. Herein, we report that constitutive activation of the mechanistic target of rapamycin complex 1 (mTORC1) signaling via Tsc1 (Tuberous sclerosis 1) deletion in chondrocytes causes abnormal skull development with decreased size and rounded shape. In contrast to decreased anterior-posterior growth of the cranial base, mutant mice also exhibited significant expansion of cranial base synchondroses including the intersphenoid synchondrosis (ISS) and the spheno-occipital synchondrosis (SOS). Cranial base synchondrosis expansion in TSC1-deficient mice was accounted for by an expansion of the resting zone due to increased cell number and size without alteration in cell proliferation. Furthermore, our data showed that mTORC1 activity is inhibited in the resting and proliferating zone chondrocytes of wild type mice, and Tsc1 deletion activated mTORC1 signaling of the chondrocytes in the resting zone area. Consequently, the chondrocytes in the resting zone of TSC1-deficient mice acquired characteristics generally attributed to pre-hypertrophic chondrocytes including high mTORC1 activity, increased cell size, and increased expression level of PTH1R (Parathyroid hormone 1 receptor) and IHH (Indian hedgehog). Lastly, treatment with rapamycin, an inhibitor of mTORC1, rescued the abnormality in synchondroses. Our results established an important role for TSC1-mTORC1 signaling in regulating cranial base bone development and showed that chondrocytes in the resting zone of synchondroses are maintained in an mTORC1-inhibitory environment.
Collapse
Affiliation(s)
- Yuan-Lynn Hsieh
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Xiaoxi Wei
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; Department of Orthodontics, Hospital of Stomatology Jilin University, Changchun, Jilin 130021, China
| | - Yating Wang
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA; State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Other Research Platforms & Department of Orthodontics and Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Honghao Zhang
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Shuqun Qi
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Di Xie
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Yuji Mishina
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Daniela Mendonça
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Nan Hatch
- Department of Orthodontics and Pediatric Dentistry, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA
| | - Fei Liu
- Department of Biologic & Materials Sciences and Prosthodontics, University of Michigan School of Dentistry, Ann Arbor, MI 48109, USA.
| |
Collapse
|
22
|
Lojk J, Marc J. Roles of Non-Canonical Wnt Signalling Pathways in Bone Biology. Int J Mol Sci 2021; 22:10840. [PMID: 34639180 PMCID: PMC8509327 DOI: 10.3390/ijms221910840] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 01/15/2023] Open
Abstract
The Wnt signalling pathway is one of the central signalling pathways in bone development, homeostasis and regulation of bone mineral density. It consists of numerous Wnt ligands, receptors and co-receptors, which ensure tight spatiotemporal regulation of Wnt signalling pathway activity and thus tight regulation of bone tissue homeostasis. This enables maintenance of optimal mineral density, tissue healing and adaptation to changes in bone loading. While the role of the canonical/β-catenin Wnt signalling pathway in bone homeostasis is relatively well researched, Wnt ligands can also activate several non-canonical, β-catenin independent signalling pathways with important effects on bone tissue. In this review, we will provide a thorough overview of the current knowledge on different non-canonical Wnt signalling pathways involved in bone biology, focusing especially on the pathways that affect bone cell differentiation, maturation and function, processes involved in bone tissue structure regulation. We will describe the role of the two most known non-canonical pathways (Wnt/planar cell polarity pathways and Wnt/Ca2+ pathway), as well as other signalling pathways with a strong role in bone biology that communicate with the Wnt signalling pathway through non-canonical Wnt signalling. Our goal is to bring additional attention to these still not well researched but important pathways in the regulation of bone biology in the hope of prompting additional research in the area of non-canonical Wnt signalling pathways.
Collapse
Affiliation(s)
- Jasna Lojk
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Janja Marc
- Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia;
- University Clinical Center Ljubljana, Clinical Department of Clinical Chemistry and Biochemistry, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
24
|
Parikh P, Semba R, Manary M, Swaminathan S, Udomkesmalee E, Bos R, Poh BK, Rojroongwasinkul N, Geurts J, Sekartini R, Nga TT. Animal source foods, rich in essential amino acids, are important for linear growth and development of young children in low- and middle-income countries. MATERNAL AND CHILD NUTRITION 2021; 18:e13264. [PMID: 34467645 PMCID: PMC8710096 DOI: 10.1111/mcn.13264] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 07/02/2021] [Accepted: 08/02/2021] [Indexed: 11/28/2022]
Abstract
Growth faltering under 5 years of age is unacceptably high worldwide, and even more children, while not stunted, fail to reach their growth potential. The time between conception and 2 years of age is critical for development. The period from 6 to 23 months, when complementary foods are introduced, coincides with a time when growth faltering and delayed neurocognitive developments are most common. Fortunately, this is also the period when diet exercises its greatest influence. Growing up in an adverse environment, with a deficient diet, as typically seen in low‐ and middle‐income countries (LMICs), hampers growth and development of children and prevents them from realising their full developmental and economic future potential. Sufficient nutrient availability and utilisation are paramount to a child's growth and development trajectory, especially in the period after breastfeeding. This review highlights the importance of essential amino acids (EAAs) in early life for linear growth and, likely, neurocognitive development. The paper further discusses signalling through mammalian target of rapamycin complex 1 (mTORC1) as one of the main amino acid (AA)‐sensing hubs and the master regulator of both growth and neurocognitive development. Children in LMICs, despite consuming sufficient total protein, do not meet their EAA requirements due to poor diet diversity and low‐quality dietary protein. AA deficiencies in early life can cause reductions in linear growth and cognition. Ensuring AA adequacy in diets, particularly through inclusion of nutrient‐dense animal source foods from 6 to 23 months, is strongly encouraged in LMICs in order to compensate for less than optimal growth during complementary feeding.
