1
|
Kocere A, Lalonde RL, Mosimann C, Burger A. Lateral thinking in syndromic congenital cardiovascular disease. Dis Model Mech 2023; 16:dmm049735. [PMID: 37125615 PMCID: PMC10184679 DOI: 10.1242/dmm.049735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Syndromic birth defects are rare diseases that can present with seemingly pleiotropic comorbidities. Prime examples are rare congenital heart and cardiovascular anomalies that can be accompanied by forelimb defects, kidney disorders and more. Whether such multi-organ defects share a developmental link remains a key question with relevance to the diagnosis, therapeutic intervention and long-term care of affected patients. The heart, endothelial and blood lineages develop together from the lateral plate mesoderm (LPM), which also harbors the progenitor cells for limb connective tissue, kidneys, mesothelia and smooth muscle. This developmental plasticity of the LPM, which founds on multi-lineage progenitor cells and shared transcription factor expression across different descendant lineages, has the potential to explain the seemingly disparate syndromic defects in rare congenital diseases. Combining patient genome-sequencing data with model organism studies has already provided a wealth of insights into complex LPM-associated birth defects, such as heart-hand syndromes. Here, we summarize developmental and known disease-causing mechanisms in early LPM patterning, address how defects in these processes drive multi-organ comorbidities, and outline how several cardiovascular and hematopoietic birth defects with complex comorbidities may be LPM-associated diseases. We also discuss strategies to integrate patient sequencing, data-aggregating resources and model organism studies to mechanistically decode congenital defects, including potentially LPM-associated orphan diseases. Eventually, linking complex congenital phenotypes to a common LPM origin provides a framework to discover developmental mechanisms and to anticipate comorbidities in congenital diseases affecting the cardiovascular system and beyond.
Collapse
Affiliation(s)
- Agnese Kocere
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
- Department of Molecular Life Science, University of Zurich, 8057 Zurich, Switzerland
| | - Robert L. Lalonde
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Christian Mosimann
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| | - Alexa Burger
- University of Colorado School of Medicine, Anschutz Medical Campus, Department of Pediatrics, Section of Developmental Biology, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Akinaga K, Azumi Y, Mogi K, Toyoizumi R. Stage-dependent sequential organization of nascent smooth muscle cells and its implications for the gut coiling morphogenesis in Xenopus larva. ZOOLOGY 2021; 146:125905. [PMID: 33631602 DOI: 10.1016/j.zool.2021.125905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 10/22/2022]
Abstract
In vertebrates, gut coiling proceeds left-right asymmetrically during expansion of the gastrointestinal tract with highly organized muscular structures facilitating peristalsis. In this report, we explored the mechanisms of larval gut coiling morphogenesis relevant to its nascent smooth muscle cells using highly transparent Xenopus early larvae. First, to visualize the dynamics of intestinal smooth muscle cells, whole-mount specimens were immunostained with anti-smooth muscle-specific actin (SM-actin) antibody. We found that the nascent gut of Xenopus early larvae gradually expands the SM-actin-positive region in a stage-dependent manner. Transverse orientation of smooth muscle cells was first established, and next, the cellular longitudinal orientation along the gut axis was followed to make a meshwork of the contractile cells. Finally, anisotropic torsion by the smooth muscle cells was generated in the center of gut coiling, suggesting that twisting force might be involved in the late phase of coiling morphogenesis of the gut. Administration of S-(-)-Blebbistatin to attenuate the actomyosin contraction in vivo resulted in cancellation of coiling of the gut. Development of decapitation embryos, trunk 'torso' explants, and gut-only explants revealed that initial coiling of the gut proceeds without interactions with the other parts of the body including the central nervous system. We newly developed an in vitro model to assess the gut coiling morphogenesis, indicating that coiling pattern of the nascent Xenopus gut is partially gut-autonomous. Using this gut explant culture technique, inhibition of actomyosin contraction was performed by administrating either actin polymerization inhibitor, myosin light chain kinase inhibitor, or calmodulin antagonist. All of these reagents decreased the extent of gut coiling morphogenesis in vitro. Taken together, these results suggest that the contraction force generated by actomyosin-rich intestinal smooth muscle cells during larval stages is essential for the normal coiling morphogenesis of this muscular tubular organ.
Collapse
Affiliation(s)
- Kaoru Akinaga
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan
| | - Yoshitaka Azumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan; Research Institute for Integrated Science, Kanagawa University, Japan
| | - Kazue Mogi
- Research Institute for Integrated Science, Kanagawa University, Japan
| | - Ryuji Toyoizumi
- Department of Biological Sciences, Faculty of Science, Kanagawa University, Tsuchiya 2946, Hiratsuka City, Kanagawa, 259-1293, Japan; Research Institute for Integrated Science, Kanagawa University, Japan.
| |
Collapse
|
3
|
Joyce W, Crossley DA, Wang T, Jensen B. Smooth Muscle in Cardiac Chambers is Common in Turtles and Extensive in the Emydid Turtle, Trachemys scripta. Anat Rec (Hoboken) 2019; 303:1327-1336. [PMID: 31509333 PMCID: PMC7216914 DOI: 10.1002/ar.24257] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/24/2019] [Accepted: 06/28/2019] [Indexed: 02/03/2023]
Abstract
A prominent layer of smooth muscle lining the luminal side of the atria of freshwater turtles (Emydidae) was described more than a century ago. We recently demonstrated that this smooth muscle provides a previously unrecognized mechanism to change cardiac output in the emydid red-eared slider (Trachemys scripta) that possibly contributes to their tremendous diving capacity. The purpose of the present immunohistochemical study was firstly to screen major groups of vertebrates for the presence of cardiac smooth muscle. Secondly, we investigated the phylogenetic distribution of cardiac smooth muscle within the turtle order (Testudines), including terrestrial and aquatic species. Atrial smooth muscle was not detected in a range of vertebrates, including Xenopus laevis, Alligator mississippiensis, and Caiman crocodilus, all of which have pronounced diving capacities. However, we confirmed earlier reports that traces of smooth muscle are found in human atrial tissue. Only within the turtles (eight species) was there substantial amounts of nonvascular smooth muscle in the heart. This amount was greatest in the atria, while the amount in proportion to cardiac muscle was greater in the sinus venosus than in other chambers. T. scripta had more smooth muscle in the sinus venosus and atria than the other turtles. In some specimens, there was some smooth muscle in the ventricle and the pulmonary vein. Our study demonstrates that cardiac smooth muscle likely appeared early in turtle evolution and has become extensive within the Emydidae family, possibly in association with diving. Across other tetrapod clades, cardiac smooth muscle might not associate with diving. Anat Rec, 303:1327-1336, 2020. © 2019 The Authors. The Anatomical Record published by Wiley Periodicals, Inc. on behalf of American Association for Anatomy.
