1
|
Lorenzi T, Painter KJ, Villa C. Phenotype structuring in collective cell migration: a tutorial of mathematical models and methods. J Math Biol 2025; 90:61. [PMID: 40377698 PMCID: PMC12084280 DOI: 10.1007/s00285-025-02223-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 04/10/2025] [Accepted: 04/19/2025] [Indexed: 05/18/2025]
Abstract
Populations are heterogeneous, deviating in numerous ways. Phenotypic diversity refers to the range of traits or characteristics across a population, where for cells this could be the levels of signalling, movement and growth activity, etc. Clearly, the phenotypic distribution - and how this changes over time and space - could be a major determinant of population-level dynamics. For instance, across a cancerous population, variations in movement, growth, and ability to evade death may determine its growth trajectory and response to therapy. In this review, we discuss how classical partial differential equation (PDE) approaches for modelling cellular systems and collective cell migration can be extended to include phenotypic structuring. The resulting non-local models - which we refer to as phenotype-structured partial differential equations (PS-PDEs) - form a sophisticated class of models with rich dynamics. We set the scene through a brief history of structured population modelling, and then review the extension of several classic movement models - including the Fisher-KPP and Keller-Segel equations - into a PS-PDE form. We proceed with a tutorial-style section on derivation, analysis, and simulation techniques. First, we show a method to formally derive these models from underlying agent-based models. Second, we recount travelling waves in PDE models of spatial spread dynamics and concentration phenomena in non-local PDE models of evolutionary dynamics, and combine the two to deduce phenotypic structuring across travelling waves in PS-PDE models. Third, we discuss numerical methods to simulate PS-PDEs, illustrating with a simple scheme based on the method of lines and noting the finer points of consideration. We conclude with a discussion of future modelling and mathematical challenges.
Collapse
Affiliation(s)
- Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
| | - Kevin J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio, Politecnico di Torino, Viale Pier Andrea Mattioli, 39, 10125, Torino, Italy.
| | - Chiara Villa
- Sorbonne Université, CNRS, Université de Paris, Inria, Laboratoire Jacques-Louis Lions UMR 7598, 75005, Paris, France
- Université Paris-Saclay, Inria, Centre Inria de Saclay, 91120, Palaiseau, France
| |
Collapse
|
2
|
Morrison JA, Pushel I, McLennan R, McKinney MC, Gogol MM, Scott A, Krumlauf R, Kulesa PM. Comparative analysis of neural crest development in the chick and mouse. Dev Biol 2025; 519:142-149. [PMID: 39716593 DOI: 10.1016/j.ydbio.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/14/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
A core framework of the gene regulatory network (GRN) governing neural crest (NC) cell development has been generated by integrating separate inputs from diverse model organisms rather than direct comparison. This has limited insights into the diversity of genes in the NC cell GRN and extent of conservation of newly identified transcriptional signatures in cell differentiation and invasion. Here, we address this by leveraging the strengths and accessibility of the avian embryo to precise developmental staging by egg incubation and use an integrated analysis of chick (HH13) and mouse (E9.5) embryo tissue samples collected during NC cell migration into pharyngeal arches 1-2 (PA1 and PA2). We successfully identify a cluster of NC cells containing both mouse and chick cells that share expression of Lmo4, Tfap2B, Sox10, and Twist1, and distinct genes that lack known conserved roles in NC. Importantly, we discovered a cluster of cells exhibiting a conserved transcriptional signature associated with the NC cell migratory wavefront in both mouse and chick, including KAZALD1, BAMBI, DES, and GPC3. We confirm their expression is restricted to leader mouse NCs by multiplexed FISH. Together, these data offer novel insights into the transcriptional programs that underlie NC cell migration and establish the foundation for future comparative functional analyses.
Collapse
Affiliation(s)
| | - I Pushel
- Stowers Institute for Medical Research, USA; Children's Mercy Hospital/Children's Mercy Research Institute, USA
| | - R McLennan
- Stowers Institute for Medical Research, USA; Children's Mercy Hospital/Children's Mercy Research Institute, USA
| | | | - M M Gogol
- Stowers Institute for Medical Research, USA
| | - A Scott
- Stowers Institute for Medical Research, USA
| | - R Krumlauf
- Stowers Institute for Medical Research, USA; Department of Cell Biology & Physiology Faculty, Kansas University, Medical Center, USA
| | - P M Kulesa
- Stowers Institute for Medical Research, USA; Children's Mercy Hospital/Children's Mercy Research Institute, USA.
| |
Collapse
|
3
|
Morrison JA, Pushel I, McLennan R, McKinney MC, Gogol MM, Scott A, Krumlauf R, Kulesa PM. Comparative Analysis of Neural Crest Development in the Chick and Mouse. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622355. [PMID: 39574664 PMCID: PMC11580915 DOI: 10.1101/2024.11.06.622355] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A core framework of the gene regulatory network (GRN) governing neural crest (NC) cell development has been generated by integrating separate inputs from diverse model organisms rather than direct comparison. This has limited insights into the diversity of genes in the NC cell GRN and extent of conservation of newly identified transcriptional signatures in cell differentiation and invasion. Here, we address this by leveraging the strengths and accessibility of the avian embryo to precise developmental staging by egg incubation and use an integrated analysis of chick (HH13) and mouse (E9.5) embryo tissue samples collected during NC cell migration into pharyngeal arches 1-2 (PA1 and PA2). We successfully identify a cluster of NC cells containing both mouse and chick cells that share expression of Lmo4 , Tfap2B , Sox10 , and Twist1 , and distinct genes that lack known conserved roles in NC. Importantly, we discovered a cluster of cells exhibiting a conserved transcriptional signature associated with the NC cell migratory wavefront in both mouse and chick, including KAZALD1, BAMBI, DES, and GPC3. We confirm their expression is restricted to leader mouse NCs by multiplexed FISH. Together, these data offer novel insights into the transcriptional programs that underlie NC cell migration and establish the foundation for future comparative functional analyses.
Collapse
|
4
|
Painter KJ, Giunta V, Potts JR, Bernardi S. Variations in non-local interaction range lead to emergent chase-and-run in heterogeneous populations. J R Soc Interface 2024; 21:20240409. [PMID: 39474790 PMCID: PMC11522976 DOI: 10.1098/rsif.2024.0409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/28/2024] [Accepted: 09/20/2024] [Indexed: 11/02/2024] Open
Abstract
In a chase-and-run dynamic, the interaction between two individuals is such that one moves towards the other (the chaser), while the other moves away (the runner). Examples can be found in both interacting cells and animals. Here, we investigate the behaviours that can emerge at a population level, for a heterogeneous group that contains subpopulations of chasers and runners. We show that a wide variety of patterns can form, from stationary patterns to oscillatory and population-level chase-and-run, where the latter describes a synchronized collective movement of the two populations. We investigate the conditions under which different behaviours arise, specifically focusing on the interaction ranges: the distances over which cells or organisms can sense one another's presence. We find that when the interaction range of the chaser is sufficiently larger than that of the runner-or when the interaction range of the chase is sufficiently larger than that of the run-population-level chase-and-run emerges in a robust manner. We discuss the results in the context of phenomena observed in cellular and ecological systems, with particular attention to the dynamics observed experimentally within populations of neural crest and placode cells.
Collapse
Affiliation(s)
- Kevin J. Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Viale Pier Andrea Mattioli 39, Turin10125, Italy
| | - Valeria Giunta
- Department of Mathematics, Swansea University, Computational Foundry, Bay Campus, SwanseaSA1 8EN, UK
| | - Jonathan R. Potts
- School of Mathematical and Physical Sciences, University of Sheffield, Hounsfield Road, SheffieldS3 7RH, UK
| | - Sara Bernardi
- Department of Mathematical Sciences ‘G. L. Lagrange’, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino10129, Italy
| |
Collapse
|
5
|
Crossley RM, Painter KJ, Lorenzi T, Maini PK, Baker RE. Phenotypic switching mechanisms determine the structure of cell migration into extracellular matrix under the 'go-or-grow' hypothesis. Math Biosci 2024; 374:109240. [PMID: 38906525 DOI: 10.1016/j.mbs.2024.109240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 06/23/2024]
Abstract
A fundamental feature of collective cell migration is phenotypic heterogeneity which, for example, influences tumour progression and relapse. While current mathematical models often consider discrete phenotypic structuring of the cell population, in-line with the 'go-or-grow' hypothesis (Hatzikirou et al., 2012; Stepien et al., 2018), they regularly overlook the role that the environment may play in determining the cells' phenotype during migration. Comparing a previously studied volume-filling model for a homogeneous population of generalist cells that can proliferate, move and degrade extracellular matrix (ECM) (Crossley et al., 2023) to a novel model for a heterogeneous population comprising two distinct sub-populations of specialist cells that can either move and degrade ECM or proliferate, this study explores how different hypothetical phenotypic switching mechanisms affect the speed and structure of the invading cell populations. Through a continuum model derived from its individual-based counterpart, insights into the influence of the ECM and the impact of phenotypic switching on migrating cell populations emerge. Notably, specialist cell populations that cannot switch phenotype show reduced invasiveness compared to generalist cell populations, while implementing different forms of switching significantly alters the structure of migrating cell fronts. This key result suggests that the structure of an invading cell population could be used to infer the underlying mechanisms governing phenotypic switching.