Collapse
Affiliation(s)
| | - Richard Semba
- Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Manary
- Department of Paediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Sumathi Swaminathan
- St John's Research Institute, St John's National Academy of Health Sciences, Bangalore, Karnataka, India
| | | | - Rolf Bos
- FrieslandCampina, Amersfoort, The Netherlands
| | - Bee Koon Poh
- Nutritional Sciences Programme & Centre for Community Health, Faculty of Health Sciences, University Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | - Jan Geurts
- FrieslandCampina, Amersfoort, The Netherlands
| | - Rini Sekartini
- Faculty of Medicine, Department of Pediatrics, University of Indonesia and Cipto Mangunkusumo Hospital, Jakarta, Indonesia
| | - Tran Thuy Nga
- Department of Occupational and School Nutrition, National Institute of Nutrition (NIN), Hanoi, Vietnam
| |
Collapse
|
25
|
Ko FC, Kobelski MM, Zhang W, Grenga GM, Martins JS, Demay MB. Phosphate restriction impairs mTORC1 signaling leading to increased bone marrow adipose tissue and decreased bone in growing mice. J Bone Miner Res 2021; 36:1510-1520. [PMID: 33900666 DOI: 10.1002/jbmr.4312] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 01/08/2023]
Abstract
Bone marrow stromal cells (BMSCs) are multipotent cells that differentiate into cells of the osteogenic and adipogenic lineage. A striking inverse relationship between bone marrow adipose tissue (BMAT) and bone volume is seen in several conditions, suggesting that differentiation of BMSCs into bone marrow adipocytes diverts cells from the osteogenic lineage, thereby compromising the structural and mechanical properties of bone. Phosphate restriction of growing mice acutely decreases bone formation, blocks osteoblast differentiation and increases BMAT. Studies performed to evaluate the cellular and molecular basis for the effects of acute phosphate restriction demonstrate that it acutely increases 5' adenosine monophosphate-activated protein kinase (AMPK) phosphorylation and inhibits mammalian target of rapamycin complex 1 (mTORC1) signaling in osteoblasts. This is accompanied by decreased expression of Wnt10b in BMSCs. Phosphate restriction also promotes expression of the key adipogenic transcription factors, peroxisome proliferator-activated receptor γ (PPARγ) and CCAAT-enhancer binding protein α (CEBPα), in CXCL12 abundant reticular (CAR) cells, which represent undifferentiated BMSCs and are the main source of BMAT and osteoblasts in the adult murine skeleton. Consistent with this, lineage tracing studies reveal that the BMAT observed in phosphate-restricted mice is of CAR cell origin. To determine whether circumventing the decrease in mTORC1 signaling in maturing osteoblasts attenuates the osteoblast and BMAT phenotype, phosphate-restricted mice with OSX-CreERT2 -mediated haploinsufficiency of the mTORC1 inhibitor, TSC2, were generated. TSC2 haploinsufficiency in preosteoblasts/osteoblasts normalized bone volume and osteoblast number in phosphate-restricted mice and attenuated the increase in BMAT observed. Thus, acute phosphate restriction leads to decreased bone and increases BMAT by impairing mTORC1 signaling in osterix-expressing cells. © 2021 American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Frank C Ko
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | | | - Wanlin Zhang
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gina M Grenga
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Janaina S Martins
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| | - Marie B Demay
- Endocrine Unit, Massachusetts General Hospital, Boston, Massachusetts, USA.,Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
26
|
Yao Z, Li J, Xiong H, Cui H, Ning J, Wang S, Ouyang X, Qian Y, Fan C. MicroRNA engineered umbilical cord stem cell-derived exosomes direct tendon regeneration by mTOR signaling. J Nanobiotechnology 2021; 19:169. [PMID: 34090456 PMCID: PMC8180131 DOI: 10.1186/s12951-021-00906-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/21/2021] [Indexed: 12/27/2022] Open
Abstract
Background Exosomes are extracellular vesicles of nano-structures and represent an emerging nano-scale acellular therapy in recent years. Tendon regeneration is a sophisticated process in the field of microsurgery due to its poor natural healing ability. To date, no successful long-term solution has been provided for the healing of tendon injuries. Functional recovery requires advanced treatment strategies. Human umbilical cord mesenchymal stem cell-derived exosomes (HUMSC-Exos) are considered as promising cell-free therapeutic agents. However, few studies reported their potential in the tendon repair previously. In this study, we explored the roles and underlying mechanisms of HUMSC-Exos in the tendon regeneration. Results Expression of tendon‐specific markers in, and collagen deposition by, tendon-derived stem cells (TDSCs) treated with HUMSC-Exos increased in vitro. In a rat Achilles tendon injury model, treatment with HUMSC-Exos improved the histological structure, enhanced tendon-specific matrix components, and optimized biomechanical properties of the Achilles tendon. Findings in miRNA sequencing indicated a significant increase in miR-29a-3p in HUMSC-Exo-treated Achilles tendons. Next, luciferase assay in combination with western blot identified phosphatase and tensin homolog (PTEN) as the specific target of miR-29a-3p. Furthermore, we applied a miR-29a-3p-specific agonist to engineer HUMSC-Exos. These HUMSC-Exos overexpressing miR-29a-3p amplified the gain effects of HUMSC-Exos on tendon healing in vivo. To explore the underlying mechanisms, a transforming growth factor-β1 (TGF-β1) inhibitor (SB-431542), mTOR inhibitor (rapamycin), and engineered HUMSC-Exos were employed. The results showed that TGF-β1 and mTOR signaling were involved in the beneficial effects of HUMSC-Exos on tendon regeneration. Conclusion The findings in our study suggest that PTEN/mTOR/TGF-β1 signaling cascades may be a potential pathway for HUMSC-Exos to deliver miR-29a-3p for tendon healing and implicate a novel therapeutic strategy for tendon regeneration via engineered stem cell-derived exosomes. Graphic abstract ![]()
Collapse
Affiliation(s)
- Zhixiao Yao
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Juehong Li
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Hao Xiong
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Haomin Cui
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Jiexin Ning
- Department of Plastics, Binzhou People's Hospital, Binzhou, 256610, China
| | - Shikun Wang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xingyu Ouyang
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yun Qian
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Cunyi Fan
- Department of Orthopaedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
27
|
Nie X, Ricupero CL, Jiao K, Yang P, Mao JJ. mTOR deletion in neural crest cells disrupts cardiac outflow tract remodeling and causes a spectrum of cardiac defects through the mTORC1 pathway. Dev Biol 2021; 477:241-250. [PMID: 34052210 DOI: 10.1016/j.ydbio.2021.05.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/17/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022]
Abstract
A critical cell type participating in cardiac outflow tract development is a subpopulation of the neural crest cells, the cardiac neural crest cells (NCCs), whose defect causes a spectrum of cardiovascular abnormalities. Accumulating evidence indicates that mTOR, which belongs to the PI3K-related kinase family and impacts multiple signaling pathways in a variety of contexts, plays a pivotal role for NCC development. Here, we investigated functional roles of mTOR for cardiac neural crest development using several lines of mouse genetic models. We found that disruption of mTOR caused NCC defects and failure of cardiac outflow tract separation, which resulted in a spectrum of cardiac defects including persistent truncus arteriosus, ventricular septal defect and ventricular wall defect. Specifically, mutant neural crest cells showed reduced migration into the cardiac OFT and prematurely exited the cell cycle. A number of critical factors and fundamental signaling pathways, which are important for neural crest and cardiomyocyte development, were impaired. Moreover, actin dynamics was disrupted by mTOR deletion. Finally, by phenotyping the neural crest Rptor and Rictor knockout mice respectively, we demonstrate that mTOR acts principally through the mTORC1 pathway for cardiac neural crest cells. Altogether, these data established essential roles of mTOR for cardiac NCC development and imply that dysregulation of mTOR in NCCs may underline a spectrum of cardiac defects.
