1
|
De Sousa PA, Perfect L, Ye J, Samuels K, Piotrowska E, Gordon M, Mate R, Abranches E, Wishart TM, Dockrell DH, Courtney A. Hyaluronan in mesenchymal stromal cell lineage differentiation from human pluripotent stem cells: application in serum free culture. Stem Cell Res Ther 2024; 15:130. [PMID: 38702837 PMCID: PMC11069290 DOI: 10.1186/s13287-024-03719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/05/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Hyaluronan (HA) is an extracellular glycosaminoglycan polysaccharide with widespread roles throughout development and in healthy and neoplastic tissues. In pluripotent stem cell culture it can support both stem cell renewal and differentiation. However, responses to HA in culture are influenced by interaction with a range of cognate factors and receptors including components of blood serum supplements, which alter results. These may contribute to variation in cell batch production yield and phenotype as well as heighten the risks of adventitious pathogen transmission in the course of cell processing for therapeutic applications. MAIN: Here we characterise differentiation of a human embryo/pluripotent stem cell derived Mesenchymal Stromal Cell (hESC/PSC-MSC)-like cell population by culture on a planar surface coated with HA in serum-free media qualified for cell production for therapy. Resulting cells met minimum criteria of the International Society for Cellular Therapy for identification as MSC by expression of. CD90, CD73, CD105, and lack of expression for CD34, CD45, CD14 and HLA-II. They were positive for other MSC associated markers (i.e.CD166, CD56, CD44, HLA 1-A) whilst negative for others (e.g. CD271, CD71, CD146). In vitro co-culture assessment of MSC associated functionality confirmed support of growth of hematopoietic progenitors and inhibition of mitogen activated proliferation of lymphocytes from umbilical cord and adult peripheral blood mononuclear cells, respectively. Co-culture with immortalized THP-1 monocyte derived macrophages (Mɸ) concurrently stimulated with lipopolysaccharide as a pro-inflammatory stimulus, resulted in a dose dependent increase in pro-inflammatory IL6 but negligible effect on TNFα. To further investigate these functionalities, a bulk cell RNA sequence comparison with adult human bone marrow derived MSC and hESC substantiated a distinctive genetic signature more proximate to the former. CONCLUSION Cultivation of human pluripotent stem cells on a planar substrate of HA in serum-free culture media systems is sufficient to yield a distinctive developmental mesenchymal stromal cell lineage with potential to modify the function of haematopoietic lineages in therapeutic applications.
Collapse
Affiliation(s)
- Paul A De Sousa
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Stroma Therapeutics Ltd, Glasgow, UK.
| | - Leo Perfect
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Jinpei Ye
- Institute of Biomedical Science, Shanxi University, Taiyuan, Shanxi, China
| | - Kay Samuels
- Scottish National Blood Transfusion Service, Edinburgh, UK
| | - Ewa Piotrowska
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Molecular Biology, University of Gdansk, Gdańsk, Poland
| | - Martin Gordon
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Ryan Mate
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | - Elsa Abranches
- Biotherapeutics and Advanced Therapies, Science Research and Innovation Group, UK Stem Cell Bank, MHRA, South Mimms, UK
| | | | - David H Dockrell
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | | |
Collapse
|
2
|
Downs KM. The mouse allantois: new insights at the embryonic-extraembryonic interface. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210251. [PMID: 36252214 PMCID: PMC9574631 DOI: 10.1098/rstb.2021.0251] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/23/2022] Open
Abstract
During the early development of Placentalia, a distinctive projection emerges at the posterior embryonic-extraembryonic interface of the conceptus; its fingerlike shape presages maturation into the placental umbilical cord, whose major role is to shuttle fetal blood to and from the chorion for exchange with the mother during pregnancy. Until recently, the biology of the cord's vital vascular anlage, called the body stalk/allantois in humans and simply the allantois in rodents, has been largely unknown. Here, new insights into the development of the mouse allantois are featured, from its origin and mechanism of arterial patterning through its union with the chorion. Key to generating the allantois and its critical functions are the primitive streak and visceral endoderm, which together are sufficient to create the entire fetal-placental connection. Their newly discovered roles at the embryonic-extraembryonic interface challenge conventional wisdom, including the physical limits of the primitive streak, its function as sole purveyor of mesoderm in the mouse, potency of visceral endoderm, and the putative role of the allantois in the germ line. With this working model of allantois development, understanding a plethora of hitherto poorly understood orphan diseases in humans is now within reach. This article is part of the theme issue 'Extraembryonic tissues: exploring concepts, definitions and functions across the animal kingdom'.
Collapse
Affiliation(s)
- Karen M. Downs
- Department of Cell and Regenerative Biology, University of Wisconsin-Madison School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI 53705, USA
| |
Collapse
|
3
|
Zakusilo FT, Kerry O'Banion M, Gelbard HA, Seluanov A, Gorbunova V. Matters of size: Roles of hyaluronan in CNS aging and disease. Ageing Res Rev 2021; 72:101485. [PMID: 34634492 PMCID: PMC8903057 DOI: 10.1016/j.arr.2021.101485] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 12/29/2022]
Abstract
Involvement of extracellular matrix (ECM) components in aging and age-related neurodegeneration is not well understood. The role of hyaluronan (HA), a major extracellular matrix glycosaminoglycan, in malignancy and inflammation is gaining new understanding. In particular, the differential biological effects of high molecular weight (HMW-HA) and low molecular weight hyaluronan (LMW-HA), and the mechanism behind such differences are being uncovered. Tightly regulated in the brain, HA can have diverse effects on cellular development, growth and degeneration. In this review, we summarize the homeostasis and signaling of HA in healthy tissue, discuss its distribution and ontogeny in the central nervous system (CNS), summarize evidence for its involvement in age-related neurodegeneration and Alzheimer Disease (AD), and assess the potential of HA as a therapeutic target in the CNS.
Collapse
Affiliation(s)
- Frances Tolibzoda Zakusilo
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA; Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Harris A Gelbard
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA; Center for Neurotherapeutics Discovery, University of Rochester Medical Center, Rochester, NY, USA
| | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, USA
| |
Collapse
|
4
|
Downs KM, Rodriguez AM. The mouse fetal-placental arterial connection: A paradigm involving the primitive streak and visceral endoderm with implications for human development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2019; 9:e362. [PMID: 31622045 DOI: 10.1002/wdev.362] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 08/02/2019] [Accepted: 08/24/2019] [Indexed: 01/12/2023]
Abstract
In Placentalia, the fetus depends upon an organized vascular connection with its mother for survival and development. Yet, this connection was, until recently, obscure. Here, we summarize how two unrelated tissues, the primitive streak, or body axis, and extraembryonic visceral endoderm collaborate to create and organize the fetal-placental arterial connection in the mouse gastrula. The primitive streak reaches into the extraembryonic space, where it marks the site of arterial union and creates a progenitor cell pool. Through contact with the streak, associated visceral endoderm undergoes an epithelial-to-mesenchymal transition, contributing extraembryonic mesoderm to the placental arterial vasculature, and to the allantois, or pre-umbilical tissue. In addition, visceral endoderm bifurcates into the allantois where, with the primitive streak, it organizes the nascent umbilical artery and promotes allantoic elongation to the chorion, the site of fetal-maternal exchange. Brachyury mediates streak extension and vascular patterning, while Hedgehog is involved in visceral endoderm's conversion to mesoderm. A unique CASPASE-3-positive cell separates streak- and non-streak-associated domains in visceral endoderm. Based on these new insights at the posterior embryonic-extraembryonic interface, we conclude by asking whether so-called primordial germ cells are truly antecedents to the germ line that segregate within the allantois, or whether they are placental progenitor cells. Incorporating these new working hypotheses into mutational analyses in which the placentae are affected will aid understanding a spectrum of disorders, including orphan diseases, which often include abnormalities of the umbilical cord, yolk sac, and hindgut, whose developmental relationship to each other has, until now, been poorly understood. This article is categorized under: Birth Defects > Associated with Preimplantation and Gastrulation Early Embryonic Development > Gastrulation and Neurulation.
