1
|
Dominado N, Ye R, Casagranda F, Heaney J, Siddall NA, Abud HE, Hime GR. Alternate Grainy head isoforms regulate Drosophila midgut intestinal stem cell differentiation. Cell Death Discov 2025; 11:206. [PMID: 40295491 PMCID: PMC12037896 DOI: 10.1038/s41420-025-02496-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/10/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Regeneration of the Drosophila midgut epithelium depends upon differential expression of transcription factors in intestinal stem cells and their progeny. The grainy head locus produces multiple splice forms that result in production of two classes of transcription factor, designated Grh.O and Grh.N. grainy head expression is associated with epithelial tissue and has roles in epidermal development and regeneration but had not been examined for a function in the midgut epithelium. Here we show that null mutant clones had a limited effect on intestinal stem cell (ISC) maintenance and proliferation but surprisingly specific loss of all Grh.O isoforms results in loss of ISCs from the epithelium. This was confirmed by generation of a new Grh.O class mutant to control for genetic background effects. Grh.O mutant ISCs were not lost due to cell death but were forced to differentiate. Ectopic expression of a Grh.N isoform also resulted in ISC differentiation similar to loss of Grh.O function. Grh.O expression must be tightly regulated as high level ectopic expression of a member of this isoform class in enteroblasts, but not ISCs, resulted in cells with confused identity and promoted excess proliferation in the epithelium. Thus, midgut regeneration is not only dependent upon signalling pathways that regulate transcription factor expression, but also upon regulated mRNA splicing of these genes.
Collapse
Affiliation(s)
- Nicole Dominado
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Rachel Ye
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Franca Casagranda
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - James Heaney
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Nicole A Siddall
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Gary R Hime
- Department of Anatomy and Physiology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Hammond NL, Murtuza Baker S, Georgaka S, Al-Anbaki A, Jokl E, Simpson K, Sanchez-Alvarez R, Athwal VS, Purssell H, Siriwardena AK, Spiers HVM, Dixon MJ, Bere LD, Jones AP, Haley MJ, Couper KN, Bobola N, Sharrocks AD, Hanley NA, Rattray M, Piper Hanley K. Spatial gene regulatory networks driving cell state transitions during human liver disease. EMBO Mol Med 2025:10.1038/s44321-025-00230-6. [PMID: 40281306 DOI: 10.1038/s44321-025-00230-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025] Open
Abstract
Liver fibrosis is a major cause of death worldwide. As a progressive step in chronic liver disease, fibrosis is almost always diagnosed too late with limited treatment options. Here, we uncover the spatial transcriptional landscape driving human liver fibrosis using single nuclei RNA and Assay for Transposase-Accessible Chromatin (ATAC) sequencing to deconvolute multi-cell spatial transcriptomic profiling in human liver cirrhosis. Through multi-modal data integration, we define molecular signatures driving cell state transitions in liver disease and define an impaired cellular response and directional trajectory between hepatocytes and cholangiocytes associated with disease remodelling. We identify pro-fibrogenic signatures in non-parenchymal cell subpopulations co-localised within the fibrotic niche and localise transitional cell states at the scar interface. This combined approach provides a spatial atlas of gene regulation and defines molecular signatures associated with liver disease for targeted therapeutics or as early diagnostic markers of progressive liver disease.
Collapse
Affiliation(s)
- Nigel L Hammond
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Syed Murtuza Baker
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Sokratia Georgaka
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Ali Al-Anbaki
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Elliot Jokl
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kara Simpson
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Rosa Sanchez-Alvarez
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Varinder S Athwal
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Huw Purssell
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | - Ajith K Siriwardena
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- Manchester University NHS Foundation Trust, Oxford Road, Manchester, UK
| | | | - Mike J Dixon
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Leoma D Bere
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Adam P Jones
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Michael J Haley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Kevin N Couper
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Nicoletta Bobola
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Andrew D Sharrocks
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Neil A Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
- College of Medical & Dental Sciences, University of Birmingham, Birmingham, UK
- University Hospitals Birmingham NHS Foundation Trust, Birmingham, B15 2GW, UK
| | - Magnus Rattray
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK
| | - Karen Piper Hanley
- Faculty of Biology, Medicine & Health, Manchester Academic Health Science Centre, University of Manchester, Oxford Road, Manchester, UK.
| |
Collapse
|
3
|
Okumura A, Aoshima K, Tanimizu N. Generation of in vivo-like multicellular liver organoids by mimicking developmental processes: A review. Regen Ther 2024; 26:219-234. [PMID: 38903867 PMCID: PMC11186971 DOI: 10.1016/j.reth.2024.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024] Open
Abstract
Liver is involved in metabolic reactions, ammonia detoxification, and immunity. Multicellular liver tissue cultures are more desirable for drug screening, disease modeling, and researching transplantation therapy, than hepatocytes monocultures. Hepatocytes monocultures are not stable for long. Further, hepatocyte-like cells induced from pluripotent stem cells and in vivo hepatocytes are functionally dissimilar. Organoid technology circumvents these issues by generating functional ex vivo liver tissue from intrinsic liver progenitor cells and extrinsic stem cells, including pluripotent stem cells. To function as in vivo liver tissue, the liver organoid cells must be arranged precisely in the 3-dimensional space, closely mimicking in vivo liver tissue. Moreover, for long term functioning, liver organoids must be appropriately vascularized and in contact with neighboring epithelial tissues (e.g., bile canaliculi and intrahepatic bile duct, or intrahepatic and extrahepatic bile ducts). Recent discoveries in liver developmental biology allows one to successfully induce liver component cells and generate organoids. Thus, here, in this review, we summarize the current state of knowledge on liver development with a focus on its application in generating different liver organoids. We also cover the future prospects in creating (functionally and structurally) in vivo-like liver organoids using the current knowledge on liver development.
Collapse
Affiliation(s)
- Ayumu Okumura
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Kenji Aoshima
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| | - Naoki Tanimizu
- Division of Regenerative Medicine, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-0071, Japan
| |
Collapse
|
4
|
Huang R, Zhang X, Gracia-Sancho J, Xie WF. Liver regeneration: Cellular origin and molecular mechanisms. Liver Int 2022; 42:1486-1495. [PMID: 35107210 DOI: 10.1111/liv.15174] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/16/2021] [Accepted: 01/12/2022] [Indexed: 01/11/2023]
Abstract
The liver is known as an organ with high proliferation potential. Clarifying the cellular origin and deepening the understanding of liver regeneration mechanisms will help provide new directions for the treatment of liver disease. With the development and application of lineage tracing technology, the specific distribution and dynamic changes of hepatocyte subpopulations in homeostasis and liver injury have been illustrated. Self-replication of hepatocytes is responsible for the maintenance of liver function and mass under homeostasis. The compensatory proliferation of remaining hepatocytes is the main mechanism of liver regeneration following acute and chronic liver injury. Transdifferentiation between hepatocytes and cholangiocytes has been recognized upon severe chronic liver injury. Wnt/β-catenin, Hippo/YAP and Notch signalling play essential roles in the maintenance of homeostatic liver and hepatocyte-to-cholangiocyte conversion under liver injury. In this review, we summarized the recent studies on cell origin of newly generated hepatocytes and the underlying mechanisms of liver regeneration in homeostasis and liver injury.
Collapse
Affiliation(s)
- Ru Huang
- Department of Gastroenterology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xin Zhang
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Jordi Gracia-Sancho
- Liver Vascular Biology Research Group, Barcelona Hepatic Hemodynamic Unit, IDIBAPS, CIBEREHD, Barcelona, Spain
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
5
|
Czaja AJ. Examining micro-ribonucleic acids as diagnostic and therapeutic prospects in autoimmune hepatitis. Expert Rev Clin Immunol 2022; 18:591-607. [PMID: 35510750 DOI: 10.1080/1744666x.2022.2074839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Micro-ribonucleic acids modulate the immune response by affecting the post-transcriptional expression of genes that influence the proliferation and function of activated immune cells, including regulatory T cells. Individual expressions or patterns in peripheral blood and liver tissue may have diagnostic value, reflect treatment response, or become therapeutic targets. The goals of this review are to present the properties and actions of micro-ribonucleic acids, indicate the key individual expressions in autoimmune hepatitis, and describe prospective clinical applications in diagnosis and management. AREAS COVERED Abstracts were identified in PubMed using the search words "microRNAs", "microRNAs in liver disease", and "microRNAs in autoimmune hepatitis". The number of abstracts reviewed exceeded 2000, and the number of full-length articles reviewed was 108. EXPERT OPINION Individual micro-ribonucleic acids, miR-21, miR-122, and miR-155, have been associated with biochemical severity, histological grade of inflammation, and pivotal pathogenic mechanisms in autoimmune hepatitis. Antisense oligonucleotides that down-regulate deleterious individual gene expressions, engineered molecules that impair targeting of gene products, and drugs that non-selectively up-regulate the biogenesis of potentially deficient gene regulators are feasible treatment options. Micro-ribonucleic acids constitute an under-evaluated area in autoimmune hepatitis that promises to improve diagnosis, pathogenic concepts, and therapy.