Collapse
Affiliation(s)
- Xuguang Nie
- Center for Birth Defects Research,Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; College of Dental Medicine, Columbia University in the City of New York, New York, NY, USA.
| | - Christopher L Ricupero
- College of Dental Medicine, Columbia University in the City of New York, New York, NY, USA
| | - Kai Jiao
- University of Alabama at Birmingham, Department of Genetics and Genomic Sciences, Birmingham, AL, USA
| | - Peixin Yang
- Center for Birth Defects Research,Department of Obstetrics, Gynecology & Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeremy J Mao
- College of Dental Medicine, Columbia University in the City of New York, New York, NY, USA.
| |
Collapse
|
28
|
Perez-Tejeiro JM, Csukasi F. DEPTOR in Skeletal Development and Diseases. Front Genet 2021; 12:667283. [PMID: 34122519 PMCID: PMC8191632 DOI: 10.3389/fgene.2021.667283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022] Open
Abstract
Discovered in 2009, the DEP-domain containing mTOR-interacting protein, DEPTOR, is a known regulator of the mechanistic target of rapamycin (mTOR), an evolutionarily conserved kinase that regulates diverse cellular processes in response to environmental stimuli. DEPTOR was originally identified as a negative regulator of mTOR complexes 1 (mTORC1) and 2 (mTORC2). However, recent discoveries have started to unravel the roles of DEPTOR in mTOR-independent responses. In the past few years, mTOR emerged as an important regulator of skeletal development, growth, and homeostasis; the dysregulation of its activity contributes to the development of several skeletal diseases, both chronic and genetic. Even more recently, several groups have reported on the relevance of DEPTOR in skeletal biology through its action on mTOR-dependent and mTOR-independent pathways. In this review, we summarize the current understanding of DEPTOR in skeletal development and disease.
Collapse
Affiliation(s)
- Jose Miguel Perez-Tejeiro
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| | - Fabiana Csukasi
- Department of Cell Biology, Genetics and Physiology, Faculty of Sciences, IBIMA, University of Málaga, Málaga, Spain.,Biomaterials and Nanomedicine (CIBER-BBN), Andalusian Centre for Nanomedicine and Biotechnology-BIONAND, Networking Biomedical Research Center in Bioengineering, Málaga, Spain
| |
Collapse
|
29
|
Wuelling M, Neu C, Thiesen AM, Kitanovski S, Cao Y, Lange A, Westendorf AM, Hoffmann D, Vortkamp A. Epigenetic Mechanisms Mediating Cell State Transitions in Chondrocytes. J Bone Miner Res 2021; 36:968-985. [PMID: 33534175 DOI: 10.1002/jbmr.4263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Epigenetic modifications play critical roles in regulating cell lineage differentiation, but the epigenetic mechanisms guiding specific differentiation steps within a cell lineage have rarely been investigated. To decipher such mechanisms, we used the defined transition from proliferating (PC) into hypertrophic chondrocytes (HC) during endochondral ossification as a model. We established a map of activating and repressive histone modifications for each cell type. ChromHMM state transition analysis and Pareto-based integration of differential levels of mRNA and epigenetic marks revealed that differentiation-associated gene repression is initiated by the addition of H3K27me3 to promoters still carrying substantial levels of activating marks. Moreover, the integrative analysis identified genes specifically expressed in cells undergoing the transition into hypertrophy. Investigation of enhancer profiles detected surprising differences in enhancer number, location, and transcription factor binding sites between the two closely related cell types. Furthermore, cell type-specific upregulation of gene expression was associated with increased numbers of H3K27ac peaks. Pathway analysis identified PC-specific enhancers associated with chondrogenic genes, whereas HC-specific enhancers mainly control metabolic pathways linking epigenetic signature to biological functions. Since HC-specific enhancers show a higher conservation in postnatal tissues, the switch to metabolic pathways seems to be a hallmark of differentiated tissues. Surprisingly, the analysis of H3K27ac levels at super-enhancers revealed a rapid adaption of H3K27ac occupancy to changes in gene expression, supporting the importance of enhancer modulation for acute alterations in gene expression. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).
Collapse
Affiliation(s)
- Manuela Wuelling
- Developmental Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Christoph Neu
- Developmental Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Andrea M Thiesen
- Developmental Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Simo Kitanovski
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Yingying Cao
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Anja Lange
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Astrid M Westendorf
- Institute of Medical Microbiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Daniel Hoffmann
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Andrea Vortkamp
- Developmental Biology, Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
30
|
Suzuki A, Iwata J. Amino acid metabolism and autophagy in skeletal development and homeostasis. Bone 2021; 146:115881. [PMID: 33578033 PMCID: PMC8462526 DOI: 10.1016/j.bone.2021.115881] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 12/29/2020] [Accepted: 02/06/2021] [Indexed: 02/06/2023]
Abstract
Bone is an active organ that is continuously remodeled throughout life via formation and resorption; therefore, a fine-tuned bone (re)modeling is crucial for bone homeostasis and is closely connected with energy metabolism. Amino acids are essential for various cellular functions as well as an energy source, and their synthesis and catabolism (e.g., metabolism of carbohydrates and fatty acids) are regulated through numerous enzymatic cascades. In addition, the intracellular levels of amino acids are maintained by autophagy, a cellular recycling system for proteins and organelles; under nutrient deprivation conditions, autophagy is strongly induced to compensate for cellular demands and to restore the amino acid pool. Metabolites derived from amino acids are known to be precursors of bioactive molecules such as second messengers and neurotransmitters, which control various cellular processes, including cell proliferation, differentiation, and homeostasis. Thus, amino acid metabolism and autophagy are tightly and reciprocally regulated in our bodies. This review discusses the current knowledge and potential links between bone diseases and deficiencies in amino acid metabolism and autophagy.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Junichi Iwata
- Department of Diagnostic & Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center for Craniofacial Research, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Millward DJ. Interactions between Growth of Muscle and Stature: Mechanisms Involved and Their Nutritional Sensitivity to Dietary Protein: The Protein-Stat Revisited. Nutrients 2021; 13:729. [PMID: 33668846 PMCID: PMC7996181 DOI: 10.3390/nu13030729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/15/2021] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
Childhood growth and its sensitivity to dietary protein is reviewed within a Protein-Stat model of growth regulation. The coordination of growth of muscle and stature is a combination of genetic programming, and of two-way mechanical interactions involving the mechanotransduction of muscle growth through stretching by bone length growth, the core Protein-Stat feature, and the strengthening of bone through muscle contraction via the mechanostat. Thus, growth in bone length is the initiating event and this is always observed. Endocrine and cellular mechanisms of growth in stature are reviewed in terms of the growth hormone-insulin like growth factor-1 (GH-IGF-1) and thyroid axes and the sex hormones, which together mediate endochondral ossification in the growth plate and bone lengthening. Cellular mechanisms of muscle growth during development are then reviewed identifying (a) the difficulties posed by the need to maintain its ultrastructure during myofibre hypertrophy within the extracellular matrix and the concept of muscle as concentric "bags" allowing growth to be conceived as bag enlargement and filling, (b) the cellular and molecular mechanisms involved in the mechanotransduction of satellite and mesenchymal stromal cells, to enable both connective tissue remodelling and provision of new myonuclei to aid myofibre hypertrophy and (c) the implications of myofibre hypertrophy for protein turnover within the myonuclear domain. Experimental data from rodent and avian animal models illustrate likely changes in DNA domain size and protein turnover during developmental and stretch-induced muscle growth and between different muscle fibre types. Growth of muscle in male rats during adulthood suggests that "bag enlargement" is achieved mainly through the action of mesenchymal stromal cells. Current understanding of the nutritional regulation of protein deposition in muscle, deriving from experimental studies in animals and human adults, is reviewed, identifying regulation by amino acids, insulin and myofibre volume changes acting to increase both ribosomal capacity and efficiency of muscle protein synthesis via the mechanistic target of rapamycin complex 1 (mTORC1) and the phenomenon of a "bag-full" inhibitory signal has been identified in human skeletal muscle. The final section deals with the nutritional sensitivity of growth of muscle and stature to dietary protein in children. Growth in length/height as a function of dietary protein intake is described in the context of the breastfed child as the normative growth model, and the "Early Protein Hypothesis" linking high protein intakes in infancy to later adiposity. The extensive paediatric studies on serum IGF-1 and child growth are reviewed but their clinical relevance is of limited value for understanding growth regulation; a role in energy metabolism and homeostasis, acting with insulin to mediate adiposity, is probably more important. Information on the influence of dietary protein on muscle mass per se as opposed to lean body mass is limited but suggests that increased protein intake in children is unable to promote muscle growth in excess of that linked to genotypic growth in length/height. One possible exception is milk protein intake, which cohort and cross-cultural studies suggest can increase height and associated muscle growth, although such effects have yet to be demonstrated by randomised controlled trials.