Collapse
Affiliation(s)
- William Joyce
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark
| | - Dane A Crossley
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam 1105AZ, the Netherlands
| | - Tobias Wang
- Zoophysiology, Department of Bioscience, Aarhus University, 8000 Aarhus C, Denmark.,Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Bjarke Jensen
- Department of Medical Biology, University Medical Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Petschnik AE, Fell B, Kruse C, Danner S. The role of α-smooth muscle actin in myogenic differentiation of human glandular stem cells and their potential for smooth muscle cell replacement therapies. Expert Opin Biol Ther 2010; 10:853-61. [DOI: 10.1517/14712591003769832] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
5
|
Ustiyan V, Wang IC, Ren X, Zhang Y, Snyder J, Xu Y, Wert SE, Lessard JL, Kalin TV, Kalinichenko VV. Forkhead box M1 transcriptional factor is required for smooth muscle cells during embryonic development of blood vessels and esophagus. Dev Biol 2009; 336:266-79. [PMID: 19835856 DOI: 10.1016/j.ydbio.2009.10.007] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 09/17/2009] [Accepted: 10/06/2009] [Indexed: 12/16/2022]
Abstract
The forkhead box m1 (Foxm1 or Foxm1b) transcription factor (previously called HFH-11B, Trident, Win, or MPP2) is expressed in a variety of tissues during embryogenesis, including vascular, airway, and intestinal smooth muscle cells (SMCs). Although global deletion of Foxm1 in Foxm1(-/-) mice is lethal in the embryonic period due to multiple abnormalities in the liver, heart, and lung, the specific role of Foxm1 in SMC remains unknown. In the present study, Foxm1 was deleted conditionally in the developing SMC (smFoxm1(-/-) mice). The majority of smFoxm1(-/-) mice died immediately after birth due to severe pulmonary hemorrhage and structural defects in arterial wall and esophagus. Although Foxm1 deletion did not influence SMC differentiation, decreased proliferation of SMC was found in smFoxm1(-/-) blood vessels and esophagus. Depletion of Foxm1 in cultured SMC caused G(2) arrest and decreased numbers of cells undergoing mitosis. Foxm1-deficiency in vitro and in vivo was associated with reduced expression of cell cycle regulatory genes, including cyclin B1, Cdk1-activator Cdc25b phosphatase, Polo-like 1 and JNK1 kinases, and cMyc transcription factor. Foxm1 is critical for proliferation of smooth muscle cells and is required for proper embryonic development of blood vessels and esophagus.
Collapse
Affiliation(s)
- Vladimir Ustiyan
- Divisions of Pulmonary Biology, Perinatal Institute of the Cincinnati Children's Hospital Research Foundation, 3333 Burnet Ave., Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Barillot W, Tréguer K, Faucheux C, Fédou S, Thézé N, Thiébaud P. Induction and modulation of smooth muscle differentiation in Xenopus embryonic cells. Dev Dyn 2009; 237:3373-86. [PMID: 18855898 DOI: 10.1002/dvdy.21749] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
By comparison with skeletal or cardiac developmental programs, little is known regarding the specific factors that promote specification and differentiation of smooth muscle cells from pluripotent cells. We have analyzed the developmental expression of a subset of smooth muscle genes during Xenopus early development and showed that similar to mammals and avians, Xenopus smooth muscle myosin heavy chain (SM-MHC) is a highly specific marker of smooth muscle differentiation. Embryonic cells from animal pole explants of Xenopus blastula can be induced by basic fibroblast growth factor, Wnt, and bone morphogenetic protein signals to adopt the smooth muscle pathway. Explants from early embryos that contain neural crest cells can also differentiate into cells expressing smooth muscle genes. We examined the interplay of several transcription factors, that is SRF, myocardin, and GATA6, that induce the expression of SM-MHC in animal cap cells and found that myocardin-dependent expression of smooth muscle genes in animal cap cells is synergized by SRF but is strongly antagonized by GATA6.
Collapse
|
7
|
Warkman AS, Zheng L, Qadir MA, Atkinson BG. Organization and developmental expression of an amphibian vascular smooth muscle alpha-actin gene. Dev Dyn 2005; 233:1546-53. [PMID: 15965984 DOI: 10.1002/dvdy.20457] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A gene encoding a putative homologue of the avian and mammalian vascular smooth muscle alpha-actin was isolated from an amphibian, Rana catesbeiana, and characterized in terms of its sequence, organization, and expression pattern. To assess the expression of this gene during amphibian embryonic development, a cDNA encoding the Xenopus homologue of this mRNA was isolated and characterized by in situ hybridization. The expression of this gene was not detected in the enteric smooth muscle cells or, unlike its avian and mammalian homologues, in the somites/skeletal muscle of the Xenopus embryos/tadpoles. Its initial expression coincides with the onset of cardiac muscle differentiation and is coincidental with the expression of the cardiac alpha-actin mRNAs in the heart-forming region of the stage 26/27 embryo. As development proceeds, transcripts from this gene are expressed throughout the developing heart until the formation of the heart chambers is completed and, thereafter, its expression becomes restricted to the outflow tract of the tadpole heart. The subsequent restricted expression of this gene to the vascular system in both of these amphibians identifies it as the amphibian homologue of the avian and mammalian vascular smooth muscle alpha-actin.