Collapse
Affiliation(s)
- Albert J Czaja
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
6
|
The regulation of HBP1, SIRT1, and SREBP-1c genes and the related microRNAs in non-alcoholic fatty liver rats: The association with the folic acid anti-steatosis. PLoS One 2022; 17:e0265455. [PMID: 35417465 PMCID: PMC9007334 DOI: 10.1371/journal.pone.0265455] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/02/2022] [Indexed: 01/20/2023] Open
Abstract
Folic acid is one of the vital micronutrients that contribute to the genetic stability and other biological activities. In addition, microRNAs regulate gene expression through a multittude of pathways. Our current work aimd to explore the possible ameliorative potency of folic acid and its association with the hepatic miR-21, -34a, and -122 expression as well as their targeted genes, HBP1, SIRT1, and SREBP-1c in rats with non-alcoholic fatty liver disease (NAFL). A total of 50 Wistar rats were randomly divided into two groups, a control group (n = 10) and NAFL group (n = 40). Rats in NAFL group were fed a high-fat diet (HFD) containing 20% fats for 14 weeks. The NAFL group was further subdivided into four groups (n = 10/group), one untreated and three orally folic acid-treated groups (25, 50, and 75 μg/Kg b.wt). NAFL characteristics was evaluated in rats in addition to the miR-21, -34a, and -122 profile as well as the transcriptional levels of HBP1, SIRT1, and SREBP-1c genes. NAFL rats exhibited the classic traits of fatty liver disease profile and dysregulation in the pattern of miR-21, -34a, and -122 expression as well as their targeted genes (HBP1, SIRT1, and SREBP-1c, respectively) in the liver. Additionally, NAFL rats had altered levels of TNF-α and adiponectin. These alterations were significantly ameliorated in a dose-dependent pattern following the folic acid treatments. In conclusions, the anti-steatotic, insulin-sensitizing, glucose-lowering and lipotropic potencies of folic acid in NAFL rats may be linked to the epigenetic modulation of the hepatic microRNAs (miR-21, -34a, and -122) and the expression of their target genes (HBP1, SIRT1, and SREBP-1c).
Collapse
|
7
|
Gasperoni JG, Fuller JN, Darido C, Wilanowski T, Dworkin S. Grainyhead-like (Grhl) Target Genes in Development and Cancer. Int J Mol Sci 2022; 23:ijms23052735. [PMID: 35269877 PMCID: PMC8911041 DOI: 10.3390/ijms23052735] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/25/2022] [Accepted: 02/26/2022] [Indexed: 12/12/2022] Open
Abstract
Grainyhead-like (GRHL) factors are essential, highly conserved transcription factors (TFs) that regulate processes common to both natural cellular behaviours during embryogenesis, and de-regulation of growth and survival pathways in cancer. Serving to drive the transcription, and therefore activation of multiple co-ordinating pathways, the three GRHL family members (GRHL1-3) are a critical conduit for modulating the molecular landscape that guides cellular decision-making processes during proliferation, epithelial-mesenchymal transition (EMT) and migration. Animal models and in vitro approaches harbouring GRHL loss or gain-of-function are key research tools to understanding gene function, which gives confidence that resultant phenotypes and cellular behaviours may be translatable to humans. Critically, identifying and characterising the target genes to which these factors bind is also essential, as they allow us to discover and understand novel genetic pathways that could ultimately be used as targets for disease diagnosis, drug discovery and therapeutic strategies. GRHL1-3 and their transcriptional targets have been shown to drive comparable cellular processes in Drosophila, C. elegans, zebrafish and mice, and have recently also been implicated in the aetiology and/or progression of a number of human congenital disorders and cancers of epithelial origin. In this review, we will summarise the state of knowledge pertaining to the role of the GRHL family target genes in both development and cancer, primarily through understanding the genetic pathways transcriptionally regulated by these factors across disparate disease contexts.
Collapse
Affiliation(s)
- Jemma G. Gasperoni
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Jarrad N. Fuller
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
| | - Charbel Darido
- The Peter MacCallum Cancer Centre, 305 Grattan St, Melbourne, VIC 3000, Australia;
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Tomasz Wilanowski
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland;
| | - Sebastian Dworkin
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (J.G.G.); (J.N.F.)
- Correspondence:
| |
Collapse
|
8
|
Zhang Y, Tan YY, Chen PP, Xu H, Xie SJ, Xu SJ, Li B, Li JH, Liu S, Yang JH, Zhou H, Qu LH. Genome-wide identification of microRNA targets reveals positive regulation of the Hippo pathway by miR-122 during liver development. Cell Death Dis 2021; 12:1161. [PMID: 34907157 PMCID: PMC8671590 DOI: 10.1038/s41419-021-04436-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 11/16/2021] [Accepted: 11/24/2021] [Indexed: 12/19/2022]
Abstract
Liver development is a highly complex process that is regulated by the orchestrated interplay of epigenetic regulators, transcription factors, and microRNAs (miRNAs). Owing to the lack of global in vivo targets of all miRNAs during liver development, the mechanisms underlying the dynamic control of hepatocyte differentiation by miRNAs remain elusive. Here, using Argonaute (Ago) high-throughput sequencing of RNA isolated by crosslinking immunoprecipitation (HITS-CLIP) in the mouse liver at different developmental stages, we characterized massive Ago-binding RNAs and obtained a genome-wide map of liver miRNA-mRNA interactions. The dynamic changes of five clusters of miRNAs and their potential targets were identified to be differentially involved at specific stages, a dozen of high abundant miRNAs and their epigenetic regulation by super-enhancer were found during liver development. Remarkably, miR-122, a liver-specific and most abundant miRNA in newborn and adult livers, was found by its targetome and pathway reporter analyses to regulate the Hippo pathway, which is crucial for liver size control and homeostasis. Mechanistically, we further demonstrated that miR-122 negatively regulates the outcomes of the Hippo pathway transcription factor TEAD by directly targeting a number of hippo pathway regulators, including the coactivator TAZ and a key factor of the phosphatase complex PPP1CC, which contributes to the dephosphorylation of YAP, another coactivator downstream of the Hippo pathway. This study identifies for the first time the genome-wide miRNA targetomes during mouse liver development and demonstrates a novel mechanism of terminal differentiation of hepatocytes regulated by the miR-122/Hippo pathway in a coordinated manner. As the Hippo pathway plays important roles in cell proliferation and liver pathological processes like inflammation, fibrosis, and hepatocellular carcinoma (HCC), our study could also provide a new insight into the function of miR-122 in liver pathology.
