1
|
Fleury V, Peaucelle A, Abourachid A, Plateau O. Second-order division in sectors as a prepattern for sensory organs in vertebrate development. Theory Biosci 2021; 141:141-163. [PMID: 34128197 DOI: 10.1007/s12064-021-00350-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 05/18/2021] [Indexed: 11/24/2022]
Abstract
We present in vivo observations of chicken embryo development which show that the early chicken embryo presents a principal structure made out of concentric rings and a secondary structure composed of radial sectors. During development, physical forces deform the main rings into axially directed, antero-posterior tubes, while the sectors roll up to form cylinders that are perpendicular to the antero-posterior axis. As a consequence, the basic structure of the chicken embryo is a series of encased antero-posterior tubes (gut, neural tube, body envelope, amnion, chorion) decorated with smaller orifices (ear duct, eye stalk, nasal duct, gills, mouth) forming at right angles to the main body axis. We argue that the second-order divisions reflect the early pattern of cell cleavage, and that the transformation of radial and orthoradial lines into a body with sensory organs is a generic biophysical mechanism more general than the chicken embryo.
Collapse
Affiliation(s)
- Vincent Fleury
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université de Paris/CNRS, 10 rue Alice Domont et Léonie Duquet, 75013, Paris, France.
| | - Alexis Peaucelle
- UMR 1318, Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Anick Abourachid
- Laboratoire Mécanismes Adaptatifs et Evolution, UMR 7179 MNHN, CNRS, CP 55, 57 rue Cuvier, 75231, Paris cedex 05, France
| | - Olivia Plateau
- Laboratoire Matière et Systèmes Complexes, UMR 7057, Université de Paris/CNRS, 10 rue Alice Domont et Léonie Duquet, 75013, Paris, France.,Laboratoire Mécanismes Adaptatifs et Evolution, UMR 7179 MNHN, CNRS, CP 55, 57 rue Cuvier, 75231, Paris cedex 05, France.,Département de Géosciences, Université de Fribourg, Ch. du Musée 6, 1700, Fribourg, Switzerland
| |
Collapse
|
2
|
Rengaraj D, Hwang YS, Lee HC, Han JY. Zygotic genome activation in the chicken: a comparative review. Cell Mol Life Sci 2020; 77:1879-1891. [PMID: 31728579 PMCID: PMC11104987 DOI: 10.1007/s00018-019-03360-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 10/09/2019] [Accepted: 10/30/2019] [Indexed: 02/06/2023]
Abstract
Maternal RNAs and proteins in the oocyte contribute to early embryonic development. After fertilization, these maternal factors are cleared and embryonic development is determined by an individual's own RNAs and proteins, in a process called the maternal-to-zygotic transition. Zygotic transcription is initially inactive, but is eventually activated by maternal transcription factors. The timing and molecular mechanisms involved in zygotic genome activation (ZGA) have been well-described in many species. Among birds, a transcriptome-based understanding of ZGA has only been explored in chickens by RNA sequencing of intrauterine embryos. RNA sequencing of chicken intrauterine embryos, including oocytes, zygotes, and Eyal-Giladi and Kochav (EGK) stages I-X has enabled the identification of differentially expressed genes between consecutive stages. These studies have revealed that there are two waves of ZGA: a minor wave at the one-cell stage (shortly after fertilization) and a major wave between EGK.III and EGK.VI (during cellularization). In the chicken, the maternal genome is activated during minor ZGA and the paternal genome is quiescent until major ZGA to avoid transcription from supernumerary sperm nuclei. In this review, we provide a detailed overview of events in intrauterine embryonic development in birds (and particularly in chickens), as well as a transcriptome-based analysis of ZGA.