Collapse
Affiliation(s)
- Rebecca M Crossley
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, United Kingdom.
| | - Kevin J Painter
- Dipartimento di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, 10129, Torino, Italy.
| | - Tommaso Lorenzi
- Department of Mathematical Sciences "G. L. Lagrange", Politecnico di Torino, 10129, Torino, Italy.
| | - Philip K Maini
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, United Kingdom.
| | - Ruth E Baker
- Mathematical Institute, University of Oxford, OX2 6GG, Oxford, United Kingdom.
| |
Collapse
|
6
|
Feiner N, Yang W, Bunikis I, While GM, Uller T. Adaptive introgression reveals the genetic basis of a sexually selected syndrome in wall lizards. SCIENCE ADVANCES 2024; 10:eadk9315. [PMID: 38569035 PMCID: PMC10990284 DOI: 10.1126/sciadv.adk9315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 02/28/2024] [Indexed: 04/05/2024]
Abstract
The joint expression of particular colors, morphologies, and behaviors is a common feature of adaptation, but the genetic basis for such "phenotypic syndromes" remains poorly understood. Here, we identified a complex genetic architecture associated with a sexually selected syndrome in common wall lizards, by capitalizing on the adaptive introgression of coloration and morphology into a distantly related lineage. Consistent with the hypothesis that the evolution of phenotypic syndromes in vertebrates is facilitated by developmental linkage through neural crest cells, most of the genes associated with the syndrome are involved in neural crest cell regulation. A major locus was a ~400-kb region, characterized by standing structural genetic variation and previously implied in the evolutionary innovation of coloration and beak size in birds. We conclude that features of the developmental and genetic architecture contribute to maintaining trait integration, facilitating the extensive and rapid introgressive spread of suites of sexually selected characters.
Collapse
Affiliation(s)
| | - Weizhao Yang
- Department of Biology, Lund University, Lund, Sweden
| | - Ignas Bunikis
- Uppsala Genome Center, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Geoffrey M. While
- School of Natural Sciences, University of Tasmania, Sandy Bay, Tasmania, Australia
| | - Tobias Uller
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
7
|
Freingruber V, Painter KJ, Ptashnyk M, Schumacher LJ. A biased random walk approach for modeling the collective chemotaxis of neural crest cells. J Math Biol 2024; 88:32. [PMID: 38407620 PMCID: PMC10896796 DOI: 10.1007/s00285-024-02047-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 02/27/2024]
Abstract
Collective cell migration is a multicellular phenomenon that arises in various biological contexts, including cancer and embryo development. 'Collectiveness' can be promoted by cell-cell interactions such as co-attraction and contact inhibition of locomotion. These mechanisms act on cell polarity, pivotal for directed cell motility, through influencing the intracellular dynamics of small GTPases such as Rac1. To model these dynamics we introduce a biased random walk model, where the bias depends on the internal state of Rac1, and the Rac1 state is influenced by cell-cell interactions and chemoattractive cues. In an extensive simulation study we demonstrate and explain the scope and applicability of the introduced model in various scenarios. The use of a biased random walk model allows for the derivation of a corresponding partial differential equation for the cell density while still maintaining a certain level of intracellular detail from the individual based setting.
Collapse
Affiliation(s)
- Viktoria Freingruber
- Department of Mathematics, The Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK.
- The Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, Scotland, UK.
| | - Kevin J Painter
- Dipartimento Interateneo di Scienze, Progetto e Politiche del Territorio (DIST), Politecnico di Torino, Viale Pier Andrea Mattioli, 39, Turin, 10125, Italy
| | - Mariya Ptashnyk
- Department of Mathematics, The Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, Scotland, UK
| | - Linus J Schumacher
- The Maxwell Institute for Mathematical Sciences, School of Mathematics, University of Edinburgh, Edinburgh, EH9 3FD, Scotland, UK
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh, EH164UU, Scotland, UK
| |
Collapse
|
8
|
Banerjee S, Smith IM, Hengen AC, Stroka KM. Methods for studying mammalian aquaporin biology. Biol Methods Protoc 2023; 8:bpad031. [PMID: 38046463 PMCID: PMC10689382 DOI: 10.1093/biomethods/bpad031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/29/2023] [Accepted: 11/09/2023] [Indexed: 12/05/2023] Open
Abstract
Aquaporins (AQPs), transmembrane water-conducting channels, have earned a great deal of scrutiny for their critical physiological roles in healthy and disease cell states, especially in the biomedical field. Numerous methods have been implemented to elucidate the involvement of AQP-mediated water transport and downstream signaling activation in eliciting whole cell, tissue, and organ functional responses. To modulate these responses, other methods have been employed to investigate AQP druggability. This review discusses standard in vitro, in vivo, and in silico methods for studying AQPs, especially for biomedical and mammalian cell biology applications. We also propose some new techniques and approaches for future AQP research to address current gaps in methodology.
Collapse
Affiliation(s)
- Shohini Banerjee
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Autumn C Hengen
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, MD 20742, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore MD 21201, United States
- Biophysics Program, University of Maryland, MD 20742, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore MD 21201, United States
| |
Collapse
|
9
|
Corallo D, Dalla Vecchia M, Lazic D, Taschner-Mandl S, Biffi A, Aveic S. The molecular basis of tumor metastasis and current approaches to decode targeted migration-promoting events in pediatric neuroblastoma. Biochem Pharmacol 2023; 215:115696. [PMID: 37481138 DOI: 10.1016/j.bcp.2023.115696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/12/2023] [Accepted: 07/12/2023] [Indexed: 07/24/2023]
Abstract
Cell motility is a crucial biological process that plays a critical role in the development of multicellular organisms and is essential for tissue formation and regeneration. However, uncontrolled cell motility can lead to the development of various diseases, including neoplasms. In this review, we discuss recent advances in the discovery of regulatory mechanisms underlying the metastatic spread of neuroblastoma, a solid pediatric tumor that originates in the embryonic migratory cells of the neural crest. The highly motile phenotype of metastatic neuroblastoma cells requires targeting of intracellular and extracellular processes, that, if affected, would be helpful for the treatment of high-risk patients with neuroblastoma, for whom current therapies remain inadequate. Development of new potentially migration-inhibiting compounds and standardized preclinical approaches for the selection of anti-metastatic drugs in neuroblastoma will also be discussed.
Collapse
Affiliation(s)
- Diana Corallo
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Marco Dalla Vecchia
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy
| | - Daria Lazic
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Sabine Taschner-Mandl
- St. Anna Children's Cancer Research Institute, CCRI, Zimmermannplatz 10, 1090, Vienna, Austria
| | - Alessandra Biffi
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Woman's and Child Health Department, University of Padova, 35121 Padova, Italy
| | - Sanja Aveic
- Laboratory of Target Discovery and Biology of Neuroblastoma, Istituto di Ricerca Pediatrica (IRP), Fondazione Città della Speranza, 35127 Padova, Italy.
| |
Collapse
|
10
|
Lencer E, Rains A, Binne E, Prekeris R, Artinger KB. Mutations in cdon and boc affect trunk neural crest cell migration and slow-twitch muscle development in zebrafish. Development 2023; 150:dev201304. [PMID: 37390228 PMCID: PMC10357035 DOI: 10.1242/dev.201304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
The transmembrane proteins cdon and boc are implicated in regulating hedgehog signaling during vertebrate development. Recent work showing roles for these genes in axon guidance and neural crest cell migration suggest that cdon and boc may play additional functions in regulating directed cell movements. We use newly generated and existing mutants to investigate a role for cdon and boc in zebrafish neural crest cell migration. We find that single mutant embryos exhibit normal neural crest phenotypes, but that neural crest migration is strikingly disrupted in double cdon;boc mutant embryos. We further show that this migration phenotype is associated with defects in the differentiation of slow-twitch muscle cells, and the loss of a Col1a1a-containing extracellular matrix, suggesting that neural crest defects may be a secondary consequence to defects in mesoderm development. Combined, our data add to a growing literature showing that cdon and boc act synergistically to promote hedgehog signaling during vertebrate development, and suggest that the zebrafish can be used to study the function of hedgehog receptor paralogs.
Collapse
Affiliation(s)
- Ezra Lencer
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Addison Rains
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Cell Biology, Stem Cells and Development Graduate Program, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Erin Binne
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
| | - Kristin B. Artinger
- Department of Craniofacial Biology, University of Colorado, Anschutz Medical Campus Aurora, CO 80045, USA
- Department of Diagnostic and Biological Sciences, University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA
| |
Collapse
|
11
|
Smith IM, Stroka KM. The multifaceted role of aquaporins in physiological cell migration. Am J Physiol Cell Physiol 2023; 325:C208-C223. [PMID: 37246634 PMCID: PMC10312321 DOI: 10.1152/ajpcell.00502.2022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
Cell migration is an essential process that underlies many physiological processes, including the immune response, organogenesis in the embryo, and angiogenesis, as well as pathological processes such as cancer metastasis. Cells have at their disposal a variety of migratory behaviors and mechanisms that seem to be specific to cell type and the microenvironment. Research over the past two decades has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. There does not seem to be a universal role that AQPs play in cell migration; the complex interplay between AQPs and cell volume management, signaling pathway activation, and in a few identified circumstances, gene expression regulation, has shown the intricate, and perhaps paradoxical, role of AQPs in cell migration. The objective of this review is to provide an organized and integrated collection of recent work that has elucidated the many mechanisms by which AQPs regulate cell migration.NEW & NOTEWORTHY Research has elucidated the water channel protein family of aquaporins (AQPs) as a regulator of many cell migration-related processes, from physical phenomena to biological signaling pathways. The roles that AQPs play in cell migration are both cell type- and isoform-specific; thus, a large swath of information has accumulated as researchers seek to identify the responses across these distinct variables. This review compiles insights into the recent findings linking AQPs to physiological cell migration.