Collapse
Affiliation(s)
- Karen M Downs
- Department of Cell and Regenerative Biology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin
| | - Adriana M Rodriguez
- Department of Cell and Regenerative Biology, University of Wisconsin Madison School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
5
|
Hassan W, Viebahn C. A correlative study of the allantois in pig and rabbit highlighting the diversity of extraembryonic tissues in four mammalian species, including mouse and man. J Morphol 2017; 278:600-620. [PMID: 28165148 DOI: 10.1002/jmor.20657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 12/25/2022]
Abstract
Despite its conserved role in placenta and umbilical cord formation, the mammalian allantois shows remarkable diversity in size and form as well as in the timing of its appearance and attachment to the chorion. In the mouse, the common allantoic diverticulum is lacking; instead, the allantoic core domain is defined as a progenitor center for allantoic development. In this study, the allantoises of the pig and the rabbit as two nonrodent mammals of increasing significance in biomedical research are compared (1) morphologically using high resolution light and electron microscopy and (2) molecularly using brachyury mRNA expression as a mesodermal marker. Multiple small allantoic diverticula in the rabbit contrast with a single large cavity filling the entire allantois of the pig, but neither pig nor rabbit allantois expresses brachyury. The mesothelium on the allantois surface shows regional variability of cell contacts and microvilli, while blood vessels appear randomly around the allantoic diverticula in a mesodermal layer of variable thickness. Primordial germ cell-like cells are found in the allantois of the pig but not of the rabbit. To understand further the relevance of this developmental and morphological diversity, we compare the allantois development of pig and rabbit with early developmental landmarks of mouse and man. Our findings suggest that (1) tissue interaction between endoderm and mesoderm is important for allantoic development and vascular differentiation in species with a rudimentary allantoic diverticulum, (2) allantoic mesothelium plays a specific role in chorioallantoic attachment, allantoic differentiation and vascularization, and (3) there is a pronounced diversity in the extraembryonic migratory pathways of primordial germ cells among mammals. Finally, the phylogenetically basal characteristics of the pig allantois are suggestive of a functional similarity in mammals with a large allantois before placentation and in (aplacental) sauropsids with a chorioallantoic membrane well-adjusted to material exchange function.
Collapse
Affiliation(s)
- Waad Hassan
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| | - Christoph Viebahn
- Institute of Anatomy and Embryology, University Medical Center Göttingen, Göttingen, Germany
| |
Collapse
|
6
|
Fouladi-Nashta AA, Raheem KA, Marei WF, Ghafari F, Hartshorne GM. Regulation and roles of the hyaluronan system in mammalian reproduction. Reproduction 2017; 153:R43-R58. [PMID: 27799626 DOI: 10.1530/rep-16-0240] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/14/2016] [Accepted: 10/26/2016] [Indexed: 01/04/2025]
Abstract
Hyaluronan (HA) is a non-sulphated glycosaminoglycan polymer naturally occurring in many tissues and fluids of mammals, including the reproductive system. Its biosynthesis by HA synthase (HAS1-3) and catabolism by hyaluronidases (HYALs) are affected by ovarian steroid hormones. Depending upon its molecular size, HA functions both as a structural component of tissues in the form of high-molecular-weight HA or as a signalling molecule in the form of small HA molecules or HA fragments with effects mediated through interaction with its specific cell-membrane receptors. HA is produced by oocytes and embryos and in various segments of the reproductive system. This review provides information about the expression and function of members of the HA system, including HAS, HYALs and HA receptors. We examine their role in various processes from folliculogenesis through oocyte maturation, fertilisation and early embryo development, to pregnancy and cervical dilation, as well as its application in assisted reproduction technologies. Particular emphasis has been placed upon the role of the HA system in pre-implantation embryo development and embryo implantation, for which we propose a hypothetical sequential model.
Collapse
Affiliation(s)
- Ali A Fouladi-Nashta
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Kabir A Raheem
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of Veterinary Surgery and TheriogenologyMichael Okpara University of Agriculture, Umudike, Nigeria
| | - Waleed F Marei
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
- Department of TheriogenologyFaculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Fataneh Ghafari
- Royal Veterinary CollegeReproduction Research Group, Hawkshead Campus, Hatfield, UK
| | - Geraldine M Hartshorne
- Warwick Medical SchoolUniversity of Warwick, Coventry, UK and Centre for Reproductive Medicine, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
| |
Collapse
|
7
|
Marei WFA, Wathes DC, Raheem KA, Mohey-Elsaeed O, Ghafari F, Fouladi-Nashta AA. Influence of hyaluronan on endometrial receptivity and embryo attachment in sheep. Reprod Fertil Dev 2017; 29:1763-1773. [DOI: 10.1071/rd16232] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 09/12/2016] [Indexed: 11/23/2022] Open
Abstract
An increasing number of reports suggests a role of hyaluronan (HA) in female reproduction and interest in its application in assisted reproduction is rising. However, there are contrasting data about the effectiveness of adding HA to the embryo-transfer medium on improving pregnancy rates. Using sheep as an experimental model, the studies reported here analysed the impact of HA infusion into the uterus on embryo attachment to uterine luminal epithelium (LE) and expression of selected markers of uterine receptivity. On Day 14 after natural mating (pre-attachment), uterine horns were infused with either (n = 4 each): PBS (control), HA (1 mg mL–1), HA + hyaluronidase 2 (Hyal2; 300 IU mL–1) or 4-methyl-umbelliferone (HA-synthesis inhibitor; 4MU, 1 mM). HA immunostaining on uterine sections collected on Day 17 was negative in the 4MU group and weak in the HA+Hyal2 group. In contrast to 4MU, which resulted in 100% attachment, HA infusion blocked embryo attachment in all treated animals. This was accompanied by the disappearance of mucin 1 and increased expression of osteopontin and CD44v6 in the LE of uteri with attached embryos. In conclusion, the presence of HA at the embryo–maternal interface during embryo implantation resulted in reduced endometrial receptivity and inhibited the interaction of trophoblasts with the LE, whereas clearance of HA favoured embryo attachment.
Collapse
|
8
|
Maioli M, Rinaldi S, Pigliaru G, Santaniello S, Basoli V, Castagna A, Fontani V, Ventura C. REAC technology and hyaluron synthase 2, an interesting network to slow down stem cell senescence. Sci Rep 2016; 6:28682. [PMID: 27339908 PMCID: PMC4919615 DOI: 10.1038/srep28682] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/31/2016] [Indexed: 01/11/2023] Open
Abstract
Hyaluronic acid (HA) plays a fundamental role in cell polarity and hydrodynamic processes, affording significant modulation of proliferation, migration, morphogenesis and senescence, with deep implication in the ability of stem cells to execute their differentiating plans. The Radio Electric Asymmetric Conveyer (REAC) technology is aimed to optimize the ions fluxes at the molecular level in order to optimize the molecular mechanisms driving cellular asymmetry and polarization. Here, we show that treatment with 4-methylumbelliferone (4-MU), a potent repressor of type 2 HA synthase and endogenous HA synthesis, dramatically antagonized the ability of REAC to recover the gene and protein expression of Bmi1, Oct4, Sox2, and Nanog in ADhMSCs that had been made senescent by prolonged culture up to the 30(th) passage. In senescent ADhMSCs, 4-MU also counteracted the REAC ability to rescue the gene expression of TERT, and the associated resumption of telomerase activity. Hence, the anti-senescence action of REAC is largely dependent upon the availability of endogenous HA synthesis. Endogenous HA and HA-binding proteins with REAC technology create an interesting network that acts on the modulation of cell polarity and intracellular environment. This suggests that REAC technology is effective on an intracellular niche level of stem cell regulation.