Collapse
Affiliation(s)
- D Joe Millward
- Department of Nutritional Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
32
|
Iwahashi S, Tokumura K, Park G, Ochiai S, Okayama Y, Fusawa H, Ohta K, Fukasawa K, Iezaki T, Hinoi E. mTORC1 Overactivation Leads to Abnormalities in Skeletal Development. Biol Pharm Bull 2020; 43:1983-1986. [PMID: 33268720 DOI: 10.1248/bpb.b20-00619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mechanistic/mammalian target of rapamycin complex-1 (mTORC1) integrates multiple signaling pathways and regulates various cellular processes. Tuberous sclerosis complex 1 (Tsc1) and complex 2 (Tsc2) are critical negative regulators of mTORC1. Mouse genetic studies, including ours, have revealed that inactivation of mTORC1 in undifferentiated mesenchymal cells and chondrocytes leads to severe skeletal abnormalities, indicating a pivotal role for mTORC1 in skeletogenesis. Here, we show that hyperactivation of mTORC1 influences skeletal development through its expression in undifferentiated mesenchymal cells at the embryonic stage. Inactivation of Tsc1 in undifferentiated mesenchymal cells by paired-related homeobox 1 (Prx1)-Cre-mediated recombination led to skeletal abnormalities in appendicular skeletons. In contrast, Tsc1 deletion in chondrocytes using collagen type II α1 (Col2a1)-Cre or in osteoprogenitors using Osterix (Osx)-Cre did not result in skeletal defects in either appendicular or axial skeletons. These findings indicate that Tsc complex-mediated chronic overactivation of mTORC1 influences skeletal development at the embryonic stage through its expression in undifferentiated mesenchymal cells but not in chondrocytes or osteoprogenitors.
Collapse
Affiliation(s)
- Sayuki Iwahashi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Kazuya Tokumura
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Gyujin Park
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Shinsuke Ochiai
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Yasuka Okayama
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Hiroki Fusawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Kaname Ohta
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Kazuya Fukasawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Takashi Iezaki
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University.,United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University
| |
Collapse
|
33
|
Liu X, Yan C, Deng X, Jia J. Hsa_circularRNA_0079201 suppresses chondrocyte proliferation and endochondral ossification by regulating the microRNA‑140‑3p/SMAD2 signaling pathway in idiopathic short stature. Int J Mol Med 2020; 46:1993-2006. [PMID: 33125098 PMCID: PMC7595675 DOI: 10.3892/ijmm.2020.4737] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 08/11/2020] [Indexed: 12/29/2022] Open
Abstract
Circular (circ)RNAs are an important group of non‑coding RNAs involved in different pathological and physiological functions, such as longitudinal bone growth. However, the effects of an increase or decrease in circRNA expression on idiopathic short stature (ISS) remain largely unknown. The present study compared the circRNA expression patterns of patients with ISS and healthy individuals to identify differentially expressed circRNAs involved in the regulation of ISS pathogenesis and their target microRNAs (miR). Microarray analysis revealed that 145 circRNAs were differentially expressed in patients with ISS, including 83 up‑ and 62 downregulated circRNAs. Reverse transcription‑quantitative PCR confirmed that hsa_circRNA_0079201 was increased in patients with ISS compared with that in the normal individuals, whilst hsa_circRNA_0079201 overexpression in human chondrocytes was shown to significantly suppress their proliferation, hypertrophy and endochondral ossification abilities. Luciferase reporter assays identified that circRNA_0079201 acted as an miR‑140‑3p sponge. In situ hybridization confirmed the co‑localization of circRNA_0079201 and miR‑140‑3p in the human chondrocyte and neonatal femur growth plate of C57 mice, while rescue experiments demonstrated that miR‑140‑3p overexpression reversed the inhibition of human chondrocyte proliferation, hypertrophy and endochondral ossification, caused by circRNA_0079201 overexpression. Bioinformatics analysis and luciferase reporter assays revealed that SMAD2 was a potential target gene of miR‑140‑3p. Furthermore, overexpressing circRNA_0079201 in human chondrocytes suppressed miR‑140‑3p and increased SMAD2 protein expression level. Taken together, chondrocyte proliferation, hypertrophy and endochondral ossification in ISS was suppressed by a novel regulatory axis consisting of the hsa_circRNA_0079201/miR‑140‑3p/SMAD2 pathway. The present study provided evidence that hsa_circRNA_0079201 may be a potential target for ISS therapy.
Collapse
Affiliation(s)
| | | | - Xueqiang Deng
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jingyu Jia
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
34
|
Tokumura K, Iwahashi S, Park G, Ochiai S, Okayama Y, Fusawa H, Fukasawa K, Iezaki T, Hinoi E. mTOR regulates skeletogenesis through canonical and noncanonical pathways. Biochem Biophys Res Commun 2020; 533:30-35. [PMID: 32917361 DOI: 10.1016/j.bbrc.2020.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/01/2020] [Indexed: 11/30/2022]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) regulates various cellular processes, in part through incorporation into distinct protein complexes. The mTOR complex 1 (mTORC1) contains the Raptor subunit, while mTORC2 specifically contains the Rictor subunit. Mouse genetic studies, including ours, have revealed a critical role for mTOR in skeletogenesis through its expression in undifferentiated mesenchymal cells. In addition, we have recently revealed that mTORC1 expression in chondrocytes is crucial for skeletogenesis. Recent work indicates that mTOR regulates cellular functions, depending on the context, through both complex-dependent (canonical pathway) and complex-independent roles (noncanonical pathway). Here, we determined that mTOR regulates skeletal development through the noncanonical pathway, as well as the canonical pathway, in a cell-type and context-specific manner. Inactivation of Mtor in undifferentiated mesenchymal cells or chondrocytes led to either severe hypoplasia in appendicular skeletons or a severe and generalized chondrodysplasia, respectively. Moreover, Rictor deletion in undifferentiated mesenchymal cells or chondrocytes led to mineralization defects in some skeletal components. Finally, we revealed that simultaneous deletion of Raptor and Rictor in undifferentiated mesenchymal cells recapitulated the appendicular skeletal phenotypes of Mtor deficiency, whereas chondrocyte-specific Raptor and Rictor double-mutants exhibited milder hypoplasia of appendicular and axial skeletons than those seen upon Mtor deletion. These findings indicate that mTOR regulates skeletal development mainly through the canonical pathway in undifferentiated mesenchymal cells, but at least in part through the noncanonical pathway in chondrocytes.