Collapse
Affiliation(s)
- Ian M Smith
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
| | - Kimberly M Stroka
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, Maryland, United States
- Biophysics Program, University of Maryland, College Park, Maryland, United States
- Center for Stem Cell Biology and Regenerative Medicine, University of Maryland, Baltimore, Maryland, United States
| |
Collapse
|
12
|
McLennan R, Giniunaite R, Hildebrand K, Teddy JM, Kasemeier-Kulesa JC, Bolanos L, Baker RE, Maini PK, Kulesa PM. Colec12 and Trail signaling confine cranial neural crest cell trajectories and promote collective cell migration. Dev Dyn 2023; 252:629-646. [PMID: 36692868 DOI: 10.1002/dvdy.569] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Collective and discrete neural crest cell (NCC) migratory streams are crucial to vertebrate head patterning. However, the factors that confine NCC trajectories and promote collective cell migration remain unclear. RESULTS Computational simulations predicted that confinement is required only along the initial one-third of the cranial NCC migratory pathway. This guided our study of Colec12 (Collectin-12, a transmembrane scavenger receptor C-type lectin) and Trail (tumor necrosis factor-related apoptosis-inducing ligand, CD253) which we show expressed in chick cranial NCC-free zones. NCC trajectories are confined by Colec12 or Trail protein stripes in vitro and show significant and distinct changes in cell morphology and dynamic migratory characteristics when cocultured with either protein. Gain- or loss-of-function of either factor or in combination enhanced NCC confinement or diverted cell trajectories as observed in vivo with three-dimensional confocal microscopy, respectively, resulting in disrupted collective migration. CONCLUSIONS These data provide evidence for Colec12 and Trail as novel NCC microenvironmental factors playing a role to confine cranial NCC trajectories and promote collective cell migration.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- Childrens Mercy Kansas City, Kansas City, Missouri, USA
| | - Rasa Giniunaite
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK
- Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania
- Faculty of Mathematics and Natural sciences, Kaunas University of Technology, Kaunas, Lithuania
| | - Katie Hildebrand
- University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | | | - Lizbeth Bolanos
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
| | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, University of Oxford, Oxford, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, Missouri, USA
- University of Kansas School of Medicine, Kansas City, Kansas, USA
| |
Collapse
|
13
|
Collective behavior and nongenetic inheritance allow bacterial populations to adapt to changing environments. Proc Natl Acad Sci U S A 2022; 119:e2117377119. [PMID: 35727978 DOI: 10.1073/pnas.2117377119] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Collective behaviors require coordination among a group of individuals. As a result, individuals that are too phenotypically different from the rest of the group can be left out, reducing heterogeneity, but increasing coordination. If individuals also reproduce, the offspring can have different phenotypes from their parent(s). This raises the question of how these two opposing processes-loss of diversity by collective behaviors and generation of it through growth and inheritance-dynamically shape the phenotypic composition of an isogenic population. We examine this question theoretically using collective migration of chemotactic bacteria as a model system, where cells of different swimming phenotypes are better suited to navigate in different environments. We find that the differential loss of phenotypes caused by collective migration is environment-dependent. With cell growth, this differential loss enables migrating populations to dynamically adapt their phenotype compositions to the environment, enhancing migration through multiple environments. Which phenotypes are produced upon cell division depends on the level of nongenetic inheritance, and higher inheritance leads to larger composition adaptation and faster migration at steady state. However, this comes at the cost of slower responses to new environments. Due to this trade-off, there is an optimal level of inheritance that maximizes migration speed through changing environments, which enables a diverse population to outperform a nondiverse one. Growing populations might generally leverage the selection-like effects provided by collective behaviors to dynamically shape their own phenotype compositions, without mutations.
Collapse
|
14
|
Gustafson CM, Roffers-Agarwal J, Gammill LS. Chick cranial neural crest cells release extracellular vesicles that are critical for their migration. J Cell Sci 2022; 135:jcs260272. [PMID: 35635292 PMCID: PMC9270958 DOI: 10.1242/jcs.260272] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 05/23/2022] [Indexed: 01/09/2023] Open
Abstract
The content and activity of extracellular vesicles purified from cell culture media or bodily fluids have been studied extensively; however, the physiological relevance of exosomes within normal biological systems is poorly characterized, particularly during development. Although exosomes released by invasive metastatic cells alter migration of neighboring cells in culture, it is unclear whether cancer cells misappropriate exosomes released by healthy differentiated cells or reactivate dormant developmental programs that include exosome cell-cell communication. Using chick cranial neural fold cultures, we show that migratory neural crest cells, a developmentally critical cell type and model for metastasis, release and deposit CD63-positive 30-100 nm particles into the extracellular environment. Neural crest cells contain ceramide-rich multivesicular bodies and produce larger vesicles positive for migrasome markers as well. We conclude that neural crest cells produce extracellular vesicles including exosomes and migrasomes. When Rab27a plasma membrane docking is inhibited, neural crest cells become less polarized and rounded, leading to a loss of directional migration and reduced speed. These results indicate that neural crest cell exosome release is critical for migration.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Julaine Roffers-Agarwal
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Departmentof Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
15
|
Lewin TD, Avignon B, Tovaglieri A, Cabon L, Gjorevski N, Hutchinson LG. An in silico Model of T Cell Infiltration Dynamics Based on an Advanced in vitro System to Enhance Preclinical Decision Making in Cancer Immunotherapy. Front Pharmacol 2022; 13:837261. [PMID: 35586042 PMCID: PMC9108393 DOI: 10.3389/fphar.2022.837261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/11/2022] [Indexed: 01/04/2023] Open
Abstract
Cancer immunotherapy often involves the use of engineered molecules to selectively bind and activate T cells located within tumour tissue. Fundamental to the success of such treatments is the presence or recruitment of T cells localised within the tumour microenvironment. Advanced organ-on-a-chip systems provide an in vitro setting in which to investigate how novel molecules influence the spatiotemporal dynamics of T cell infiltration into tissue, both in the context of anti-tumour efficacy and off-tumour toxicity. While highly promising, the complexity of these systems is such that mathematical modelling plays a crucial role in the quantitative evaluation of experimental results and maximising the mechanistic insight derived. We develop a mechanistic, mathematical model of a novel microphysiological in vitro platform that recapitulates T cell infiltration into epithelial tissue, which may be normal or transformed. The mathematical model describes the spatiotemporal dynamics of infiltrating T cells in response to chemotactic cytokine signalling. We integrate the model with dynamic imaging data to optimise key model parameters. The mathematical model demonstrates a good fit to the observed experimental data and accurately describes the distribution of infiltrating T cells. This model is designed to complement the in vitro system; with the potential to elucidate complex biological mechanisms, including the mode of action of novel therapies and the drivers of safety events, and, ultimately, improve the efficacy-safety profile of T cell-targeted cancer immunotherapies.
Collapse
|
16
|
Allenby MC, Woodruff MA. Image analyses for engineering advanced tissue biomanufacturing processes. Biomaterials 2022; 284:121514. [DOI: 10.1016/j.biomaterials.2022.121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 11/02/2022]
|
17
|
Ipiña EP, Camley BA. Collective gradient sensing with limited positional information. Phys Rev E 2022; 105:044410. [PMID: 35590664 DOI: 10.1103/physreve.105.044410] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 03/21/2022] [Indexed: 06/15/2023]
Abstract
Eukaryotic cells sense chemical gradients to decide where and when to move. Clusters of cells can sense gradients more accurately than individual cells by integrating measurements of the concentration made across the cluster. Is this gradient-sensing accuracy impeded when cells have limited knowledge of their position within the cluster, i.e., limited positional information? We apply maximum likelihood estimation to study gradient-sensing accuracy of a cluster of cells with finite positional information. If cells must estimate their location within the cluster, this lowers the accuracy of collective gradient sensing. We compare our results with a tug-of-war model where cells respond to the gradient by polarizing away from their neighbors without relying on their positional information. As the cell positional uncertainty increases, there is a trade-off where the tug-of-war model responds more accurately to the chemical gradient. However, for sufficiently large cell clusters or sufficiently shallow chemical gradients, the tug-of-war model will always be suboptimal to one that integrates information from all cells, even if positional uncertainty is high.
Collapse
Affiliation(s)
- Emiliano Perez Ipiña
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics & Astronomy and Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
18
|
Gomez J, Holmes N, Hansen A, Adhikarla V, Gutova M, Rockne RC, Cho H. Mathematical modeling of therapeutic neural stem cell migration in mouse brain with and without brain tumors. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2022; 19:2592-2615. [PMID: 35240798 PMCID: PMC8958926 DOI: 10.3934/mbe.2022119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neural stem cells (NSCs) offer a potential solution to treating brain tumors. This is because NSCs can circumvent the blood-brain barrier and migrate to areas of damage in the central nervous system, including tumors, stroke, and wound injuries. However, for successful clinical application of NSC treatment, a sufficient number of viable cells must reach the diseased or damaged area(s) in the brain, and evidence suggests that it may be affected by the paths the NSCs take through the brain, as well as the locations of tumors. To study the NSC migration in brain, we develop a mathematical model of therapeutic NSC migration towards brain tumor, that provides a low cost platform to investigate NSC treatment efficacy. Our model is an extension of the model developed in Rockne et al. (PLoS ONE 13, e0199967, 2018) that considers NSC migration in non-tumor bearing naive mouse brain. Here we modify the model in Rockne et al. in three ways: (i) we consider three-dimensional mouse brain geometry, (ii) we add chemotaxis to model the tumor-tropic nature of NSCs into tumor sites, and (iii) we model stochasticity of migration speed and chemosensitivity. The proposed model is used to study migration patterns of NSCs to sites of tumors for different injection strategies, in particular, intranasal and intracerebral delivery. We observe that intracerebral injection results in more NSCs arriving at the tumor site(s), but the relative fraction of NSCs depends on the location of injection relative to the target site(s). On the other hand, intranasal injection results in fewer NSCs at the tumor site, but yields a more even distribution of NSCs within and around the target tumor site(s).
