1
|
Massri AJ, Berrio A, Afanassiev A, Greenstreet L, Pipho K, Byrne M, Schiebinger G, McClay DR, Wray GA. Single-cell transcriptomics reveals evolutionary reconfiguration of embryonic cell fate specification in the sea urchin Heliocidaris erythrogramma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591752. [PMID: 38746376 PMCID: PMC11092583 DOI: 10.1101/2024.04.30.591752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Altered regulatory interactions during development likely underlie a large fraction of phenotypic diversity within and between species, yet identifying specific evolutionary changes remains challenging. Analysis of single-cell developmental transcriptomes from multiple species provides a powerful framework for unbiased identification of evolutionary changes in developmental mechanisms. Here, we leverage a "natural experiment" in developmental evolution in sea urchins, where a major life history switch recently evolved in the lineage leading to Heliocidaris erythrogramma, precipitating extensive changes in early development. Comparative analyses of scRNA-seq developmental time courses from H. erythrogramma and Lytechinus variegatus (representing the derived and ancestral states respectively) reveals numerous evolutionary changes in embryonic patterning. The earliest cell fate specification events, and the primary signaling center are co-localized in the ancestral dGRN but remarkably, in H. erythrogramma they are spatially and temporally separate. Fate specification and differentiation are delayed in most embryonic cell lineages, although in some cases, these processes are conserved or even accelerated. Comparative analysis of regulator-target gene co-expression is consistent with many specific interactions being preserved but delayed in H. erythrogramma, while some otherwise widely conserved interactions have likely been lost. Finally, specific patterning events are directly correlated with evolutionary changes in larval morphology, suggesting that they are directly tied to the life history shift. Together, these findings demonstrate that comparative scRNA-seq developmental time courses can reveal a diverse set of evolutionary changes in embryonic patterning and provide an efficient way to identify likely candidate regulatory interactions for subsequent experimental validation.
Collapse
Affiliation(s)
- Abdull J Massri
- Department of Biology, Duke University, Durham, NC 27701 USA
| | | | - Anton Afanassiev
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Laura Greenstreet
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - Krista Pipho
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Maria Byrne
- School of Life and Environmental Sciences, Sydney University, Sydney, NSW Australia
| | - Geoffrey Schiebinger
- Department of Mathematics, University of British Colombia, Vancouver, BC V6T 1Z4 Canada
| | - David R McClay
- Department of Biology, Duke University, Durham, NC 27701 USA
| | - Gregory A Wray
- Department of Biology, Duke University, Durham, NC 27701 USA
| |
Collapse
|
2
|
Lee Y, Tjeerdema E, Kling S, Chang N, Hamdoun A. Solute carrier (SLC) expression reveals skeletogenic cell diversity. Dev Biol 2023; 503:68-82. [PMID: 37611888 DOI: 10.1016/j.ydbio.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/25/2023]
Abstract
Within the developing embryo is a microcosm of cell type diversity. Single cell RNA-sequencing (scRNA-seq) is used to reveal cell types, typically by grouping cells according to their gene regulatory states. However, both across and within these regulatory states are additional layers of cellular diversity represented by the differential expression of genes that govern cell function. Here, we analyzed scRNA-seq data representing the late gastrula stage of Strongylocentrotus purpuratus (purple sea urchin) to understand the patterning of transporters belonging to the ABC and SLC families. These transporters handle diverse substrates from amino acids to signaling molecules, nutrients and xenobiotics. Using transporter-based clustering, we identified unique transporter patterns that are both shared across cell lineages, as well as those that were unique to known cell types. We further explored three patterns of transporter expression in mesodermal cells including secondary mesenchyme cells (pigment cells and blastocoelar cells) and skeletogenic cells (primary mesenchyme cells). The results revealed the enrichment of SMTs potentially involved in nutrient absorption (SLC5A9, SLC7A11, SLC35F3, and SLC52A3) and skeletogenesis (SLC9A3, SLC13A2/3/5, and SLC39A13) in pigment cells and blastocoelar cells respectively. The results indicated that the strategy of clustering by cellular activity can be useful for discovering cellular populations that would otherwise remain obscured.
Collapse
Affiliation(s)
- Yoon Lee
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Evan Tjeerdema
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Svenja Kling
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Nathan Chang
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Amro Hamdoun
- Center for Marine Biology and Biomedicine Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, 92037, USA.
| |
Collapse
|
3
|
Konrad KD, Arnott M, Testa M, Suarez S, Song JL. microRNA-124 directly suppresses Nodal and Notch to regulate mesodermal development. Dev Biol 2023; 502:50-62. [PMID: 37419400 PMCID: PMC10719910 DOI: 10.1016/j.ydbio.2023.06.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/27/2023] [Accepted: 06/22/2023] [Indexed: 07/09/2023]
Abstract
MicroRNAs regulate gene expression post-transcriptionally by destabilizing and/or inhibiting translation of target mRNAs in animal cells. MicroRNA-124 (miR-124) has been examined mostly in the context of neurogenesis. This study discovers a novel role of miR-124 in regulating mesodermal cell differentiation in the sea urchin embryo. The expression of miR-124 is first detectable at 12hours post fertilization at the early blastula stage, during endomesodermal specification. Mesodermally-derived immune cells come from the same progenitor cells that give rise to blastocoelar cells (BCs) and pigment cells (PCs) that must make a binary fate decision. We determined that miR-124 directly represses Nodal and Notch to regulate BC and PC differentiation. miR-124 inhibition does not impact the dorsal-ventral axis formation, but result in a significant increase in number of cells expressing BC-specific transcription factors (TFs) and a concurrent reduction of differentiated PCs. In general, removing miR-124's suppression of Nodal phenocopies miR124 inhibition. Interestingly, removing miR-124's suppression of Notch leads to an increased number of both BCs and PCs, with a subset of hybrid cells that express both BC- and PC-specific TFs in the larvae. Removal of miR-124's suppression of Notch not only affects differentiation of both BCs and PCs, but also induces cell proliferation of these cells during the first wave of Notch signaling. This study demonstrates that post-transcriptional regulation by miR-124 impacts differentiation of BCs and PCs by regulating the Nodal and Notch signaling pathways.
Collapse
Affiliation(s)
- Kalin D Konrad
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Malcolm Arnott
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Michael Testa
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Santiago Suarez
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA; Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | - Jia L Song
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
4
|
Katow H. Mechanisms of the epithelial-to-mesenchymal transition in sea urchin embryos. Tissue Barriers 2015; 3:e1059004. [PMID: 26716069 PMCID: PMC4681286 DOI: 10.1080/21688370.2015.1059004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 05/25/2015] [Accepted: 05/29/2015] [Indexed: 12/30/2022] Open
Abstract
Sea urchin mesenchyme is composed of the large micromere-derived spiculogenetic primary mesenchyme cells (PMC), veg2-tier macromere-derived non-spiculogenetic mesenchyme cells, the small micromere-derived germ cells, and the macro- and mesomere-derived neuronal mesenchyme cells. They are formed through the epithelial-to-mesenchymal transition (EMT) and possess multipotency, except PMCs that solely differentiate larval spicules. The process of EMT is associated with modification of epithelial cell surface property that includes loss of affinity to the apical and basal extracellular matrices, inter-epithelial cell adherens junctions and epithelial cell surface-specific proteins. These cell surface structures and molecules are endocytosed during EMT and utilized as initiators of cytoplasmic signaling pathways that often initiate protein phosphorylation to activate the gene regulatory networks. Acquisition of cell motility after EMT in these mesenchyme cells is associated with the expression of proteins such as Lefty, Snail and Seawi. Structural simplicity and genomic database of this model will further promote detailed EMT research.