Collapse
Affiliation(s)
- Deivendran Rengaraj
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Young Sun Hwang
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Jae Yong Han
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
3
|
Liu J. The "life code": A theory that unifies the human life cycle and the origin of human tumors. Semin Cancer Biol 2020; 60:380-397. [PMID: 31521747 DOI: 10.1016/j.semcancer.2019.09.005] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 02/07/2023]
Abstract
Tumors arise from the transformation of normal stem cells or mature somatic cells. Intriguingly, two types of tumors have been observed by pathologists for centuries: well-differentiated tumors and undifferentiated tumors. Well-differentiated tumors are architecturally similar to the tissues from which they originate, whereas undifferentiated tumors exhibit high nuclear atypia and do not resemble their tissue of origin. The relationship between these two tumor types and the human life cycle has not been clear. Here I propose a unifying theory that explains the processes of transformation of both tumor types with our life cycle. Human life starts with fertilization of an egg by a sperm to form a zygote. The zygote undergoes successive rounds of cleavage division to form blastomeres within the zona pellucida, with progressive decreases in cell size, and the cleaved blastomeres then compact to form a 32-cell or a "64n" morula [n = 1 full set of chromosomes]. Thus early embryogenesis can be interpreted as a progressive increase in ploidy, and if the zona pellucida is considered a cell membrane and cleavage is interpreted as endomitosis, then the 32-cell morula can be considered a multinucleated giant cell (or 64n syncytium). The decrease in cell size is accompanied by an increase in the nuclear-to-cytoplasmic (N/C) ratio, which then selectively activates a combined set of embryonic transcription factors that dedifferentiate the parental genome to a zygotic genome. This process is associated with a morphologic transition from a morula to a blastocyst and formation of an inner cell mass that gives rise to a new embryonic life. If the subsequent differentiation proceeds to complete maturation, then a normal life results. However, if differentiation is blocked at any point along the continuum of primordial germ cell to embryonic maturation to fetal organ maturation, a well-differentiated tumor will develop. Depending on the level of developmental hierarchy at which the stem cell differentiation is blocked, the resulting tumor can range from highly malignant to benign. Undifferentiated tumors are derived from mature somatic cells through dedifferentiation via a recently described reprogramming mechanism named the giant cell life cycle or the giant cell cycle. This mechanism can initiate "somatic embryogenesis" via an increase in ploidy ranging from 4n to 64n or more, similar to that in normal embryogenesis. This dedifferentiation mechanism is initiated through an endocycle and is followed by endomitosis, which leads to the formation of mononucleated or multinucleated polyploid giant cancer cells (PGCCs), that is, cancer stem-like cells that mimic the blastomere-stage embryo. The giant cell life cycle leads to progressive increases in the N/C ratio and awakens the suppressed embryonic reprogram, resulting in mature somatic transformation into undifferentiated tumors. Thus, the increase in ploidy explains not only normal embryogenesis for well-differentiated tumors but also "somatic embryogenesis" for undifferentiated tumors. I refer to this ploidy increase as the 'life code". The concept of the "life code" may provide a simple theoretical framework to guide our immense efforts to understand cancer and fight this disease.
Collapse
Affiliation(s)
- Jinsong Liu
- Department of Anatomic Pathology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, United States.
| |
Collapse
|
4
|
Fei Z, Bae K, Parent SE, Wan H, Goodwin K, Theisen U, Tanentzapf G, Bruce AEE. A cargo model of yolk syncytial nuclear migration during zebrafish epiboly. Development 2019; 146:dev.169664. [PMID: 30509968 DOI: 10.1242/dev.169664] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/28/2018] [Indexed: 02/05/2023]
Abstract
In teleost fish, the multinucleate yolk syncytial layer functions as an extra-embryonic signaling center to pattern mesendoderm, coordinate morphogenesis and supply nutrients to the embryo. External yolk syncytial nuclei (e-YSN) undergo microtubule-dependent movements that distribute the nuclei over the large yolk mass. How e-YSN migration proceeds, and the role of the yolk microtubules, is not understood, but it is proposed that e-YSN are pulled vegetally as the microtubule network shortens from the vegetal pole. Live imaging revealed that nuclei migrate along microtubules, consistent with a cargo model in which e-YSN are moved down the microtubules by direct association with motor proteins. We found that blocking the plus-end directed microtubule motor kinesin significantly attenuated yolk nuclear movement. Blocking the outer nuclear membrane LINC complex protein Syne2a also slowed e-YSN movement. We propose that e-YSN movement is mediated by the LINC complex, which functions as the adaptor between yolk nuclei and motor proteins. Our work provides new insights into the role of microtubules in morphogenesis of an extra-embryonic tissue and further contributes to the understanding of nuclear migration mechanisms during development.