Collapse
Affiliation(s)
- Justin Gomez
- Department of Mathematics, University of California, Riverside, Riverside, CA 92521, USA
| | - Nathanael Holmes
- Department of Mathematics, University of California, Riverside, Riverside, CA 92521, USA
| | - Austin Hansen
- Department of Mathematics, University of California, Riverside, Riverside, CA 92521, USA
| | - Vikram Adhikarla
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Margarita Gutova
- Department of Stem Cell Biology and Regenerative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Russell C. Rockne
- Division of Mathematical Oncology, Department of Computational and Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Heyrim Cho
- Department of Mathematics, University of California, Riverside, Riverside, CA 92521, USA
| |
Collapse
|
19
|
Morrison JA, McLennan R, Teddy JM, Scott AR, Kasemeier-Kulesa JC, Gogol MM, Kulesa PM. Single-cell reconstruction with spatial context of migrating neural crest cells and their microenvironments during vertebrate head and neck formation. Development 2021; 148:273452. [PMID: 35020873 DOI: 10.1242/dev.199468] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 10/15/2021] [Indexed: 12/20/2022]
Abstract
The dynamics of multipotent neural crest cell differentiation and invasion as cells travel throughout the vertebrate embryo remain unclear. Here, we preserve spatial information to derive the transcriptional states of migrating neural crest cells and the cellular landscape of the first four chick cranial to cardiac branchial arches (BA1-4) using label-free, unsorted single-cell RNA sequencing. The faithful capture of branchial arch-specific genes led to identification of novel markers of migrating neural crest cells and 266 invasion genes common to all BA1-4 streams. Perturbation analysis of a small subset of invasion genes and time-lapse imaging identified their functional role to regulate neural crest cell behaviors. Comparison of the neural crest invasion signature to other cell invasion phenomena revealed a shared set of 45 genes, a subset of which showed direct relevance to human neuroblastoma cell lines analyzed after exposure to the in vivo chick embryonic neural crest microenvironment. Our data define an important spatio-temporal reference resource to address patterning of the vertebrate head and neck, and previously unidentified cell invasion genes with the potential for broad impact.
Collapse
Affiliation(s)
- Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Allison R Scott
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
20
|
Motz CT, Kabat V, Saxena T, Bellamkonda RV, Zhu C. Neuromechanobiology: An Expanding Field Driven by the Force of Greater Focus. Adv Healthc Mater 2021; 10:e2100102. [PMID: 34342167 PMCID: PMC8497434 DOI: 10.1002/adhm.202100102] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 07/06/2021] [Indexed: 12/14/2022]
Abstract
The brain processes information by transmitting signals through highly connected and dynamic networks of neurons. Neurons use specific cellular structures, including axons, dendrites and synapses, and specific molecules, including cell adhesion molecules, ion channels and chemical receptors to form, maintain and communicate among cells in the networks. These cellular and molecular processes take place in environments rich of mechanical cues, thus offering ample opportunities for mechanical regulation of neural development and function. Recent studies have suggested the importance of mechanical cues and their potential regulatory roles in the development and maintenance of these neuronal structures. Also suggested are the importance of mechanical cues and their potential regulatory roles in the interaction and function of molecules mediating the interneuronal communications. In this review, the current understanding is integrated and promising future directions of neuromechanobiology are suggested at the cellular and molecular levels. Several neuronal processes where mechanics likely plays a role are examined and how forces affect ligand binding, conformational change, and signal induction of molecules key to these neuronal processes are indicated, especially at the synapse. The disease relevance of neuromechanobiology as well as therapies and engineering solutions to neurological disorders stemmed from this emergent field of study are also discussed.
Collapse
Affiliation(s)
- Cara T Motz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Victoria Kabat
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| | - Tarun Saxena
- Department of Biomedical Engineering, Duke University, Durham, NC, 27709, USA
| | - Ravi V Bellamkonda
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, 27708, USA
| | - Cheng Zhu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- Parker H. Petit Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0363, USA
| |
Collapse
|
21
|
Mahadewa TGB, Mardhika PE, Awyono S, Putra MB, Saapang GS, Wiyanjana KDF, Putra KK, Natakusuma TISD, Ryalino C. Mesenteric Neural Stem Cell for Chronic Spinal Cord Injury: A Literature Review. Open Access Maced J Med Sci 2021. [DOI: 10.3889/oamjms.2021.6653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Spinal cord injury (SCI) is a common and potentially life-threatening condition with no established treatment to treat the primary injury. Mesenteric neural stem cell (NSC) therapy is a promising stem cell therapy to treat primary SCI in the chronic phase. We aimed to review the literature narratively to describe current evidence regarding mesenteric NSC in SCI. Primary SCI refers to tissue damage that occurs at the time of trauma that leads to the death of neuronal cells. In chronic SCI, the ability of neuronal regeneration is compromised by the development of gliotic scar. NSC is a stem cell therapy that targeted SCI in the chronic phase. Enteric NSC is one of the sources of NSC, and autologous gut harvesting in the appendix using endoscopic surgery provides a more straightforward and low-risk procedure. Intramedullary transplantation of stem cell with ultrasound guiding is administration technique which offers long-term regeneration. Mesenteric NSC is a promising stem cell therapy to treat chronic SCI with low risk and easier procedure to isolate cells compared to other NSC sources.
Collapse
|
22
|
Artinger KB, Monsoro-Burq AH. Neural crest multipotency and specification: power and limits of single cell transcriptomic approaches. Fac Rev 2021; 10:38. [PMID: 34046642 PMCID: PMC8130411 DOI: 10.12703/r/10-38] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The neural crest is a unique population of multipotent cells forming in vertebrate embryos. Their vast cell fate potential enables the generation of a diverse array of differentiated cell types in vivo. These include, among others, connective tissue, cartilage and bone of the face and skull, neurons and glia of the peripheral nervous system (including enteric nervous system), and melanocytes. Following migration, these derivatives extensively populate multiple germ layers. Within the competent neural border ectoderm, an area located at the junction between the neural and non-neural ectoderm during embryonic development, neural crest cells form in response to a series of inductive secreted cues including BMP, Wnt, and FGF signals. As cells become progressively specified, they express transcriptional modules conducive with their stage of fate determination or cell state. Those sequential states include the neural border state, the premigratory neural crest state, the epithelium-to-mesenchyme transitional state, and the migratory state to end with post-migratory and differentiation states. However, despite the extensive knowledge accumulated over 150 years of neural crest biology, many key questions remain open, in particular the timing of neural crest lineage determination, the control of potency during early developmental stages, and the lineage relationships between different subpopulations of neural crest cells. In this review, we discuss the recent advances in understanding early neural crest formation using cutting-edge high-throughput single cell sequencing approaches. We will discuss how this new transcriptomic data, from 2017 to 2021, has advanced our knowledge of the steps in neural crest cell lineage commitment and specification, the mechanisms driving multipotency, and diversification. We will then discuss the questions that remain to be resolved and how these approaches may continue to unveil the biology of these fascinating cells.
Collapse
Affiliation(s)
- Kristin B Artinger
- Department of Craniofacial Biology, University of Colorado School of Dental Medicine, Aurora, CO, USA
| | - Anne H Monsoro-Burq
- Université Paris-Saclay, Faculté des Sciences d'Orsay, France
- Institut Curie, INSERM U1021, CNRS UMR3347, Orsay, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
23
|
Kulesa PM, Kasemeier-Kulesa JC, Morrison JA, McLennan R, McKinney MC, Bailey C. Modelling Cell Invasion: A Review of What JD Murray and the Embryo Can Teach Us. Bull Math Biol 2021; 83:26. [PMID: 33594536 DOI: 10.1007/s11538-021-00859-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/08/2021] [Indexed: 12/11/2022]
Abstract
Cell invasion and cell plasticity are critical to human development but are also striking features of cancer metastasis. By distributing a multipotent cell type from a place of birth to distal locations, the vertebrate embryo builds organs. In comparison, metastatic tumor cells often acquire a de-differentiated phenotype and migrate away from a primary site to inhabit new microenvironments, disrupting normal organ function. Countless observations of both embryonic cell migration and tumor metastasis have demonstrated complex cell signaling and interactive behaviors that have long confounded scientist and clinician alike. James D. Murray realized the important role of mathematics in biology and developed a unique strategy to address complex biological questions such as these. His work offers a practical template for constructing clear, logical, direct and verifiable models that help to explain complex cell behaviors and direct new experiments. His pioneering work at the interface of development and cancer made significant contributions to glioblastoma cancer and embryonic pattern formation using often simple models with tremendous predictive potential. Here, we provide a brief overview of advances in cell invasion and cell plasticity using the embryonic neural crest and its ancestral relationship to aggressive cancers that put into current context the timeless aspects of his work.