Collapse
Affiliation(s)
- Kazuya Tokumura
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Sayuki Iwahashi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Gyujin Park
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Shinsuke Ochiai
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Yasuka Okayama
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Hiroki Fusawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Kazuya Fukasawa
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Takashi Iezaki
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan
| | - Eiichi Hinoi
- Laboratory of Pharmacology, Department of Bioactive Molecules, Gifu Pharmaceutical University, Gifu, Japan; United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu, Japan.
| |
Collapse
|
35
|
mTOR plays a pivotal role in multiple processes of enamel organ development principally through the mTORC1 pathway and in part via regulating cytoskeleton dynamics. Dev Biol 2020; 467:77-87. [DOI: 10.1016/j.ydbio.2020.08.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/04/2020] [Accepted: 08/26/2020] [Indexed: 01/11/2023]
|
36
|
Yao Z, Xue T, Cai C, Li J, Lu M, Liu X, Jin T, Wu F, Liu S, Fan C. Parathyroid Hormone‐Loaded Microneedle Promotes Tendon Healing Through Activation of mTOR. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhixiao Yao
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Tong Xue
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Chuandong Cai
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Juehong Li
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Mingkuan Lu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Xudong Liu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Tuo Jin
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Fei Wu
- School of PharmacyShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 China
| | - Shen Liu
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| | - Cunyi Fan
- Department of OrthopaedicsShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai 200233 China
| |
Collapse
|
37
|
Abstract
The resting zone houses a group of slowly proliferating 'reserve' chondrocytes and has long been speculated to serve as the stem cell niche of the postnatal growth plate. But are these resting chondrocytes bona fide stem cells? Recent technological advances in lineage tracing and next-generation sequencing have finally allowed researchers to answer this question. Several recent studies have also shed light into the signaling pathways and molecular mechanisms involved in the maintenance of resting chondrocytes, thus providing us with important new insights into the role of the resting zone in the paracrine and endocrine regulation of childhood bone growth.
Collapse
Affiliation(s)
- Julian C Lui
- Section on Growth and Development, Eunice Kennedy ShriverNational Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Pezoa SA, Artinger KB, Niswander LA. GCN5 acetylation is required for craniofacial chondrocyte maturation. Dev Biol 2020; 464:24-34. [PMID: 32446700 DOI: 10.1016/j.ydbio.2020.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/13/2020] [Indexed: 02/06/2023]
Abstract
Development of the craniofacial structures requires the precise differentiation of cranial neural crest cells into osteoblasts or chondrocytes. Here, we explore the epigenetic and non-epigenetic mechanisms that are required for the development of craniofacial chondrocytes. We previously demonstrated that the acetyltransferase activity of the highly conserved acetyltransferase GCN5, or KAT2A, is required for murine craniofacial development. We show that Gcn5 is required cell autonomously in the cranial neural crest. Moreover, GCN5 is required for chondrocyte development following the arrival of the cranial neural crest within the pharyngeal arches. Using a combination of in vivo and in vitro inhibition of GCN5 acetyltransferase activity, we demonstrate that GCN5 is a potent activator of chondrocyte maturation, acting to control chondrocyte maturation and size increase during pre-hypertrophic maturation to hypertrophic chondrocytes. Rather than acting as an epigenetic regulator of histone H3K9 acetylation, our findings suggest GCN5 primarily acts as a non-histone acetyltransferase to regulate chondrocyte development. Here, we investigate the contribution of GCN5 acetylation to the activity of the mTORC1 pathway. Our findings indicate that GCN5 acetylation is required for activation of this pathway, either via direct activation of mTORC1 or through indirect mechanisms. We also investigate one possibility of how mTORC1 activity is regulated through RAPTOR acetylation, which is hypothesized to enhance mTORC1 downstream phosphorylation. This study contributes to our understanding of the specificity of acetyltransferases, and the cell type specific roles in which these enzymes function.
Collapse
Affiliation(s)
- Sofia A Pezoa
- Cell Biology, Stem Cells, and Developmental Biology Graduate Program. University of Colorado Anschutz School of Medicine, Aurora, CO, USA, 80045; Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309
| | - Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado Anschutz School of Dentistry, Aurora, CO, USA, 80045
| | - Lee A Niswander
- Department of Molecular, Cellular, and Developmental Biology. University of Colorado Boulder, Boulder, CO, USA, 80309.
| |
Collapse
|
39
|
Yang Y, Liu Q, Zhang L, Fu X, Chen J, Hong D. A modified tape transfer approach for rapidly preparing high-quality cryosections of undecalcified adult rodent bones. J Orthop Translat 2020; 26:92-100. [PMID: 33437628 PMCID: PMC7773961 DOI: 10.1016/j.jot.2020.03.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/18/2020] [Accepted: 03/02/2020] [Indexed: 12/28/2022] Open
Abstract
Background/Objective Histology-based analyses are important tools to dissect cellular and molecular mechanisms of skeletal homeostasis, diseases, and regeneration. The success of these efforts is highly dependent on rapidly obtaining high-quality sections of mineralized skeletal tissues suitable for various analyses. However, the current techniques for preparing such sections are still far from satisfactory. This study aimed to develop a new approach for preparing high-quality undecalcified bone sections applicable to various histological analyses. Methods Two important modifications were made to the conventional Cryojane Tape-Transfer System, including utilization of an optimized adhesive to prepare adhesive glass slides for improving the transfer efficiency, and a cheap conventional benchtop UV transilluminator for UV curing. Cryosections of undecalcified rodent bones were prepared using this modified tape transfer approach, and their tissue morphology and structural integrity were visually examined. A variety of histological analyses, including calcein labeling, Von kossa staining, immunofluorescence, and enzymatic activity staining as well as 5-Ethynyl-2’-deoxyuridine (EdU) and TUNEL assays, were performed on these sections. Results We developed a modified version of tape transfer approach that can prepare cryosections of undecalcified rodent adult bones within 4 days at a low cost. Bone sections prepared by this approach exhibited good tissue morphology and structural integrity. Moreover, these sections were applicable to a variety of histological analyses, including calcein labeling, Von kossa staining, immunofluorescence, and enzymatic activity staining as well as EdU and TUNEL assays. Conclusion The tape transfer approach we developed provides a rapid, affordable, and easy learning method for preparing high-quality undecalcified bone sections valuable for bone research. The translational potential of this article Our research provides a rapid, affordable, and easy learning method for preparing high-quality undecalcified bone sections that can be potentially used for accurate diagnosis of various bone disorders and evaluation of the efficacy of different therapies in the treatment of these diseases.