Collapse
Affiliation(s)
- Hideki Katow
- Research Center for Marine Biology; Tohoku University; Asamushi, Aomori, Japan
| |
Collapse
|
5
|
Su YH. Telling left from right: Left-right asymmetric controls in sea urchins. Genesis 2014; 52:269-78. [DOI: 10.1002/dvg.22739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/20/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology; Academia Sinica; Nankang Taipei Taiwan
| |
Collapse
|
6
|
Sharma T, Ettensohn CA. Regulative deployment of the skeletogenic gene regulatory network during sea urchin development. Development 2011; 138:2581-90. [PMID: 21610034 DOI: 10.1242/dev.065193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The well-known regulative properties of the sea urchin embryo, coupled with the recent elucidation of gene regulatory networks (GRNs) that underlie cell specification, make this a valuable experimental model for analyzing developmental plasticity. In the sea urchin, the primary mesenchyme cell (PMC) GRN controls the development of the embryonic skeleton. Remarkably, experimental manipulations reveal that this GRN can be activated in almost any cell of the embryo. Here, we focus on the activation of the PMC GRN during gastrulation by non-skeletogenic mesoderm (NSM) cells and by endoderm cells. We show that most transfating NSM cells are prospective blastocoelar cells, not prospective pigment cells, as was previously believed. Earlier work showed that the regulative deployment of the GRN, unlike its deployment in the micromere-PMC lineage, is independent of the transcriptional repressor Pmar1. In this work, we identify several additional differences in the upstream regulation of the GRN during normal and regulative development. We provide evidence that, despite these changes in the upstream regulation of the network, downstream regulatory genes and key morphoregulatory genes are deployed in transfating NSM cells in a fashion that recapitulates the normal deployment of the GRN, and which can account for the striking changes in migratory behavior that accompany NSM transfating. Finally, we report that mitotic cell division is not required for genomic reprogramming in this system, either within a germ layer (NSM transfating) or across a germ layer boundary (endoderm transfating).
Collapse
Affiliation(s)
- Tara Sharma
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
7
|
Takata H, Kominami T. Novel population of embryonic secondary mesenchyme cells in the keyhole sand dollar Astriclypeus manni. Dev Growth Differ 2011; 53:625-38. [DOI: 10.1111/j.1440-169x.2011.01278.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
8
|
Ohguro Y, Takata H, Kominami T. Involvement of Delta and Nodal signals in the specification process of five types of secondary mesenchyme cells in embryo of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 2011; 53:110-23. [DOI: 10.1111/j.1440-169x.2010.01233.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
9
|
Kiyomoto M, Zito F, Costa C, Poma V, Sciarrino S, Matranga V. Skeletogenesis by transfated secondary mesenchyme cells is dependent on extracellular matrix-ectoderm interactions in Paracentrotus lividus sea urchin embryos. Dev Growth Differ 2007; 49:731-41. [DOI: 10.1111/j.1440-169x.2007.00967.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Yajima M. A switch in the cellular basis of skeletogenesis in late-stage sea urchin larvae. Dev Biol 2007; 307:272-81. [PMID: 17540361 DOI: 10.1016/j.ydbio.2007.04.050] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/04/2007] [Accepted: 04/30/2007] [Indexed: 11/29/2022]
Abstract
Primary mesenchyme cells (PMCs) are solely responsible for the skeletogenesis during early larval development of the sea urchin, but the cells responsible for late larval and adult skeletal formation are not clear. To investigate the origin of larval and adult skeletogenic cells, I first performed transplantation experiments in Pseudocentrotus depressus and Hemicentrotus pulcherrimus, which have different skeletal phenotypes. When P. depressus PMCs were transplanted into H. pulcherrimus embryos, the donor phenotype was observed only in the early larval stage, whereas when secondary mesenchyme cells (SMCs) were transplanted, the donor phenotype was observed in late and metamorphic larvae. Second, a reporter construct driven by the spicule matrix protein 50 (SM50) promoter was introduced into fertilized eggs and their PMCs/SMCs were transplanted. In the resultant 6-armed pluteus, green fluorescent protein (GFP) expression was observed in both PMC and SMC transplantations, suggesting SMC participation in late skeletogenesis. Third, transplanted PMCs or SMCs tagged with GFP were analyzed by PCR in the transgenic chimeras. As a result, SMCs were detected in both larval and adult stages, but GFP from PMCs was undetectable after metamorphosis. Thus, it appears that SMCs participate in skeletogenesis in late development and that PMCs disappear in the adult sea urchin, suggesting that the skeletogenesis may pass from PMCs to SMCs during the late larval stage.
Collapse
Affiliation(s)
- Mamiko Yajima
- Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, 11 Koyatsu, Tateyama, Chiba 294-0301, Japan.
| |
Collapse
|
11
|
Hardin J, Illingworth CA. A homologue of snail is expressed transiently in subsets of mesenchyme cells in the sea urchin embryo and is down-regulated in axis-deficient embryos. Dev Dyn 2007; 235:3121-31. [PMID: 16958110 DOI: 10.1002/dvdy.20941] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Vertebrate members of the zinc finger transcription factor family related to Drosophila snail are expressed in neural crest and paraxial mesoderm along the left-right axis of the embryo. As simple deuterostomes, echinoderms are an important sister phylum for the chordates. We have identified populations of patterned, nonskeletogenic mesenchyme in the sea urchin Lytechinus variegatus by their expression of a sea urchin member of the snail family (Lv-snail). Lv-snail mRNA and protein are detectable at the midgastrula stage within the archenteron. At the late gastrula stage, a contiguous cluster of cells on the left side of the tip of the archenteron is Lv-snail-positive. At the early prism stage, two small clusters of mesenchyme cells near the presumptive arm buds are also Lv-snail-positive. At the pluteus stage, staining is detectable in isolated mesenchyme cells and the ciliated band. Based on fate mapping of secondary mesenchyme cells (SMCs) and double-label immunostaining, these patterns are consistent with expression of SNAIL by novel subsets of SMCs that are largely distinct from skeletogenic mesenchyme. In radialized embryos lacking normal bilateral symmetry, mesenchymal expression of Lv-SNAIL is abolished. These results suggest that transient expression of Lv-snail may be important for the differentiation of a subset of axially patterned nonskeletogenic mesenchyme cells and suggest conserved functions for snail family members in deuterostome development.
Collapse
Affiliation(s)
- Jeff Hardin
- Department of Zoology, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| | | |
Collapse
|
12
|
Egaña AL, Ernst SG. Sphedgehog is expressed by pigment cell precursors during early gastrulation in Strongylocentrotus purpuratus. Dev Dyn 2005; 231:370-8. [PMID: 15366014 DOI: 10.1002/dvdy.20125] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
We have sequenced the Sphedgehog (Sphh) gene from the sea urchin Strongylocentrotus purpuratus. Sphh transcripts are detected first at the mesenchyme blastula stage, and they accumulate throughout early embryogenesis. The Sphh protein is produced by precursor pigment cells during early and midgastrulation. NiCl2 inhibits pigment cell differentiation in sea urchins. Here, we show that, in S. purpuratus, nickel affects a process(es) between 17 and 24 hr of development, corresponding to the time period when Sphh mRNA is first detected. However, nickel treatment does not alter the early expression of Sphh.
Collapse
Affiliation(s)
- Ana L Egaña
- Department of Biology, Tufts University, Medford, Massachusetts 02155, USA
| | | |
Collapse
|
13
|
Abstract
The large micromeres (lMics) of echinoid embryos are reported to have distinct potentials with regard to inducing endo-mesoderm and autonomous differentiation into skeletogenic cells. However, the developmental potential of small micromeres (sMics), the sibling of lMics, has not been clearly demonstrated. In this study we produced chimeric embryos from an animal cap recombined with various numbers of sMics, in order to investigate the developmental potential of sMics in the sea urchin Hemicentrotus pulcherrimus and the sand dollar Scaphechinus mirabilis. We found that sMics of H. pulcherrimus had weak potential for inducing presumptive ectoderm cells to form endo-mesoderm structures. The inducing potential of ten sMics was almost equivalent to that of one lMic. The sMics also had the potential to differentiate autonomously into skeletogenic cells. Conversely, the sMics of S. mirabilis did not show either inductive or skeletogenic differentiation potential. The sMics of both species had the potential to induce oral-aboral axis establishment. These results suggest that the potential for sMics to differentiate into skeletogenic cells and for inducing the presumptive ectoderm to differentiate into endomesoderm differs across species, while the potential of sMics to induce the oral-aboral axis is conserved among species.
Collapse
Affiliation(s)
- Haruko Kurihara
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Tokyo 113-0033, Japan.
| | | |
Collapse
|
14
|
Abstract
The neural crest is a craniate synapomorphy and a bona fide evolutionary novelty. Recently, researchers considering intriguingly similar patterns of gene expression, cell behaviors, and embryogenetic processes in noncraniate deuterostomes have suggested that cephalochordates, urochordates, and echinoderms or their ancestors might have possessed cells that were precursors to the neural crest or its constituent cells. To emphasize the caution with which similarities at genetic, cellular, or embryological levels should be interpreted as substantiations for cell, germ layer, or tissue homologies, we present and evaluate additional tantalizing evidence that could be considered as documenting neural crest precursors in precraniates. Furthermore, we propose an evolutionary context--latent homologue--within which these data should be interpreted.