Collapse
Affiliation(s)
- Yin Zhang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China ,grid.12981.330000 0001 2360 039XGuangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Research Center of Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120 China
| | - Ye-Ya Tan
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Pei-Pei Chen
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China ,grid.413402.00000 0004 6068 0570Guangdong Province Hospital of Chinese Medicine, AMI Key Laboratory of Chinese Medicine in Guangzhou, , The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Academy of Chinese Medical Science, Guangzhou, 510006 China
| | - Hui Xu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shu-Juan Xie
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shi-Jun Xu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Bin Li
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jun-Hao Li
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Shun Liu
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Jian-Hua Yang
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Hui Zhou
- grid.12981.330000 0001 2360 039XMOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Liang-Hu Qu
- MOE Key Laboratory of Gene function and regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
9
|
Epithelial-to-Mesenchymal Plasticity in Circulating Tumor Cell Lines Sequentially Derived from a Patient with Colorectal Cancer. Cancers (Basel) 2021; 13:cancers13215408. [PMID: 34771571 PMCID: PMC8582537 DOI: 10.3390/cancers13215408] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 10/15/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Metastasis is a complex dynamic multistep process; however, our knowledge is still limited. Very few circulating tumor cells (CTCs) are metastatic precursor cells and represent the intermediate stage of metastasis. Epithelial–mesenchymal plasticity (EMP) has crucial roles in tissue development and homeostasis, and also in metastasis formation. In this study, we explored the EMP phenotype of a unique series of CTC lines, obtained from a patient with colon cancer during the disease course and treatment, by detecting markers involved in the epithelial–mesenchymal and mesenchymal–epithelial (MET) transitions. This study shows that these colon CTC lines have acquired only few mesenchymal features to migrate and intravasate, whereas an increase of MET-related markers was observed, suggesting that metastasis-competent CTCs need to revert quickly to the epithelial phenotype to reinitiate a tumor at a distant site. Abstract Metastasis is a complicated and only partially understood multi-step process of cancer progression. A subset of cancer cells that can leave the primary tumor, intravasate, and circulate to reach distant organs are called circulating tumor cells (CTCs). Multiple lines of evidence suggest that in metastatic cancer cells, epithelial and mesenchymal markers are co-expressed to facilitate the cells’ ability to go back and forth between cellular states. This feature is called epithelial-to-mesenchymal plasticity (EMP). CTCs represent a unique source to understand the EMP features in metastatic cascade biology. Our group previously established and characterized nine serial CTC lines from a patient with metastatic colon cancer. Here, we assessed the expression of markers involved in epithelial–mesenchymal (EMT) and mesenchymal–epithelial (MET) transition in these unique CTC lines, to define their EMP profile. We found that the oncogenes MYC and ezrin were expressed by all CTC lines, but not SIX1, one of their common regulators (also an EMT inducer). Moreover, the MET activator GRHL2 and its putative targets were strongly expressed in all CTC lines, revealing their plasticity in favor of an increased MET state that promotes metastasis formation.
Collapse
|
10
|
Ichinohe N, Ishii M, Tanimizu N, Mizuguchi T, Yoshioka Y, Ochiya T, Suzuki H, Mitaka T. Extracellular vesicles containing miR-146a-5p secreted by bone marrow mesenchymal cells activate hepatocytic progenitors in regenerating rat livers. Stem Cell Res Ther 2021; 12:312. [PMID: 34051870 PMCID: PMC8164814 DOI: 10.1186/s13287-021-02387-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Small hepatocyte-like progenitor cells (SHPCs) appear to form transient clusters in rat livers treated with retrorsine (Ret) and 70% partial hepatectomy (PH). We previously reported that the expansion of SHPCs was amplified in Ret/PH-treated rat livers transplanted with Thy1+ cells derived from D-galactosamine-treated injured livers. Extracellular vesicles (EVs) produced by hepatic Thy1+ donor cells activated SHPCs via interleukin (IL)-17 receptor B signaling. As bone marrow-derived mesenchymal cells (BM-MCs) also express Thy1, we aimed to determine whether BM-MCs could also promote the growth of SHPCs. METHODS BM-MCs were isolated from dipeptidyl-peptidase IV (DPPIV)-positive rats. BM-MCs or BM-MC-derived EVs were administered to DPPIV-negative Ret/PH rat livers, and the growth and the characteristics of SHPC clusters were evaluated 14 days post-treatment. miRNA microarrays and cytokine arrays examined soluble factors within EVs. Small hepatocytes (SHs) isolated from an adult rat liver were used to identify factors enhancing hepatocytic progenitor cells growth. RESULTS The recipient's livers were enlarged at 2 weeks post-BM-MC transplantation. The number and the size of SHPCs increased remarkably in livers transplanted with BM-MCs. BM-MC-derived EVs also stimulated SHPC growth. Comprehensive analyses revealed that BM-MC-derived EVs contained miR-146a-5p, interleukin-6, and stem cell factor, which could enhance SHs' proliferation. Administration of EVs derived from the miR-146a-5p-transfected BM-MCs to Ret/PH rat livers remarkably enhanced the expansion of SHPCs. CONCLUSIONS miR-146a-5p involved in EVs produced by BM-MCs may play a major role in accelerating liver regeneration by activating the intrinsic hepatocytic progenitor cells.
Collapse
Affiliation(s)
- Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| | - Masayuki Ishii
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nursing, Sapporo Medical University School of Health Science, Sapporo, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
- Department of Molecular and Cellular Medicine, Institute of Medical Science, Tokyo Medical University, Tokyo, Japan
| | - Hiromu Suzuki
- Department of Molecular Biology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, South-1, West-17, Chuo-ku, Sapporo, 060-8556, Japan.
| |
Collapse
|
11
|
Yang JQ, Jiang N, Li ZP, Guo S, Chen ZY, Li BB, Chai SB, Lu SY, Yan HF, Sun PM, Zhang T, Sun HW, Yang JW, Zhou JL, Yang HM, Cui Y. The effects of microgravity on the digestive system and the new insights it brings to the life sciences. LIFE SCIENCES IN SPACE RESEARCH 2020; 27:74-82. [PMID: 34756233 DOI: 10.1016/j.lssr.2020.07.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/04/2020] [Accepted: 07/28/2020] [Indexed: 06/13/2023]
Abstract
BACKGROUND Weightlessness is a component of the complex space environment. It exerts adverse effects on the human body, and may pose unknown challenges to the implementation of space missions. The regular function of the digestive system is an important checkpoint for astronauts to conduct missions. Simulated microgravity can recreate the changes experienced by the human body in a weightless environment in space to a certain extent, providing technical support for the exploration of its mechanism and a practical method for other scientific research. METHODS AND MATERIALS In the present study, we reviewed and discussed the latest research on the effects of weightlessness or simulated microgravity on the digestive system, as well as the current challenges and future expectations for progress in medical science and further space exploration. RESULTS A series of studies have investigated the effects of weightlessness on the human digestive system. On one hand, weightlessness and the changing space environment may exert certain adverse effects on the human body. Studies based on cells or animals have demonstrated the complex effects on the human digestive system in response to weightlessness. On the other hand, a microgravity environment also facilitates the ideation of novel concepts for research in the domain of life science. CONCLUSION The effects of weightlessness on the digestive system are considerably complicated. The emergence of methods that help simulate a weightless environment provides a more convenient alternative for assessing the impact and the mechanism underlying the effect of weightlessness on the human body. In addition, the simulated microgravity environment facilitates the ideation of novel concepts for application in regenerative medicine and other fields of life science.
Collapse
Affiliation(s)
- Jia-Qi Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Nan Jiang
- The Center for Hepatopancreatobiliary Diseases, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing 102218, China
| | - Zheng-Peng Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Song Guo
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Zheng-Yang Chen
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Bin-Bin Li
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Shao-Bin Chai
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Sheng-Yu Lu
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China; Department of General Surgery, the 306th Hospital of Chinese PLA-Peking University Teaching Hospital, Beijing 100101, China
| | - Hong-Feng Yan
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Pei-Ming Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Tao Zhang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Hong-Wei Sun
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jian-Wu Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Jin-Lian Zhou
- Department of Pathology, the Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| | - He-Ming Yang
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China
| | - Yan Cui
- Department of General Surgery, Chinese PLA Strategic Support Force Characteristic Medical Center, Beijing 100101, China.
| |
Collapse
|
12
|
Fornes D, Heinecke F, Roberti SL, White V, Capobianco E, Jawerbaum A. Proinflammation in maternal and fetal livers and circulating miR-122 dysregulation in a GDM rat model induced by intrauterine programming. Mol Cell Endocrinol 2020; 510:110824. [PMID: 32315718 DOI: 10.1016/j.mce.2020.110824] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/05/2020] [Accepted: 04/11/2020] [Indexed: 12/11/2022]
Abstract
In gestational diabetes mellitus (GDM) pregnancies, a compromised fetal liver may impact offspring's metabolic health. Here, we aimed to address prooxidant, proinflammatory and profibrotic markers in the livers from GDM rats and their fetuses, and to analyze the expression of miR-122 (a relevant microRNA in liver pathophysiology) in fetal and maternal plasma of GDM rats, as well as in the fetal livers of neonatal streptozotocin-induced (nSTZ) diabetic rats, the rats that generate GDM through intrauterine programming. GDM and nSTZ rats were evaluated on day 21 of pregnancy. We found increased nitric oxide production and lipoperoxidation in the livers from GDM rats and their fetuses compared to controls. Livers from GDM fetuses also showed increased levels of connective tissue growth factor and matrix metalloproteinase-2. The expression of miRNA-122 was downregulated in the plasma from GDM rats and their male fetuses, as well as in the livers from male fetuses of nSTZ diabetic rats. miR-122 levels were regulated both in vitro through PPARγ activation and in vivo through a maternal diet enriched in PPAR ligands. Our findings revealed a prooxidant/proinflammatory environment in the livers from GDM rats and their fetuses and a dysregulation of miR-122, likely relevant in the programming of offspring's diseases.