Collapse
Affiliation(s)
- Margherita Maioli
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Monserrato, Cagliari, Italy
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Salvatore Rinaldi
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
| | - Gianfranco Pigliaru
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Sara Santaniello
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Valentina Basoli
- Center for developmental biology and reprogramming - CEDEBIOR, Department of Biomedical Sciences, University of Sassari Viale San Pietro 43/B, 07100 Sassari, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, A-1190 Vienna, Austria
| | - Alessandro Castagna
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Research Department, Rinaldi Fontani Foundation, Viale Belfiore 43, 50144 Florence, Italy
| | - Vania Fontani
- Department of Regenerative Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
- Department of Anti Aging Medicine, Rinaldi Fontani Institute, Viale Belfiore 43, 50144 Florence, Italy
| | - Carlo Ventura
- National Institute of Biostructures and Biosystems at the Department of Experimental, Diagnostic and Specialty Medicine, S. Orsola - Malpighi Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
- Stem Wave Institute for Tissue Healing (SWITH), Ettore Sansavini Health Science Foundation- NPO, via Provinciale per Cotignola 9, 48022 Lugo (Ravenna), Italy
| |
Collapse
|
9
|
Gasimli L, Stansfield HE, Nairn AV, Liu H, Paluh JL, Yang B, Dordick JS, Moremen KW, Linhardt RJ. Structural remodeling of proteoglycans upon retinoic acid-induced differentiation of NCCIT cells. Glycoconj J 2012; 30:497-510. [PMID: 23053635 DOI: 10.1007/s10719-012-9450-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Revised: 09/08/2012] [Accepted: 09/10/2012] [Indexed: 12/26/2022]
Abstract
Pluripotent and multipotent cells become increasingly lineage restricted through differentiation. Alterations to the cellular proteoglycan composition and structure should accompany these changes to influence cell proliferation, delineation of tissues and acquisition of cell migration capabilities. Retinoic acid plays an important role in pre-patterning of the early embryo. Retinoic acid can be used in vitro to induce differentiation, causing pluripotent and multipotent cells to become increasingly lineage restricted. We examined retinoic acid-induced changes in the cellular proteoglycan composition of the well-characterized teratocarcinoma line NCCIT. Our analysis revealed changes in the abundance of transcripts for genes encoding core proteins, enzymes that are responsible for early and late linkage region biosynthesis, as well as enzymes for GAG chain extension and modification. Transcript levels for genes encoding core proteins used as backbones for polysaccharide synthesis revealed highly significant increases in expression of lumican and decorin, 1,500-fold and 2,800-fold, respectively. Similarly, glypican 3, glypican 5, versican and glypican 6 showed increases between 5 and 70-fold. Significant decreases in biglycan, serglycin, glypican 4, aggrecan, neurocan, CD74 and glypican 1 were observed. Disaccharide analysis of the glycans in heparin/heparan sulfate and chondroitin/dermatan sulfate revealed retinoic acid-induced changes restricted to chondroitin/dermatan sulfate glycans. Our study provides the first detailed analysis of changes in the glycosaminoglycan profile of human pluripotent cells upon treatment with the retinoic acid morphogen.
Collapse
Affiliation(s)
- Leyla Gasimli
- Department of Biology, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The allantois is the embryonic precursor of the umbilical cord in mammals and is one of several embryonic regions, including the yolk sac and dorsal aorta, that undergoes vasculogenesis, the de novo formation of blood vessels. Despite its importance in establishing the chorioallantoic placenta and umbilical circulation, the allantois frequently is overlooked in embryologic studies. Nonetheless, recent studies demonstrate that vasculogenesis, vascular remodeling, and angiogenesis are essential allantois functions in the establishment of the chorioallantoic placenta. Here, we review blood vessel formation in the murine allantois, highlighting the expression of genes and involvement of pathways common to vasculogenesis or angiogenesis in other parts of the embryo. We discuss experimental techniques available for manipulation of the allantois that are unavailable for yolk sac or dorsal aorta, and review how this system has been used as a model system to discover new genes and mechanisms involved in vessel formation. Finally, we discuss the potential of the allantois as a model system to provide insights into disease and therapeutics.
Collapse
|
11
|
Ramírez MÁ, Pericuesta E, Yáñez-Mó M, Palasz A, Gutiérrez-Adán A. Effect of long-term culture of mouse embryonic stem cells under low oxygen concentration as well as on glycosaminoglycan hyaluronan on cell proliferation and differentiation. Cell Prolif 2011; 44:75-85. [PMID: 21199012 DOI: 10.1111/j.1365-2184.2010.00732.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES Maintaining undifferentiated stem cells in defined conditions is of critical importance to improve their in vitro culture. We have evaluated the effects of culturing mouse stem (mES) cells under physiological oxygen concentration as well as by replacing fibroblast feeder layer (mEF) with gelatin or glycosaminoglycan hyaluronan (HA), on cell proliferation and differentiation. MATERIALS AND METHODS After 3 days culture or after long-term cell culture under different conditions, levels of apoptotic cell death were determined by cell cycle and TUNEL (TdT-mediated dUTP nick end labelling) assays and levels of cell proliferation by CFSE (5-(and-6)-carboxyfluorescein diacetate succinimidyl ester) labelling. We assessed spontaneous differentiation into cardiomyocytes and mRNA expression of pluripotency and differentiation biomarkers. RESULTS After 3 days culture under hypoxic conditions, levels of proliferation and apoptosis of mES cells were higher, in correlation with increase in intracellular reactive oxygen species. However, when cells were continuously grown for 1 month under those conditions, the level of apoptosis was, in all cases, under 4%. Hypoxia reduced spontaneous differentiation of mES into cardiomyocytes. Long-term culture on HA was more effective in maintaining the pluripotent state of the mES cells when compared to that on gelatin. Level of terminal differentiation was highest on mEF, intermediate on HA and lowest on gelatin. CONCLUSIONS Our data suggest that hypoxia is not necessary for maintaining pluripotency of mES cells and appeared to be detrimental during ES differentiation. Moreover, HA may offer a valuable alternative for long-term culture of mES cells in vitro.
Collapse
Affiliation(s)
- M Á Ramírez
- Departamento de Reproducción Animal INIA, Madrid, Spain.
| | | | | | | | | |
Collapse
|
12
|
|
13
|
Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341:126-40. [PMID: 19854168 PMCID: PMC2854274 DOI: 10.1016/j.ydbio.2009.10.026] [Citation(s) in RCA: 952] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 10/16/2009] [Accepted: 10/17/2009] [Indexed: 02/06/2023]
Abstract
The extracellular matrix (ECM) is synthesized and secreted by embryonic cells beginning at the earliest stages of development. Our understanding of ECM composition, structure and function has grown considerably in the last several decades and this knowledge has revealed that the extracellular microenvironment is critically important for cell growth, survival, differentiation and morphogenesis. ECM and the cellular receptors that interact with it mediate both physical linkages with the cytoskeleton and the bidirectional flow of information between the extracellular and intracellular compartments. This review considers the range of cell and tissue functions attributed to ECM molecules and summarizes recent findings specific to key developmental processes. The importance of ECM as a dynamic repository for growth factors is highlighted along with more recent studies implicating the 3-dimensional organization and physical properties of the ECM as it relates to cell signaling and the regulation of morphogenetic cell behaviors. Embryonic cell and tissue generated forces and mechanical signals arising from ECM adhesion represent emerging areas of interest in this field.
Collapse
Affiliation(s)
- Tania Rozario
- Department of Cell Biology and the Morphogenesis and Regenerative Medicine Institute, University of Virginia, PO Box 800732, School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
14
|
Menkhorst E, Nation A, Cui S, Selwood L. Evolution of the shell coat and yolk in amniotes: a marsupial perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2009; 312:625-38. [DOI: 10.1002/jez.b.21235] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Kurpios NA, Ibañes M, Davis NM, Lui W, Katz T, Martin JF, Belmonte JCI, Tabin CJ. The direction of gut looping is established by changes in the extracellular matrix and in cell:cell adhesion. Proc Natl Acad Sci U S A 2008; 105:8499-506. [PMID: 18574143 PMCID: PMC2438376 DOI: 10.1073/pnas.0803578105] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Indexed: 11/18/2022] Open
Abstract
The counterclockwise coiling of the intestines is initiated by a leftward tilt of the primitive gut tube, imparted by left-right asymmetries in the architecture of the dorsal mesentery. In silico analysis suggests that this is achieved by synergistic changes in its epithelium and mesenchyme. Within the mesenchymal compartment, cells are more densely packed on the left than on the right. In silico results indicate that this property can result from asymmetries in both extracellular matrix (ECM) and cell:cell adhesion. We find that the dorsal mesentery ECM is indeed left-right asymmetric and moreover that the adhesion molecule N-cadherin is expressed exclusively on the left side. These asymmetries are regulated by the asymmetrically expressed transcription factors Pitx2 and Isl1. Functional studies demonstrate that N-cadherin acts upstream of the changes in the ECM and is both necessary and sufficient to explain the asymmetric packing of the mesenchymal cells.