Collapse
Affiliation(s)
- Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA. .,Department of Anatomy and Cell Biology, School of Medicine, University of Kansas, Kansas City, KS, 66160, USA.
| | | | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | - Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Caleb Bailey
- Department of Biology, Brigham Young University-Idaho, Rexburg, ID, 83460, USA
| |
Collapse
|
24
|
Gavin C, Geerts N, Cavanagh B, Haynes M, Reynolds CP, Loessner D, Ewald AJ, Piskareva O. Neuroblastoma Invasion Strategies Are Regulated by the Extracellular Matrix. Cancers (Basel) 2021; 13:736. [PMID: 33578855 PMCID: PMC7916632 DOI: 10.3390/cancers13040736] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 01/30/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Neuroblastoma is a paediatric malignancy of the developing sympathetic nervous system. About half of the patients have metastatic disease at the time of diagnosis and a survival rate of less than 50%. Our understanding of the cellular processes promoting neuroblastoma metastases will be facilitated by the development of appropriate experimental models. In this study, we aimed to explore the invasion of neuroblastoma cells and organoids from patient-derived xenografts (PDXs) grown embedded in 3D extracellular matrix (ECM) hydrogels by time-lapse microscopy and quantitative image analysis. We found that the ECM composition influenced the growth, viability and local invasion of organoids. The ECM compositions induced distinct cell behaviours, with Matrigel being the preferred substratum for local organoid invasion. Organoid invasion was cell line- and PDX-dependent. We identified six distinct phenotypes in PDX-derived organoids. In contrast, NB cell lines were more phenotypically restricted in their invasion strategies, as organoids isolated from cell line-derived xenografts displayed a broader range of phenotypes compared to clonal cell line clusters. The addition of FBS and bFGF induced more aggressive cell behaviour and a broader range of phenotypes. In contrast, the repression of the prognostic neuroblastoma marker, MYCN, resulted in less aggressive cell behaviour. The combination of PDX organoids, real-time imaging and the novel 3D culture assays developed herein will enable rapid progress in elucidating the molecular mechanisms that control neuroblastoma invasion.
Collapse
Affiliation(s)
- Cian Gavin
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (C.G.); (N.G.)
| | - Nele Geerts
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (C.G.); (N.G.)
| | - Brenton Cavanagh
- Cellular and Molecular Imaging Core, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland;
| | - Meagan Haynes
- Center for Cell Dynamics, Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (M.H.); (A.J.E.)
| | - C. Patrick Reynolds
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA;
- Departments of Pediatrics and Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79416, USA
| | - Daniela Loessner
- Departments of Chemical Engineering and Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia;
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC 3800, Australia
| | - Andrew J. Ewald
- Center for Cell Dynamics, Department of Cell Biology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA; (M.H.); (A.J.E.)
- Sidney Kimmel Comprehensive Cancer Center, Cancer Invasion and Metastasis Program, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Olga Piskareva
- Cancer Bio-Engineering Group, Department of Anatomy and Regenerative Medicine, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; (C.G.); (N.G.)
- School of Pharmacy and Biomolecular Sciences, RCSI University of Medicine and Health Sciences, Dublin D02 YN77, Ireland
- National Children’s Research Centre, Our Lady’s Children’s Hospital Crumlin, Dublin D12 8MGH, Ireland
| |
Collapse
|
25
|
Buttenschön A, Edelstein-Keshet L. Bridging from single to collective cell migration: A review of models and links to experiments. PLoS Comput Biol 2020; 16:e1008411. [PMID: 33301528 PMCID: PMC7728230 DOI: 10.1371/journal.pcbi.1008411] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mathematical and computational models can assist in gaining an understanding of cell behavior at many levels of organization. Here, we review models in the literature that focus on eukaryotic cell motility at 3 size scales: intracellular signaling that regulates cell shape and movement, single cell motility, and collective cell behavior from a few cells to tissues. We survey recent literature to summarize distinct computational methods (phase-field, polygonal, Cellular Potts, and spherical cells). We discuss models that bridge between levels of organization, and describe levels of detail, both biochemical and geometric, included in the models. We also highlight links between models and experiments. We find that models that span the 3 levels are still in the minority.
Collapse
Affiliation(s)
- Andreas Buttenschön
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
26
|
Lagergren JH, Nardini JT, Baker RE, Simpson MJ, Flores KB. Biologically-informed neural networks guide mechanistic modeling from sparse experimental data. PLoS Comput Biol 2020; 16:e1008462. [PMID: 33259472 PMCID: PMC7732115 DOI: 10.1371/journal.pcbi.1008462] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 12/11/2020] [Accepted: 10/22/2020] [Indexed: 11/18/2022] Open
Abstract
Biologically-informed neural networks (BINNs), an extension of physics-informed neural networks [1], are introduced and used to discover the underlying dynamics of biological systems from sparse experimental data. In the present work, BINNs are trained in a supervised learning framework to approximate in vitro cell biology assay experiments while respecting a generalized form of the governing reaction-diffusion partial differential equation (PDE). By allowing the diffusion and reaction terms to be multilayer perceptrons (MLPs), the nonlinear forms of these terms can be learned while simultaneously converging to the solution of the governing PDE. Further, the trained MLPs are used to guide the selection of biologically interpretable mechanistic forms of the PDE terms which provides new insights into the biological and physical mechanisms that govern the dynamics of the observed system. The method is evaluated on sparse real-world data from wound healing assays with varying initial cell densities [2]. In this work we extend equation learning methods to be feasible for biological applications with nonlinear dynamics and where data are often sparse and noisy. Physics-informed neural networks have recently been shown to approximate solutions of PDEs from simulated noisy data while simultaneously optimizing the PDE parameters. However, the success of this method requires the correct specification of the governing PDE, which may not be known in practice. Here, we present an extension of the algorithm that allows neural networks to learn the nonlinear terms of the governing system without the need to specify the mechanistic form of the PDE. Our method is demonstrated on real-world biological data from scratch assay experiments and used to discover a previously unconsidered biological mechanism that describes delayed population response to the scratch.
Collapse
Affiliation(s)
- John H. Lagergren
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
- Center for Research and Scientific Computation, North Carolina State University, Raleigh, North Carolina, USA
- * E-mail: (JHL); (KBF)
| | - John T. Nardini
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
- Statistical and Applied Mathematical Sciences Institute, Durham, North Carolina, USA
| | - Ruth E. Baker
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Matthew J. Simpson
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Kevin B. Flores
- Department of Mathematics, North Carolina State University, Raleigh, North Carolina, USA
- Center for Research and Scientific Computation, North Carolina State University, Raleigh, North Carolina, USA
- * E-mail: (JHL); (KBF)
| |
Collapse
|
27
|
George RM, Maldonado-Velez G, Firulli AB. The heart of the neural crest: cardiac neural crest cells in development and regeneration. Development 2020; 147:147/20/dev188706. [PMID: 33060096 DOI: 10.1242/dev.188706] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cardiac neural crest cells (cNCCs) are a migratory cell population that stem from the cranial portion of the neural tube. They undergo epithelial-to-mesenchymal transition and migrate through the developing embryo to give rise to portions of the outflow tract, the valves and the arteries of the heart. Recent lineage-tracing experiments in chick and zebrafish embryos have shown that cNCCs can also give rise to mature cardiomyocytes. These cNCC-derived cardiomyocytes appear to be required for the successful repair and regeneration of injured zebrafish hearts. In addition, recent work examining the response to cardiac injury in the mammalian heart has suggested that cNCC-derived cardiomyocytes are involved in the repair/regeneration mechanism. However, the molecular signature of the adult cardiomyocytes involved in this repair is unclear. In this Review, we examine the origin, migration and fates of cNCCs. We also review the contribution of cNCCs to mature cardiomyocytes in fish, chick and mice, as well as their role in the regeneration of the adult heart.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Gabriel Maldonado-Velez
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, 1044 W. Walnut St., Indianapolis, IN 46202-5225, USA
| |
Collapse
|
28
|
Abuwarda H, Pathak MM. Mechanobiology of neural development. Curr Opin Cell Biol 2020; 66:104-111. [PMID: 32687993 DOI: 10.1016/j.ceb.2020.05.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/23/2020] [Accepted: 05/30/2020] [Indexed: 01/13/2023]
Abstract
As the brain develops, proliferating cells organize into structures, differentiate, migrate, extrude long processes, and connect with other cells. These biological processes produce mechanical forces that further shape cellular dynamics and organ patterning. A major unanswered question in developmental biology is how the mechanical forces produced during development are detected and transduced by cells to impact biochemical and genetic programs of development. This gap in knowledge stems from a lack of understanding of the molecular players of cellular mechanics and an absence of techniques for measuring and manipulating mechanical forces in tissue. In this review article, we examine recent advances that are beginning to clear these bottlenecks and highlight results from new approaches that reveal the role of mechanical forces in neurodevelopmental processes.
Collapse
Affiliation(s)
- Hamid Abuwarda
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, USA
| | - Medha M Pathak
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA, USA; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA, USA; Center for Complex Biological Systems, UC Irvine, Irvine, CA, USA; Department of Biomedical Engineering, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
29
|
Epithelial-to-mesenchymal transition and different migration strategies as viewed from the neural crest. Curr Opin Cell Biol 2020; 66:43-50. [PMID: 32531659 DOI: 10.1016/j.ceb.2020.05.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/08/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a dynamic process that produces migratory cells from epithelial precursors. However, EMT is not binary; rather it results in migratory cells which adopt diverse strategies including collective and individual cell migration to arrive at target destinations. Of the many embryonic cells that undergo EMT, the vertebrate neural crest is a particularly good example which has provided valuable insight into these processes. Neural crest cells from different species often adopt different migratory strategies with collective migration predominating in anamniotes, whereas individual cell migration is more prevalent in amniotes. Here, we will provide a perspective on recent work toward understanding the process of neural crest EMT focusing on how these cells undergo collective and individual cell migration.