Collapse
Affiliation(s)
- Zhonghui Fei
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Koeun Bae
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Serge E Parent
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Haoyu Wan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Katharine Goodwin
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ulrike Theisen
- Cellular and Molecular Neurobiology, Zoological Institute, TU Braunschweig, Spielmannstr. 7, 38106 Braunschweig, Germany
| | - Guy Tanentzapf
- Department of Cellular and Physiological Sciences, Life Sciences Institute, Vancouver Campus, 2350 Health Sciences Mall, Vancouver, BC V6T 1Z3, Canada
| | - Ashley E E Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3G5, Canada
| |
Collapse
|
5
|
Hwang YS, Seo M, Kim SK, Bang S, Kim H, Han JY. Zygotic gene activation in the chicken occurs in two waves, the first involving only maternally derived genes. eLife 2018; 7:39381. [PMID: 30375976 PMCID: PMC6242549 DOI: 10.7554/elife.39381] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022] Open
Abstract
The first wave of transcriptional activation occurs after fertilisation in a species-specific pattern. Despite its importance to initial embryonic development, the characteristics of transcription following fertilisation are poorly understood in Aves. Here, we report detailed insights into the onset of genome activation in chickens. We established that two waves of transcriptional activation occurred, one shortly after fertilisation and another at Eyal-Giladi and Kochav Stage V. We found 1544 single nucleotide polymorphisms across 424 transcripts derived from parents that were expressed in offspring during the early embryonic stages. Surprisingly, only the maternal genome was activated in the zygote, and the paternal genome remained silent until the second-wave, regardless of the presence of a paternal pronucleus or supernumerary sperm in the egg. The identified maternal genes involved in cleavage that were replaced by bi-allelic expression. The results demonstrate that only maternal alleles are activated in the chicken zygote upon fertilisation, which could be essential for early embryogenesis and evolutionary outcomes in birds. The early stages of animal development involve a handover of genetic control. Initially, the egg cell is maintained by genetic information inherited from the mother, but soon after fertilization it starts to depend on its own genes instead. Activating genes inside the fertilized egg cell (zygote) so that they can take control of development is known as zygotic genome activation. Despite the fact that birds are often used to study how embryos develop, zygotic genome activation in birds is not well understood. Fertilization in birds, including chickens, is different to mammals in that it requires multiple sperm to fertilize an egg cell. As such, zygotic genome activation in birds is likely to differ from that in mammals. By examining gene expression in embryos from mixed-breed chickens, Hwang, Seo et al. showed that there are two stages of zygotic genome activation in chickens. The genes derived from the mother become active in the first stage, while genes from the father become active in the second stage. Genome activation in birds is therefore very different to the same process in mammals, which involves genome activation of both parents from the first stage. This extra level of control may help to prevent genetic complications resulting from the presence of multiple sperm, each of which carries a different set of genes from the father.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | - Minseok Seo
- C&K Genomics, Seoul, Republic of Korea.,Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, United States
| | - Sang Kyung Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| | | | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.,C&K Genomics, Seoul, Republic of Korea
| | - Jae Yong Han
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea.,Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Han JY, Lee HG, Park YH, Hwang YS, Kim SK, Rengaraj D, Cho BW, Lim JM. Acquisition of pluripotency in the chick embryo occurs during intrauterine embryonic development via a unique transcriptional network. J Anim Sci Biotechnol 2018; 9:31. [PMID: 29644074 PMCID: PMC5891889 DOI: 10.1186/s40104-018-0246-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/26/2018] [Indexed: 12/18/2022] Open
Abstract
Background Acquisition of pluripotency by transcriptional regulatory factors is an initial developmental event that is required for regulation of cell fate and lineage specification during early embryonic development. The evolutionarily conserved core transcriptional factors regulating the pluripotency network in fishes, amphibians, and mammals have been elucidated. There are also species-specific maternally inherited transcriptional factors and their intricate transcriptional networks important in the acquisition of pluripotency. In avian species, however, the core transcriptional network that governs the acquisition of pluripotency during early embryonic development is not well understood. Results We found that chicken NANOG (cNANOG) was expressed in the stages between the pre-ovulatory follicle and oocyte and was continuously detected in Eyal-Giladi and Kochav stage I (EGK.I) to X. However, cPOUV was not expressed during folliculogenesis, but began to be detectable between EGK.V and VI. Unexpectedly, cSOX2 could not be detected during folliculogenesis and intrauterine embryonic development. Instead of cSOX2, cSOX3 was maternally inherited and continuously expressed during chicken intrauterine development. In addition, we found that the pluripotency-related genes such as cENS-1, cKIT, cLIN28A, cMYC, cPRDM14, and cSALL4 began to be dramatically upregulated between EGK.VI and VIII. Conclusion These results suggest that chickens have a unique pluripotent circuitry since maternally inherited cNANOG and cSOX3 may play an important role in the initial acquisition of pluripotency. Moreover, the acquisition of pluripotency in chicken embryos occurs at around EGK.VI to VIII.