Collapse
Affiliation(s)
- Jon R Stone
- Biology Department, Dalhousie University, Life Sciences Building, Coburg Road, Halifax, Nova Scotia B3H 4J1, Canada.
| | | |
Collapse
|
15
|
Takata H, Kominami T. Pigment cells trigger the onset of gastrulation in tropical sea urchin Echinometra mathaei. Dev Growth Differ 2004; 46:23-35. [PMID: 15008852 DOI: 10.1111/j.1440-169x.2004.00726.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the tropical sea urchin Echinometra mathaei, pigment cells are just detectable before the onset of gastrulation, owing to an early accumulation of red pigment granules. Taking advantage of this feature, behavior of pigment cells was studied in relation to the processes of gastrulation. Before the initiation of primary invagination, pigment cells were arranged in a hemi-circle in the dorsal half of the vegetal plate. Inward bending of the vegetal plate first occurred at the position occupied by pigment cells, while the bending was not conspicuous in the ventral half of the blastopore. Rhodamine-phalloidin staining showed that actin filaments were abundant at the apical corticies of pigment cells. It was also found that the onset of gastrulation was considerably delayed in the NiCl2-treated embryos, in which pigment cells were drastically reduced in number. It is notable that the NiCl2-treated embryos began to gastrulate on schedule if they contained a number of pigment cells in spite of treatment. This shows that pigment cells are the bottle cells that trigger the onset of gastrulation. In the embryos devoid of pigment cells, a short stub-like gut rudiment formed in a delayed fashion, and several secondary mesenchyme cells (SMC) appeared at the tip of the rudiment and elongated gradually until its tip reached the apical plate. This observation suggests that the SMC that pull the gut rudiment upward are not pigment cells but blastocoelar cells, because pigment cells change their fate to blastocoelar cells upon NiCl2-treatment.
Collapse
Affiliation(s)
- Hiromi Takata
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Matsuyama, 790-8577, Japan.
| | | |
Collapse
|
16
|
Kiyomoto M, Zito F, Sciarrino S, Matranga V. Commitment and response to inductive signals of primary mesenchyme cells of the sea urchin embryo. Dev Growth Differ 2004; 46:107-14. [PMID: 15008859 DOI: 10.1111/j.1440-169x.2004.00730.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In the sea urchin embryo, primary mesenchyme cells (PMC) are committed to produce the larval skeleton, although their behavior and skeleton production are influenced by signals from the embryonic environment. Results from our recent studies showed that perturbation of skeleton development, by interfering with ectoderm-extracellular matrix (ECM) interactions, is linked to a reduction in the gene expression of a transforming growth factor (TGF)-beta growth factor, Pl-univin, suggesting a reduction in the blastocoelic amounts of the protein and its putative involvement in signaling events. In the present study, we examined PMC competence to respond to environmental signals in a validated skeleton perturbation model in Paracentrotus lividus. We found that injection of blastocoelic fluid (BcF), obtained from normal embryos, into the blastocoelic cavity of skeleton-defective embryos rescues skeleton development. In addition, PMC from skeleton-defective embryos transplanted into normal or PMC-less blastula embryos are able to position in correct regions of the blastocoel and to engage spicule elongation and patterning. Taken together, these results demonstrate that PMC commitment to direct skeletogenesis is maintained in skeleton perturbed embryos and confirm the role played by inductive signals in regulating skeleton growth and shape.
Collapse
Affiliation(s)
- Masato Kiyomoto
- Tateyama Marine Laboratory, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301, Japan.
| | | | | | | |
Collapse
|
17
|
Takata H, Kominami T. Behavior and differentiation process of pigment cells in a tropical sea urchin Echinometra mathaei. Dev Growth Differ 2003; 45:473-83. [PMID: 14706072 DOI: 10.1111/j.1440-169x.2003.00714.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The behavior and differentiation processes of pigment cells were studied in embryos of a tropical sea urchin Echinometra mathaei, whose egg volume was one half of those of well-known sea urchin species. Owing to earlier accumulation of pigments, pigment cells could be detected in the vegetal plate even before the onset of gastrulation, distributed dorsally in a hemi-circle near the center of the vegetal plate. Although some pigment cells left the archenteron during gastrulation, most of them remained at the archenteron tip. At the end of gastrulation, pigment cells left the archenteron and migrated into the blastocoele. Unlike pigment cells in typical sea urchins, however, they did not enter the ectoderm, and stayed in the blastocoele even at the pluteus stage. It is of interest that the majority of pigment cells were distributed in the vicinity of the larval skeleton. Aphidicolin treatment revealed that eight blastomeres were specific to pigment cell lineage after the eighth cleavage, one cell cycle earlier than that in well-known sea urchins. The pigment founder cells divided twice, and the number of pigment cells was around 32 at the pluteus stage. It was also found that the differentiation of pigment cells was blocked with Ni2+, whereas the treatment was effective only during the first division cycle of the founder cells.
Collapse
Affiliation(s)
- Hiromi Takata
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, 2-5 Bunkyo-Cho, Matsuyama, 790-8577, Japan.
| | | |
Collapse
|
18
|
Hamada M, Kiyomoto M. Signals from primary mesenchyme cells regulate endoderm differentiation in the sea urchin embryo. Dev Growth Differ 2003; 45:339-50. [PMID: 12950275 DOI: 10.1046/j.1440-169x.2003.00702.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Primary mesenchyme cells (PMC), the skeletogenic cells derived from the micromeres of the sea urchin embryo, are involved in the differentiation of the gut. When PMC were deleted from the mesenchyme blastula, both formation of the constrictions in the gut and expression of endoderm-specific alkaline phosphatase were significantly delayed. Therefore, the correct timing of gut differentiation depends on the existence of PMC, probably via a type of promotive signal. To date, the only role of PMC in other tissue differentiation has been a suppressive signal for the conversion of secondary mesenchyme cells (SMC) into skeletogenic cells. The present experiments using PMC ablation and transplantation showed that both signaling processes occurred in the same short period during gastrulation, but the embryos kept their competence for gut differentiation until a later stage. Further investigations indicated that conversion of SMC did not cause delay in gut differentiation and that SMC did not mediate the PMC signal to the endoderm. Therefore, the effect of PMC on gut differentiation could be a new role that is independent of the suppressive effect for SMC conversion.
Collapse
Affiliation(s)
- Mayuko Hamada
- Tateyama Marine Laboratory, Ochanomizu University, Kou-yatsu 11, Tateyama, Chiba 294-0301, Japan
| | | |
Collapse
|
19
|
Angerer LM, Angerer RC. Patterning the sea urchin embryo: gene regulatory networks, signaling pathways, and cellular interactions. Curr Top Dev Biol 2003; 53:159-98. [PMID: 12509127 DOI: 10.1016/s0070-2153(03)53005-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
We discuss steps in the specification of major tissue territories of the sea urchin embryo that occur between fertilization and hatching blastula stage and the cellular interactions required to coordinate morphogenetic processes that begin after hatching. We review evidence that has led to new ideas about how this embryo is initially patterned: (1) Specification of most of the tissue territories is not direct, but proceeds gradually by progressive subdivision of broad, maternally specified domains that depend on opposing gradients in the ratios of animalizing transcription factors (ATFs) and vegetalizing (beta-catenin) transcription factors; (2) the range of maternal nuclear beta-catenin extends further than previously proposed, that is, into the animal hemisphere, where it programs many cells to adopt early aboral ectoderm characteristics; (3) cells at the extreme animal pole constitute a unique ectoderm region, lacking nuclear beta-catenin; (4) the pluripotential mesendoderm is created by the combined outputs of ATFs and nuclear beta-catenin, which initially overlap in the macromeres, and by an undefined early micromere signal; (5) later micromere signals, which activate Notch and Wnt pathways, subdivide mesendoderm into secondary mesenchyme and endoderm; and (6) oral ectoderm specification requires reprogramming early aboral ectoderm at about the hatching blastula stage. Morphogenetic processes that follow initial fate specification depend critically on continued interactions among cells in different territories. As illustrations, we discuss the regulation of (1) the ectoderm/endoderm boundary, (2) mesenchyme positioning and skeletal growth, (3) ciliated band formation, and (4) several suppressive interactions operating late in embryogenesis to limit the fates of multipotent cells.