Collapse
Affiliation(s)
- Andrew S Warkman
- Molecular Genetics Unit, Department of Biology, University of Western Ontario, London, Ontario, Canada.
| | | | | | | |
Collapse
|
8
|
Kumar A, Crawford K, Flick R, Klevitsky R, Lorenz JN, Bove KE, Robbins J, Lessard JL. Transgenic overexpression of cardiac actin in the mouse heart suggests coregulation of cardiac, skeletal and vascular actin expression. Transgenic Res 2005; 13:531-40. [PMID: 15672834 DOI: 10.1007/s11248-004-2823-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies have shown that depletion of cardiac actin by targeted disruption is associated with increased expression of alternative actins in the mouse heart. Here we have studied the effects of transgenic overexpression of cardiac actin using the alpha-myosin heavy chain promoter. Lines carrying 7 or 8 copies of the transgene showed a 2-fold increase in cardiac actin mRNA and also displayed decreased expression of skeletal and vascular actin in their hearts. In contrast, a line with more than 250 copies of the transgene did not show a similar decrease in the expression of skeletal and vascular actin despite a 3-fold increase in cardiac actin mRNA. While the low copy number transgenic mice displayed hearts that were similar to non-transgenic controls, the high copy number transgenic line showed larger hearts with distinct atrial enlargement and cardiomyocyte hypertrophy. Further, while the low copy number transgenic mouse hearts were mildly hypocontractile when compared with non-transgenic mouse hearts, the high copy number transgenic mouse hearts were significantly so. We conclude that in the presence of a small number of copies of the cardiac actin transgene, homeostatic mechanisms involved in maintaining actin levels are active and negatively regulate skeletal and vascular actin levels in the heart in response to increased expression of cardiac actin. However, these putative mechanisms are either inoperative in the high copy number transgenic line or are countered by the enhanced expression of skeletal and vascular actin during cardiomyocyte hypertrophy.
Collapse
Affiliation(s)
- A Kumar
- Division of Developmental Biology, University of Cincinnati, College of Medicine, Cincinnati, OH 45229, USA.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Matsui H, Ikeda K, Nakatani K, Sakabe M, Yamagishi T, Nakanishi T, Nakajima Y. Induction of initial cardiomyocyte α-actin—smooth muscle α-actin—in cultured avian pregastrula epiblast: A role for nodal and BMP antagonist. Dev Dyn 2005; 233:1419-29. [PMID: 15977172 DOI: 10.1002/dvdy.20477] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During early cardiogenesis, endoderm-derived bone morphogenetic protein (BMP) induces the expression of both heart-specific transcription factors and sarcomeric proteins. However, BMP antagonists do not inhibit the expression of the "initial heart alpha-actin"--smooth muscle alpha-actin (SMA)--which is first expressed in the anterior lateral mesoderm and then recruited into the initial myofibrils (Nakajima et al. [2002] Dev. Biol. 245:291-303). Therefore, mechanisms that regulate the expression of SMA in the heart-forming mesoderm are not well-understood. Regional explantation experiments using chick blastoderm showed that the posterolateral region of the epiblast differentiated into cardiomyocytes. Posterior epiblast cultured with or without the associated hypoblast showed that interaction between the tissues of these two germ layers at the early pregastrula stage (stages X-XI) was a prerequisite for the expression of SMA. Posterior epiblast that is cultured without hypoblast could also be induced to express SMA if TGF-beta or activin was added to the culture medium. However, neither neutralizing antibodies against TGF-betas nor follistatin perturbed the expression of SMA in cultured blastoderm. Adding BMP to the cultured blastoderm inhibited the expression of SMA, whereas BMP antagonists, such as chordin, were able to induce the expression of SMA in cultured posterior epiblast. Furthermore, adding lefty-1, a nodal antagonist, to the blastoderm inhibited the expression of SMA, and nodal plus BMP antagonist up-regulated the expression of SMA in cultured posterior epiblast. Results indicate that the interaction between the tissues of the posterior epiblast and hypoblast is necessary to initiate the expression of SMA during early cardiogenesis and that nodal and BMP antagonist may play an important role in the regulation of SMA expression.
Collapse
Affiliation(s)
- Hiroko Matsui
- Department of Anatomy, Graduate School of Medicine, Osaka City University, Abenoku, Osaka, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Li Z, Takakura N, Oike Y, Imanaka T, Araki K, Suda T, Kaname T, Kondo T, Abe K, Yamamura KI. Defective smooth muscle development in qkI-deficient mice. Dev Growth Differ 2004; 45:449-62. [PMID: 14706070 DOI: 10.1111/j.1440-169x.2003.00712.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
The qkI gene encodes an RNA binding protein which was identified as a candidate for the classical neurologic mutation, qkv. Although qkI is involved in glial cell differentiation in mice, qkI homologues in other species play important roles in various developmental processes. Here, we show a novel function of qkI in smooth muscle cell differentiation during embryonic blood vessel formation. qkI null embryos died between embryonic day 9.5 and 10.5. Embryonic day 9.5 qkI null embryos showed a lack of large vitelline vessels in the yolk sacs, kinky neural tubes, pericardial effusion, open neural tubes and incomplete embryonic turning. Using X-gal and immunohistochemical staining, qkI is first shown to be expressed in endothelial cells and smooth muscle cells. Analyses of qkI null embryos in vivo and in vitro revealed that the vitelline artery was too thin to connect properly to the yolk sac, thereby preventing remodeling of the yolk sac vasculature, and that the vitelline vessel was deficient in smooth muscle cells. Addition of QKI and platelet-endothelial cell adhesion molecule-1 positive cells to an in vitro para-aortic splanchnopleural culture of qkI null embryos rescued the vascular remodeling deficit. These data suggest that QKI protein has a critical regulatory role in smooth muscle cell development, and that smooth muscle cells play an important role in inducing vascular remodeling.