Collapse
Affiliation(s)
| | - Marta Ibañes
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037
| | - Nicole M. Davis
- *Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - Wei Lui
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030; and
| | - Tamar Katz
- *Department of Genetics, Harvard Medical School, Boston, MA 02115
| | - James F. Martin
- Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030; and
| | - Juan Carlos Izpisúa Belmonte
- Gene Expression Laboratory, The Salk Institute, La Jolla, CA 92037
- **Center of Regenerative Medicine in Barcelona, 08003 Barcelona, Spain
| | | |
Collapse
|
16
|
Choudhary M, Zhang X, Stojkovic P, Hyslop L, Anyfantis G, Herbert M, Murdoch AP, Stojkovic M, Lako M. Putative role of hyaluronan and its related genes, HAS2 and RHAMM, in human early preimplantation embryogenesis and embryonic stem cell characterization. Stem Cells 2007; 25:3045-57. [PMID: 17872502 DOI: 10.1634/stemcells.2007-0296] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Human embryonic stem cells (hESC) promise tremendous potential as a developmental and cell therapeutic tool. The combined effort of stimulatory and inhibitory signals regulating gene expression, which drives the tissue differentiation and morphogenetic processes during early embryogenesis, is still very poorly understood. With the scarcity of availability of human embryos for research, hESC can be used as an alternative source to study the early human embryogenesis. Hyaluronan (HA), a simple hydrating sugar, is present abundantly in the female reproductive tract during fertilization, embryo growth, and implantation and plays an important role in early development of the mammalian embryo. HA and its binding protein RHAMM regulate various cellular and hydrodynamic processes from cell migration, proliferation, and signaling to regulation of gene expression, cell differentiation, morphogenesis, and metastasis via both extracellular and intracellular pathways. In this study, we show for the first time that HA synthase gene HAS2 and its binding receptor RHAMM are differentially expressed during all stages of preimplantation human embryos and hESC. RHAMM expression is significantly downregulated during differentiation of hESC, in contrast to HAS2, which is significantly upregulated. Most importantly, RHAMM knockdown results in downregulation of several pluripotency markers in hESC, induction of early extraembryonic lineages, loss of cell viability, and changes in hESC cycle. These data therefore highlight an important role for RHAMM in maintenance of hESC pluripotency, viability, and cell cycle control. Interestingly, HAS2 knockdown results in suppression of hESC differentiation without affecting hESC pluripotency. This suggests an intrinsic role for HAS2 in hESC differentiation process. In accordance with this, addition of exogenous HA to the differentiation medium enhances hESC differentiation to mesodermal and cardiac lineages. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Meenakshi Choudhary
- North East Institute for Stem Cell Research and Institute of Human Genetics, University of Newcastle, International Centre for Life, Newcastle, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Mészár Z, Felszeghy S, Veress G, Matesz K, Székely G, Módis L. Hyaluronan accumulates around differentiating neurons in spinal cord of chicken embryos. Brain Res Bull 2007; 75:414-8. [PMID: 18331908 DOI: 10.1016/j.brainresbull.2007.10.052] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Accepted: 10/17/2007] [Indexed: 10/22/2022]
Abstract
One major component of the extracellular matrix is hyaluronan (HA) which is thought to play a crucial role in the development of different organs including the central nervous system (CNS). HA is bound by specific receptors, CD44 and RHAMM, depending on cell types of CNS. However, data are lacking on the relation of HA to different cell populations in developing CNS. To provide new data about the co-localization of HA with the various cellular structures of the developing spinal cord, we studied the distribution pattern of hyaluronan in chicken embryos at Hamburger-Hamilton (HH) stages 8-39. A biotinylated HA-binding complex was used in combination with immunohistochemistry for proliferating and differentiating neurons. The intensity of the HA signal was determined by digital densitometry from histological sections. We found three mediolaterally oriented layers in the HA distribution pattern in stage HH23: (1) a moderate HA signal was detected in the ventricular zone; (2) strong HA accumulation was measured around Lim1,2-expressing cells (differentiating neurons) and early MNR2-expressing neurons (early motoneurons), corresponding to the intermediate zone; (3) a strong pericellular HA reaction was found around the neurons of the marginal zone. Interestingly, the peripheral nerves did not show HA signals. These findings suggest a crucial role of HA during neuronal development. We propose that HA may be involved in cell migration and axonal growth in the developing spinal cord.
Collapse
Affiliation(s)
- Zoltán Mészár
- Department of Anatomy, Histology and Embryology, Medical and Health Science Center, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | |
Collapse
|
18
|
Inman KE, Downs KM. The murine allantois: emerging paradigms in development of the mammalian umbilical cord and its relation to the fetus. Genesis 2007; 45:237-58. [PMID: 17440924 DOI: 10.1002/dvg.20281] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The fertilized egg of the mammal gives rise to the embryo and its extraembryonic structures, all of which develop in intimate relation with each other. Yet, whilst the past several decades have witnessed a vast number of studies on the embryonic component of the conceptus, study of the extraembryonic tissues and their relation to the fetus have been largely ignored. The allantois, precursor tissue of the mature umbilical cord, is a universal feature of all placental mammals that establishes the vital vascular bridge between the fetus and its mother. The allantois differentiates into the umbilical blood vessels, which become secured onto the chorionic component of the placenta at one end and onto the fetus at the other. In this way, fetal blood is channeled through the umbilical cord for exchange with the mother. Despite the importance of this vascular bridge, little is known about how it is made. The aim of this review is to address current understanding of the biology of the allantois in the mouse and genetic control of its features and functions, and to highlight new paradigms concerning the developmental relationship between the fetus and its umbilical cord.
Collapse
Affiliation(s)
- Kimberly E Inman
- Department of Anatomy, University of Wisconsin-Madison School of Medicine and Public Health, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
19
|
Sakai S, Hirano K, Toyoda H, Linhardt RJ, Toida T. Matrix assisted laser desorption ionization-time of flight mass spectrometry analysis of hyaluronan oligosaccharides. Anal Chim Acta 2007; 593:207-13. [PMID: 17543609 PMCID: PMC4129653 DOI: 10.1016/j.aca.2007.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2007] [Revised: 05/01/2007] [Accepted: 05/02/2007] [Indexed: 11/16/2022]
Abstract
A new method is presented for the identification of oligosaccharides obtained by enzymatic digestion of hyaluronan (HA) with bacterial hyaluronidase (E.C. 4.2.2.1, from Streptomyces hyalurolyticus) using matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOFMS). Mixtures containing HA oligosaccharides of tetrasaccharide (4-mer)-34-mer were analyzed using this method. The carboxyl groups of the glucuronate residues in the prepared HA oligomers, were modified as the acidic form (-COOH), sodium salts (-COONa), organic ammonium salts, or methylesters before MALDI-TOFMS measurement. Among these samples, the methylester form of glucuronate residues in HA oligosaccharides, prepared by methylation using trimethylsilyl diazomethane, afforded high sensitivity for spectra. This simple modification method for carboxyl group methylation of acidic polysaccharides [Hirano et al., Carbohydr. Res., 340, (2005) 2297-2304] provides samples suitable for MALDI-TOF mass spectrometric analysis throughout a significantly enhanced range of masses.
Collapse
Affiliation(s)
- Shinobu Sakai
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Kana Hirano
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Hidenao Toyoda
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Robert J. Linhardt
- Department of Chemistry and Chemical Biology, Rensselaer Polytechnic Institute, Troy, NY 12180-3590, USA
| | - Toshihiko Toida
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| |
Collapse
|
20
|
Rodgers LS, Lalani S, Hardy KM, Xiang X, Broka D, Antin PB, Camenisch TD. Depolymerized Hyaluronan Induces Vascular Endothelial Growth Factor, a Negative Regulator of Developmental Epithelial-to-Mesenchymal Transformation. Circ Res 2006; 99:583-9. [PMID: 16931798 DOI: 10.1161/01.res.0000242561.95978.43] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cardiac malformations constitute the most common birth defects, of which heart septal and valve defects are the most frequent forms diagnosed in infancy. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (
Has2
) gene in mice results in an absence of hyaluronan (HA), cardiac jelly, and endocardial cushions, a loss of vascular integrity, and death at embryonic day 9.5. Despite the requirements for Has2 and its product, HA, in the developing heart, little is known about the normal processing and removal of HA during development. Cell culture studies show that HA obtains new bioactivity after depolymerization into small oligosaccharides. We previously showed reduction in Has2 expression and diminished presence of HA at later stages of heart development as tissue remodeling formed the leaflets of the cardiac valves. Here we show that small oligosaccharide forms of HA (o-HA) act antagonistically to developmental epithelial-to-mesenchymal transformation (EMT), which is required to generate the progenitor cells that populate the endocardial cushions. We further show that o-HA induces vascular endothelial growth factor (VEGF), which acts as a negative regulator of EMT. This is the first report illustrating a functional link between oligosaccharide HA and VEGF. Collectively, our data indicate that following endocardial cell EMT, native HA is likely processed to o-HA, which stimulates VEGF activity to attenuate cardiac developmental EMT.