Collapse
|
30
|
Javali A, Lakshmanan V, Palakodeti D, Sambasivan R. Modulation of β-catenin levels regulates cranial neural crest patterning and dispersal into first pharyngeal arch. Dev Dyn 2020; 249:1347-1364. [PMID: 32427396 DOI: 10.1002/dvdy.208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Vertebrate cranial neural crest cells (CNCCs) are multipotent, proximal to the source CNCC form the cranial ganglia. Distally, in the pharyngeal arches, they give rise to the craniofacial skeleton and connective tissues. Fate choices are made as CNCC pattern into distinct destination compartments. In spite of this importance, the mechanism patterning CNCC is poorly defined. RESULTS Here, we report that a novel β-catenin-dependent regulation of N-Cadherin levels may drive CNCC patterning. In mouse embryos, at the first pharyngeal arch axial level, membrane β-catenin levels correlate with the extent of N-cadherin-mediated adhesion and thus suggest the presence of collective and dispersed states of CNCC. Using in vitro human neural crest model and chemical modulators of β-catenin levels, we show a requirement for down-modulating β-catenin for regulating N-cadherin levels and cell-cell adhesion. Similarly, in β-catenin gain-of-function mutant mouse embryos, CNCC fail to lower N-cadherin levels. This indicates a failure to reduce cell-cell adhesion, which may underlie the failure of mutant CNCC to populate first pharyngeal arch. CONCLUSION We suggest that β-catenin-mediated regulation of CNCC adhesion, a previously underappreciated mechanism, underlies the patterning of CNCC into fate-specific compartments.
Collapse
Affiliation(s)
- Alok Javali
- National Centre for Biological Sciences, Bangalore, India.,Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India
| | - Vairavan Lakshmanan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | | | - Ramkumar Sambasivan
- Institute for Stem Cell Biology and Regenerative Medicine, Bangalore, India.,Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati, India
| |
Collapse
|
31
|
Dunkel H, Chaverra M, Bradley R, Lefcort F. FGF
signaling is required for chemokinesis and ventral migration of trunk neural crest cells. Dev Dyn 2020; 249:1077-1097. [DOI: 10.1002/dvdy.190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/24/2020] [Accepted: 05/04/2020] [Indexed: 11/08/2022] Open
Affiliation(s)
- Haley Dunkel
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Martha Chaverra
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Roger Bradley
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| | - Frances Lefcort
- Department of Cell Biology and NeuroscienceMontana State University Bozeman Montana USA
| |
Collapse
|
32
|
Canonical BMP Signaling Executes Epithelial-Mesenchymal Transition Downstream of SNAIL1. Cancers (Basel) 2020; 12:cancers12041019. [PMID: 32326239 PMCID: PMC7226241 DOI: 10.3390/cancers12041019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a pivotal process in development and disease. In carcinogenesis, various signaling pathways are known to trigger EMT by inducing the expression of EMT transcription factors (EMT-TFs) like SNAIL1, ultimately promoting invasion, metastasis and chemoresistance. However, how EMT is executed downstream of EMT-TFs is incompletely understood. Here, using human colorectal cancer (CRC) and mammary cell line models of EMT, we demonstrate that SNAIL1 critically relies on bone morphogenetic protein (BMP) signaling for EMT execution. This activity requires the transcription factor SMAD4 common to BMP/TGFβ pathways, but is TGFβ signaling-independent. Further, we define a signature of BMP-dependent genes in the EMT-transcriptome, which orchestrate EMT-induced invasiveness, and are found to be regulated in human CRC transcriptomes and in developmental EMT processes. Collectively, our findings substantially augment the knowledge of mechanistic routes whereby EMT can be effectuated, which is relevant for the conceptual understanding and therapeutic targeting of EMT processes.
Collapse
|
33
|
Lee VM, Hernandez S, Giang B, Chabot C, Hernandez J, de Bellard ME. Molecular Events Controlling Cessation of Trunk Neural Crest Migration and Onset of Differentiation. Front Cell Dev Biol 2020; 8:199. [PMID: 32318567 PMCID: PMC7147452 DOI: 10.3389/fcell.2020.00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCC) migrate extensively in vertebrate embryos to populate diverse derivatives including ganglia of the peripheral nervous system. Little is known about the molecular mechanisms that lead migrating trunk NCC to settle at selected sites in the embryo, ceasing their migration and initiating differentiation programs. To identify candidate genes involved in these processes, we profiled genes up-regulated in purified post-migratory compared with migratory NCC using a staged, macroarrayed cDNA library. A secondary screen of in situ hybridization revealed that many genes are specifically enhanced in neural crest-derived ganglia, including macrophage migration inhibitory factor (MIF), a ligand for CXCR4 receptor. Through in vivo and in vitro assays, we found that MIF functions as a potent chemoattractant for NCC. These results provide a molecular profile of genes expressed concomitant with gangliogenesis, thus, offering new markers and potential regulatory candidates involved in cessation of migration and onset of differentiation.
Collapse
Affiliation(s)
- Vivian M Lee
- Universal Cells Inc., Seattle, WA, United States
| | - Sergio Hernandez
- Biology Department, California State University Northridge, Northridge, CA, United States
| | - Belle Giang
- Moorpark College, Moorpark, CA, United States
| | - Chris Chabot
- Biology Department, California State University Northridge, Northridge, CA, United States
| | | | - Maria Elena de Bellard
- Biology Department, California State University Northridge, Northridge, CA, United States
| |
Collapse
|
34
|
Leonard CE, Taneyhill LA. The road best traveled: Neural crest migration upon the extracellular matrix. Semin Cell Dev Biol 2020; 100:177-185. [PMID: 31727473 PMCID: PMC7071992 DOI: 10.1016/j.semcdb.2019.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/29/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Neural crest cells have the extraordinary task of building much of the vertebrate body plan, including the craniofacial cartilage and skeleton, melanocytes, portions of the heart, and the peripheral nervous system. To execute these developmental programs, stationary premigratory neural crest cells first acquire the capacity to migrate through an extensive process known as the epithelial-to-mesenchymal transition. Once motile, neural crest cells must traverse a complex environment consisting of other cells and the protein-rich extracellular matrix in order to get to their final destinations. Herein, we will highlight some of the main molecular machinery that allow neural crest cells to first exit the neuroepithelium and then later successfully navigate this intricate in vivo milieu. Collectively, these extracellular and intracellular factors mediate the appropriate migration of neural crest cells and allow for the proper development of the vertebrate embryo.
Collapse
Affiliation(s)
- Carrie E Leonard
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| | - Lisa A Taneyhill
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742 USA.
| |
Collapse
|
35
|
McLennan R, McKinney MC, Teddy JM, Morrison JA, Kasemeier-Kulesa JC, Ridenour DA, Manthe CA, Giniunaite R, Robinson M, Baker RE, Maini PK, Kulesa PM. Neural crest cells bulldoze through the microenvironment using Aquaporin 1 to stabilize filopodia. Development 2020; 147:dev.185231. [PMID: 31826865 DOI: 10.1242/dev.185231] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/03/2019] [Indexed: 01/17/2023]
Abstract
Neural crest migration requires cells to move through an environment filled with dense extracellular matrix and mesoderm to reach targets throughout the vertebrate embryo. Here, we use high-resolution microscopy, computational modeling, and in vitro and in vivo cell invasion assays to investigate the function of Aquaporin 1 (AQP-1) signaling. We find that migrating lead cranial neural crest cells express AQP-1 mRNA and protein, implicating a biological role for water channel protein function during invasion. Differential AQP-1 levels affect neural crest cell speed and direction, as well as the length and stability of cell filopodia. Furthermore, AQP-1 enhances matrix metalloprotease activity and colocalizes with phosphorylated focal adhesion kinases. Colocalization of AQP-1 with EphB guidance receptors in the same migrating neural crest cells has novel implications for the concept of guided bulldozing by lead cells during migration.
Collapse
Affiliation(s)
- Rebecca McLennan
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Mary C McKinney
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jessica M Teddy
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Jason A Morrison
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | | | | | - Craig A Manthe
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Rasa Giniunaite
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Martin Robinson
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK.,Department of Computer Science, Parks Road, Oxford OX1 3QD, UK
| | - Ruth E Baker
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Philip K Maini
- University of Oxford, Wolfson Centre for Mathematical Biology, Mathematical Institute, Woodstock Road, Oxford OX2 6GG, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA .,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS 66160, USA
| |
Collapse
|
36
|
Giniūnaitė R, Baker RE, Kulesa PM, Maini PK. Modelling collective cell migration: neural crest as a model paradigm. J Math Biol 2020; 80:481-504. [PMID: 31587096 PMCID: PMC7012984 DOI: 10.1007/s00285-019-01436-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 09/09/2019] [Indexed: 12/01/2022]
Abstract
A huge variety of mathematical models have been used to investigate collective cell migration. The aim of this brief review is twofold: to present a number of modelling approaches that incorporate the key factors affecting cell migration, including cell-cell and cell-tissue interactions, as well as domain growth, and to showcase their application to model the migration of neural crest cells. We discuss the complementary strengths of microscale and macroscale models, and identify why it can be important to understand how these modelling approaches are related. We consider neural crest cell migration as a model paradigm to illustrate how the application of different mathematical modelling techniques, combined with experimental results, can provide new biological insights. We conclude by highlighting a number of future challenges for the mathematical modelling of neural crest cell migration.