Collapse
Affiliation(s)
- Zhenghua Li
- Department of Developmental Genetics, Department of Cell Differentiation, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto 862-0976, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Abstract
Fibulins are a family of five extracellular glycoproteins found in a variety of tissues in association with diverse supramolecular structures, including elastic fibers, basement membrane networks, fibronectin microfibrils, and proteoglycan aggregates. Studies of the developmental expression patterns have indicated that several fibulins are prominently expressed at sites of epithelial-mesenchymal transformations during embryogenesis; among these sites, the cardiovascular system has been analyzed in more detail. Gene targeting of fibulins in mice has provided important insights into their biological roles, and has led to the identification of gene mutations in a congenital disorder of humans, cutis laxa. Genetic linkage and molecular studies have also associated several fibulin genes with various human heritable disorders that affect a wide range of organs, including limb, eye, blood, and arteries. In this review, we discuss the role of fibulins in development, with an emphasis on the cardiovascular system, and their involvement in human genetic disease.
Collapse
Affiliation(s)
- Mon-Li Chu
- Department of Dermatology and Cutaneous Biology, Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| | | |
Collapse
|
12
|
Abstract
The development of the smooth musculature of viscera has attracted the interest of only relatively few investigators, and thus the field appears somewhat underexplored. The major emphasis on histochemical evidence--at the expense of ultrastructural and functional studies--may have limited the progress in this area. Mature tissue is formed through the differentiation of precursors into muscle cells and through the organization of these cells into a complex tissue where distribution and orientation of muscle cells, deployment of abundant extracellular materials and addition of other cellular elements (interstitial cells, fibroblasts, nerves, blood vessels) are characteristic and specific features. The precursor cells are found at sites where a muscle develops, and they derive predominantly from the mesoderm, but also from the neuroectoderm and from the endoderm. The process starts at different times in different organs. The earliest stages of differentiation are characterized by the precursor cells aggregating and becoming elongated; their longitudinal axis lies in a position similar to the one they will have in the mature muscle. Both the cytological and the histochemical differentiation follow distinct patterns in various muscles, with characteristic temporal sequences in the appearance of key features. This process must impart distinct functional properties to a muscle cell at each stage of its development. However, the chronological correspondence between ultrastructural and histochemical development is poorly understood. Histochemical studies have detected gradients of maturation of the muscle cells, for example, across the thickness of the gizzard musculature and along the length of the small intestine; ultrastructural studies have not yet confirmed the existence of these gradients. Muscle growth is accounted for by muscle cell enlargement (without nucleus duplication) and an increase in muscle cell number by mitosis of pre-existing differentiated muscle cells. De-differentiation and division of muscle cells, migration of muscle cells and late development of muscle cell precursors have all also been considered as possible mechanisms for muscle growth. Several authors have described the presence of precursor cells within developing smooth muscles, and they have described late differentiation of some muscle cells or waves of differentiation that would give rise to phenotypic heterogeneity of the mature muscle cell population. In contrast, other studies, mainly by electron microscopy, have suggested that, within large visceral muscles, the muscle cells differentiate synchronously. There are interesting data on the influence of adjacent tissues on the development of a smooth muscle, but the interplay of these and other factors has not been fully investigated. Smooth muscles contract from early in their development, hence mechanical factors are likely to influence development: on the one hand, passive stresses imposed on the muscle by other tissues, such as adjacent muscles or the contents of the viscera and, on the other hand, active forces generated by the muscle itself. The very attraction of visceral smooth muscles in the study of cellular morphogenesis--an attraction that has not yet been highlighted or exploited in scientific studies, either descriptively or experimentally--is that, onto a single type of cell, a large range of factors interact, such as the genetic expression, chemical influences (from other muscles, endocrine glands, nerves, other intramuscular cells) and mechanical factors.
Collapse
Affiliation(s)
- Giorgio Gabella
- Department of Anatomy, University College of London, London WC1E 6BT, UK
| |
Collapse
|
13
|
Nakajima Y, Yamagishi T, Ando K, Nakamura H. Significance of bone morphogenetic protein-4 function in the initial myofibrillogenesis of chick cardiogenesis. Dev Biol 2002; 245:291-303. [PMID: 11977982 DOI: 10.1006/dbio.2002.0637] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The heart is the first organ to form and function during vertebrate embryogenesis. Using a secreted protein, noggin, which specifically antagonizes bone morphogenetic protein (BMP)-2 and -4, we examined the role played by BMP during the initial myofibrillogenesis in chick cultured precardiac mesoendoderm (mesoderm + endoderm; ME). Conditioned medium from COS7 cells transfected with Xenopus noggin cDNA inhibited the expression of sarcomeric proteins (such as sarcomeric alpha-actinin, Z-line titin, and sarcomeric myosin), and so myofibrillogenesis was perturbed in cultured stage 4 precardiac ME; however, it did not inhibit the expression of smooth muscle alpha-actin (the first isoform of alpha-actin expressed during cardiogenesis). In cultured stage 5 precardiac ME, noggin did not inhibit either the formation of I-Z-I components or the expression of sarcomeric myosin, but it did inhibit the formation of A-bands. Although BMP4 was required to induce expressions of sarcomeric alpha-actinin, titin, and sarcomeric myosin in cultured stage 6 posterolateral mesoderm (noncardiogenic mesoderm), smooth muscle alpha-actin was expressed without the addition of BMP4. Interestingly, in cultured stage 6 posterolateral mesoderm, BMP2 induced the expressions of sarcomeric alpha-actinin and titin, but not of sarcomeric myosin. These results suggest that (1) BMP4 function lies upstream of the initial formation of I-Z-I components and A-bands separately in a stage-dependent manner, and (2) at least two signaling pathways are involved in the initial cardiac myofibrillogenesis: one is an unknown pathway responsible for the expression of smooth muscle alpha-actin; the other is BMP signaling, which is involved in the expression of sarcomeric alpha-actinin, titin, and sarcomeric myosin.