Collapse
Affiliation(s)
- Laurel S Rodgers
- Department of Cell Biology and Anatomy, College of Pharmacy, The University of Arizona, Tucson 85721, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Klewer SE, Yatskievych T, Pogreba K, Stevens MV, Antin PB, Camenisch TD. Has2 expression in heart forming regions is independent of BMP signaling. Gene Expr Patterns 2006; 6:462-70. [PMID: 16458617 DOI: 10.1016/j.modgep.2005.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2005] [Revised: 11/11/2005] [Accepted: 11/15/2005] [Indexed: 10/25/2022]
Abstract
Heart septation and valve malformations constitute the most common birth defects. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of cardiac jelly and endocardial cushions, a loss of vascular integrity, and embryonic death at E9.5. Despite the requirements for Has2 and its synthetic product hyaluronan (HA) in the developing cardiovascular system, little is known about the normal expression pattern of Has2 or the factors regulating Has2 gene transcription during development. Bmp signaling is an important regulator of cardiac myogenesis, and is also important for endocardial cushion formation. The current study defines the embryonic expression pattern of Has2 and explores the regulation of Has2 gene expression by Bmp signaling. In situ hybridization studies demonstrate dynamic Has2 expression patterns during myocardial cell development and cardiac tube formation, formation of the cardiac endocardial cushions, and cushion invasion by valve primordial cells. Despite overlapping regional expression of Bmp2 in the late gastrula anterior lateral endoderm and Has2 in the adjacent cardiogenic mesoderm, application of noggin-expressing CHO cells beneath the endoderm failed to perturb normal Has2 expression. Thus, in contrast to many genes expressed in the heart forming region, regulation of Has2 in the cardiogenic mesoderm is independent of Bmp signaling.
Collapse
Affiliation(s)
- Scott E Klewer
- Department of Pediatrics, Arizona Health Sciences Center, 1501 N. Campbell Ave., Tucson, AZ 85724, USA.
| | | | | | | | | | | |
Collapse
|
22
|
Mohamed SA. Hyaluronidase isoforms from developing embryos of the camel tick Hyalomma dromedarii. Comp Biochem Physiol B Biochem Mol Biol 2005; 142:164-71. [PMID: 16051510 DOI: 10.1016/j.cbpc.2005.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 06/16/2005] [Accepted: 06/18/2005] [Indexed: 11/17/2022]
Abstract
Changes in hyaluronidase activity in the camel tick Hyalomma dromedarii were followed throughout embryogenesis. Peak activity of the enzyme on days 21 and 24 during development was accompanied with a complete organization of larvae before hatching on day 27. During purification of hyaluronidase to homogeneity, ion exchange chromatography lead to four forms (HAase1, 2, 3 and 4). HAase2 and HAase4 with highest purity and specific activities after chromatography on Sephacryl S-200. The apparent molecular masses of HAase2 and HAase4 were 25 and 40 kDa, respectively. HAase2 and HAase4 had the same pH optimum of 3.6 and Km values of 0.3 and 0.34 mg/mL hyaluronic acid, respectively. Cleaving activities of HAase2 and HAase4 were demonstrated in the order: hyaluronic acid>chondroitin sulphate A>chondroitin sulphate C>chondroitin sulphate mixed>chondroitin sulphate B>heparin, low M.Wt>heparin. HAase2 and HAase4 had the same temperature optimum (40 degrees C) with heat stability up to 40 degrees C. H. dromedarii HAase2 and HAase4 had broad plateau of NaCl requirement with optimum activity recorded at 0.15 and 0.3 M NaCl, respectively. HAase2 and HAase4 were inhibited by Ca2+, Fe3+, Co2+ and Hg2+ and enhanced by Mg2+ and Mn2+.
Collapse
Affiliation(s)
- Saleh A Mohamed
- Molecular Biology Department, National Research Centre, Cairo, Egypt.
| |
Collapse
|
23
|
Schick BP, Ho HCK, Brodbeck KC, Wrigley CW, Klimas J. Serglycin proteoglycan expression and synthesis in embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1593:259-67. [PMID: 12581870 DOI: 10.1016/s0167-4889(02)00396-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The serglycin proteoglycan is expressed in most hematopoietic cells and is packaged into secretory vesicles for constitutive or regulated secretion. We have now shown serglycin mRNA expression in undifferentiated murine embryonic stem (ES) cells and in embryoid bodies, and synthesis and secretion in undifferentiated ES cells. Serglycin was localized to ES cell cytoplasm by immunostaining. Serglycin mRNA is expressed in tal-1((-/-)) ES cells and embryoid bodies; tal-1((-/-)) mice cannot produce hematopoietic cells. Thus, ES serglycin expression is probably not associated with hematopoiesis. Serglycin expression was increased by treatment of ES cells with retinoic acid (RA) and dibutyryl cAMP (dbcAMP). The serglycin core protein obtained from control ES culture medium after chondroitinase digestion appears as a doublet. Only the lower Mr band is present in serglycin secreted from RA-treated and the higher Mr band in RA+dbcAMP-treated cells, suggesting that core protein structure is affected by differentiation.
Collapse
Affiliation(s)
- Barbara P Schick
- Cardeza Foundation for Hematologic Research, Department of Medicine, Jefferson Medical College of Thomas Jefferson University, 1015 Walnut Street, Philadelphia, PA 19107, USA.
| | | | | | | | | |
Collapse
|
24
|
Stojkovic M, Krebs O, Kölle S, Prelle K, Assmann V, Zakhartchenko V, Sinowatz F, Wolf E. Developmental regulation of hyaluronan-binding protein (RHAMM/IHABP) expression in early bovine embryos. Biol Reprod 2003; 68:60-6. [PMID: 12493696 DOI: 10.1095/biolreprod.102.007716] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Hyaluronan or hyaluronic acid (HA) is a normal component of mammalian follicular, oviduct, and uterine fluids. Granulosa and expanding cumulus cells secrete large amounts of HA, and when HA is added in maturation and culture media, it improves the developmental potential of oocytes and embryos. HA regulates gene expression, signaling, proliferation, motility, adhesion, and morphogenesis. Many of these biological activities of HA are mediated through binding to the receptor for HA-mediated motility/intracellular HA-binding protein (RHAMM/IHABP). We evaluated the presence and dynamics of RHAMM/IHABP mRNA and protein expression in different stages of in vitro-produced bovine embryos using quantitative reverse transcriptase-real time-polymerase chain reaction and immunohistochemistry. We also analyzed the effects of different culture systems on the relative abundance of RHAMM/IHABP transcripts. RHAMM/IHABP mRNA levels decreased from the 2-cell to the 16-cell stage, increased again at the morula stage, and reached their highest level at the expanded blastocyst stage. RHAMM/IHABP mRNA abundance was significantly (P < 0.05) lower in embryos recovered in serum-containing medium than in embryos from serum-free media. Immunohistochemistry revealed the presence of RHAMM/IHABP first in 8-cell stages. Whereas RHAMM staining in 8-cell and morula stages was intense, it was weaker in blastocysts. Embryonic secretion of HA increased from the 2-cell stage until the 8-cell stage and then decreased in 16-cell embryos. After this, HA secretion increased in expanded and hatched blastocyst stages. These data suggest that the positive effects of HA on in vitro-produced bovine embryos may be mediated at least in part by RHAMM/IHABP.
Collapse
Affiliation(s)
- Miodrag Stojkovic
- Department of Molecular Animal Breeding and Biotechnology, LMU, D-85764 Oberschleissheim, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Müllegger J, Lepperdinger G. Hyaluronan is an abundant constituent of the extracellular matrix of Xenopus embryos. Mol Reprod Dev 2002; 61:312-6. [PMID: 11835576 DOI: 10.1002/mrd.10097] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The spatiotemporal distribution of hyaluronan (HA), a major constituent of the vertebrate extracellular matrix, was analyzed during early embryonic development of Xenopus laevis. This polysaccharide is abundantly present in ventricular structures such as the blastocoel, the archenteron as well as later on in the hepatic cavity, the brain ventricles and the developing heart. At the blastula stage, HA was detected in the extracellular matrix of the ecto- and mesodermal primordia. Shortly before gastrulation, it becomes enriched at the basal site of the superficial cell layer of the ectoderm. During gastrulation, enhanced synthesis of HA takes place in the involuting marginal zone, shortly before invagination starts, hence, resulting in a torus-like deposition in the deep layer of the equatorial mesodermal primordium. After gastrulation, HA appears to accumulate within the extracellular matrix demarcating the primary germ layers. During tailbud stages, it is found highly enriched in many mesodermal derivatives, e.g., in mesenchyme, the heart, precordal cartilage and the lung primordia. Furthermore, extracellular matrix of the ventral mesodermal cell layer in the trunk region and the immediate proximity of blood vessels contain high amounts of HA.