Collapse
Affiliation(s)
- Yanjun Yang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Qingbai Liu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, Lianshui County People's Hospital, Huaian, Jiangsu, China
| | - Liwei Zhang
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| | - Xuejie Fu
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jianquan Chen
- Orthopedic Institute, Medical College, Soochow University, Suzhou, Jiangsu, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Dun Hong
- Orthopedic Department, Taizhou Hospital Affiliated to Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
40
|
Mesenchymal Stem Cell-Specific and Preosteoblast-Specific Ablation of TSC1 in Mice Lead to Severe and Slight Spinal Dysplasia, Respectively. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4572687. [PMID: 32309432 PMCID: PMC7140121 DOI: 10.1155/2020/4572687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 02/09/2020] [Accepted: 03/09/2020] [Indexed: 12/13/2022]
Abstract
Background TSC1-related signaling plays a pivotal role in intramembranous and endochondral ossification processes during skeletogenesis. This study was aimed at determining the significance of the TSC1 gene at different stages of spinal development. Materials and Methods. TSC1-floxed mice (TSC1flox/flox) were crossed with Prrx1-Cre or BGLAP-Cre transgenic mice or mesenchymal stem cell- and osteoblast-specific TSC1-deficient mice, respectively. Somatic and vertebral differences between WT and Prrx1-TSC1 null mice were examined at 4 weeks after birth. Results No apparent body size abnormalities were apparent in newborn and 4-week- to 2-month-old mice with BGLAP-Cre driver-depleted TSC1. Vertebral and intervertebral discs displayed strong dysplasia in Prrx1-TSC1 null mice. In contrast, vertebrae were only slightly affected, and intervertebral discs from skeletal preparations displayed no apparent changes in BGLAP-TSC1 null mice. Conclusion Our data suggest that the TSC1 gene is crucial for endochondral ossification during postnatal spine development but plays discriminative roles at different stages. Mesenchymal stem cell-specific ablation of TSC1 led to severe spinal dysplasia at early stages of endochondral ossification while osteoblast-specific deletion of TSC1 affected vertebrae slightly and had no detectable effects on intervertebral discs.
Collapse
|
41
|
He DD, Tang XT, Dong W, Cui G, Peng G, Yin X, Chen Y, Jing N, Zhou BO. C-KIT Expression Distinguishes Fetal from Postnatal Skeletal Progenitors. Stem Cell Reports 2020; 14:614-630. [PMID: 32220331 PMCID: PMC7160391 DOI: 10.1016/j.stemcr.2020.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 02/29/2020] [Accepted: 03/02/2020] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem cells (HSCs) and skeletal stem cells (SSCs) cohabit in the bone marrow. KITL (C-KIT ligand) from LEPR+ adult bone marrow stromal cells is pivotal for HSC maintenance. In contrast, it remains unclear whether KITL/C-KIT signaling also regulates SSCs. Here, we lineage traced C-KIT+ cells and found that C-KIT was expressed by fetal, but not postnatal skeletal progenitors. Fetal C-KIT+ cells gave rise to 20% of LEPR+ stromal cells in adult bone marrow, forming nearly half of all osteoblasts. Disruption of mTOR signaling in fetal C-KIT+ cells impaired bone formation. Notably, conditional deletion of Kitl from PRX1+ fetal bone marrow stromal cells, but not LEPR+ adult bone marrow stromal cells, significantly increased bone formation. Thus, our work identified C-KIT+ skeletal progenitors as an important source of bones formed during development.
Collapse
Affiliation(s)
- Di Demi He
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Xinyu Thomas Tang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Wenjie Dong
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Guangdun Peng
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Xiujuan Yin
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Yujie Chen
- Bio-Med Big Data Center, CAS-Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China
| | - Bo O Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, P. R. China.
| |
Collapse
|
42
|
Cooper KL. Developmental and Evolutionary Allometry of the Mammalian Limb Skeleton. Integr Comp Biol 2020; 59:1356-1368. [PMID: 31180500 DOI: 10.1093/icb/icz082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The variety of limb skeletal proportions enables a remarkable diversity of behaviors that include powered flight in bats and flipper-propelled swimming in whales using extremes of a range of homologous limb architectures. Even within human limbs, bone lengths span more than an order of magnitude from the short finger and toe bones to the long arm and leg bones. Yet all of this diversity arises from embryonic skeletal elements that are each a very similar size at formation. In this review article, I survey what is and is not yet known of the development and evolution of skeletal proportion at multiple hierarchical levels of biological organization. These include the cellular parameters of skeletal elongation in the cartilage growth plate, genes associated with differential growth, and putative gene regulatory mechanisms that would allow both covariant and independent evolution of the forelimbs and hindlimbs and of individual limb segments. Although the genetic mechanisms that shape skeletal proportion are still largely unknown, and most of what is known is limited to mammals, it is becoming increasingly apparent that the diversity of bone lengths is an emergent property of a complex system that controls elongation of individual skeletal elements using a genetic toolkit shared by all.
Collapse
Affiliation(s)
- Kimberly L Cooper
- Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093-0377, USA
| |
Collapse
|
43
|
Li J, Cai Q, Ge H, Xue C, Fu Q, Cheng B. WITHDRAWN: RNA binding protein QKI5 accelerates tenogenic differentiation and promotes tendon healing through AKT-mTOR signalling by stabilizing MALAT1. Life Sci 2019:117236. [PMID: 31887297 DOI: 10.1016/j.lfs.2019.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 12/17/2019] [Accepted: 12/25/2019] [Indexed: 10/25/2022]
Abstract
This article has been withdrawn at the request of the authors. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Jun Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Qiuchen Cai
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Heng'an Ge
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Chao Xue
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China.
| | - Biao Cheng
- Department of Orthopedics, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| |
Collapse
|
44
|
Son DH, Hwang NH, Chung WH, Seong HS, Lim H, Cho ES, Choi JW, Kang KS, Kim YM. Whole-genome resequencing analysis of 20 Micro-pigs. Genes Genomics 2019; 42:263-272. [PMID: 31833050 DOI: 10.1007/s13258-019-00891-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 11/14/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Miniature pigs have been increasingly used as mammalian model animals for biomedical research because of their similarity to human beings in terms of their metabolic features and proportional organ sizes. However, despite their importance, there is a severe lack of genome-wide studies on miniature pigs. OBJECTIVE In this study, we performed whole-genome sequencing analysis of 20 Micro-pigs obtained from Medi Kinetics to elucidate their genomic characteristics. RESULTS Approximately 595 gigabase pairs (Gb) of sequence reads were generated to be mapped to the swine reference genome assembly (Sus scrofa 10.2); on average, the sequence reads covered 99.15% of the reference genome at an average of 9.6-fold coverage. We detected a total of 19,518,548 SNPs, of which 8.7% were found to be novel. With further annotation of all of the SNPs, we retrieved 144,507 nonsynonymous SNPs (nsSNPs); of these, 5968 were found in all 20 individuals used in this study. SIFT prediction for these SNPs identified that 812 nsSNPs in 402 genes were deleterious. Among these 402 genes, we identified some genes that could potentially affect traits of interest in Micro-pigs, such as RHEB and FRAS1. Furthermore, we performed runs of homozygosity analysis to locate potential selection signatures in the genome, detecting several loci that might be involved in phenotypic characteristics in Micro-pigs, such as MSTN, GDF5, and GDF11. CONCLUSION In this study, we identified numerous nsSNPs that could be used as candidate genetic markers with involvement in traits of interest. Furthermore, we detected putative selection footprints that might be associated with recent selection applied to miniature pigs.