Collapse
Affiliation(s)
- Yuji Nakajima
- Department of Anatomy, Graduate School of Medicine, Osaka City University, 1-4-3 Asahimachi, Abenoku, Osaka 545-8585, Japan.
| | | | | | | |
Collapse
|
14
|
Oka T, Shiojima I, Monzen K, Kudoh S, Hiroi Y, Shiokawa K, Asashima M, Nagai R, Yazaki Y, Komuro I. Fibroblast growth factor plays a critical role in SM22alpha expression during Xenopus embryogenesis. Arterioscler Thromb Vasc Biol 2000; 20:907-14. [PMID: 10764653 DOI: 10.1161/01.atv.20.4.907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although smooth muscle cells (SMCs) are critical components of the circulatory system, the regulatory mechanisms of SMC differentiation remain largely unknown. In the present study, we examined the mechanism of SMC differentiation by using Xenopus laevis SM22alpha (XSM22alpha) as an SMC-specific marker. XSM22alpha cDNA contained a 600-bp open reading frame, and the predicted amino acid sequences were highly conserved in evolution. XSM22alpha transcripts were first detected in heart anlage, head mesenchyme, and the dorsal side of the lateral plate mesoderm at the tail-bud stage, possibly representing the precursors of muscle lineage. At the tadpole stage, XSM22alpha transcripts were restricted to the vascular and visceral SMCs. XSM22alpha was strongly induced by basic fibroblast growth factor (FGF) in animal caps. Although expressions of Xenopus cardiac actin were not affected by the expression of a dominant-negative FGF receptor, its injection dramatically suppressed the XSM22alpha expression. These results suggest that XSM22alpha is a useful molecular marker for the SMC lineage in Xenopus and that FGF signaling plays an important role in the induction of XSM22alpha and in the differentiation of SMCs.
Collapse
Affiliation(s)
- T Oka
- Department of Cardiovascular Medicine, Graduate School of Medicine, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Nakajima Y, Yamagishi T, Yoshimura K, Nomura M, Nakamura H. Antisense oligodeoxynucleotide complementary to smooth muscle alpha-actin inhibits endothelial-mesenchymal transformation during chick cardiogenesis. Dev Dyn 1999; 216:489-98. [PMID: 10633868 DOI: 10.1002/(sici)1097-0177(199912)216:4/5<489::aid-dvdy17>3.0.co;2-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
alpha-Smooth-muscle actin (SMA) is the major isoform of adult vascular tissues. During early development, SMA is expressed in various mesodermally derived tissues in a spatiotemporally restricted manner; however, its exact role remains unknown. We examined its role in the formation of chicken atrioventricular (AV) endocardial cushion tissue. This developmental process possesses the characteristics of endothelial-mesenchymal transformation and is partly TGF beta-dependent. Immunohistochemistry showed that SMA was (1) expressed homogeneously in the newly formed appendages of transforming endothelial/mesenchymal cells, and (2) distributed in a punctate manner in the lamellipodia/filopodia of invading mesenchymal cells. Antisense oligodeoxynucleotide (ODNs) specific for SMA reduced both SMA expression and mesenchymal formation in AV endothelial cells cultured with myocardium on a collagen gel lattice. Perturbation of SMA by antisense ODN also inhibited TGF beta-inducible migratory appendage formation in a cultured AV endothelial monolayer. However, it did not inhibit cell:cell separation or cellular hypertrophy. These results suggest that the expression of SMA is necessary for migratory appendage formation during the TGF beta-dependent initial phenotypic changes that occur in endothelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Y Nakajima
- Department of Anatomy, Saitama Medical School, Japan.
| | | | | | | | | |
Collapse
|
16
|
Xu RH, Ault KT, Kim J, Park MJ, Hwang YS, Peng Y, Sredni D, Kung HF. Opposite effects of FGF and BMP-4 on embryonic blood formation: roles of PV.1 and GATA-2. Dev Biol 1999; 208:352-61. [PMID: 10191050 DOI: 10.1006/dbio.1999.9205] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In adult vertebrates, fibroblast growth factor (FGF) synergizes with many hematopoietic cytokines to stimulate the proliferation of hematopoietic progenitors. In vertebrate development, the FGF signaling pathway is important in the formation of some derivatives of ventroposterior mesoderm. However, the function of FGF in the specification of the embryonic erythropoietic lineage has remained unclear. Here we address the role of FGF in the specification of the erythropoietic lineage in the Xenopus embryo. We report that ventral injection of embryonic FGF (eFGF) mRNA at as little as 10 pg at the four-cell stage suppresses ventral blood island (VBI) formation, whereas expression of the dominant negative form of the FGF receptor in the lateral mesoderm, where physiologically no blood tissue is formed, results in a dramatic expansion of the VBI. Similar results were observed in isolated ventral marginal zones and animal caps. Bone morphogenetic protein-4 (BMP-4) is known to induce erythropoiesis in the Xenopus embryo. Therefore, we examined how the BMP-4 and FGF signaling pathways might interact in the decision of ventral mesoderm to form blood. We observed that eFGF inhibits BMP-4-induced erythropoiesis by differentially regulating expression of the BMP-4 downstream effectors GATA-2 and PV.1. GATA-2, which stimulates erythropoiesis, is suppressed by FGF. PV.1, which we demonstrate to inhibit blood development, is enhanced by FGF. Additionally, PV.1 and GATA-2 negatively regulate transcription of each other. Thus, BMP-4 induces two transcription factors which have opposing effects on blood development. The FGF and BMP-4 signaling pathways interact to regulate the specification of the erythropoietic lineage.