Collapse
Affiliation(s)
- Rasa Giniūnaitė
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK.
| | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research, 1000 E 50th Street, Kansas City, MO, 64110, USA
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Woodstock Road, Oxford, OX2 6GG, UK
| |
Collapse
|
37
|
Capuana L, Boström A, Etienne-Manneville S. Multicellular scale front-to-rear polarity in collective migration. Curr Opin Cell Biol 2019; 62:114-122. [PMID: 31756576 DOI: 10.1016/j.ceb.2019.10.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/29/2019] [Accepted: 10/08/2019] [Indexed: 10/25/2022]
Abstract
Collective cell migration does not only reflect the migration of cells at a similar speed and in the same direction, it also implies the emergence of new properties observed at the level of the cell group. This collective behavior relies on interactions between the cells and the establishment of a hierarchy amongst cells with leaders driving the group of followers. Here, we make the parallel between the front-to-rear polarity axis in single cell and the front-to-rear multicellular-scale polarity of a migrating collective which established through exchange of biochemical and mechanical information from the front to the rear and vice versa. Such multicellular-scale polarity gives the migrating group the possibility to better sense and adapt to energy, biochemical and mechanical constraints and facilitates migration over long distances in complex and changing environments.
Collapse
Affiliation(s)
- Lavinia Capuana
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France; Sorbonne Université, Collège Doctoral, F-75005 Paris, France
| | - Astrid Boström
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France; School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Sandrine Etienne-Manneville
- Cell Polarity, Migration and Cancer Unit, Institut Pasteur, UMR3691 CNRS, Équipe Labellisée Ligue Contre le Cancer, F-75015, Paris, France.
| |
Collapse
|
38
|
Giniūnaitė R, McLennan R, McKinney MC, Baker RE, Kulesa PM, Maini PK. An interdisciplinary approach to investigate collective cell migration in neural crest. Dev Dyn 2019; 249:270-280. [DOI: 10.1002/dvdy.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Affiliation(s)
- Rasa Giniūnaitė
- Wolfson Centre for Mathematical Biology, Mathematical InstituteUniversity of Oxford Oxford UK
| | | | | | - Ruth E Baker
- Wolfson Centre for Mathematical Biology, Mathematical InstituteUniversity of Oxford Oxford UK
| | - Paul M Kulesa
- Stowers Institute for Medical Research Kansas City Missouri
- Department of Anatomy and Cell BiologyUniversity of Kansas School of Medicine Kansas City Kansas
| | - Philip K Maini
- Wolfson Centre for Mathematical Biology, Mathematical InstituteUniversity of Oxford Oxford UK
| |
Collapse
|
39
|
Hopkins A, Camley BA. Leader cells in collective chemotaxis: Optimality and trade-offs. Phys Rev E 2019; 100:032417. [PMID: 31639926 DOI: 10.1103/physreve.100.032417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Indexed: 11/06/2022]
Abstract
Clusters of cells can work together in order to follow a signal gradient, chemotaxing even when single cells do not. Cells in different regions of collectively migrating neural crest streams show different gene expression profiles, suggesting that cells may specialize to leader and follower roles. We use a minimal mathematical model to understand when this specialization is advantageous. In our model, leader cells sense the gradient with an accuracy that depends on the kinetics of ligand-receptor binding, while follower cells follow the cluster's direction with a finite error. Intuitively, specialization into leaders and followers should be optimal when a few cells have more information than the rest of the cluster, such as in the presence of a sharp transition in chemoattractant concentration. We do find this-but also find that high levels of specialization can be optimal in the opposite limit of very shallow gradients. We also predict that the best location for leaders may not be at the front of the cluster. In following leaders, clusters may have to choose between speed and flexibility. Clusters with only a few leaders can take orders of magnitude more time to reorient than all-leader clusters.
Collapse
Affiliation(s)
- Austin Hopkins
- Department of Physics & Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Brian A Camley
- Department of Physics & Astronomy and Department of Biophysics, Johns Hopkins University, Baltimore, Maryland 21218, USA
| |
Collapse
|
40
|
Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. Neural crest development: insights from the zebrafish. Dev Dyn 2019; 249:88-111. [PMID: 31591788 DOI: 10.1002/dvdy.122] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 09/22/2019] [Indexed: 12/12/2022] Open
Abstract
Our understanding of the neural crest, a key vertebrate innovation, is built upon studies of multiple model organisms. Early research on neural crest cells (NCCs) was dominated by analyses of accessible amphibian and avian embryos, with mouse genetics providing complementary insights in more recent years. The zebrafish model is a relative newcomer to the field, yet it offers unparalleled advantages for the study of NCCs. Specifically, zebrafish provide powerful genetic and transgenic tools, coupled with rapidly developing transparent embryos that are ideal for high-resolution real-time imaging of the dynamic process of neural crest development. While the broad principles of neural crest development are largely conserved across vertebrate species, there are critical differences in anatomy, morphogenesis, and genetics that must be considered before information from one model is extrapolated to another. Here, our goal is to provide the reader with a helpful primer specific to neural crest development in the zebrafish model. We focus largely on the earliest events-specification, delamination, and migration-discussing what is known about zebrafish NCC development and how it differs from NCC development in non-teleost species, as well as highlighting current gaps in knowledge.
Collapse
Affiliation(s)
- Manuel Rocha
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Noor Singh
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| | - Kamil Ahsan
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Anastasia Beiriger
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois
| | - Victoria E Prince
- Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, Illinois.,Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, Illinois
| |
Collapse
|
41
|
Colombi A, Scianna M, Painter KJ, Preziosi L. Modelling chase-and-run migration in heterogeneous populations. J Math Biol 2019; 80:423-456. [PMID: 31468116 PMCID: PMC7012813 DOI: 10.1007/s00285-019-01421-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Cell migration is crucial for many physiological and pathological processes. During embryogenesis, neural crest cells undergo coordinated epithelial to mesenchymal transformations and migrate towards various forming organs. Here we develop a computational model to understand how mutual interactions between migrating neural crest cells (NCs) and the surrounding population of placode cells (PCs) generate coordinated migration. According to experimental findings, we implement a minimal set of hypotheses, based on a coupling between chemotactic movement of NCs in response to a placode-secreted chemoattractant (Sdf1) and repulsion induced from contact inhibition of locomotion (CIL), triggered by heterotypic NC–PC contacts. This basic set of assumptions is able to semi-quantitatively recapitulate experimental observations of the characteristic multispecies phenomenon of “chase-and-run”, where the colony of NCs chases an evasive PC aggregate. The model further reproduces a number of in vitro manipulations, including full or partial disruption of NC chemotactic migration and selected mechanisms coordinating the CIL phenomenon. Finally, we provide various predictions based on altering other key components of the model mechanisms.
Collapse
Affiliation(s)
- A Colombi
- Department of Mathematical Sciences "G. L. Lagrange" - Excellence Department 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - M Scianna
- Department of Mathematical Sciences "G. L. Lagrange" - Excellence Department 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| | - K J Painter
- Department of Mathematics and Maxwell Institute for Mathematical Sciences, Heriot-Watt University, Edinburgh, Scotland, EH14 4AS, UK.
| | - L Preziosi
- Department of Mathematical Sciences "G. L. Lagrange" - Excellence Department 2018-2022, Politecnico di Torino, Corso Duca degli Abruzzi, 24, 10129, Turin, Italy
| |
Collapse
|
42
|
Woronowicz KC, Schneider RA. Molecular and cellular mechanisms underlying the evolution of form and function in the amniote jaw. EvoDevo 2019; 10:17. [PMID: 31417668 PMCID: PMC6691539 DOI: 10.1186/s13227-019-0131-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 07/22/2019] [Indexed: 01/16/2023] Open
Abstract
The amniote jaw complex is a remarkable amalgamation of derivatives from distinct embryonic cell lineages. During development, the cells in these lineages experience concerted movements, migrations, and signaling interactions that take them from their initial origins to their final destinations and imbue their derivatives with aspects of form including their axial orientation, anatomical identity, size, and shape. Perturbations along the way can produce defects and disease, but also generate the variation necessary for jaw evolution and adaptation. We focus on molecular and cellular mechanisms that regulate form in the amniote jaw complex, and that enable structural and functional integration. Special emphasis is placed on the role of cranial neural crest mesenchyme (NCM) during the species-specific patterning of bone, cartilage, tendon, muscle, and other jaw tissues. We also address the effects of biomechanical forces during jaw development and discuss ways in which certain molecular and cellular responses add adaptive and evolutionary plasticity to jaw morphology. Overall, we highlight how variation in molecular and cellular programs can promote the phenomenal diversity and functional morphology achieved during amniote jaw evolution or lead to the range of jaw defects and disease that affect the human condition.