Collapse
Affiliation(s)
- Daiana Fornes
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Florencia Heinecke
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Sabrina Lorena Roberti
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Verónica White
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Evangelina Capobianco
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina
| | - Alicia Jawerbaum
- Universidad de Buenos Aires, Facultad de Medicina and CONICET-Universidad de Buenos Aires, Laboratory of Reproduction and Metabolism, CEFYBO, Buenos Aires, Argentina.
| |
Collapse
|
13
|
Glaser T, Baiocchi L, Zhou T, Francis H, Lenci I, Grassi G, Kennedy L, Liangpunsakul S, Glaser S, Alpini G, Meng F. Pro-inflammatory signalling and gut-liver axis in non-alcoholic and alcoholic steatohepatitis: Differences and similarities along the path. J Cell Mol Med 2020; 24:5955-5965. [PMID: 32314869 PMCID: PMC7294142 DOI: 10.1111/jcmm.15182] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 02/25/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and alcohol-associated liver disease (ALD) represent a spectrum of injury, ranging from simple steatosis to steatohepatitis and cirrhosis. In humans, in fact, fatty changes in the liver, possibly leading to end-stage disease, were observed after chronic alcohol intake or in conditions of metabolic impairment. In this article, we examined the features and the pro-inflammatory pathways leading to non-alcoholic and alcoholic steatohepatitis. The involvement of several events (hits) and multiple inter-related pathways in the pathogenesis of these diseases suggest that a single therapeutic agent is unlikely to be an effective treatment strategy. Hence, a combination treatment towards multiple pro-inflammatory targets would eventually be required. Gut-liver crosstalk is involved not only in the impairment of lipid and glucose homoeostasis leading to steatogenesis, but also in the initiation of inflammation and fibrogenesis in both NAFLD and ALD. Modulation of the gut-liver axis has been suggested as a possible therapeutic approach since gut-derived components are likely to be involved in both the onset and the progression of liver damage. This review summarizes the translational mechanisms underlying pro-inflammatory signalling and gut-liver axis in non-alcoholic and alcoholic steatohepatitis. With a multitude of people being affected by liver diseases, identification of possible treatments and the elucidation of pathogenic mechanisms are elements of paramount importance.
Collapse
Affiliation(s)
- Trenton Glaser
- Texas A&M University College of MedicineCollege StationTXUSA
| | - Leonardo Baiocchi
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | - Tianhao Zhou
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Heather Francis
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Ilaria Lenci
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | - Giuseppe Grassi
- Liver UnitDepartment of MedicineUniversity of Rome Tor VergataRomeItaly
| | | | - Suthat Liangpunsakul
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Shannon Glaser
- Department of Medical PhysiologyTexas A&M University College of MedicineBryanTXUSA
| | - Gianfranco Alpini
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| | - Fanyin Meng
- Richard L. Roudebush VA Medical CenterIndianapolisINUSA
- Division of Gastroenterology and HepatologyDepartment of MedicineIndiana University School of MedicineIndianapolisINUSA
| |
Collapse
|
14
|
SH3RF3 promotes breast cancer stem-like properties via JNK activation and PTX3 upregulation. Nat Commun 2020; 11:2487. [PMID: 32427938 PMCID: PMC7237486 DOI: 10.1038/s41467-020-16051-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 04/08/2020] [Indexed: 02/08/2023] Open
Abstract
Cancer stem-like cells (CSCs) are the tumorigenic cell subpopulation and contribute to cancer recurrence and metastasis. However, the understanding of CSC regulatory mechanisms remains incomplete. By transcriptomic analysis, we identify a scaffold protein SH3RF3 (also named POSH2) that is upregulated in CSCs of breast cancer clinical tumors and cancer cell lines, and enhances the CSC properties of breast cancer cells. Mechanically, SH3RF3 interacts with the c-Jun N-terminal kinase (JNK) in a JNK-interacting protein (JIP)-dependent manner, leading to enhanced phosphorylation of JNK and activation of the JNK-JUN pathway. Further the JNK-JUN signaling expands CSC subpopulation by transcriptionally activating the expression of Pentraxin 3 (PTX3). The functional role of SH3RF3 in CSCs is validated with patient-derived organoid culture, and supported by clinical cohort analyses. In conclusion, our work elucidates the role and molecular mechanism of SH3RF3 in CSCs of breast cancer, and might provide opportunities for CSC-targeting therapy.
Collapse
|
15
|
Wang Y, Zeng Z, Guan L, Ao R. GRHL2 induces liver fibrosis and intestinal mucosal barrier dysfunction in non-alcoholic fatty liver disease via microRNA-200 and the MAPK pathway. J Cell Mol Med 2020; 24:6107-6119. [PMID: 32324317 PMCID: PMC7294114 DOI: 10.1111/jcmm.15212] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022] Open
Abstract
Non‐alcoholic fatty liver disease (NAFLD) serves as the most common subtype of liver diseases and cause of liver dysfunction, which is closely related to obesity and insulin resistance. In our study, we sought to investigate effect of transcription factor grainyhead‐like 2 (GRHL2) on NAFLD and the relevant mechanism. NAFLD mouse model was established with a high‐fat feed. Then, serum was extracted from NAFLD patients and mice, followed by ectopic expression and depletion experiments in NAFLD mice and L02 cells. Next, the correlation between GRHL2 and microRNA (miR)‐200 and between miR‐200 and sirtuin‐1 (SIRT1) was evaluated. The observations demonstrated that miR‐200 and GRHL2 were overexpressed in the serum of NAFLD patients and mice, while SIRT1 was poorly expressed. GRHL2 positively regulated miR‐200 by binding to miR‐200 promoter region, which negatively targeted SIRT1. The inhibition of miR‐200 and GRHL2 or SIRT1 overexpression lowered HA and LN in mouse liver tissue, occludin and ZO‐1 in mouse small intestine tissue, TNF‐α and IL‐6 in mouse serum, glucose, total cholesterol (TC), triglyceride (TG), aspartate aminotransferase (AST) and alanine aminotransferase (ALT) in mouse serum, and also inhibited liver fibrosis and intestinal mucosal barrier dysfunction. Meanwhile, GRHL2 induced activation of MAPK signalling pathway in NAFLD mice. Collectively, GRHL2 played a contributory role in NAFLD by exacerbating liver fibrosis and intestinal mucosal barrier dysfunction with the involvement of miR‐200‐dependent SIRT1 and the MAPK signalling pathway.