Collapse
Affiliation(s)
- R H Xu
- Intramural Research Support Program, SAIC Frederick, National Cancer Institute-Frederick Cancer Research and Development Center, Frederick, Maryland, 21702, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Sartore S, Franch R, Roelofs M, Chiavegato A. Molecular and cellular phenotypes and their regulation in smooth muscle. Rev Physiol Biochem Pharmacol 1999; 134:235-320. [PMID: 10087911 DOI: 10.1007/3-540-64753-8_6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- S Sartore
- Department of Biomedical Sciences, University of Padua, Italy
| | | | | | | |
Collapse
|
18
|
Abstract
The initial phase of vessel formation is the establishment of nascent endothelial tubes from mesodermal precursor cells. Development of the vascular epithelium is examined using the transcription factor TAL1 as a marker of endothelial precursor cells (angioblasts), and a functional assay based on intact, whole-mounted quail embryos. Experimental studies examining the role(s) of integrins and vascular endothelial growth factor (VEGF) establish that integrin-mediated cell adhesion is necessary for normal endothelial tube formation and that stimulation of embryonic endothelial cells with exogenous VEGF results in a massive "fusion" of vessels and the obliteration of normally avascular zones. The second phase of vessel morphogenesis is assembly of the vessel wall. To understand the process by which mesenchyme gives rise to vascular smooth muscle, a novel monoclonal antibody, 1E12, that recognizes smooth muscle precursor cells was used. Additionally, development of the vessel wall was examined using the expression fo extracellular matrix proteins as markers. Comparison of labeling patterns of 1E12 and the extracellular matrix molecules fibulin-1 and fibrillin-2 indicate vessel wall heterogeneity at the earliest stages of development; thus smooth muscle cell diversity is manifested during the differentiation and assembly of the vessel wall. From these studies it is postulated that the extracellular matrix composition of the vessel wall may prove to be the best marker of smooth muscle diversity. The data are discussed in the context of recent work by others, especially provocative new studies suggesting an endothelial origin for vascular smooth muscle cells. Also discussed is recent work that provides clues to the mechanism of vascular smooth muscle induction and recruitment. Based on these findings, vascular smooth muscle cells can be thought of as existing along a continuum of phenotypes. This spectrum varies from mainly matrix-producing cells to primarily contractile cells; thus no one cell type typifies vascular smooth muscle. This view of the smooth muscle cell is considered in terms of a contrasting opinion that views smooth muscle cell as existing in either a synthetic or proliferative state.
Collapse
Affiliation(s)
- C J Drake
- Department of Cell Biology and Anatomy, Medical University of South Carolina, Charleston 29425-2204, USA
| | | | | |
Collapse
|
19
|
Bergwerff M, Verberne ME, DeRuiter MC, Poelmann RE, Gittenberger-de Groot AC. Neural crest cell contribution to the developing circulatory system: implications for vascular morphology? Circ Res 1998; 82:221-31. [PMID: 9468193 DOI: 10.1161/01.res.82.2.221] [Citation(s) in RCA: 197] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this study, the distribution patterns of neural crest (NC) cells (NCCs) in the developing vascular system of the chick were thoroughly studied and examined for a correlation with smooth muscle cell differentiation and vascular morphogenesis. For this purpose, we performed long-term lineage tracing using quail-chick chimera techniques and premigratory NCC infection with a replication-incompetent retrovirus containing the LacZ reporter gene in combination with immunohistochemistry. Results indicate that NCC deposition around endothelial tubes is influenced by anteroposterior positional information from the pharyngeal arterial system. NCCs were shown to be among the first cells to differentiate into primary smooth muscle cells of the arch arteries. At later stages, NCCs eventually differentiated into adventitial fibroblasts and smooth muscle cells and nonmuscular cells of the media and intima. NCCs were distributed in the aortic arch and pulmonary arch arteries and in the brachiocephalic and carotid arteries. The coronary and pulmonary arteries and the descending aorta, however, remained devoid of NCCs. A new finding was that the media of part of the anterior cardinal veins was also determined to be NC-derived. NC-derived elastic arteries differed from non-NC elastic vessels in their cellular constitution and elastic fiber organization, and the NC appeared not to be involved in designating a muscular or elastic artery. Boundaries between NC-infested areas and mesodermal vessel structures were mostly very sharp and tended to coincide with marked changes in vascular morphology, with the exception of an intriguing area in the aortic and pulmonary trunks.