Collapse
Affiliation(s)
- Da-Hye Son
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Nam-Hyun Hwang
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Won-Hyong Chung
- Research Division of Food Functionality, Research Group of Healthcare, 245, Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun, Jeollabuk-do, 55365, Republic of Korea
| | - Ha-Seung Seong
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Hyungbum Lim
- Medikinetics Co., Ltd, 4 Hansan-gil, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17792, Republic of Korea
| | - Eun-Seok Cho
- Division of Swine Science, National Institute of Animal Science, RDA, Cheonan, 31000, Republic of Korea
| | - Jung-Woo Choi
- College of Animal Life Science, Kangwon National University, Chuncheon, 24341, Republic of Korea.
| | - Kyung-Soo Kang
- Medikinetics Co., Ltd, 4 Hansan-gil, Cheongbuk-eup, Pyeongtaek-si, Gyeonggi-do, 17792, Republic of Korea.
| | - Yong-Min Kim
- Division of Swine Science, National Institute of Animal Science, RDA, Cheonan, 31000, Republic of Korea.
| |
Collapse
|
45
|
Jin X, Kang X, Zhao L, Xu M, Xie T, Li H, Li F, Qian Z, Ma Z, Zhang Y, Yang W, Zhang Z, Gao X, Chen Q, Sun H, Wu S. Cartilage Ablation of Sirt1 Causes Inhibition of Growth Plate Chondrogenesis by Hyperactivation of mTORC1 Signaling. Endocrinology 2019; 160:3001-3017. [PMID: 31599935 DOI: 10.1210/en.2019-00427] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/04/2019] [Indexed: 01/04/2023]
Abstract
A growing body of evidence implies a pivotal role of sirtuin-1 (Sirt1) in chondrocyte function and homeostasis; however, its underlying mechanisms mediating chondrogenesis, which is an essential process for physiological skeletal growth, are still poorly understood. In the current study, we generated TamCartSirt1-/- [Sirt1 conditional knockout (cKO)] mice to explore the role of Sirt1 during postnatal endochondral ossification. Compared with control mice, cKO mice exhibited growth retardation associated with inhibited chondrocyte proliferation and hypertrophy, as well as activated apoptosis. These effects were regulated by hyperactivation of mammalian target of rapamycin complex 1 (mTORC1) signaling, and thereby inhibition of autophagy and induction of endoplasmic reticulum stress in growth plate chondrocytes. IP injection of the mTORC1 inhibitor rapamycin to mice with Sirt1 deletion partially neutralized such inhibitory effects of Sirt1 ablation on longitudinal bone growth, indicating the causative link between SIRT1 and mTORC1 signaling in the growth plate. Mechanistically, SIRT1 interacted with tuberous sclerosis complex 2 (TSC2), a key upstream negative regulator of mTORC1 signaling, and loss of Sirt1 inhibited TSC2 expression, resulting in hyperactivated mTORC1 signaling in chondrocytes. In conclusion, our findings suggest that loss of Sirt1 may trigger mTORC1 signaling in growth plate chondrocytes and contributes to growth retardation, thus indicating that SIRT1 is an important regulator during chondrogenesis and providing new insights into the clinical potential of SIRT1 in bone development.
Collapse
Affiliation(s)
- Xinxin Jin
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Xiaomin Kang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Liting Zhao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Mao Xu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Tianping Xie
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Huixia Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Fang Li
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Zhuang Qian
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Zhengmin Ma
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Ying Zhang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Wei Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| | - Zhuanmin Zhang
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Xin Gao
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Qian Chen
- Department of Orthopaedics, Alpert Medical School of Brown University, Rhode Island Hospital, Providence, Rhode Island
- Bone and Joint Research Center, The First Affiliated Hospital of Medical School, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongzhi Sun
- Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi, People's Republic of China
| | - Shufang Wu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi, People's Republic of China
| |
Collapse
|
46
|
Csukasi F, Duran I, Barad M, Barta T, Gudernova I, Trantirek L, Martin JH, Kuo CY, Woods J, Lee H, Cohn DH, Krejci P, Krakow D. The PTH/PTHrP-SIK3 pathway affects skeletogenesis through altered mTOR signaling. Sci Transl Med 2019; 10:10/459/eaat9356. [PMID: 30232230 DOI: 10.1126/scitranslmed.aat9356] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/31/2018] [Indexed: 12/19/2022]
Abstract
Studies have suggested a role for the mammalian (or mechanistic) target of rapamycin (mTOR) in skeletal development and homeostasis, yet there is no evidence connecting mTOR with the key signaling pathways that regulate skeletogenesis. We identified a parathyroid hormone (PTH)/PTH-related peptide (PTHrP)-salt-inducible kinase 3 (SIK3)-mTOR signaling cascade essential for skeletogenesis. While investigating a new skeletal dysplasia caused by a homozygous mutation in the catalytic domain of SIK3, we observed decreased activity of mTOR complex 1 (mTORC1) and mTORC2 due to accumulation of DEPTOR, a negative regulator of both mTOR complexes. This SIK3 syndrome shared skeletal features with Jansen metaphyseal chondrodysplasia (JMC), a disorder caused by constitutive activation of the PTH/PTHrP receptor. JMC-derived chondrocytes showed reduced SIK3 activity, elevated DEPTOR, and decreased mTORC1 and mTORC2 activity, indicating a common mechanism of disease. The data demonstrate that SIK3 is an essential positive regulator of mTOR signaling that functions by triggering DEPTOR degradation in response to PTH/PTHrP signaling during skeletogenesis.
Collapse
Affiliation(s)
- Fabiana Csukasi
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Ivan Duran
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Maya Barad
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Tomas Barta
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Iva Gudernova
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic
| | - Lukas Trantirek
- Central European Institute of Technology, Masaryk University, 62500 Brno, Czech Republic
| | - Jorge H Martin
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Caroline Y Kuo
- Department of Pediatrics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Jeremy Woods
- Department of Pediatrics, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Hane Lee
- Department of Pathology and Laboratory Medicine, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Daniel H Cohn
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Molecular, Cell and Developmental Biology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| | - Pavel Krejci
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, 65691 Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, 60200 Brno, Czech Republic
| | - Deborah Krakow
- Department of Orthopaedic Surgery, University of California-Los Angeles, Los Angeles, CA 90095, USA. .,Orthopaedic Institute for Children, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Human Genetics, University of California-Los Angeles, Los Angeles, CA 90095, USA.,Department of Obstetrics and Gynecology, University of California-Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
47
|
Xie J, Lin J, Wei M, Teng Y, He Q, Yang G, Yang X. Sustained Akt signaling in articular chondrocytes causes osteoarthritis via oxidative stress-induced senescence in mice. Bone Res 2019; 7:23. [PMID: 31646013 PMCID: PMC6804644 DOI: 10.1038/s41413-019-0062-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/25/2019] [Accepted: 06/13/2019] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is an age-related disorder that is strongly associated with chondrocyte senescence. The causal link between disruptive PTEN/Akt signaling and chondrocyte senescence and the underlying mechanism are unclear. In this study, we found activated Akt signaling in human OA cartilage as well as in a mouse OA model with surgical destabilization of the medial meniscus. Genetic mouse models mimicking sustained Akt signaling in articular chondrocytes via PTEN deficiency driven by either Col2a1-Cre or Col2a1-CreERT2 developed OA, whereas restriction of Akt signaling reversed the OA phenotypes in PTEN-deficient mice. Mechanistically, prolonged activation of Akt signaling caused an accumulation of reactive oxygen species and triggered chondrocyte senescence as well as a senescence-associated secretory phenotype, whereas chronic administration of the antioxidant N-acetylcysteine suppressed chondrocyte senescence and mitigated OA progression in PTEN-deficient mice. Therefore, inhibition of Akt signaling by PTEN is required for the maintenance of articular cartilage. Disrupted Akt signaling in articular chondrocytes triggers oxidative stress-induced chondrocyte senescence and causes OA.