Collapse
Affiliation(s)
- Lynne M Angerer
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | | |
Collapse
|
20
|
Shah M, Brown KM, Smith LC. The gene encoding the sea urchin complement protein, SpC3, is expressed in embryos and can be upregulated by bacteria. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2003; 27:529-538. [PMID: 12697310 DOI: 10.1016/s0145-305x(03)00030-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sea urchins have an innate immune response that functions in the absence of adaptive capabilities. It is mediated, in part, by components of the complement system, an important subsystem of the innate response in mammals. A homologue of complement C3, SpC3, has been identified in adult Strongylocentrotus purpuratus and is expressed in coelomocytes. In this study, transcript levels from the gene, Sp064, which encodes SpC3, were examined in developing embryos and found to be present in unfertilized eggs and throughout embryogenesis with a peak in transcript levels just prior to and during gastrulation. In addition, continuous exposure of embryos, beginning with the hatched blastula stage, to heat killed Vibrio diazatrophicus, a marine pathogen of sea urchins, significantly increased Sp064 message content in plutei compared to unexposed controls. These results suggest that sea urchin embryos may use a complement-based immune system for defense against pathogens in their aquatic environment.
Collapse
Affiliation(s)
- Megha Shah
- Department of Biological Sciences, George Washington University, 2023 G St NW, 340 Linser Hall, Washington, DC 20052, USA
| | | | | |
Collapse
|
21
|
Kominami T, Takata H. Specification of secondary mesenchyme-derived cells in relation to the dorso-ventral axis in sea urchin blastulae. Dev Growth Differ 2003; 45:129-42. [PMID: 12752501 DOI: 10.1034/j.1600-0854.2004.00682.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To learn how the dorso-ventral (DV) axis of sea urchin embryos affects the specification processes of secondary mesenchyme cells (SMC), a fluorescent dye was injected into one of the macromeres of 16-cell stage embryos, and the number of each type of labeled SMC was examined at the prism stage. A large number of labeled pigment cells was observed in embryos in which the progeny of the labeled macromere were distributed in the dorsal part of the embryo. In contrast, labeled pigment cells were scarcely noticed when the descendants of the labeled macromere occupied the ventral part. In such embryos, free mesenchyme cells (probably blastocoelar cells) were predominantly labeled. CH3COONa treatment, which is known to increase the number of pigment cells, canceled such patterned specification of pigment cells and blastocoelar cells along the DV axis. Pigment cells were also derived from the ventral blastomere in the treated embryo. In contrast, a similar number of coelomic pouch cells was derived from the labeled macromere, irrespective of the position of its descendants along the DV axis. After examination of the arrangement of blastomeres in late cleavage stage embryos, it was determined that 17-20 veg2-derived cells encircled the cluster of micromere descendants after the 9th cleavage. From this number and the numbers of SMC-derived cells in later stage embryos, it was suggested that the most vegetally positioned veg2 descendants at approximately the 9th cleavage were preferentially specified to pigment and blastocoelar cell lineages. The obtained results also suggested the existence of undescribed types of SMC scattered in the blastocoele.
Collapse
Affiliation(s)
- Tetsuya Kominami
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | | |
Collapse
|
22
|
Brandhorst BP, Klein WH. Molecular patterning along the sea urchin animal-vegetal axis. INTERNATIONAL REVIEW OF CYTOLOGY 2002; 213:183-232. [PMID: 11837893 DOI: 10.1016/s0074-7696(02)13015-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The molecular regulatory mechanisms underlying primary axis formation during sea urchin development have recently been identified. Two opposing maternally inherited systems, one animalizing and one vegetalizing, set up the animal-vegetal (A-V) axis. The vegetal system relies in part on the Wnt-beta-catenin-Tcf/Lef signaling pathway and the animal system is based on a cohort of animalizing transcription factors that includes members of the Ets and Sox classes. The two systems autonomously define three zones of cell-type specification along the A-V axis. The vegetalmost zone gives rise to the skeletogenic mesenchyme lineage; the animalmost zone gives rise to ectoderm; and the zone in which the two systems overlap generates endoderm, secondary mesenchyme, and ectoderm. Patterning along the A-V also depends on cellular interactions involving Wnt, Notch, and BMP signaling. We discuss how these systems impact the formation of the second axis, the oral-aboral axis; how they connect to later developmental events; and how they lead to cell-type-specific gene expression via cis-regulatory networks associated with transcriptional control regions. We also discuss how these systems may confer on the embryo its spectacular regulatory capacity to replace missing parts.
Collapse
Affiliation(s)
- Bruce P Brandhorst
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | | |
Collapse
|
23
|
Tokuoka M, Setoguchi C, Kominami T. Specification and differentiation processes of secondary mesenchyme-derived cells in embryos of the sea urchin Hemicentrotus pulcherrimus. Dev Growth Differ 2002; 44:239-50. [PMID: 12060073 DOI: 10.1046/j.1440-169x.2002.00638.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Four types of mesoderm cells (pigment cells, blastocoelar cells, coelomic pouch cells and circumesophageal muscle cells) are derived from secondary mesenchyme cells (SMC) in sea urchin embryos. To gain information on the specification and differentiation processes of SMC-derived cells, we studied the exact number and division cycles of each type of cell in Hemicentrotus pulcherrimus. Numbers of blastocoelar cells, coelomic pouch cells and circumesophageal muscle fibers were 18.0 +/- 2.0 (36 h post-fertilization (h.p.f.)), 23.0 +/- 2.5 (36 h.p.f.) and 9.5 +/- 1.3 (60 h.p.f.), respectively, whereas the number of pigment cells ranged from 40 to 60. From the diameters of blastocoelar cells and coelomic pouch cells, the numbers of division cycles were elucidated; these two types of cells had undertaken 11 rounds of cell division by the prism stage, somewhat earlier than pigment cells. To determine the relationship among the four types of cells, we tried to alter the number of pigment cells with chemical treatment and found that CH3COONa increased pigment cells without affecting embryo morphology. Interestingly, the number of blastocoelar cells became smaller in CH3COONa-treated embryos. In contrast, blastocoelar cells were markedly increased with NiCl2 treatment, whereas the number of pigment cells was markedly decreased. The number of coelomic pouch cells and circumesophageal muscle fibers was not affected with these treatments, indicating that coelomic pouch and muscle cells are specified independently of, or at much later stages, than pigment and blastocoelar cells.
Collapse
Affiliation(s)
- Miki Tokuoka
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | | | | |
Collapse
|
24
|
Illies MR, Peeler MT, Dechtiaruk A, Ettensohn CA. Cloning and developmental expression of a novel, secreted frizzled-related protein from the sea urchin, Strongylocentrotus purpuratus. Mech Dev 2002; 113:61-4. [PMID: 11900974 DOI: 10.1016/s0925-4773(01)00657-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Wnt proteins and their receptors, members of the frizzled protein family, play a key role in regulating a wide range of developmental processes. Recently, putative regulators of Wnt signaling known as secreted frizzled-related proteins (SFRPs) have been identified in several vertebrates. Here, we describe the cloning of a novel SFRP (suSFRP1) from the sea urchin, Strongylocentrotus purpuratus. SuSFRP1 contains a putative signal sequence, four cysteine-rich domains and a single Ig domain. The developmental expression of suSFRP1 mRNA is highly dynamic and can be separated into three phases: (1) abrupt accumulation in most or all cells of the embryo at the early blastula stage; (2) restriction of expression to the prospective endoderm and animal pole region of the gastrula; and (3) expression in prospective muscle cells of the coelomic pouches during late embryogenesis.