Collapse
Affiliation(s)
- M Bergwerff
- Department of Anatomy and Embryology, Leiden University Medical Centre, The Netherlands
| | | | | | | | | |
Collapse
|
20
|
Nakajima Y, Mironov V, Yamagishi T, Nakamura H, Markwald RR. Expression of smooth muscle alpha-actin in mesenchymal cells during formation of avian endocardial cushion tissue: a role for transforming growth factor beta3. Dev Dyn 1997; 209:296-309. [PMID: 9215644 DOI: 10.1002/(sici)1097-0177(199707)209:3<296::aid-aja5>3.0.co;2-d] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
During early cardiac morphogenesis, outflow tract (OT) and atrio-ventricular (AV) endothelial cells differentiate into mesenchymal cells, which have characteristics of smooth muscle-like myofibroblasts, and which form endocardial cushion tissue, the primordia of valves, and septa in the adult heart. During this embryonic event, transforming growth factor beta3 (TGF beta3) is an essential element in the progression of endothelial-transformation into mesenchyme. TGF beta(s) are known to be a potent inducer for mesodermal differentiation and a promoter for differentiation of endothelial cells into smooth muscle-like cells. Using a monoclonal antibody against smooth muscle-specific alpha-actin (SMA), we examined the immunohistochemical staining of this form of actin in avian endocardial cushion tissue formation. To determine whether TGF beta3 initiates the expression of SMA, the pre-migratory AV endothelial monolayer was cultured with or without chicken recombinant TGF beta3 and the expression of SMA was examined immunochemically. Migrating mesenchymal cells expressed SMA beneath the cell surface membrane. These cells showed a reduction of endothelial specific marker antigen, QH1. Stationary endothelial cells did not express SMA. The deposition of SMA in the mesenchymal tissue persisted until the end of the fetal period. Pre-migratory endothelial cells cultured in complete medium (CM199) that contained TGF beta3 expressed SMA, whereas cells cultured in CM199 alone did not. At the onset of the endothelial-mesenchymal transformation, migrating mesenchymal cells express SMA and the expression of this form of actin is upregulated by TGF beta3. The induction of the expression of SMA by TGF beta3 is one of the initial events in the cytoskeletal reorganization in endothelial cells which separate from one another during the initial phenotypic change associated with the endothelial-mesenchymal transformation.
Collapse
Affiliation(s)
- Y Nakajima
- Department of Anatomy and Cell Biology, Medical College of Wisconsin, Milwaukee, USA
| | | | | | | | | |
Collapse
|
21
|
Kumar A, Crawford K, Close L, Madison M, Lorenz J, Doetschman T, Pawlowski S, Duffy J, Neumann J, Robbins J, Boivin GP, O'Toole BA, Lessard JL. Rescue of cardiac alpha-actin-deficient mice by enteric smooth muscle gamma-actin. Proc Natl Acad Sci U S A 1997; 94:4406-11. [PMID: 9114002 PMCID: PMC20735 DOI: 10.1073/pnas.94.9.4406] [Citation(s) in RCA: 161] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The muscle actins in higher vertebrates display highly conserved amino acid sequences, yet they show distinct expression patterns. Thus, cardiac alpha-actin, skeletal alpha-actin, vascular smooth muscle alpha-actin, and enteric smooth muscle gamma-actin comprise the major actins in their respective tissues. To assess the functional and developmental significance of cardiac alpha-actin, the murine (129/SvJ) cardiac alpha-actin gene was disrupted by homologous recombination. The majority ( approximately 56%) of the mice lacking cardiac alpha-actin do not survive to term, and the remainder generally die within 2 weeks of birth. Increased expression of vascular smooth muscle and skeletal alpha-actins is observed in the hearts of newborn homozygous mutants and also heterozygotes but apparently is insufficient to maintain myofibrillar integrity in the homozygous mutants. Mice lacking cardiac alpha-actin can be rescued to adulthood by the ectopic expression of enteric smooth muscle gamma-actin using the cardiac alpha-myosin heavy chain promoter. However, the hearts of such rescued cardiac alpha-actin-deficient mice are extremely hypodynamic, considerably enlarged, and hypertrophied. Furthermore, the transgenically expressed enteric smooth muscle gamma-actin reduces cardiac contractility in wild-type and heterozygous mice. These results demonstrate that alterations in actin composition in the fetal and adult heart are associated with severe structural and functional perturbations.
Collapse
Affiliation(s)
- A Kumar
- Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
DeRuiter MC, Poelmann RE, VanMunsteren JC, Mironov V, Markwald RR, Gittenberger-de Groot AC. Embryonic endothelial cells transdifferentiate into mesenchymal cells expressing smooth muscle actins in vivo and in vitro. Circ Res 1997; 80:444-51. [PMID: 9118474 DOI: 10.1161/01.res.80.4.444] [Citation(s) in RCA: 226] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
All blood vessels are lined by endothelium and, except for the capillaries, surrounded by one or more layers of smooth muscle cells. The origin of the embryonic vascular smooth muscle cell has until now been described from neural crest and locally differentiating mesenchyme. In this study, we have substantial evidence that quail embryonic endothelial cells are competent in the dorsal aorta of the embryo to transdifferentiate into subendothelial mesenchymal cells expressing smooth muscle actins in vivo. At the onset of smooth muscle cell differentiation, QH1-positive endothelial cells were experimentally labeled with a wheat germ agglutinin-colloidal gold marker (WGA-Au). No labeled subendothelial cells were observed at this time. However, 19 hours after the endothelial cells had endocytosed, the WGA-Au-labeled subendothelial mesenchymal cells were observed in the aortic wall. Similarly, during the same time period, subendothelial cells that coexpressed the QH1 endothelial marker and a mesenchymal marker, alpha-smooth muscle actin, were present. In such cells, QH1 expression was reduced to a cell membrane localization. A similar antigen switch was also observed during endocardial-mesenchymal transformation in vitro. Our results are the first direct in vivo evidence that embryonic endothelial cells may transdifferentiate into candidate vascular smooth muscle cells. These data arouse new interpretations of the origin and differentiation of the cells of the vascular wall in normal and diseased vessels.