Collapse
Affiliation(s)
- Jing Xie
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Jingting Lin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Min Wei
- 2Department of Orthopaedics, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yan Teng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Qi He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206 China
| |
Collapse
|
48
|
Hiraiwa M, Ozaki K, Yamada T, Iezaki T, Park G, Fukasawa K, Horie T, Kamada H, Tokumura K, Motono M, Kaneda K, Hinoi E. mTORC1 Activation in Osteoclasts Prevents Bone Loss in a Mouse Model of Osteoporosis. Front Pharmacol 2019; 10:684. [PMID: 31263418 PMCID: PMC6585391 DOI: 10.3389/fphar.2019.00684] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 05/27/2019] [Indexed: 12/21/2022] Open
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is widely implicated in the pathogenesis of various diseases, including cancer, obesity, and cardiovascular disease. Bone homeostasis is maintained by the actions of bone-resorbing osteoclasts and bone-forming osteoblasts. An imbalance in the sophisticated regulation of osteoclasts and osteoblasts leads to the pathogenesis as well as etiology of certain metabolic bone diseases, including osteoporosis and osteopetrosis. Here, we identified mTOR complex 1 (mTORC1) as a pivotal mediator in the regulation of bone resorption and bone homeostasis under pathological conditions through its expression in osteoclasts. The activity of mTORC1, which was indicated by the phosphorylation level of its downstream target p70S6 kinase, was reduced during osteoclast differentiation, in accordance with the upregulation of Hamartin (encoded by tuberous sclerosis complex 1 [Tsc1]), a negative regulator of mTORC1. Receptor activator of nuclear factor-κB ligand (RANKL)-dependent osteoclastogenesis was impaired in Tsc1-deficient bone marrow macrophages. By contrast, osteoclastogenesis was markedly enhanced by Raptor deficiency but was unaffected by Rictor deficiency. The deletion of Tsc1 in osteoclast lineage cells in mice prevented bone resorption and bone loss in a RANKL-induced mouse model of osteoporosis, although neither bone volume nor osteoclastic parameter was markedly altered in these knockout mice under physiological conditions. Therefore, these findings suggest that mTORC1 is a key potential target for the treatment of bone diseases.
Collapse
Affiliation(s)
- Manami Hiraiwa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Kakeru Ozaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Takanori Yamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Takashi Iezaki
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan.,Venture Business Laboratory, Organization of Frontier Science and Innovation, Kanazawa University, Kanazawa, Japan
| | - Gyujin Park
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Kazuya Fukasawa
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Tetsuhiro Horie
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Hikari Kamada
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Kazuya Tokumura
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Mei Motono
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| | - Eiichi Hinoi
- Laboratory of Molecular Pharmacology, Division of Pharmaceutical Sciences, Kanazawa University Graduate School, Kanazawa, Japan
| |
Collapse
|
49
|
Nakajima T, Ikeya M. Insights into the biology of fibrodysplasia ossificans progressiva using patient-derived induced pluripotent stem cells. Regen Ther 2019; 11:25-30. [PMID: 31193176 PMCID: PMC6517845 DOI: 10.1016/j.reth.2019.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/18/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022] Open
Abstract
The demand for development of new drugs remains on the upward trend because of the large number of patients suffering from intractable diseases for which effective treatment has not been established yet. Recently, several researchers have attempted to apply induced pluripotent stem cell (iPSC) technology as a powerful tool for studying the mechanisms underlying the onset of various diseases and for new drug screening. This technology has made an enormous breakthrough, since it permits us to recapitulate the disease phenotype in vitro, outside of the patient's body. Here, we discuss the latest findings that uncovered a mechanism underlying the pathology of a rare genetic musculoskeletal disease, fibrodysplasia ossificans progressiva (FOP), by modeling the phenotypes with FOP patient-derived iPSCs, and that discovered promising candidate drugs for FOP treatment. We also discussed future directions of FOP research.
Collapse
Affiliation(s)
- Taiki Nakajima
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, 606-8507, Japan
| |
Collapse
|
50
|
Tong W, Zeng Y, Chow DHK, Yeung W, Xu J, Deng Y, Chen S, Zhao H, Zhang X, Ho KK, Qin L, Mak KKL. Wnt16 attenuates osteoarthritis progression through a PCP/JNK-mTORC1-PTHrP cascade. Ann Rheum Dis 2019; 78:551-561. [PMID: 30745310 DOI: 10.1136/annrheumdis-2018-214200] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 01/04/2019] [Accepted: 01/07/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Wnt16 is implicated in bone fracture and bone mass accrual both in animals and humans. However, its functional roles and molecular mechanism in chondrocyte differentiation and osteoarthritis (OA) pathophysiology remain largely undefined. In this study, we analysed its mechanistic association and functional relationship in OA progression in chondrocyte lineage. METHODS The role of Wnt16 during skeletal development was examined by Col2a1-Wnt16 transgenic mice and Wnt16fl/fl;Col2a1-Cre (Wnt16-cKO) mice. OA progression was assessed by micro-CT analysis and Osteoarthritis Research Society International score after anterior cruciate ligament transection (ACLT) surgery with Wnt16 manipulation by adenovirus intra-articular injection. The molecular mechanism was investigated in vitro using 3D chondrocyte pellet culture and biochemical analyses. Histological analysis was performed in mouse joints and human cartilage specimens. RESULTS Wnt16 overexpression in chondrocytes in mice significantly inhibited chondrocyte hypertrophy during skeletal development. Wnt16 deficiency exaggerated OA progression, whereas intra-articular injection of Ad-Wnt16 markedly attenuated ACLT-induced OA. Cellular and molecular analyses showed that, instead of β-catenin and calcium pathways, Wnt16 activated the planar cell polarity (PCP) and JNK pathway by interacting mainly with AP2b1, and to a lesser extend Ror2 and CD146, and subsequently induced PTHrP expression through phosphor-Raptor mTORC1 pathway. CONCLUSIONS Our findings indicate that Wnt16 activates PCP/JNK and crosstalks with mTORC1-PTHrP pathway to inhibit chondrocyte hypertrophy. Our preclinical study suggests that Wnt16 may be a potential therapeutic target for OA treatment.
Collapse
Affiliation(s)
- Wenxue Tong
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yelin Zeng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Dick Ho Kiu Chow
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Wai Yeung
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiankun Xu
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yujie Deng
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Shihui Chen
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hui Zhao
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Xiaoling Zhang
- Department of Orthopedic Surgery, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, China
| | - Kevin Kiwai Ho
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ling Qin
- Musculoskeletal Research Laboratory, Department of Orthopaedics and Traumatology, Innovative Orthopaedic Biomaterial and Drug Translational Research Laboratory, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Kingston King-Lun Mak
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
- The Joint Center for Musculoskeletal Research, Guangzhou Regenerative Medicine and Health-Guangdong Laboratory, Guangzhou, China
| |
Collapse
|