Collapse
Affiliation(s)
- Michele R Illies
- Department of Biological Sciences, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
25
|
Kominami T, Takata H. Process of pigment cell specification in the sand dollar, Scaphechinus mirabilis. Dev Growth Differ 2002; 44:113-25. [PMID: 11940098 DOI: 10.1046/j.1440-169x.2002.00627.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The process of pigment cell specification in the sand dollar Scaphechinus mirabilis was examined by manipulative methods. In half embryos, which were formed by dissociating embryos at the 2-cell stage, the number of pigment cells was significantly greater than half the number of pigment cells observed in control embryos. This relative increase might have been brought about by the change in the arrangement of blastomeres surrounding the micromere progeny. To examine whether such an increase could be induced at a later stage, embryos were bisected with a glass needle. When embryos were bisected before 7 h postfertilization, the sum of pigment cells observed in a pair of embryo fragments was greater than that in control embryos. This relative increase was not seen when embryos were bisected after 7 h postfertilization. From the size of blastomeres, it became clear that the 9th cleavage was completed by 7 h postfertilization. Aphidicolin treatment revealed that 10-15 pigment founder cells were formed. The results obtained suggest that the pigment founder cells were specified through direct cell contact with micromere progeny after the 9th cleavage, and that most of the founder cells had divided three times before they differentiated into pigment cells.
Collapse
Affiliation(s)
- Tetsuya Kominami
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | | |
Collapse
|
26
|
Takata H, Kominami T, Masui M. Role of cell contact in the specification process of pigment founder cells in the sea urchin embryo. Zoolog Sci 2002; 19:299-307. [PMID: 12125928 DOI: 10.2108/zsj.19.299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Effects of LiCl on the specification process of pigment founder cells were examined in the sea urchin Hemicentrotus pulcherrimus. If embryos were treated with 30 mM LiCl during 4-7 or 7-10 hours postfertilization, pigment cells increased significantly. Aphidicolin treatment indicated that this increase was due to the increase in the pigment founder cells. Interestingly, if the embryos were treated sequentially with LiCl and Ca2+-free seawater during 4-7 and 7-10 hr, respectively, they differentiated only about the same number of pigment cells as control embryos. Further, the increase was scarcely discerned when the embryos were treated with LiCl in the absence of Ca2+ during 7-10 hr. These results suggested that effect of LiCl would be ascribed to the increase in cell adhesiveness. In fact, LiCl-treated embryos were more difficult to be dissociated into single cells. Cell electrophoresis showed that the amount of the negative cell surface charges decreased considerably in LiCl-treated embryos. It was also found that the number of pigment cells seldom exceeded 100, even if embryos were exposed to a higher concentration of LiCl. This suggested that only a subpopulation of the descendants of veg2 blastomeres received the inductive signal emanated from the micromere progeny.
Collapse
Affiliation(s)
- Hiromi Takata
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Matsuyama, Japan.
| | | | | |
Collapse
|
27
|
Kominami T, Takata H, Takaichi M. Behavior of pigment cells in gastrula-stage embryos of Hemicentrotus pulcherrimus and Scaphechinus mirabilis. Dev Growth Differ 2001; 43:699-707. [PMID: 11737150 DOI: 10.1046/j.1440-169x.2001.00605.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The behavior of pigment cells in sea urchin embryos, especially at the gastrula stage, is not well understood, due to the lack of an appropriate method to detect pigment cells. We found that pigment cells emanated autofluorescence when they were fixed with formalin and irradiated with ultraviolet or green light. In Hemicentrotus pulcherrimus, fluorescent pigment cells became visible at the archenteron tip at the mid-gastrula stage. The cells detached from the archenteron slightly before the initiation of secondary invagination and migrated toward the apical plate. Most pigment cells entered the apical plate. This entry site seemed to be restricted, because pigment cells could not enter the ectoderm and remained in the blastocoele at the vegetal pole side when elongation of archenteron was blocked. Pigment cells that had entered the apical plate soon began to migrate in the aboral ectoderm toward the vegetal pole. In contrast, pigment cells of Scaphechinus mirabilis embryos were first detected in the vegetal plate before the onset of gastrulation. Without entering the blastocoele, these cells began to migrate preferentially in the aboral ectoderm toward the animal pole. When the archenteron tip reached the apical plate, pigment cells had already distributed throughout the aboral ectoderm. Thus, the behavior of pigment cells was quite different between H. pulcherrimus and S. mirabilis.
Collapse
Affiliation(s)
- T Kominami
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan.
| | | | | |
Collapse
|
28
|
Gross JM, McClay DR. The role of Brachyury (T) during gastrulation movements in the sea urchin Lytechinus variegatus. Dev Biol 2001; 239:132-47. [PMID: 11784024 DOI: 10.1006/dbio.2001.0426] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The studies described here sought to identify and characterize genes involved in the gastrulation and morphogenetic movements that occur during sea urchin embryogenesis. An orthologue of the T-box family transcription factor, Brachyury, was cloned through a candidate gene approach. Brachyury (T) is the founding member of this T-box transcription factor family and has been implicated in gastrulation movements in Xenopus, zebrafish, and mouse embryogenesis. Polyclonal serum was generated to LvBrac in order to characterize protein expression. LvBrac initially appears at mesenchyme blastula stage in two distinct regions with embryonic expression perduring until pluteus stage. Vegetally, LvBrac expression is in endoderm and lies circumferentially around the blastopore. This torus-shaped area of LvBrac expression remains constant in size as endoderm cells express LvBrac upon moving into that circumference and cease LvBrac expression as they leave the circumference. Vegetal expression remains around the anus through pluteus stage. The second domain of LvBrac expression first appears broadly in the oral ectoderm at mesenchyme blastula stage and at later embryonic stages is refined to just the stomodael opening. Vegetal LvBrac expression depends on autonomous beta-catenin signaling in macromeres and does not require micromere or veg2-inductive signals. It was then determined that LvBrac is necessary for the morphogenetic movements occurring in both expression regions. A dominant-interfering construct was generated by fusing the DNA binding domain of LvBrac to the transcriptional repression module of the Drosophila Engrailed gene in order to perturb gene function. Microinjection of mRNA encoding this LvBrac-EN construct resulted in a block in gastrulation movements but not expression of endoderm and mesoderm marker genes. Furthermore, injection of LvBrac-EN into one of two blastomeres resulted in normal gastrulation movements of tissues derived from the injected blastomere, indicating that LvBrac downstream function may be nonautonomous during sea urchin gastrulation.
Collapse
MESH Headings
- Africa, Western
- Amino Acid Sequence
- Animals
- Base Sequence
- Blastocyst/cytology
- Blastocyst/metabolism
- Blotting, Western
- Cell Movement
- Cytoskeletal Proteins/metabolism
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/embryology
- Embryo, Nonmammalian/metabolism
- Endoderm/cytology
- Endoderm/metabolism
- Evolution, Molecular
- Fetal Proteins
- Gastrula/cytology
- Gastrula/metabolism
- Gene Expression Regulation, Developmental
- Humans
- Mesoderm/cytology
- Mesoderm/metabolism
- Microscopy, Fluorescence
- Molecular Sequence Data
- Morphogenesis
- Phylogeny
- RNA, Messenger/analysis
- RNA, Messenger/genetics
- Sea Urchins/cytology
- Sea Urchins/embryology
- Sea Urchins/genetics
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
- Trans-Activators
- beta Catenin
Collapse
Affiliation(s)
- J M Gross
- Development, Cell and Molecular Biology Group, Duke University, Box 91000 LSRC, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
29
|
Kominami T. Establishment of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 2000; 42:41-51. [PMID: 10831042 DOI: 10.1046/j.1440-169x.2000.00483.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In an attempt to estimate the number of pigment precursor cells in sea urchin embryos, DNA synthesis and cell divisions were blocked with aphidicolin from various stages of development. Interestingly, pigment cells differentiated on a normal time schedule, even if the embryos were treated from late cleavage stages on. In most of the embryos treated from 10 h on, 10-15 pigment cells differentiated. Thereafter, the number of pigment cells in the aphidicolin-treated embryos further increased, as the initiation of the treatment was delayed. On the other hand, total cell volumes in the pigment lineage, calculated from the averaged number and diameter of differentiated pigment cells, were almost the same irrespective of the time of the initiation of aphidicolin treatment. This indicated that the increase in the number was caused by divisions of the pre-existing cells in the pigment lineage. Thus, the founder cells that exclusively produce pigment cells could be identified. They are nine times-cleaved blastomeres and specified by 10 h post-fertilization. The obtained results also clarified the division schedule in the pigment lineage; the founder cells divide once (10th) until hatching, and divide once more (11th) by the end of gastrulation.