Collapse
MESH Headings
- Actins/metabolism
- Animals
- Antigens, Differentiation/ultrastructure
- Aorta
- Cell Differentiation
- Cells, Cultured
- Embryonic Induction
- Endothelium, Vascular/embryology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/ultrastructure
- Fluorescent Antibody Technique, Indirect
- Gold Colloid/metabolism
- Immunohistochemistry
- Mesoderm/metabolism
- Mesoderm/ultrastructure
- Microscopy, Electron
- Microscopy, Immunoelectron
- Morphogenesis
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/ultrastructure
- Quail
Collapse
Affiliation(s)
- M C DeRuiter
- Department of Anatomy and Embryology, Leiden University, The Netherlands.
| | | | | | | | | | | |
Collapse
|
23
|
Di Rosa I, Panara F, Fagotti A, Simoncelli F, Chaponnier C, Gabbiani G, Pascolini R. Expression of alpha SM actin in terrestrial ectothermic vertebrates. Cell Tissue Res 1995; 281:501-5. [PMID: 7553770 DOI: 10.1007/bf00417867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
alpha-Smooth muscle (alpha SM) actin of endothermic vertebrates is selectively recognized by the monoclonal antibody anti-alpha SM-1. Immunoreactivity to this antibody has been shown to be localized in the NH2-terminal sequence Ac-EEED (Chaponnier et al. 1994). Among terrestrial ectothermic vertebrates, two amphibian (Triturus vulgaris, Rana esculenta) and three reptilian species (Pseudemys scripta elegans, Natrix natrix, Podarcis sicula) were screened to investigate if their vascular and visceral smooth muscles were stained by anti-alpha SM-1. In all the specimens tested, Western-blot analysis of tissue extracts immunodecorated with anti-alpha SM-1 revealed a single polypeptide chain having the same electrophoretic mobility as bovine alpha SM actin. The binding to amphibian and reptilian tissue extracts was inhibited by the synthetic peptide Ac-EEED, but not Ac-DEED, as occurs in mammals. alpha SM actin expression was found in vascular and visceral smooth muscle cells of the species tested. The media of small and large blood vessels was labelled by anti-alpha SM-1. In the stomach and intestine the outer longitudinal and inner circular layers of the muscularis and of the muscularis mucosae were stained. In addition, myofibroblasts of the subepithelial layer were labelled. A more restricted expression of this isoactin was detected in turtle (P. scripta elegans) visceral smooth muscle cells, which may be related to the involvement of the digestive system in respiratory activity. These data suggest that in vertebrate evolution alpha SM actin arose earlier than previously proposed.
Collapse
Affiliation(s)
- I Di Rosa
- Istituto di Anatomia Comparata, Università di Perugia, Italia
| | | | | | | | | | | | | |
Collapse
|
24
|
O'Reilly MA, Smith JC, Cunliffe V. Patterning of the mesoderm in Xenopus: dose-dependent and synergistic effects of Brachyury and Pintallavis. Development 1995; 121:1351-9. [PMID: 7789266 DOI: 10.1242/dev.121.5.1351] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Widespread expression of the DNA-binding protein Brachyury in Xenopus animal caps causes ectopic mesoderm formation. In this paper, we first show that two types of mesoderm are induced by different concentrations of Brachyury. Animal pole explants from embryos injected with low doses of Xbra RNA differentiate into vesicles containing mesothelial smooth muscle and mesenchyme. At higher concentrations somitic muscle is formed. The transition from smooth muscle formation to that of somitic muscle occurs over a two-fold increase in Brachyury concentration. Brachyury is required for differentiation of notochord in mouse and fish embryos, but even the highest concentrations of Brachyury do not induce this tissue in Xenopus animal caps. Co-expression of Brachyury with the secreted glycoprotein noggin does cause notochord formation, but it is difficult to understand the molecular basis of this phenomenon without knowing more about the noggin signal transduction pathway. To overcome this difficulty, we have now tested mesoderm-specific transcription factors for the ability to synergize with Brachyury. We find that co-expression of Pintallavis, but not goosecoid, with Brachyury causes formation of dorsal mesoderm, including notochord. Furthermore, the effect of Pintallavis, like that of Brachyury, is dose-dependent: a two-fold increase in Pintallavis RNA causes a transition from ventral mesoderm formation to that of muscle, and a further two-fold increase induces notochord and neural tissue. These results suggest that Pintallavis cooperates with Brachyury to pattern the mesoderm in Xenopus.
Collapse
Affiliation(s)
- M A O'Reilly
- Laboratory of Developmental Biology, National Institute for Medical Research, London, UK
| | | | | |
Collapse
|
25
|
Saint-Jeannet JP, Thiery JP, Koteliansky VE. Effect of an inhibitory mutant of the FGF receptor on mesoderm-derived alpha-smooth muscle actin-expressing cells in Xenopus embryo. Dev Biol 1994; 164:374-82. [PMID: 8045340 DOI: 10.1006/dbio.1994.1207] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Epithelial-mesenchymal interactions are of major importance during development to direct correct differentiation and morphogenesis of embryonic tissues. One subset of lateral mesoderm-derived mesenchymal cells will form the smooth muscle (SM) layer of the primary epithelial lining of hollow internal organs. It has been previously reported that the differentiation of SM cells in Xenopus laevis can be followed by the expression of alpha-SM actin. It was also shown that basic fibroblast growth factor (bFGF) had the ability to induce this actin isoform in isolated blastula animal caps. In this paper, by injection at the two-cell stage of mRNA encoding a truncated form of the FGF receptor which can act as a dominant negative inhibitor, we have analyzed the role of the FGF signaling pathway in the formation of the SM lineage. We have observed that mutated embryos presented significant delay in the differentiation of the SM cells compared to control embryos, demonstrating the importance of this signaling pathway for the formation of the lateral mesoderm-derived SM cells. Moreover, a correlation could be established between this delay and the dramatic defects observed in the morphogenesis of the intestine with which mesenchyme-derived SM cells are normally associated. This phenotype was efficiently rescued by coinjection of the wild-type FGF receptor. Our data suggest that the differentiation of SM cells at the correct time could be an essential event for the proper morphogenesis of the endoderm-derived digestive tract.
Collapse
Affiliation(s)
- J P Saint-Jeannet
- Laboratoire de Physiopathologie du Développement, CNRS URA 1337, Paris, France
| | | | | |
Collapse
|
26
|
Pascolini R, Panara F, Gabbiani G, Fagotti A, di Rosa I, Simoncelli F. Cytoskeletal protein expression in planarians. ACTA ACUST UNITED AC 1993. [DOI: 10.1080/11250009309355848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|