Collapse
Affiliation(s)
- Johannes Müllegger
- Institute of Molecular Biology, Department of Biochemistry, Salzburg, Austria
| | | |
Collapse
|
26
|
Müllegger J, Lepperdinger G. Degradation of hyaluronan by a Hyal2-type hyaluronidase affects pattern formation of vitelline vessels during embryogenesis of Xenopus laevis. Mech Dev 2002; 111:25-35. [PMID: 11804776 DOI: 10.1016/s0925-4773(01)00593-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A Hyal2-type hyaluronidase of Xenopus laevis (Xhyal2) was characterized by molecular cloning, biochemical analysis and ectopic overexpression in embryos. When expressed in Xenopus oocytes, Xhyal2 exists as a soluble protein in the extracellular space and in intercellular compartments as well as being attached to the cell surface through a glycosyl-phosphatidyl-inositol anchor. This enzyme specifically degrades hyaluronan not only at acidic pH values but more slowly also under physiological conditions. Xhyal2 is differentially expressed during embryogenesis. Particularly striking is the high level of expression in the developing brain, the head mesenchyme and the pronephros. Elevated levels of mRNA were also found in endothelial cells which will later form vascular structures. Ectopic overexpression of Xhyal2 in frog embryos causes loss of hyaluronan in the cellular environment. This causes severe defects in the assembly of the highly structured plexus of the vitelline vessels from prevascular endothelial cells. Our data support the notion that the level of Xhyal2 expression determines the organization of the extracellular environment so that cells can merge and/or migrate within an originally impenetrable matrix.
Collapse
Affiliation(s)
- Johannes Müllegger
- Department of Biochemistry, Institute of Molecular Biology, Austrian Academy of Sciences, Billrothstr. 11, A-5020, Salzburg, Austria.
| | | |
Collapse
|
27
|
Abstract
The extracellular matrix interacts with cells and promotes and regulates cellular functions such as adhesion, migration, proliferation, differentiation, and morphogenesis. Extracellular molecules are linked to one another by multiple binding domains and form a stable, multifunctional matrix. Cells respond to the extracellular matrix through plasma membrane receptors, which include integrin and non-integrin receptors. The regulation of these interactions requires the coordination of a multiplicity of signals both spatially and temporally.
Collapse
Affiliation(s)
- N Zagris
- Division of Genetics and Cell and Developmental Biology, Department of Biology, University of Patras, Patras, Greece.
| |
Collapse
|
28
|
Abstract
The murine allantois will become the umbilical artery and vein of the chorioallantoic placenta. In previous studies, growth and differentiation of the allantois had been elucidated in whole embryos. In this study, the extent to which explanted allantoises grow and differentiate outside of the conceptus was investigated. The explant model was then used to elucidate cell and growth factor requirements in allantoic development. Early headfold-stage murine allantoises were explanted directly onto tissue culture plastic or suspended in test tubes. Explanted allantoises vascularized with distal-to-proximal polarity, they exhibited many of the same signaling factors used by the vitelline and cardiovascular systems, and they contained at least three cell types whose identity, gene expression profiles, topographical associations, and behavior resembled those of intact allantoises. DiI labeling further revealed that isolated allantoises grew and vascularized in the absence of significant cell mingling, thereby supporting a model of mesodermal differentiation in the allantois that is position- and possibly age-dependent. Manipulation of allantoic explants by varying growth media demonstrated that the allantoic endothelial cell lineage, like that of other embryonic vasculatures, is responsive to VEGF(164). Although VEGF(164) was required for both survival and proliferation of allantoic angioblasts, it was not sufficient to induce appropriate epithelialization of these cells. Rather, other VEGF isoforms and/or the outer sheath of mesothelium, whose maintenance did not appear to be dependent upon endothelium, may also play important roles. On the basis of these findings, we propose murine allantoic explants as a new tool for shedding light not only on allantoic development, but for elucidating universal mechanisms of blood vessel formation, including vascular supporting cells, either in the intact organism or in existing in vitro systems.
Collapse
Affiliation(s)
- K M Downs
- Department of Anatomy, University of Wisconsin--Madison Medical School, 1300 University Avenue, Madison, Wisconsin 53706, USA.
| | | | | | | |
Collapse
|
29
|
Suzuki A, Toyoda H, Toida T, Imanari T. Preparation and inhibitory activity on hyaluronidase of fully O-sulfated hyaluro-oligosaccharides. Glycobiology 2001; 11:57-64. [PMID: 11181562 DOI: 10.1093/glycob/11.1.57] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hyaluronan was partially depolymerized on a large-scale quantity using bacterial hyaluronidase (E.C. 4.2.2.1) for preparation of chemically fully O-sulfated oligosaccharides. The hyaluro-oligosaccharide (HAoligo) mixture obtained by partial digestion was repeatedly applied to low pressure gel permeation chromatographic separation to purify the size-unified oligosaccharide ranged from 4- to 20-mer. The purity and size of each HAoligo was confirmed by using proton nuclear magnetic resonance ((1)H NMR) spectroscopy, capillary electrophoresis (CE) on normal polarity mode, and a newly established separation method by normal phase chromatography with Amide-80 column. The purified HAoligos ranged 4- to 20-mer were applied to chemically fully O-sulfation. Characterization of chemically fully O-sulfated HAoligos was performed by both chemical compositional analyses after hydrolysis and (1)H NMR spectroscopy. While the anti-factor IIa activity of 4- to 20-mer O-sulfated HAoligos was less than 3.1 units/mg, the inhibitory action for hyaluronidase (bovine testicular hyaluronidase (E.C.3.2.1.35)) of the oligosaccharides ranged 16- to 20-mer were corresponding to 79% of that shown by fully O-sulfated hyaluronan (MW 100 kDa) through both competitive and noncompetitive effects.
Collapse
Affiliation(s)
- A Suzuki
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33, Yayoi, Inage, Chiba 263-8522, Japan
| | | | | | | |
Collapse
|
30
|
Camenisch TD, Spicer AP, Brehm-Gibson T, Biesterfeldt J, Augustine ML, Calabro A, Kubalak S, Klewer SE, McDonald JA. Disruption of hyaluronan synthase-2 abrogates normal cardiac morphogenesis and hyaluronan-mediated transformation of epithelium to mesenchyme. J Clin Invest 2000; 106:349-60. [PMID: 10930438 PMCID: PMC314332 DOI: 10.1172/jci10272] [Citation(s) in RCA: 677] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2000] [Accepted: 06/22/2000] [Indexed: 12/31/2022] Open
Abstract
We identified hyaluronan synthase-2 (Has2) as a likely source of hyaluronan (HA) during embryonic development, and we used gene targeting to study its function in vivo. Has2(-/-) embryos lack HA, exhibit severe cardiac and vascular abnormalities, and die during midgestation (E9.5-10). Heart explants from Has2(-/-) embryos lack the characteristic transformation of cardiac endothelial cells into mesenchyme, an essential developmental event that depends on receptor-mediated intracellular signaling. This defect is reproduced by expression of a dominant-negative Ras in wild-type heart explants, and is reversed in Has2(-/-) explants by gene rescue, by administering exogenous HA, or by expressing activated Ras. Conversely, transformation in Has2(-/-) explants mediated by exogenous HA is inhibited by dominant-negative Ras. Collectively, our results demonstrate the importance of HA in mammalian embryogenesis and the pivotal role of Has2 during mammalian development. They also reveal a previously unrecognized pathway for cell migration and invasion that is HA-dependent and involves Ras activation.
Collapse
Affiliation(s)
- T D Camenisch
- Samuel C. Johnson Medical Research Center, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Toida T, Ogita Y, Suzuki A, Toyoda H, Imanari T. Inhibition of hyaluronidase by fully O-sulfonated glycosaminoglycans. Arch Biochem Biophys 1999; 370:176-82. [PMID: 10510275 DOI: 10.1006/abbi.1999.1395] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report a new flow injection assay (FIA) method for determining hyaluronidase activity and the inhibitory effects of chemical fully O-sulfonated glycosaminoglycans on this enzyme. The products of enzymatic action on hyaluronidase can be detected by FIA using fluorometric detection with the fluorogenic reagent 2-cyanoacetamide. The major products derived from hyaluronan by the action of mammalian testicular hyaluronidase (a hydrolyase) were confirmed by (1)H NMR spectroscopy and capillary electrophoresis. The FIA method was next applied to the assay of hyman urinary hyaluronidase activity and the screening of hyaluronidase inhibitors. The human urinary hyaluronidase activity measured ranged from 46 to 59 turbidity reducing units/mg protein. Among the glycosaminoglycans only heparin showed hyaluronidase inhibition. Chemically O-sulfonated glycosaminoglycans showed IC(50) values of hyaluronidase inhibition that correlated with the degree of O-sulfonation. Heparin was found to inhibit hyaluronidase activity noncompetitively, while chemically O-sulfonated HA strongly inhibited hyaluronidase through both competitive and noncompetitive effects.