Collapse
Affiliation(s)
- Ying Wang
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zishu Zeng
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lin Guan
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ran Ao
- Department of Gastroenterology, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
16
|
Ko S, Russell JO, Molina LM, Monga SP. Liver Progenitors and Adult Cell Plasticity in Hepatic Injury and Repair: Knowns and Unknowns. ANNUAL REVIEW OF PATHOLOGY 2020; 15:23-50. [PMID: 31399003 PMCID: PMC7212705 DOI: 10.1146/annurev-pathmechdis-012419-032824] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The liver is a complex organ performing numerous vital physiological functions. For that reason, it possesses immense regenerative potential. The capacity for repair is largely attributable to the ability of its differentiated epithelial cells, hepatocytes and biliary epithelial cells, to proliferate after injury. However, in cases of extreme acute injury or prolonged chronic insult, the liver may fail to regenerate or do so suboptimally. This often results in life-threatening end-stage liver disease for which liver transplantation is the only effective treatment. In many forms of liver injury, bipotent liver progenitor cells are theorized to be activated as an additional tier of liver repair. However, the existence, origin, fate, activation, and contribution to regeneration of liver progenitor cells is hotly debated, especially since hepatocytes and biliary epithelial cells themselves may serve as facultative stem cells for one another during severe liver injury. Here, we discuss the evidence both supporting and refuting the existence of liver progenitor cells in a variety of experimental models. We also debate the validity of developing therapies harnessing the capabilities of these cells as potential treatments for patients with severe and chronic liver diseases.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Jacquelyn O Russell
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Laura M Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA;
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA
| |
Collapse
|
17
|
Huang XB, He YG, Zheng L, Feng H, Li YM, Li HY, Yang FX, Li J. Identification of hepatitis B virus and liver cancer bridge molecules based on functional module network. World J Gastroenterol 2019; 25:4921-4932. [PMID: 31543683 PMCID: PMC6737318 DOI: 10.3748/wjg.v25.i33.4921] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/29/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The potential role of chronic inflammation in the development of cancer has been widely recognized. However, there has been little research fully and thoroughly exploring the molecular link between hepatitis B virus (HBV) and hepatocellular carcinoma (HCC). AIM To elucidate the molecular links between HBV and HCC through analyzing the molecular processes of HBV-HCC using a multidimensional approach. METHODS First, maladjusted genes shared between HBV and HCC were identified by disease-related differentially expressed genes. Second, the protein-protein interaction network based on dysfunctional genes identified a series of dysfunctional modules and significant crosstalk between modules based on the hypergeometric test. In addition, key regulators were detected by pivot analysis. Finally, targeted drugs that have regulatory effects on diseases were predicted by modular methods and drug target information. RESULTS The study found that 67 genes continued to increase in the HBV-HCC process. Moreover, 366 overlapping genes in the module network participated in multiple functional blocks. It could be presumed that these genes and their interactions play an important role in the relationship between inflammation and cancer. Correspondingly, significant crosstalk constructed a module level bridge for HBV-HCC molecular processes. On the other hand, a series of non-coding RNAs and transcription factors that have potential pivot regulatory effects on HBV and HCC were identified. Among them, some of the regulators also had persistent disorders in the process of HBV-HCC including microRNA-192, microRNA-215, and microRNA-874, and early growth response 2, FOS, and Kruppel-like factor 4. Therefore, the study concluded that these pivots are the key bridge molecules outside the module. Last but not least, a variety of drugs that may have some potential pharmacological or toxic side effects on HBV-induced HCC were predicted, but their mechanisms still need to be further explored. CONCLUSION The results suggest that the persistent inflammatory environment of HBV can be utilized as an important risk factor to induce the occurrence of HCC, which is supported by molecular evidence.
Collapse
Affiliation(s)
- Xiao-Bing Huang
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Yong-Gang He
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Lu Zheng
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Huan Feng
- Division of Nursing, Second Hospital Affiliated to Third Military Medical University, Xinqiao Hospital, Chongqing 400037, China
| | - Yu-Ming Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Hong-Yan Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Feng-Xia Yang
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| | - Jing Li
- Department of Hepatobiliary Surgery, Second Hospital Affiliated to Third Military Medical University of Xinqiao Hospital, Chongqing 400037, China
| |
Collapse
|
18
|
Kamiya A, Anzai K, Tsuruya K, Chikada H. Culture System of Bile Duct-Like Cystic Structures Derived from Human-Inducible Pluripotent Stem Cells. Methods Mol Biol 2019; 1905:143-153. [PMID: 30536097 DOI: 10.1007/978-1-4939-8961-4_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inducible pluripotent stem (iPS) cells are multipotent stem cells that are produced by gene transfer of reprogramming factors to somatic cells. They are thought to be an important source of regenerative medicine because of their pluripotency and self-renewal ability. Although the liver has high regeneration ability, continuous death of hepatocytes due to chronic inflammation leads to liver cirrhosis and liver carcinoma. With regard to such serious liver diseases, liver transplantation is used as a complete cure, but there is a problem of donor shortage. Therefore, transplantation therapy using liver tissue generated from stem cells in vitro is expected.We are developing a system to induce the differentiation of cholangiocytes, one of important non-parenchymal cells in living liver tissue, from human iPS cells. Bile duct-like cystic structures can be induced by purifying human iPS cell-derived hepatoblasts expressing hepatic progenitor cell surface markers and inducing differentiation under appropriate culture conditions. These cells are considered to be useful in constructing a hepatic organoid that reproduces the liver structure of the living body.
Collapse
Affiliation(s)
- Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan. .,Center for Matrix Biology and Medicine, Graduate Scool of Medicine, Tokai University, Isehara, Kanagawa, Japan.
| | - Kazuya Anzai
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kota Tsuruya
- Department of Gastroenterology, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| |
Collapse
|
19
|
Kamiya A, Chikada H, Ida K, Ando E, Tsuruya K, Kagawa T, Inagaki Y. An in vitro model of polycystic liver disease using genome-edited human inducible pluripotent stem cells. Stem Cell Res 2018; 32:17-24. [PMID: 30172093 DOI: 10.1016/j.scr.2018.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 08/14/2018] [Accepted: 08/22/2018] [Indexed: 01/23/2023] Open
Abstract
In the developing liver, bile duct structure is formed through differentiation of hepatic progenitor cells (HPC) into cholangiocytes. A subtype of polycystic liver diseases characterized by uncontrolled expansion of bile ductal cells is caused by genetic abnormalities such as in that of protein kinase C substrate 80 K-H (PRKCSH). In this study, we aimed to mimic the disease process in vitro by genome editing of the PRKCSH locus in human inducible pluripotent stem (iPS) cells. A proportion of cultured human iPS cell-derived CD13+CD133+ HPC differentiated into CD13- cells. During the subsequent gel embedding culture, CD13- cells formed bile ductal marker-positive cystic structures with the polarity of epithelial cells. A deletion of PRKCSH gene increased expression of cholangiocytic transcription factors in CD13- cells and the number of cholangiocytic cyst structure. These results suggest that PRKCSH deficiency promotes the differentiation of HPC-derived cholangiocytes, providing a good in vitro model to analyze the molecular mechanisms underlying polycystic diseases.
Collapse
Affiliation(s)
- Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan.
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Emi Ando
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan
| | - Kota Tsuruya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa, Japan; Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tatehiro Kagawa
- Division of Gastroenterology, Department of Internal Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yutaka Inagaki
- Center for Matrix Biology and Medicine, Graduate School of Medicine, Tokai University, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan; Department of Regenerative Medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
20
|
Tanimizu N, Ichinohe N, Mitaka T. Intrahepatic bile ducts guide establishment of the intrahepatic nerve network in developing and regenerating mouse liver. Development 2018; 145:dev.159095. [PMID: 29615468 DOI: 10.1242/dev.159095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 03/23/2018] [Indexed: 01/03/2023]
Abstract
Epithelial organs consist of multiple tissue structures, such as epithelial sheets, blood vessels and nerves, which are spatially organized to achieve optimal physiological functions. The hepatic nervous system has been implicated in physiological functions and regeneration of the liver. However, the processes of development and reconstruction of the intrahepatic nerve network and its underlying mechanisms remain unknown. Here, we demonstrate that neural class III β-tubulin (TUBB3)+ nerve fibers are not distributed in intrahepatic tissue at embryonic day 17.5; instead, they gradually extend along the periportal tissue, including intrahepatic bile ducts (IHBDs), after birth. Nerve growth factor (Ngf) expression increased in biliary epithelial cells (BECs) and mesenchymal cells next to BECs before nerve fiber extension, and Ngf was upregulated by hairy enhancer of slit 1 (Hes family bHLH transcription factor 1; Hes1). Ectopic NGF expression in mature hepatocytes induced nerve fiber extension into the parenchymal region, from where these fibers are normally excluded. Furthermore, after BECs were damaged by the administration of 4,4-diaminodiphenylmethane, the nerve network appeared shrunken; however, it was reconstructed after IHBD regeneration, which depended on the NGF signal. These results suggest that IHBDs guide the extension of nerve fibers by secreting NGF during nerve fiber development and regeneration.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
21
|