Collapse
Affiliation(s)
- T Kominami
- Department of Biology and Earth Sciences, Faculty of Science, Ehime University, Matsuyama, Japan.
| |
Collapse
|
30
|
Sweet HC, Hodor PG, Ettensohn CA. The role of micromere signaling in Notch activation and mesoderm specification during sea urchin embryogenesis. Development 1999; 126:5255-65. [PMID: 10556051 DOI: 10.1242/dev.126.23.5255] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the sea urchin embryo, the micromeres act as a vegetal signaling center. These cells have been shown to induce endoderm; however, their role in mesoderm development has been less clear. We demonstrate that the micromeres play an important role in the induction of secondary mesenchyme cells (SMCs), possibly by activating the Notch signaling pathway. After removing the micromeres, we observed a significant delay in the formation of all mesodermal cell types examined. In addition, there was a marked reduction in the numbers of pigment cells, blastocoelar cells and cells expressing the SMC1 antigen, a marker for prospective SMCs. The development of skeletogenic cells and muscle cells, however, was not severely affected. Transplantation of micromeres to animal cells resulted in the induction of SMC1-positive cells, pigment cells, blastocoelar cells and muscle cells. The numbers of these cell types were less than those found in sham transplantation control embryos, suggesting that animal cells are less responsive to the micromere-derived signal than vegetal cells. Previous studies have demonstrated a role for Notch signaling in the development of SMCs. We show that the micromere-derived signal is necessary for the downregulation of the Notch protein, which is correlated with its activation, in prospective SMCs. We propose that the micromeres induce adjacent cells to form SMCs, possibly by presenting a ligand for the Notch receptor.
Collapse
Affiliation(s)
- H C Sweet
- Department of Biological Sciences and Science and Technology Center for Light Microscope Imaging and Biotechnology, Carnegie Mellon University, Pittsburgh, PA 15213, USA. hsweet+@andrew.cmu.edu
| | | | | |
Collapse
|
31
|
Minokawa T, Amemiya S. Timing of the potential of micromere-descendants in echinoid embryos to induce endoderm differentiation of mesomere-descendants. Dev Growth Differ 1999; 41:535-47. [PMID: 10545026 DOI: 10.1046/j.1440-169x.1999.00453.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It has been reported that the micromeres of echinoid embryos have the potential to induce an archenteron in animal cap mesomeres recombined at the 16- or 32-cell stage. In the present study, experiments were performed to determine the exact period when the micromeres transmit their inductive signal to respecify the cell fate of mesomeres as endo-mesoderm. An animal cap was recombined with a quartet of micromeres, or micromere-descendants cultured in isolation, to form a recombinant embryo. The micromere-descendants were completely removed at various developmental stages, resulting in an embryo composed only of mesomere-descendants that had been under the inductive influence of micromeres for a limited period. The resulting embryos were cultured and examined for their potential to differentiate endoderm. The results indicated that the signal effective for inducing an archenteron in mesomere-descendants emanated from the micromere-descendants at the early blastula stage around hatching onward. Before this stage, the micromeres and micromere-descendants showed this potential slightly or not at all. The inductive signal emanated from the micromere-descendants almost on time even when the cells were cultured in isolation. The micromere-descendants completed transmission of the signal for inducing the archenteron in the animal cap within 2 h of recombination. The animal cap at between the 28-cell stage and 2 h after the 32-cell stage could react with the inductive signal from the micromere-descendants. Embryos composed of only animal cap mesomeres that had received the inductive signal from micromere-descendants for a limited period had the potential to develop into 8-armed plutei. Each pluteus formed an adult rudiment essentially on the left side of the larval body, and metamorphosed into a juvenile with pentaradiate symmetry.
Collapse
Affiliation(s)
- T Minokawa
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Hongo, Japan
| | | |
Collapse
|
32
|
Angerer LM, Angerer RC. Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients. Semin Cell Dev Biol 1999; 10:327-34. [PMID: 10441547 DOI: 10.1006/scdb.1999.0292] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Differentiation of sea urchin embryo ectoderm, endoderm and mesenchyme cells, whose anlagen are arrayed along the animal-vegetal axis, relies on both maternally regulated localized transcription factor activities and cell-cell signalling. Classic models proposed that fates are determined by opposing animal and vegetal morphogenetic gradients, whereas current models emphasize unidirectional and sequential vegetal-to-animal signalling cascades between adjacent blastomeres. Recent data support aspects of both models: the vegetal micromeres send one or more signals, which depend on a nuclear beta-catenin-dependent pathway, that both activate Notch signalling required for secondary mesenchyme fate and promote endoderm differentiation and gastrulation. This is opposed by an animalizing domain of BMP4 signals that regulates ectodermal cell fates and establishes the ectoderm-endoderm border.
Collapse
Affiliation(s)
- L M Angerer
- Department of Biology, University of Rochester, Rochester, NY 14627, USA
| | | |
Collapse
|
33
|
Sherwood DR, McClay DR. LvNotch signaling mediates secondary mesenchyme specification in the sea urchin embryo. Development 1999; 126:1703-13. [PMID: 10079232 DOI: 10.1242/dev.126.8.1703] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cell-cell interactions are thought to regulate the differential specification of secondary mesenchyme cells (SMCs) and endoderm in the sea urchin embryo. The molecular bases of these interactions, however, are unknown. We have previously shown that the sea urchin homologue of the LIN-12/Notch receptor, LvNotch, displays dynamic patterns of expression within both the presumptive SMCs and endoderm during the blastula stage, the time at which these two cell types are thought to be differentially specified (Sherwood, D. R. and McClay, D. R. (1997) Development 124, 3363–3374). The LIN-12/Notch signaling pathway has been shown to mediate the segregation of numerous cell types in both invertebrate and vertebrate embryos. To directly examine whether LvNotch signaling has a role in the differential specification of SMCs and endoderm, we have overexpressed activated and dominant negative forms of LvNotch during early sea urchin development. We show that activation of LvNotch signaling increases SMC specification, while loss or reduction of LvNotch signaling eliminates or significantly decreases SMC specification. Furthermore, results from a mosaic analysis of LvNotch function as well as endogenous LvNotch expression strongly suggest that LvNotch signaling acts autonomously within the presumptive SMCs to mediate SMC specification. Finally, we demonstrate that the expansion of SMCs seen with activation of LvNotch signaling comes at the expense of presumptive endoderm cells, while loss of SMC specification results in the endoderm expanding into territory where SMCs usually arise. Taken together, these results offer compelling evidence that LvNotch signaling directly specifies the SMC fate, and that this signaling is critical for the differential specification of SMCs and endoderm in the sea urchin embryo.
Collapse
Affiliation(s)
- D R Sherwood
- Developmental, Cell and Molecular Biology Group, Box 91000, Duke University, Durham, NC 27708, USA.
| | | |
Collapse
|
34
|
Kurokawa D, Kitajima T, Mitsunaga-Nakatsubo K, Amemiya S, Shimada H, Akasaka K. HpEts, an ets-related transcription factor implicated in primary mesenchyme cell differentiation in the sea urchin embryo. Mech Dev 1999; 80:41-52. [PMID: 10096062 DOI: 10.1016/s0925-4773(98)00192-0] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The mechanism of micromere specification is one of the central issues in sea urchin development. In this study we have identified a sea urchin homologue of ets 1 + 2. HpEts, which is maternally expressed ubiquitously during the cleavage stage and which expression becomes restricted to the skeletogenic primary mesenchyme cells (PMC) after the hatching blastula stage. The overexpression of HpEts by mRNA injection into fertilized eggs alters the cell fate of non-PMC to migratory PMC. HpEts induces the expression of a PMC-specific spicule matrix protein, SM50, but suppresses of aboral ectoderm-specific arylsulfatase and endoderm-specific HpEndo16. The overexpression of dominant negative delta HpEts which lacks the N terminal domain, in contrast, specifically represses SM50 expression and development of the spicule. In the upstream region of the SM50 gene there exists an ets binding site that functions as a positive cis-regulatory element. The results suggest that HpEts plays a key role in the differentiation of PMCs in sea urchin embryogenesis.