Collapse
Affiliation(s)
- T Toida
- Faculty of Pharmaceutical Sciences, Chiba University, 1-33 Yayoi, Chiba, Inage, 2638522, Japan.
| | | | | | | | | |
Collapse
|
32
|
Itano N, Sawai T, Yoshida M, Lenas P, Yamada Y, Imagawa M, Shinomura T, Hamaguchi M, Yoshida Y, Ohnuki Y, Miyauchi S, Spicer AP, McDonald JA, Kimata K. Three isoforms of mammalian hyaluronan synthases have distinct enzymatic properties. J Biol Chem 1999; 274:25085-92. [PMID: 10455188 DOI: 10.1074/jbc.274.35.25085] [Citation(s) in RCA: 681] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Three mammalian hyaluronan synthase genes, HAS1, HAS2, and HAS3, have recently been cloned. In this study, we characterized and compared the enzymatic properties of these three HAS proteins. Expression of any of these genes in COS-1 cells or rat 3Y1 fibroblasts yielded de novo formation of a hyaluronan coat. The pericellular coats formed by HAS1 transfectants were significantly smaller than those formed by HAS2 or HAS3 transfectants. Kinetic studies of these enzymes in the membrane fractions isolated from HAS transfectants demonstrated that HAS proteins are distinct from each other in enzyme stability, elongation rate of HA, and apparent K(m) values for the two substrates UDP-GlcNAc and UDP-GlcUA. Analysis of the size distributions of hyaluronan generated in vitro by the recombinant proteins demonstrated that HAS3 synthesized hyaluronan with a molecular mass of 1 x 10(5) to 1 x 10(6) Da, shorter than those synthesized by HAS1 and HAS2 which have molecular masses of 2 x 10(5) to approximately 2 x 10(6) Da. Furthermore, comparisons of hyaluronan secreted into the culture media by stable HAS transfectants showed that HAS1 and HAS3 generated hyaluronan with broad size distributions (molecular masses of 2 x 10(5) to approximately 2 x 10(6) Da), whereas HAS2 generated hyaluronan with a broad but extremely large size (average molecular mass of >2 x 10(6) Da). The occurrence of three HAS isoforms with such distinct enzymatic characteristics may provide the cells with flexibility in the control of hyaluronan biosynthesis and functions.
Collapse
Affiliation(s)
- N Itano
- Institute for Molecular Science of Medicine, Aichi Medical University, Yazako, Nagakute, Aichi 480-1195, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Frost GI, Stern R. A microtiter-based assay for hyaluronidase activity not requiring specialized reagents. Anal Biochem 1997; 251:263-9. [PMID: 9299025 DOI: 10.1006/abio.1997.2262] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A sensitive, rapid microtiter-based assay for hyaluronidase activity is described that does not require highly specialized biological reagents, as required heretofore. The free carboxyl groups of hyaluronan are biotinylated in a one-step reaction using biotin-hydrazide. This substrate is then covalently coupled to a 96-well microtiter plate. At the completion of the enzyme reaction, residual substrate is detected with an avidin-peroxidase reaction that can be read in a standard ELISA plate reader. Because the substrate is covalently bound to the microtiter plate, artifacts such as pH-dependent displacement of the biotinylated substrate do not occur. The sensitivity permits rapid measurement of hyaluronidase activity from cultured cells and biological samples with an interassay variation of less than 5%. Using this new assay, we measured the distribution profile of plasma hyaluronidase levels in normal human sera. A 1-microl sample of plasma was sufficient for assays in triplicate. Hyaluronidase activity in human foreskin primary keratinocyte cultures was also quantitated. A 25-fold increase in hyaluronidase activity was observed in keratinocyte cultures induced to differentiate in high calcium (1.5 mM), compared to levels in low calcium (0.05 mM) media. The microtiter-based assay may be used as a routine clinical laboratory procedure.
Collapse
Affiliation(s)
- G I Frost
- School of Medicine, University of California, San Francisco, San Francisco, California 94143-0506, USA
| | | |
Collapse
|
34
|
McClatchey AI, Saotome I, Ramesh V, Gusella JF, Jacks T. The Nf2 tumor suppressor gene product is essential for extraembryonic development immediately prior to gastrulation. Genes Dev 1997; 11:1253-65. [PMID: 9171370 DOI: 10.1101/gad.11.10.1253] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The neurofibromatosis type II (NF2) tumor suppressor encodes a putative cytoskeletal associated protein, the loss of which leads to the development of Schwann cell tumors associated with NF2 in humans. The NF2 protein merlin belongs to the band 4.1 family of proteins that link membrane proteins to the cytoskeleton and are thought to be involved in dynamic cytoskeletal reorganization. Beyond its membership in this family, however, the function of merlin remains poorly understood. In order to analyze the function of merlin during embryogenesis and to develop a system to study merlin function in detail, we have disrupted the mouse Nf2 gene by homologous recombination in embryonic stem cells. Most embryos homozygous for a mutation at the Nf2 locus fail between embryonic days 6.5 and 7.0, exhibiting a collapsed extraembryonic region and the absence of organized extraembryonic ectoderm. The embryo proper continues to develop, but fails to initiate gastrulation. These observations are supported by the expression patterns of markers of the extraembryonic lineage and the lack of expression of mesodermal markers in the mutant embryos. Mosaic studies demonstrate that merlin function is not required cell autonomously in mesoderm, and support the proposition that merlin function is essential for the development of extraembryonic structures during early mouse development.
Collapse
Affiliation(s)
- A I McClatchey
- Center for Cancer Research, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | | | | | | | |
Collapse
|
35
|
Spicer AP, Augustine ML, McDonald JA. Molecular cloning and characterization of a putative mouse hyaluronan synthase. J Biol Chem 1996; 271:23400-6. [PMID: 8798545 DOI: 10.1074/jbc.271.38.23400] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We report the isolation of a novel mouse gene which encodes a putative hyaluronan synthase. The cDNA was identified using degenerate reverse transcriptase-polymerase chain reaction. Degenerate primers were designed based upon an alignment of the amino acid sequences of Streptococcus pyogenes HasA, Xenopus laevis DG42, and Rhizobium meliloti NodC. A mouse embryo cDNA library was screened with the resultant polymerase chain reaction product, and multiple cDNA clones spanning 3 kilobase pairs (kb) were isolated. The open reading frame predicted a 63-kDa protein with several transmembrane sequences, multiple consensus phosphorylation sites, and four putative hyaluronan binding motifs. The amino acid sequence displayed 55% identity to mouse HAS, 56% identity to Xenopus DG42, and 21% identity to Streptococcus HasA. Northern analysis identified transcripts of 4.8 kb and 3.2 kb, which were expressed highly in the developing mouse embryo and at lower levels in adult mouse heart, brain, spleen, lung, and skeletal muscle. Transfection experiments demonstrated that mouse Has2 could direct hyaluronan coat biosynthesis in transfected COS cells, as evidenced by a classical particle exclusion assay. These results suggest that mammalian HA synthase activity is regulated by at least two related genes. Accordingly, we propose the name Has2 for this gene.
Collapse
Affiliation(s)
- A P Spicer
- Department of Biochemistry and Molecular Biology, Mayo Clinic Scottsdale, Scottsdale, Arizona 85259, USA
| | | | | |
Collapse
|
36
|
Abstract
beta 1 integrins are cell-surface receptors that mediate cell-cell and cell-matrix interactions. We have generated a null mutation in the gene for the beta 1 integrin subunit in mice and embryonic stem (ES) cells. Heterozygous mice are indistinguishable from normal littermates. Homozygous null embryos develop normally to the blastocyst stage, implant, and invade the uterine basement membrane but die shortly thereafter. Using beta 1 integrin-deficient ES cells we have established chimeric embryos and adult mice. Analysis of the chimeric embryos demonstrated the presence of beta 1 integrin-deficient cells in all germ layers indicating that beta 1-null cells can differentiate and migrate in a context of normal tissue. When evaluated at embryonic day 9.5 (E9.5), embryos with a beta 1-null cell contribution below 25% were developing normally, whereas embryos with a contribution above this threshold were distorted and showed abnormal morphogenesis. In adult chimeric mice beta 1 integrin-deficient cells failed to colonize liver and spleen but were found in all other tissues analyzed at levels from 2%-25%. Immunostaining of chimeric mice showed that in cardiac muscle, there were small, scattered patches of myocytes that were beta 1-null. In contrast, many myotubes showed some beta 1-null contribution as a result of fusion between wild-type and mutant myoblasts to form mixed myotubes. The adult chimeric brain contained beta 1-null cells in all regions analyzed. Also, tissues derived from the neural crest contained beta 1 integrin-deficient cells indicating that migration of neuronal cells as well as neural crest cells can occur in the absence of beta 1 integrins.