Satishchandran A, Ambade A, Rao S, Hsueh YC, Iracheta-Vellve A, Tornai D, Lowe P, Gyongyosi B, Li J, Catalano D, Zhong L, Kodys K, Xie J, Bala S, Gao G, Szabo G. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease. Gastroenterology 2018; 154:238-252.e7. [PMID: 28987423 PMCID: PMC5742049 DOI: 10.1053/j.gastro.2017.09.022] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 09/24/2017] [Accepted: 09/25/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Chronic, excessive alcohol consumption leads to alcoholic liver disease (ALD) characterized by steatosis, inflammation, and eventually cirrhosis. The hepatocyte specific microRNA 122 (MIR122) regulates hepatocyte differentiation and metabolism. We investigated whether an alcohol-induced decrease in level of MIR122 contributes to development of ALD. METHODS We obtained liver samples from 12 patients with ALD and cirrhosis and 9 healthy individuals (controls) and analyzed them by histology and immunohistochemistry. C57Bl/6 mice were placed on a Lieber-DeCarli liquid diet, in which they were fed ethanol for 8 weeks, as a model of ALD, or a control diet. These mice were also given injections of CCl4, to increase liver fibrosis, for 8 weeks. On day 28, mice with ethanol-induced liver disease and advanced fibrosis, and controls, were given injections of recombinant adeno-associated virus 8 vector that expressed the primary miR-122 transcript (pri-MIR122, to overexpress MIR122 in hepatocytes) or vector (control). Two weeks before ethanol feeding, some mice were given injections of a vector that expressed an anti-MIR122, to knock down its expression. Serum and liver tissues were collected; hepatocytes and liver mononuclear cells were analyzed by histology, immunoblots, and confocal microscopy. We performed in silico analyses to identify targets of MIR122 and chromatin immunoprecipitation quantitative polymerase chain reaction analyses in Huh-7 cells. RESULTS Levels of MIR122 were decreased in liver samples from patients with ALD and mice on the Lieber-DeCarli diet, compared with controls. Transgenic expression of MIR122 in hepatocytes of mice with ethanol-induced liver disease and advanced fibrosis significantly reduced serum levels of alanine aminotransferase (ALT) and liver steatosis and fibrosis, compared with mice given injections of the control vector. Ethanol feeding reduced expression of pri-MIR122 by increasing expression of the spliced form of the transcription factor grainyhead like transcription factor 2 (GRHL2) in liver tissues from mice. Levels of GRHL2 also were increased in liver tissues from patients with ALD, compared with controls; increases correlated with decreases in levels of MIR122 in human liver. Mice given injections of the anti-MIR122 before ethanol feeding had increased steatosis, inflammation, and serum levels of alanine aminotransferase compared with mice given a control vector. Levels of hypoxia-inducible factor 1 alpha (HIF1α) mRNA, a target of MIR122, were increased in liver tissues from patients and mice with ALD, compared with controls. Mice with hepatocyte-specific disruption of Hif1α developed less-severe liver injury following administration of ethanol, injection of anti-MIR122, or both. CONCLUSIONS Levels of MIR122 decrease in livers from patients with ALD and mice with ethanol-induced liver disease, compared with controls. Transcription of MIR122 is inhibited by GRHL2, which is increased in livers of mice and patients with ALD. Expression of an anti-MIR122 worsened the severity of liver damage following ethanol feeding in mice. MIR122 appears to protect the liver from ethanol-induced damage by reducing levels of HIF1α. These processes might be manipulated to reduce the severity of ALD in patients.
Collapse
Affiliation(s)
- Abhishek Satishchandran
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sitara Rao
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Ying-Chao Hsueh
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Arvin Iracheta-Vellve
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - David Tornai
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Patrick Lowe
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Benedek Gyongyosi
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jia Li
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Li Zhong
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Pediatrics, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Karen Kodys
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Jun Xie
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Shashi Bala
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Guangping Gao
- Gene Therapy Center, University of Massachusetts Medical School, Worcester, Massachusetts; Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
22
|
Yamamoto M, Xin B, Watanabe K, Ooshio T, Fujii K, Chen X, Okada Y, Abe H, Taguchi Y, Miyokawa N, Furukawa H, Nishikawa Y. Oncogenic Determination of a Broad Spectrum of Phenotypes of Hepatocyte-Derived Mouse Liver Tumors. THE AMERICAN JOURNAL OF PATHOLOGY 2017; 187:2711-2725. [PMID: 28964793 DOI: 10.1016/j.ajpath.2017.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 06/27/2017] [Accepted: 07/28/2017] [Indexed: 12/11/2022]
Abstract
Activation of the phosphoinositide 3-kinase-AKT, Yes-associated protein (YAP), and MYC pathways is involved in human liver cancers, including hepatocellular carcinoma (HCC) and cholangiocarcinoma (CC). However, the nature of the interactions among these pathways has remained poorly understood. Herein, we demonstrate the coordination of these pathways during the formation of mouse liver tumors induced by hepatocyte-specific somatic integration of myristoylated AKT, mutant YAP, Myc, or their combinations. Although the introduction of YAP or Myc alone was inefficient in inducing tumors, these proteins accelerated tumorigenesis induced by AKT. The generated tumors demonstrated various histological features: low-grade HCC by AKT/Myc, CC by AKT/YAP, and high-grade HCC by AKT/Myc/YAP. CC induced by AKT/YAP was associated with activation of the Notch pathway. Interestingly, the combination of Myc and YAP generated tumors composed of hepatoblast/stem-like cells expressing mRNA for Afp, Dlk1, Nanog, and Sox2 and occasionally forming immature ducts. Finally, immunohistochemical analysis revealed that human HCC and CC were predominantly associated with phosphorylation of S6 and glycogen synthase kinase-3β, respectively, and >60% of CC cases were positive for both phosphorylated glycogen synthase kinase--3β and YAP. Our study suggests that hepatocyte-derived tumors demonstrate a wide spectrum of tumor phenotypes, including HCC, CC, and hepatoblastoma-like, through the combinatory effects of the oncogenic pathways and that the state of the phosphoinositide 3-kinase-AKT pathway is a key determinant of differentiation.
Collapse
Affiliation(s)
- Masahiro Yamamoto
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Bing Xin
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kenji Watanabe
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan; Division of Gastroenterological and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Takako Ooshio
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Kiyonaga Fujii
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Xi Chen
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoko Okada
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroaki Abe
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Yoshimitsu Taguchi
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Naoyuki Miyokawa
- Department of Surgical Pathology, Asahikawa Medical University, Asahikawa, Japan
| | - Hiroyuki Furukawa
- Division of Gastroenterological and General Surgery, Department of Surgery, Asahikawa Medical University, Asahikawa, Japan
| | - Yuji Nishikawa
- Division of Tumor Pathology, Department of Pathology, Asahikawa Medical University, Asahikawa, Japan.
| |
Collapse
|
23
|
Tanimizu N, Mitaka T. Epithelial Morphogenesis during Liver Development. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027862. [PMID: 28213465 DOI: 10.1101/cshperspect.a027862] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Tissue stem/progenitor cells supply multiple types of epithelial cells that eventually acquire specialized functions during organ development. In addition, three-dimensional (3D) tissue structures need to be established for organs to perform their physiological functions. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes, which are derived from hepatoblasts, fetal liver stem/progenitor cells (LPCs), in mid-gestation. Hepatocytes performing many metabolic reactions form cord-like structures, whereas cholangiocytes, biliary epithelial cells, form tubular structures called intrahepatic bile ducts. Analyses for human genetic diseases and mutant mice have identified crucial molecules for liver organogenesis. Functions of those molecules can be examined in in vitro culture systems where LPCs are induced to differentiate into hepatocytes or cholangiocytes. Recent technical advances have revealed 3D epithelial morphogenesis during liver organogenesis. Therefore, the liver is a good model to understand how tissue stem/progenitor cells differentiate and establish 3D tissue architectures during organ development.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| |
Collapse
|
24
|
Chen Y, Xu J, Yang C, Zhang H, Wu F, Chen J, Li K, Wang H, Li Y, Li Y, Dai Z. Upregulation of miR-223 in the rat liver inhibits proliferation of hepatocytes under simulated microgravity. Exp Mol Med 2017. [PMID: 28642576 PMCID: PMC5519018 DOI: 10.1038/emm.2017.80] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Long-term spaceflight affects numerous organ systems in the body, including metabolic dysfunction. Recently, ample evidence has demonstrated that the liver is a vulnerable organ during spaceflight. However, the changes in hepatocyte proliferation and cell cycle control under microgravity remain largely unexplored. In the present study, we first confirmed that the serum levels of aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase, biochemical markers of liver function, were altered in rats under tail suspension (TS) conditions to simulate microgravity, as shown in previous reports. Next, we demonstrated that the cell proliferation activity, determined by Ki67, PCNA and PH3, was significantly decreased at the different TS time points (TS for 14, 28 and 42 days) compared with that in the control group. Consistently, the positive cell cycle regulators Ccna2, Ccnd1, Cdk1, Cdk2 and cyclin D3 were also significantly decreased in the TS groups as shown by quantitative real-time PCR and western blotting analysis. Subsequent analysis revealed that the aberrant hepatocyte proliferation inhibition under simulated microgravity was associated with the upregulation of miR-223 in the liver. We further found that miR-223 inhibited the proliferation of Hepa1-6 cells and identified CDK2 and CUL1 as its direct targets. In addition, the decreased expression of CDK2 and CUL1 was negatively correlated with the level of p27 in vitro and in vivo, which may have been responsible for retarding hepatocyte proliferation. Collectively, these data indicate that upregulation of miR-223 was associated with the inhibition of liver cell growth and reveal the role of miR-223 in rat hepatocyte proliferation disorders and the pathophysiological process under simulated microgravity.