Collapse
Affiliation(s)
- D Kurokawa
- Graduate Department of Gene Science, Faculty of Science, Hiroshima University, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Kominami T. Role of cell adhesion in the specification of pigment cell lineage in embryos of the sea urchin, Hemicentrotus pulcherrimus. Dev Growth Differ 1998; 40:609-18. [PMID: 9865971 DOI: 10.1046/j.1440-169x.1998.t01-4-00005.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
To clarify the role of cell adhesion in the specification of pigment cell lineage in sea urchin embryos, cell contacts were inhibited by Ca2+-free artificial seawater (ASW) treatment, and the number of differentiated pigment cells was examined by the method devised for the present study. Obtained results showed that inhibition of cell contacts during mid-to-late blastula stage greatly affects the number of pigment cells. Treatment with Ca2+-free ASW during 7.5-10.5 h of development drastically decreased the number of pigment cells, indicating that cell adhesion during this period is indispensable for the specification of pigment cell lineage. On the other hand, the number of pigment cells were increased by the treatment during 9.5 12.5 h of development. It was suggested that this increase was caused by excess divisions of the precursor cells, that is, the division schedule of the precursor cells was altered by inhibition of cell contacts at this period. Interestingly, the number of pigment cells was a multiple of four in a majority of embryos in which pigment cells were drastically decreased in number. These findings suggest that the founder blastomeres of the pigment cell lineage are specified during 7-10 h of development, and that these blastomeres divide twice before they differentiate into pigment cells.
Collapse
Affiliation(s)
- T Kominami
- Department of Biology, Faculty of Science, Ehime University, Matsuyama, Japan.
| |
Collapse
|
36
|
Davidson EH, Cameron RA, Ransick A. Specification of cell fate in the sea urchin embryo: summary and some proposed mechanisms. Development 1998; 125:3269-90. [PMID: 9693132 DOI: 10.1242/dev.125.17.3269] [Citation(s) in RCA: 168] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An early set of blastomere specifications occurs during cleavage in the sea urchin embryo, the result of both conditional and autonomous processes, as proposed in the model for this embryo set forth in 1989. Recent experimental results have greatly illuminated the mechanisms of specification in some early embryonic territories, though others remain obscure. We review the progressive process of specification within given lineage elements, and with reference to the early axial organization of the embryo. Evidence for the conditional specification of the veg2 lineage subelement of the endoderm and other potential interblastomere signaling interactions in the cleavage-stage embryo are summarized. Definitive boundaries between mesoderm and endoderm territories of the vegetal plate, and between endoderm and overlying ectoderm, are not established until later in development. These processes have been clarified by numerous observations on spatial expression of various genes, and by elegant lineage labeling studies. The early specification events depend on regional mobilization of maternal regulatory factors resulting at once in the zygotic expression of genes encoding transcription factors, as well as downstream genes encoding proteins characteristic of the cell types that will much later arise from the progeny of the specified blastomeres. This embryo displays a maximal form of indirect development. The gene regulatory network underlying the embryonic development reflects the relative simplicity of the completed larva and of the processes required for its formation. The requirements for postembryonic adult body plan formation in the larval rudiment include engagement of a new level of genetic regulatory apparatus, exemplified by the Hox gene complex.
Collapse
Affiliation(s)
- E H Davidson
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | | | |
Collapse
|
37
|
Martins GG, Summers RG, Morrill JB. Cells are added to the archenteron during and following secondary invagination in the sea urchin Lytechinus variegatus. Dev Biol 1998. [DOI: 10.1016/s0012-1606(98)80009-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Logan CY, McClay DR. The allocation of early blastomeres to the ectoderm and endoderm is variable in the sea urchin embryo. Development 1997; 124:2213-23. [PMID: 9187147 DOI: 10.1242/dev.124.11.2213] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During sea urchin development, a tier-to-tier progression of cell signaling events is thought to segregate the early blastomeres to five different cell lineages by the 60-cell stage (E. H. Davidson, 1989, Development 105, 421–445). For example, the sixth equatorial cleavage produces two tiers of sister cells called ‘veg1′ and ‘veg2,’ which were projected by early studies to be allocated to the ectoderm and endoderm, respectively. Recent in vitro studies have proposed that the segregation of veg1 and veg2 cells to distinct fates involves signaling between the veg1 and veg2 tiers (O. Khaner and F. Wilt, 1991, Development 112, 881–890). However, fate-mapping studies on 60-cell stage embryos have not been performed with modern lineage tracers, and cell interactions between veg1 and veg2 cells have not been shown in vivo. Therefore, as an initial step towards examining how archenteron precursors are specified, a clonal analysis of veg1 and veg2 cells was performed using the lipophilic dye, DiI(C16), in the sea urchin species, Lytechinus variegatus. Both veg1 and veg2 descendants form archenteron tissues, revealing that the ectoderm and endoderm are not segregated at the sixth cleavage. Also, this division does not demarcate cell type boundaries within the endoderm, because both veg1 and veg2 descendants make an overlapping range of endodermal cell types. The allocation of veg1 cells to ectoderm and endoderm during cleavage is variable, as revealed by both the failure of veg1 descendants labeled at the eighth equatorial division to segregate predictably to either tissue and the large differences in the numbers of veg1 descendants that contribute to the ectoderm. Furthermore, DiI-labeled mesomeres of 32-cell stage embryos also contribute to the endoderm at a low frequency. These results show that the prospective archenteron is produced by a larger population of cleavage-stage blastomeres than believed previously. The segregation of veg1 cells to the ectoderm and endoderm occurs relatively late during development and is unpredictable, indicating that later cell position is more important than the early cleavage pattern in determining ectodermal and archenteron cell fates.
Collapse
Affiliation(s)
- C Y Logan
- Department of Zoology, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
39
|
Dolbeare F. Bromodeoxyuridine: a diagnostic tool in biology and medicine, Part III. Proliferation in normal, injured and diseased tissue, growth factors, differentiation, DNA replication sites and in situ hybridization. THE HISTOCHEMICAL JOURNAL 1996; 28:531-75. [PMID: 8894660 DOI: 10.1007/bf02331377] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper is a continuation of parts I (history, methods and cell kinetics) and II (clinical applications and carcinogenesis) published previously (Dolbeare, 1995 Histochem. J. 27, 339, 923). Incorporation of bromodeoxyuridine (BrdUrd) into DNA is used to measure proliferation in normal, diseased and injured tissue and to follow the effect of growth factors. Immunochemical detection of BrdUrd can be used to determine proliferative characteristics of differentiating tissues and to obtain birth dates for actual differentiation events. Studies are also described in which BrdUrd is used to follow the order of DNA replication in specific chromosomes, DNA replication sites in the nucleus and to monitor DNA repair. BrdUrd incorporation has been used as a tool for in situ hybridization experiments.
Collapse
Affiliation(s)
- F Dolbeare
- Biology and Biotechnology Program, Lawrence Livermore National Laboratory, University of California 94551-9900, USA
| |
Collapse
|
40
|
McClay DR, Logan CY. Regulative capacity of the archenteron during gastrulation in the sea urchin. Development 1996; 122:607-16. [PMID: 8625812 DOI: 10.1242/dev.122.2.607] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Gastrulation in the sea urchin involves an extensive rearrangement of cells of the archenteron giving rise to secondary mesenchyme at the archenteron tip followed by the foregut, midgut and hindgut. To examine the regulative capacity of this structure, pieces of the archenteron were removed or transplanted at different stages of gastrulation. After removal of any or all parts of the archenteron, the remaining veg 1 and /or veg 2 tissue regulated to replace the missing parts. Endoderm transplanted to ectopic positions also regulated to that new position in the archenteron. This ability to replace or regulate endoderm did not decline until after full elongation of the archenteron was completed. When replacement occurred, the new gut was smaller relative to the remaining embryo but the recognizable morphology of the archenteron was re-established. Long after the archenteron reveals territorial specification through expression of specific markers, the endodermal cells remain capable of being respecified to other gut regions. Thus, for much of gastrulation, the gut is conditionally specified. We propose that this regulative ability requires extensive and continuous short-range communication between cells of the archenteron in order to reorganize the tissues and position the boundaries of this structure even after experimental alterations.