Collapse
Affiliation(s)
- R Fässler
- Max-Planck-Institut für Biochemie, Martinsried, Germany
| | | |
Collapse
|
37
|
Wheatley SC, Isacke CM. Induction of a hyaluronan receptor, CD44, during embryonal carcinoma and embryonic stem cell differentiation. CELL ADHESION AND COMMUNICATION 1995; 3:217-30. [PMID: 8846023 DOI: 10.3109/15419069509081288] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper describes the expression profile of the CD44 glycoprotein during differentiation of embryonal carcinoma (EC) and embryonic stem (ES) cells. We have recently shown that CD44 is expressed in discrete embryonic structures and, in view of this, we sought an in vitro differentiation model of development in which we could study more readily the structure and function of the CD44 molecule. The P19 EC and CGR8 ES cells were chosen as they have the capacity to develop down the cardiac muscle pathway and we have previously demonstrated that CD44 is expressed abundantly in the embryonic myocardium. The differentiation process in both cell types is accompanied by an induction of CD44 mRNA and protein. However, in differentiated cultures CD44 is not expressed in contractile cells, indicating that these P19 cells do not represent CD44-positive embryonic cardiomyocytes. Expression of CD44 is observed on fibroblast-like cells which appear to migrate over and out from the plated aggregates. Hyaluronan, the major ligand for CD44, is also associated with these CD44-positive fibroblast-like cells. It is suggested that expression of both receptor and ligand by the fibroblast cells is required for cell:matrix adhesion and cell motility. As CD44 is up-regulated in these cultures, P19 cells are now established as a useful model system to study the factors regulating expression of the CD44 gene.
Collapse
Affiliation(s)
- S C Wheatley
- Department of Biology, Imperial College for Science, Technology and Medicine, London, England
| | | |
Collapse
|
38
|
Abstract
During mouse early development cell adhesion molecules are indispensable for the embryo organisation. A family of molecules probably involved in development is the transmembrane glycoprotein CD44 family, which exists in multiple isoforms. These are generated by alternative splicing of the pre-mRNA, resulting in the enlargement of the extracellular part of the molecule. The standard form of CD44 is widely expressed in adult tissues and in embryos from day 9.5 post coitum onwards, while the numerous variant isoforms exhibit highly specialised patterns of expression that are already in the egg cylinder at day 6.5 of development. In lymphohemopoiesis, specific variant isoforms also emerge at decisive differentiation stages. Although specific ligands for the variant region still await isolation, the highly organised expression of CD44 variant isoforms suggests they have a pivotal role in cellular interactions during early development, pattern formation and hemopoiesis.
Collapse
Affiliation(s)
- P Ruiz
- Basel Institute for Immunology, Switzerland
| | | | | |
Collapse
|
39
|
Sherman L, Sleeman J, Herrlich P, Ponta H. Hyaluronate receptors: key players in growth, differentiation, migration and tumor progression. Curr Opin Cell Biol 1994; 6:726-33. [PMID: 7530464 DOI: 10.1016/0955-0674(94)90100-7] [Citation(s) in RCA: 302] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hyaluronate (HA) is an abundant component of extracellular matrix that is believed to be crucial in many cellular processes, including tissue remodeling, the creation of cell-free spaces, inflammation and tumorigenesis. Although several well characterized proteins within the extracellular matrix associate with HA, it is now clear that cells can also bind and respond to HA directly, via cell-surface HA-binding proteins. The cDNAs coding for two families of such proteins, CD44 and RHAMM, have been cloned and characterized. These proteins have been implicated in a number of physiological processes, including cell migration, lymphocyte activation and tumor progression. Although many of these processes depend on an association with HA, some are apparently HA-independent, suggesting that other ligands for these receptors may be involved.
Collapse
Affiliation(s)
- L Sherman
- Institut für Genetik, Kernforschungszentrum Karlsruhe, Germany
| | | | | | | |
Collapse
|
40
|
Fenderson BA, Stamenkovic I, Aruffo A. Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differentiation 1993. [DOI: 10.1111/j.1432-0436.1993.tb01591.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Wheatley SC, Isacke CM, Crossley PH. Restricted expression of the hyaluronan receptor, CD44, during postimplantation mouse embryogenesis suggests key roles in tissue formation and patterning. Development 1993; 119:295-306. [PMID: 7507029 DOI: 10.1242/dev.119.2.295] [Citation(s) in RCA: 86] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CD44 is a multifunctional adhesion protein that acts as a major receptor for the hygroscopic extracellular matrix component, hyaluronan. This receptor-ligand binding directly mediates at least some of the cell-cell and cell-matrix interactions ascribed to CD44. Other interactions involving CD44 may be modulated indirectly by its ability to bind growth factors and thereby to promote cell attachment. During vertebrate development, multiple cases of hyaluronan involvement in cell proliferation, cell migration and histogenesis have been documented. In addition, there is evidence suggesting a central role for cell surface glycoproteins and proteoglycans in mediating the action of polypeptide growth factors involved in tissue patterning. In view of this, we undertook to investigate expression of the CD44 protein during postimplantation mouse embryogenesis. Between 9.5 and 12.5 days of embryonic development, the predominant form of CD44 protein corresponds to the hyaluronan-binding CD44H form. However, species with a higher M(r) were also detected, implying that CD44 isoforms generated by alternative splicing of CD44 RNA are employed in normal development. Further, we used mouse embryos to perform whole-mount immunohistochemistry and examine the temporal and spatial distribution of this glycoprotein. CD44 is expressed at high levels in the heart, somites and condensing limb-bud mesenchyme at critical stages of morphogenesis. These sites correlate with regions where hyaluronan has been demonstrated to regulate morphogenetic events. Of novel interest, however, is the high expression of CD44 in regions that do not correlate with sites of known hyaluronan-mediated developmental events. These include instructive epithelia participating in epithelial-mesenchymal cell interactions such as the apical ectodermal ridge of the developing limb bud and the odontogenic placodes of the presumptive upper and lower jaws.
Collapse
Affiliation(s)
- S C Wheatley
- Department of Biology, Imperial College of Science, Technology and Medicine, London, UK
| | | | | |
Collapse
|
42
|
Fenderson BA, Stamenkovic I, Aruffo A. Localization of hyaluronan in mouse embryos during implantation, gastrulation and organogenesis. Differentiation 1993; 54:85-98. [PMID: 7694885 DOI: 10.1111/j.1432-0436.1993.tb00711.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Hyaluronan was localized in postimplantation mouse embryos using CD44, the principal hyaluronan receptor. The specificity of CD44 receptor-globulin labelling was confirmed using Streptomyces hyaluronidase, anti-chondroitin sulfate antibody, and other receptor globulins. Our major findings are summarized as follows: 1. Implantation of the blastocyst into the uterine wall triggers a rapid loss of hyaluronan from the extracellular matrix of decidual cells on the anti-mesometrial side of the uterus. 2. Hyaluronan appears early in development in the yolk cavity, and the basement membranes of primitive ectoderm and primitive endoderm. 3. During gastrulation, mesodermal cells enter a hyaluronan-rich environment, but lack a pericellular hyaluronan coat themselves. 4. In limb bud embryos, hyaluronan is present throughout the cranial mesenchyme, but is generally not present in the branchial bars, somites, or limb buds. 5. At mid-gestation, hyaluronan is present in the axial skeleton, craniofacial mesenchyme, endocardial cushions of the heart, smooth muscle of the gastrointestinal tract, and connective tissue throughout the body. The pattern of hyaluronan expression in the day 13 fetus is nearly identical to the published distribution of transforming growth factor beta (TGF beta), suggesting a close functional relationship between these molecules. Together, the results suggest that hyaluronan is involved in the formation of early mesoderm, differentiation of craniofacial mesenchyme, and morphogenesis of the axial skeleton.
Collapse
Affiliation(s)
- B A Fenderson
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | | | | |
Collapse
|