Collapse
Affiliation(s)
- Yongjie Chen
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Ji Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Jian Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Kai Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Yu Li
- School of Computer Science and Technology, Harbin Institute of Technology Shenzhen Graduate School, Shenzhen, Guangdong, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Yinghui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
25
|
Progressive induction of hepatocyte progenitor cells in chronically injured liver. Sci Rep 2017; 7:39990. [PMID: 28051157 PMCID: PMC5209740 DOI: 10.1038/srep39990] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022] Open
Abstract
Differentiated epithelial cells show substantial lineage plasticity upon severe tissue injuries. In chronically injured mouse livers, part of hepatocytes become Sry-HMG box containing 9 (Sox9) (+) epithelial cell adhesion molecule (−) hepatocyte nuclear factor 4 α (+) biphenotypic hepatocytes. However, it is not clear whether all Sox9+ hepatocytes uniformly possess cellular properties as hepatocyte progenitors. Here, we examined the microarray data comparing Sox9+ hepatocytes with mature hepatocytes and identified CD24 as a novel marker for biphenotypic hepatocytes. Immunohistochemical analyses showed that part of Sox9+ hepatocytes near expanded ductular structures expressed CD24 in the liver injured by 3,5-diethoxycarbonyl-1,4-dihydro-collidine (DDC) diet and by bile duct ligation. Indeed, Sox9+ hepatocytes could be separated into CD24− and CD24+ cells by fluorescence activated cell sorting. The ratio of CD24+ cells against CD24− ones in Sox9+ hepatocytes gradually increased while DDC-injury progressed and colony-forming capability mostly attributed to CD24+ cells. Although hepatocyte markers were remarkably downregulated in of Sox9+ CD24+ hepatocytes, they re-differentiated into mature hepatocytes in vitro and in vivo. Our current results demonstrate that the emergence of biphenotypic hepatocytes is a sequential event including the transition from CD24− and CD24+ status, which may be a crucial step for hepatocytes to acquire progenitor properties.
Collapse
|
26
|
Hedgehog Signaling Overcomes an EZH2-Dependent Epigenetic Barrier to Promote Cholangiocyte Expansion. PLoS One 2016; 11:e0168266. [PMID: 27936185 PMCID: PMC5148157 DOI: 10.1371/journal.pone.0168266] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/29/2016] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND & AIMS Developmental morphogens play an important role in coordinating the ductular reaction and portal fibrosis occurring in the setting of cholangiopathies. However, little is known about how membrane signaling events in ductular reactive cells (DRCs) are transduced into nuclear transcriptional changes to drive cholangiocyte maturation and matrix deposition. Therefore, the aim of this study was to investigate potential mechanistic links between cell signaling events and epigenetic regulators in DRCs. METHODS Using directed differentiation of induced pluripotent stem cells (iPSC), isolated DRCs, and in vivo models, we examine the mechanisms whereby sonic hedgehog (Shh) overcomes an epigenetic barrier in biliary precursors and promotes both cholangiocyte maturation and deposition of fibronectin (FN). RESULTS We demonstrate, for the first time, that Gli1 influences the differentiation state and fibrogenic capacity of iPSC-derived hepatic progenitors and isolated DRCs. We outline a novel pathway wherein Shh-mediated Gli1 binding in key cholangiocyte gene promoters overcomes an epigenetic barrier conferred by the polycomb protein, enhancer of zeste homolog 2 (EZH2) and initiates the transcriptional program of cholangiocyte maturation. We also define previously unknown functional Gli1 binding sites in the promoters of cytokeratin (CK)7, CK19, and FN. Our in vivo results show that EZH2 KO mice fed the choline-deficient, ethanolamine supplemented (CDE) diet have an exaggerated cholangiocyte expansion associated with more robust ductular reaction and increased peri-portal fibrosis. CONCLUSION We conclude that Shh/Gli1 signaling plays an integral role in cholangiocyte maturation in vitro by overcoming an EZH2-dependent epigenetic barrier and this mechanism also promotes biliary expansion in vivo.
Collapse
|
27
|
Tanimizu N, Ichinohe N, Ishii M, Kino J, Mizuguchi T, Hirata K, Mitaka T. Liver Progenitors Isolated from Adult Healthy Mouse Liver Efficiently Differentiate to Functional Hepatocytes In Vitro and Repopulate Liver Tissue. Stem Cells 2016; 34:2889-2901. [PMID: 27375002 DOI: 10.1002/stem.2457] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 06/08/2016] [Accepted: 06/18/2016] [Indexed: 01/20/2023]
Abstract
It has been proposed that tissue stem cells supply multiple epithelial cells in mature tissues and organs. However, it is unclear whether tissue stem cells generally contribute to cellular turnover in normal healthy organs. Here, we show that liver progenitors distinct from bipotent liver stem/progenitor cells (LPCs) persistently exist in mouse livers and potentially contribute to tissue maintenance. We found that, in addition to LPCs isolated as EpCAM+ cells, liver progenitors were enriched in CD45- TER119- CD31- EpCAM- ICAM-1+ fraction isolated from late-fetal and postnatal livers. ICAM-1+ liver progenitors were abundant by 4 weeks (4W) after birth. Although their number decreased with age, ICAM-1+ liver progenitors existed in livers beyond that stage. We established liver progenitor clones derived from ICAM-1+ cells between 1 and 20W and found that those clones efficiently differentiated into mature hepatocytes (MHs), which secreted albumin, eliminated ammonium ion, stored glycogen, and showed cytochrome P450 activity. Even after long-term culture, those clones kept potential to differentiate to MHs. When ICAM-1+ clones were transplanted into nude mice after retrorsine treatment and 70% partial hepatectomy, donor cells were incorporated into liver plates and expressed hepatocyte nuclear factor 4α, CCAAT/enhancer binding protein α, and carbamoylphosphate synthetase I. Moreover, after short-term treatment with oncostatin M, ICAM-1+ clones could efficiently repopulate the recipient liver tissues. Our results indicate that liver progenitors that can efficiently differentiate to MHs exist in normal adult livers. Those liver progenitors could be an important source of new MHs for tissue maintenance and repair in vivo, and for regenerative medicine ex vivo. Stem Cells 2016;34:2889-2901.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Norihisa Ichinohe
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masayuki Ishii
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Junichi Kino
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toru Mizuguchi
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koichi Hirata
- Department of Surgery, Surgical Oncology and Science, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Surgery, JR Sapporo Hospital, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
28
|
Edwards W, Nantie LB, Raetzman LT. Identification of a novel progenitor cell marker, grainyhead-like 2 in the developing pituitary. Dev Dyn 2016; 245:1097-1106. [PMID: 27564454 DOI: 10.1002/dvdy.24439] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/22/2016] [Accepted: 08/22/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Pituitary stem/progenitor cells give rise to all of the endocrine cell types within the pituitary gland and are necessary for both development and gland homeostasis. Recent studies have identified several key factors that characterize the progenitor cell population. However, little is known about the factors that regulate progenitor cell differentiation and maintenance. Therefore, it is crucial to identify novel factors that help elucidate mechanisms of progenitor cell function in the developing pituitary. Our studies are the first to characterize the expression of Grainyhead-like 2 (GRHL2), a transcription factor known to regulate progenitor cell plasticity, in the developing pituitary. RESULTS Our studies show GRHL2 expression is highest in the embryonic and early postnatal pituitary and is localized in pituitary progenitor cells. We demonstrate GRHL2 expression is changed in Notch2 cKO and Prop1df/df mice, mouse models that display progenitor cell number defects. In addition, our studies indicate a potential relationship between Notch signaling and GRHL2 expression in the developing pituitary. CONCLUSIONS Taken together, our results indicate GRHL2 as a novel progenitor cell maker in the developing pituitary that may contribute to progenitor cell function and maintenance. Developmental Dynamics 245:1097-1106, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Whitney Edwards
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois
| | - Leah B Nantie
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.,Laboratory of Genetics, Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Lori T Raetzman
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
29
|
Tanimizu N, Mitaka T. Morphogenesis of liver epithelial cells. Hepatol Res 2016; 46:964-76. [PMID: 26785307 DOI: 10.1111/hepr.12654] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/17/2022]
Abstract
The mammalian liver is a physiologically important organ performing various types of metabolism, producing serum proteins, detoxifying bilirubin and ammonia, and protecting the body from infection. Those physiological functions are achieved with the 3D tissue architecture of liver epithelial cells. The liver contains two types of epithelial cells, namely, hepatocytes and cholangiocytes. They split from hepatoblasts (embryonic liver stem cells) in mid-gestation and differentiate into structurally and functionally mature cells. Analyses of mutant mice showing abnormal liver organogenesis have identified genes involved in liver development. In vitro culture systems have been used to examine the mechanism in which each molecule or signaling pathway regulates the morphogenesis and functional differentiation of hepatocytes and cholangiocytes. In addition, liver epithelial cells as well as mesenchymal, sinusoidal endothelial and hematopoietic cells can be purified from developing livers, which enables us to perform genome-wide screening to identify novel genes regulating epithelial morphogenesis in the liver. By combining these in vivo and in vitro systems, the liver could be a unique and suitable model for revealing a principle, governing epithelial morphogenesis. In this review, we summarize recent progress in the understanding of the development of liver epithelial tissue structures.