Collapse
Affiliation(s)
- D R McClay
- Developmental, Cellular and Molecular Biology Group, LSRC, Duke University, Durham, NC 27708, USA
| | | |
Collapse
|
41
|
Affiliation(s)
- J Hardin
- Department of Zoology and Program in Cell and Molecular Biology, University of Wisconsin, Madison 53706, USA
| |
Collapse
|
42
|
Cell Interactions in the Sea Urchin Embryo. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s1064-2722(08)60057-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Ruffins SW, Ettensohn CA. A fate map of the vegetal plate of the sea urchin (Lytechinus variegatus) mesenchyme blastula. Development 1996; 122:253-63. [PMID: 8565837 DOI: 10.1242/dev.122.1.253] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous lineage tracing experiments have shown that the vegetal blastomers of cleavage stage embryos give rise to all the mesoderm and endoderm of the sea urchin larva. In these studies, vegetal blastomers were labeled no later than the sixth cleavage division (60-64 cell stage). In an earlier study we showed that single cells in the vegetal plate of the blastula stage Lytechinus variegatus embryo could be labeled in situ with the fluorescent, lipophilic dye, DiI(C18), and that cells labeled in the central region of the vegetal plate of the mesenchyme blastula primarily gave rise to homogeneous clones consisting of a single secondary mesenchyme cell (SMC) type (Ruffins and Ettensohn (1993) Dev. Biol. 160, 285–288). Our clonal labeling showed that a detailed fate map could be generated using the DiI(C18) labeling technique. Such a fate map could provide information about the spatial relationships between the precursors of specific mesodermal and endodermal cell types and information concerning the movements of these cells during gastrulation and later embryogenesis. We have used this method to construct the first detailed fate map of the vegetal plate of the sea urchin embryo. Ours is a latitudinal map; mapping from the plate center, where the mesodermal precursors reside, through the region which contains the endodermal precursors and across the ectodermal boundary. We found that the precursors of certain SMC types are segregated in the mesenchyme blastula stage vegetal plate and that prospective germ layers reside within specific boundaries. To determine whether the vegetal plate is radially symmetrical with respect to mesodermal cell fates, single blastomeres of four cell stage embryos were injected with lysyl-rhodamine dextran (LRD). The resulting ectodermal labeling patterns were classified and correlated with the SMC types labeled. This analysis indicates that the dorsal and ventral blastomers do not contribute equally to SMC derivatives in L. variegatus.
Collapse
Affiliation(s)
- S W Ruffins
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
44
|
McClay D, Miller J, Logan C, Hertzler P, Bachman E, Matese J, Sherwood D, Armstrong N. Cell adhesion and cell signaling at gastrulation in the sea urchin. Theriogenology 1995. [DOI: 10.1016/0093-691x(95)00326-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Malinda KM, Ettensohn CA. Primary mesenchyme cell migration in the sea urchin embryo: distribution of directional cues. Dev Biol 1994; 164:562-78. [PMID: 8045352 DOI: 10.1006/dbio.1994.1224] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The directional migration of the primary mesenchyme cells (PMCs) of the sea urchin embryo is a critical step in the process of gastrulation. Although interactions between the migrating cells and the blastocoel environment are necessary for guiding the PMCs to their subequatorial target site, the nature of these interactions and the localization of guidance cues involved in directing the cells are not yet known. Previous studies have suggested that PMC migration is the result of random exploration and selective trapping at the target site by a pattern of adhesiveness in the ectoderm or basal lamina. To better characterize the distribution of guidance cues in the blastocoel we used a combination of time-lapse microscopy, microsurgery, and fluorescence photoablation to study the behavior of the migrating cells. By using fluorescence time-lapse microscopy, and a two-dimensional random-walk analysis of cell trajectories, we demonstrated that fluorescently labeled PMCs injected near the animal pole move in a directed fashion over a relatively long distance to reach the target site. This suggests that guidance cues are distributed globally throughout the embryo and are not restricted to the immediate ring area. To further test this hypothesis we investigated the migratory behavior of PMCs that were prevented from interacting directly with the target site. First, we examined the behavior of PMCs injected into animal embryo fragments lacking the target site. We found that PMCs move to the vegetal-most area of such embryo fragments, regardless of their size. Second, we studied the effects of photoablating a stripe of ectoderm between PMCs injected at the animal pole region (APR) and the target site. PMCs were found to accumulate along the ablated stripe and were unable to cross it for up to 6 hr after ablation. We also examined the migratory behavior of endogenous PMCs in embryos treated with lithium, a vegetalizing agent which shifts the position of the PMC ring toward the animal pole. We found that PMCs accumulated along an ablated stripe of ectoderm positioned below the shifted target site, suggesting that endogenous PMCs follow a set of directional cues to the target site which may be similar to those used by PMCs injected into the APR. As a whole, these results suggest that migrating PMCs follow a set of directional cues that are widely distributed throughout the blastocoel and that may be arranged in a gradient.
Collapse
Affiliation(s)
- K M Malinda
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
| | | |
Collapse
|
46
|
Smith LC, Harrington MG, Britten RJ, Davidson EH. The sea urchin profilin gene is specifically expressed in mesenchyme cells during gastrulation. Dev Biol 1994; 164:463-74. [PMID: 8045349 DOI: 10.1006/dbio.1994.1216] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Eggs and embryos of the purple sea urchin (Strongylocentrotus purpuratus) contain profilin that is partly supplied from maternal sources and partly produced by the gastrula. The maternal profilin protein content is about 13 microM and it persists in the embryo at least through gastrulation. Transcript quantitation from probe excess titrations show that very few profilin gene transcripts are present in the embryo during cleavage, but that they increase at the onset of gastrulation. By in situ hybridization, the newly synthesized profilin transcripts are localized in mesenchyme cells. Profilin gene expression increases when mesenchyme cells initiate migration and filopodial extension and retraction. We show that there are three isoforms of maternal profilin protein produced from the single copy gene during oogenesis. However, the blastula stage embryo only produces the major isoform, whereas the acidic isoform is produced in the early stages of gastrulation and the basic isoform appears by the end of gastrulation. Based on transcript prevalence and protein production rates, our calculations indicate that the amount of new protein produced in the mesenchyme cells in 12 hr is at maximum < 2% of that supplied from maternal sources. Because of the large amount of maternally supplied profilin present in the egg and embryo, we suggest that it may be used in the cytokinetic processes of cleavage. Alternatively, because of the small amount of embryonically produced profilin, we suggest that it may function in the cytoskeletal shape changes required for filopodial extension and motility in the mesenchyme cells during gastrulation.
Collapse
Affiliation(s)
- L C Smith
- Division of Biology, California Institute of Technology, Pasadena 91125
| | | | | | | |
Collapse
|
47
|
Ettensohn CA, Malinda KM. Size regulation and morphogenesis: a cellular analysis of skeletogenesis in the sea urchin embryo. Development 1993; 119:155-67. [PMID: 8275852 DOI: 10.1242/dev.119.1.155] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of the skeleton is a central event in sea urchin morphogenesis. The skeleton serves as a framework for the larval body and is the primary determinant of its shape. Previous studies have shown that the size of the skeleton is invariant despite wide experimentally induced variations in the number of skeleton-forming primary mesenchyme cells (PMCs). In the present study, we have used PMC transplantation, fluorescent cell markers and confocal laser scanning microscopy to analyze cellular aspects of skeletal patterning. Labeling of embryos with 5-bromodeoxyuridine demonstrates that the entire embryonic phase of skeletal morphogenesis occurs in the absence of PMC division. During embryogenesis, skeletal rods elongate by one of two mechanisms; either preceded by a cluster (plug) of PMCs or by extending along an existing PMC filopodial cable. Elongation of skeletal rods occurs exclusively by the addition of new material at the rod tips, although radial growth (increase in rod thickness) occurs along the length of the rods. Photoablation of a distinctive region of ectoderm cells at the arm tip results in an inhibition of skeletal rod elongation, indicating that a local ectoderm-PMC interaction is required for skeletal growth. The regulation of skeletal patterning was also examined in embryos that had been microinjected with additional PMCs and in half-sized larvae derived from blastomeres isolated at the 2-cell stage. Microinjection of 50–100 PMCs into the blastocoel at the mesenchyme blastula stage leads to an increase in the numbers of PMCs along all skeletal rods and a two-fold increase in the number of cells in the plugs, yet no increase in the length of the skeletal rods. The length of the anal rods can, however, be increased by microinjecting developmentally ‘young’ PMCs into the arm tips of late stage embryos. We find that the rate of skeletal rod elongation is independent of both the mode of rod growth (chain or plug) and the number of PMCs in the plug at the growing rod tip. Instead, the rate of elongation appears to be strictly regulated by the quantity of ectodermal tissue present in the embryo. These studies provide new information concerning normal mechanisms of skeletal growth and patterning and lead us to propose a model for the regulation of skeleton size based upon an intrinsic PMC ‘clock’ and an ectoderm-derived signal that regulates the rate of skeletal rod elongation.
Collapse
Affiliation(s)
- C A Ettensohn
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | |
Collapse
|