Collapse
Affiliation(s)
- Katherine C Woronowicz
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA.,2Present Address: Department of Genetics, Harvard Medical School, Orthopaedic Research Laboratories, Children's Hospital Boston, Boston, MA 02115 USA
| | - Richard A Schneider
- 1Department of Orthopaedic Surgery, University of California at San Francisco, 513 Parnassus Avenue, S-1161, Box 0514, San Francisco, CA 94143-0514 USA
| |
Collapse
|
43
|
Shellard A, Mayor R. Integrating chemical and mechanical signals in neural crest cell migration. Curr Opin Genet Dev 2019; 57:16-24. [PMID: 31306988 PMCID: PMC6838680 DOI: 10.1016/j.gde.2019.06.004] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/20/2019] [Accepted: 06/09/2019] [Indexed: 12/17/2022]
Abstract
Neural crest cells are a multipotent embryonic stem cell population that migrate large distances to contribute a variety of tissues. The cranial neural crest, which contribute to tissues of the face and skull, undergo collective migration whose movement has been likened to cancer metastasis. Over the last few years, a variety of mechanisms for the guidance of collective cranial neural crest cell migration have been described: mostly chemical, but more recently mechanical. Here we review these different mechanisms and attempt to integrate them to provide a unified model of collective cranial neural crest cell migration.
Collapse
Affiliation(s)
- Adam Shellard
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
44
|
Abstract
Neural crest cells are a transient embryonic cell population that migrate collectively to various locations throughout the embryo to contribute a number of cell types to several organs. After induction, the neural crest delaminates and undergoes an epithelial-to-mesenchymal transition before migrating through intricate yet characteristic paths. The neural crest exhibits a variety of migratory behaviors ranging from sheet-like mass migration in the cephalic regions to chain migration in the trunk. During their journey, neural crest cells rely on a range of signals both from their environment and within the migrating population for navigating through the embryo as a collective. Here we review these interactions and mechanisms, including chemotactic cues of neural crest cells' migration.
Collapse
Affiliation(s)
- András Szabó
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|
45
|
Matsiaka OM, Baker RE, Shah ET, Simpson MJ. Mechanistic and experimental models of cell migration reveal the importance of cell-to-cell pushing in cell invasion. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab1b01] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
46
|
Spatarelu CP, Zhang H, Trung Nguyen D, Han X, Liu R, Guo Q, Notbohm J, Fan J, Liu L, Chen Z. Biomechanics of Collective Cell Migration in Cancer Progression: Experimental and Computational Methods. ACS Biomater Sci Eng 2019; 5:3766-3787. [PMID: 32953985 PMCID: PMC7500334 DOI: 10.1021/acsbiomaterials.8b01428] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cell migration is essential for regulating many biological processes in physiological or pathological conditions, including embryonic development and cancer invasion. In vitro and in silico studies suggest that collective cell migration is associated with some biomechanical particularities such as restructuring of extracellular matrix (ECM), stress and force distribution profiles, and reorganization of the cytoskeleton. Therefore, the phenomenon could be understood by an in-depth study of cells' behavior determinants, including but not limited to mechanical cues from the environment and from fellow "travelers". This review article aims to cover the recent development of experimental and computational methods for studying the biomechanics of collective cell migration during cancer progression and invasion. We also summarized the tested hypotheses regarding the mechanism underlying collective cell migration enabled by these methods. Together, the paper enables a broad overview on the methods and tools currently available to unravel the biophysical mechanisms pertinent to cell collective migration as well as providing perspectives on future development toward eventually deciphering the key mechanisms behind the most lethal feature of cancer.
Collapse
Affiliation(s)
| | - Hao Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Dung Trung Nguyen
- Department of Engineering and Computer Science, Seattle Pacific University, Seattle, Washington 98119,
United States
| | - Xinyue Han
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - Ruchuan Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Qiaohang Guo
- School of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350014,
China
| | - Jacob Notbohm
- Department of Engineering Physics, University of Wisconsin—Madison, Madison, Wisconsin 53706,
United States
| | - Jing Fan
- Department of Mechanical Engineering, City College of City University of New York, New York 10031, United
States
| | - Liyu Liu
- College of Physics, Chongqing University, Chongqing 400032, China
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| |
Collapse
|
47
|
Szabó A, Theveneau E, Turan M, Mayor R. Neural crest streaming as an emergent property of tissue interactions during morphogenesis. PLoS Comput Biol 2019; 15:e1007002. [PMID: 31009457 PMCID: PMC6497294 DOI: 10.1371/journal.pcbi.1007002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/02/2019] [Accepted: 04/03/2019] [Indexed: 12/05/2022] Open
Abstract
A fundamental question in embryo morphogenesis is how a complex pattern is established in seemingly uniform tissues. During vertebrate development, neural crest cells differentiate as a continuous mass of tissue along the neural tube and subsequently split into spatially distinct migratory streams to invade the rest of the embryo. How these streams are established is not well understood. Inhibitory signals surrounding the migratory streams led to the idea that position and size of streams are determined by a pre-pattern of such signals. While clear evidence for a pre-pattern in the cranial region is still lacking, all computational models of neural crest migration published so far have assumed a pre-pattern of negative signals that channel the neural crest into streams. Here we test the hypothesis that instead of following a pre-existing pattern, the cranial neural crest creates their own migratory pathway by interacting with the surrounding tissue. By combining theoretical modeling with experimentation, we show that streams emerge from the interaction of the hindbrain neural crest and the neighboring epibranchial placodal tissues, without the need for a pre-existing guidance cue. Our model suggests that the initial collective neural crest invasion is based on short-range repulsion and asymmetric attraction between neighboring tissues. The model provides a coherent explanation for the formation of cranial neural crest streams in concert with previously reported findings and our new in vivo observations. Our results point to a general mechanism of inducing collective invasion patterns.
Collapse
Affiliation(s)
- András Szabó
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eric Theveneau
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Melissa Turan
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Roberto Mayor
- Research Department of Cell and Developmental Biology, University College London, London, United Kingdom
| |
Collapse
|
48
|
Delloye-Bourgeois C, Castellani V. Hijacking of Embryonic Programs by Neural Crest-Derived Neuroblastoma: From Physiological Migration to Metastatic Dissemination. Front Mol Neurosci 2019; 12:52. [PMID: 30881286 PMCID: PMC6405627 DOI: 10.3389/fnmol.2019.00052] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 02/12/2019] [Indexed: 12/12/2022] Open
Abstract
In the developing organism, complex molecular programs orchestrate the generation of cells in adequate numbers, drive them to migrate along the correct pathways towards appropriate territories, eliminate superfluous cells, and induce terminal differentiation of survivors into the appropriate cell-types. Despite strict controls constraining developmental processes, malignancies can emerge in still immature organisms. This is the case of neuroblastoma (NB), a highly heterogeneous disease, predominantly affecting children before the age of 5 years. Highly metastatic forms represent half of the cases and are diagnosed when disseminated foci are detectable. NB arise from a transient population of embryonic cells, the neural crest (NC), and especially NC committed to the establishment of the sympatho-adrenal tissues. The NC is generated at the dorsal edge of the neural tube (NT) of the vertebrate embryo, under the action of NC specifier gene programs. NC cells (NCCs) undergo an epithelial to mesenchymal transition, and engage on a remarkable journey in the developing embryo, contributing to a plethora of cell-types and tissues. Various NCC sub-populations and derived lineages adopt specific migratory behaviors, moving individually as well as collectively, exploiting the different embryonic substrates they encounter along their path. Here we discuss how the specific features of NCC in development are re-iterated during NB metastatic behaviors.
Collapse
Affiliation(s)
- Céline Delloye-Bourgeois
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| | - Valérie Castellani
- University of Lyon, University of Lyon 1 Claude Bernard Lyon 1, NeuroMyoGene Institute, CNRS UMR5310, INSERM U1217, Lyon, France
| |
Collapse
|
49
|
Schumacher LJ. Neural crest migration with continuous cell states. J Theor Biol 2019; 481:84-90. [PMID: 30707976 DOI: 10.1016/j.jtbi.2019.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/24/2019] [Accepted: 01/28/2019] [Indexed: 01/09/2023]
Abstract
Models of cranial neural crest cell migration in cell-induced (or self-generated) gradients have included a division of labour into leader and follower migratory states, which undergo chemotaxis and contact guidance, respectively. Despite validated utility of these models through experimental perturbation of migration in the chick embryo and gene expression analysis showing relevant heterogeneity at the single cell level, an often raised question has been whether the discrete cell states are necessary, or if a continuum of cell behaviours offers a functionally equivalent description. Here we argue that this picture is supported by recent single-cell transcriptome data. Motivated by this, we implement two versions of a continuous-state model: (1) signal choice and (2) signal combination. We find that the cell population migrates further than in the discrete-state model and than in experimental observations. We further show that the signal combination model, but not the signal choice model, can be successfully adjusted to experimentally plausible regimes by reducing the chemoattractant consumption parameter. Thus we show an equivalently plausible, experimentally motivated, model of neural crest cell migration.
Collapse
Affiliation(s)
- Linus J Schumacher
- MCR Centre for Regenerative Medicine, University of Edinburgh, United Kingdom.
| |
Collapse
|
50
|
Abstract
Neural crest cells are the embryonic precursors of most neurons and all glia of the peripheral nervous system, pigment cells, some endocrine components, and connective tissue of the head, face, neck, and heart. Following induction, crest cells undergo an epithelial to mesenchymal transition that enables them to migrate along specific pathways culminating in their phenotypic differentiation. Researching this unique embryonic population has revealed important understandings of basic biological and developmental principles. These principles are likely to assist in clarifying the etiology and help in finding strategies for the treatment of neural crest diseases, collectively termed neurocristopathies. The progress achieved in neural crest research is made feasible thanks to the continuous development of species-specific in vivo and in vitro paradigms and more recently the possibility to produce neural crest cells and specific derivatives from embryonic or induced pluripotent stem cells. All of the above assist us in elucidating mechanisms that regulate neural crest development using state-of-the art cellular, molecular, and imaging approaches.
Collapse
Affiliation(s)
- Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
- Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|