Collapse
Affiliation(s)
- Naoki Tanimizu
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiro Mitaka
- Department of Tissue Development and Regeneration, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
30
|
Anzai K, Chikada H, Tsuruya K, Ida K, Kagawa T, Inagaki Y, Mine T, Kamiya A. Foetal hepatic progenitor cells assume a cholangiocytic cell phenotype during two-dimensional pre-culture. Sci Rep 2016; 6:28283. [PMID: 27335264 PMCID: PMC4917868 DOI: 10.1038/srep28283] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/23/2016] [Indexed: 01/29/2023] Open
Abstract
Liver consists of parenchymal hepatocytes and other cells. Liver progenitor cell (LPC) is the origin of both hepatocytes and cholangiocytic cells. The analyses of mechanism regulating differentiation of LPCs into these functional cells are important for liver regenerative therapy using progenitor cells. LPCs in adult livers were found to form cysts with cholangiocytic characteristics in 3D culture. In contrast, foetal LPCs cannot form these cholangiocytic cysts in the same culture. Thus, the transition of foetal LPCs into cholangiocytic progenitor cells might occur during liver development. Primary CD45(-)Ter119(-)Dlk1(+) LPCs derived from murine foetal livers formed ALBUMIN (ALB)(+)CYTOKERATIN (CK)19(-) non-cholangiocytic cysts within 3D culture. In contrast, when foetal LPCs were pre-cultured on gelatine-coated dishes, they formed ALB(-)CK19(+) cholangiocytic cysts. When hepatocyte growth factor or oncostatin M, which are inducers of hepatocytic differentiation, was added to pre-culture, LPCs did not form cholangiocytic cysts. These results suggest that the pre-culture on gelatine-coated dishes changed the characteristics of foetal LPCs into cholangiocytic cells. Furthermore, neonatal liver progenitor cells were able to form cholangiocytic cysts in 3D culture without pre-culture. It is therefore possible that the pre-culture of mid-foetal LPCs in vitro functioned as a substitute for the late-foetal maturation step in vivo.
Collapse
Affiliation(s)
- Kazuya Anzai
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Hiromi Chikada
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kota Tsuruya
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Kinuyo Ida
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tatehiro Kagawa
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Yutaka Inagaki
- Department of Regenerative medicine, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Tesuya Mine
- Department of Gastroenterology, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Akihide Kamiya
- Department of Molecular Life Sciences, Tokai University School of Medicine, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| |
Collapse
|
31
|
Abstract
The liver is a central regulator of metabolism, and liver failure thus constitutes a major health burden. Understanding how this complex organ develops during embryogenesis will yield insights into how liver regeneration can be promoted and how functional liver replacement tissue can be engineered. Recent studies of animal models have identified key signaling pathways and complex tissue interactions that progressively generate liver progenitor cells, differentiated lineages and functional tissues. In addition, progress in understanding how these cells interact, and how transcriptional and signaling programs precisely coordinate liver development, has begun to elucidate the molecular mechanisms underlying this complexity. Here, we review the lineage relationships, signaling pathways and transcriptional programs that orchestrate hepatogenesis.
Collapse
Affiliation(s)
- Miriam Gordillo
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medical College, New York, NY 10065, USA
| | - Valerie Gouon-Evans
- Department of Developmental and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
32
|
Raschzok N, Sallmon H, Pratschke J, Sauer IM. MicroRNAs in liver tissue engineering - New promises for failing organs. Adv Drug Deliv Rev 2015; 88:67-77. [PMID: 26116880 DOI: 10.1016/j.addr.2015.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 06/10/2015] [Accepted: 06/16/2015] [Indexed: 12/15/2022]
Abstract
miRNA-based technologies provide attractive tools for several liver tissue engineering approaches. Herein, we review the current state of miRNA applications in liver tissue engineering. Several miRNAs have been implicated in hepatic disease and proper hepatocyte function. However, the clinical translation of these findings into tissue engineering has just begun. miRNAs have been successfully used to induce proliferation of mature hepatocytes and improve the differentiation of hepatic precursor cells. Nonetheless, miRNA-based approaches beyond cell generation have not yet entered preclinical or clinical investigations. Moreover, miRNA-based concepts for the biliary tree have yet to be developed. Further research on miRNA based modifications, however, holds the promise of enabling significant improvements to liver tissue engineering approaches due to their ability to regulate and fine-tune all biological processes relevant to hepatic tissue engineering, such as proliferation, differentiation, growth, and cell function.
Collapse
Affiliation(s)
- Nathanael Raschzok
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Hannes Sallmon
- Neonatology, Charité - Universitätsmedizin Berlin, Germany
| | - Johann Pratschke
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany
| | - Igor M Sauer
- General, Visceral, and Transplantation Surgery, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW Pluripotent stem cells, such as embryonic stem cells and inducible pluripotent stem (iPS) cells, have high proliferative multipotency for differentiation into mature functional cells that are useful for treatment and basic research on several diseases. Cholangiocytes are differentiated from fetal hepatic progenitor cells (hepatoblasts) and are important for transport of bile acids that are synthesized by mature hepatocytes in the liver. However, the molecular mechanisms of development and function of human cholangiocytes remain unknown. This review mentions the potential of human cholangiocytic culture from pluripotent stem cells to contribute to the analyses of the human bile duct system and diseases. RECENT FINDINGS Recent studies found that human hepatic cholangiocytic cells can be differentiated from human embryonic stem and iPS cells in a suitable culture condition. Cholangiocytic cysts have epithelial cell polarity formed in a three-dimensional cell culture system using extracellular matrices. SUMMARY Disease pathogenesis was elucidated in vitro using differentiated cells from disease-related iPS cells. Using genome-editing enzymes, iPS cells with disease-specific gene mutations can be easily and rapidly established. These disease-related iPS cells and cholangiocytic culture system may be useful for analyses and drug screening of human bile duct diseases.
Collapse
|
34
|
miR-889 promotes proliferation of esophageal squamous cell carcinomas through DAB2IP. FEBS Lett 2015; 589:1127-35. [PMID: 25841337 DOI: 10.1016/j.febslet.2015.03.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 11/23/2022]
Abstract
MicroRNAs have been reported to play critical roles in various cancers, but there has been no study on the role of miR-889 in cancers. Here, we report that over-expression of miR-889 leads to rapid proliferation of EC109 and EC9706 cells in vitro and in vivo by inducing cells into S-phase. Using bioinformatics methods, DAB2IP was further confirmed to be a direct target of miR-889. In addition, the expression of DAB2IP, which was negatively correlated with that of miR-889, was significantly associated with clinicopathological features of ESCC patients. In conclusion, miR-889 is an important regulator in ESCC and both miR-889 and DAB2IP may serve as promising biomarkers and therapeutic targets in patients with ESCC.
Collapse
|