Collapse
Affiliation(s)
- Jae Yong Han
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea.,2Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano, 399-4598 Japan
| | - Hyo Gun Lee
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Young Hyun Park
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Young Sun Hwang
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Sang Kyung Kim
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| | - Deivendran Rengaraj
- 3Department of Animal Science and Technology, Chung-Ang University, Anseong, Gyeonggi-do 17546 Korea
| | - Byung Wook Cho
- 4Department of Animal Science, College of Natural Resources and Life Sciences, Pusan National University, Miryang, 50463 Korea
| | - Jeong Mook Lim
- 1Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826 Korea
| |
Collapse
|
7
|
Hwang YS, Seo M, Lee BR, Lee HJ, Park YH, Kim SK, Lee HC, Choi HJ, Yoon J, Kim H, Han JY. The transcriptome of early chicken embryos reveals signaling pathways governing rapid asymmetric cellularization and lineage segregation. Development 2018; 145:dev.157453. [PMID: 29467246 DOI: 10.1242/dev.157453] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 02/12/2018] [Indexed: 12/15/2022]
Abstract
The phylogenomics and comparative functional genomics of avian species were investigated in the Bird 10,000 Genomes (B10K) project because of the important evolutionary position of birds and their value as a research model. However, the systematic profiling of transcriptional changes prior to oviposition has not been investigated in avian species because of the practical difficulties in obtaining pre-oviposited eggs. In this study, a total of 137 pre-oviposited embryos were collected from hen ovaries and oviducts and subjected to RNA-sequencing analyses. Two waves of chicken zygotic genome activation (ZGA) were observed. Functionally distinct developmental programs involving Notch, MAPK, Wnt and TGFβ signaling were separately detected during cleavage and area pellucida formation. Furthermore, the early stages of chicken development were compared with the human and mouse counterparts, highlighting chicken-specific signaling pathways and gradually analogous gene expression via ZGA. These findings provide a genome-wide understanding of avian embryogenesis and comparisons among amniotes.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Minseok Seo
- CHO&KIM Genomics, SNU Research Park, Seoul National University Mt.4-2, Seoul 08826, Korea.,Channing Division of Network Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Bo Ram Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hong Jo Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Sang Kyung Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyung Chul Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Hee Jung Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Joon Yoon
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,CHO&KIM Genomics, SNU Research Park, Seoul National University Mt.4-2, Seoul 08826, Korea.,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea .,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
8
|
Hwang YS, Seo M, Bang S, Kim H, Han JY. Transcriptional and translational dynamics during maternal‐to‐zygotic transition in early chicken development. FASEB J 2018; 32:2004-2011. [DOI: 10.1096/fj.201700955r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
| | - Minseok Seo
- C& K Genomics, SNU Research ParkSeoul National UniversitySeoulKorea
- Channing Division of Network MedicineHarvard Medical School and Brigham and Women's HospitalBostonMassachusettsUSA
| | - Sohyun Bang
- C& K Genomics, SNU Research ParkSeoul National UniversitySeoulKorea
| | - Heebal Kim
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
- C& K Genomics, SNU Research ParkSeoul National UniversitySeoulKorea
- Institute for Biomedical SciencesShinshu UniversityMinamiminowaJapan
| | - Jae Yong Han
- Department of Agricultural BiotechnologyResearch Institute of Agriculture and Life SciencesSeoul National UniversitySeoulKorea
- Institute for Biomedical SciencesShinshu UniversityMinamiminowaJapan
| |
Collapse
|
9
|
The yolk syncytial layer of loach, Misgurnus fossilis (Teleostei) during early development. ZYGOTE 2017; 25:489-497. [DOI: 10.1017/s0967199417000314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
SummaryThe yolk syncytial layer (YSL) of Teleostei is a dynamic multifunctional temporary system. This paper describes the YSL structure of Misgurnus fossilis (Cobitidae) during its early developmental stages, studied using histological methods. YSL formation is prolonged. From the late blastula stage, the basal surface of the YSL is uneven and has protuberances, but becomes smoother during development. There are syncytial ‘islands’ with 1–2 yolk syncytial nuclei in the yolk mass. During epiboly, gastrulation and early segmentation, loach YSL is of different thickness in different regions along the dorso-ventral and antero-posterior axes of an embryo. The YSL is thickened in the dorsal region of gastrulae compared with the ventral region. Although the development of M. fossilis is similar to the development of zebrafish, there are important differences in YSL formation and organization that await further study and analysis. The study of YSL organization contributes to our knowledge of teleost developmental diversity and to the biology of temporary structures.
Collapse
|
10
|
Tseng WC, Munisha M, Gutierrez JB, Dougan ST. Establishment of the Vertebrate Germ Layers. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:307-381. [PMID: 27975275 DOI: 10.1007/978-3-319-46095-6_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The process of germ layer formation is a universal feature of animal development. The germ layers separate the cells that produce the internal organs and tissues from those that produce the nervous system and outer tissues. Their discovery in the early nineteenth century transformed embryology from a purely descriptive field into a rigorous scientific discipline, in which hypotheses could be tested by observation and experimentation. By systematically addressing the questions of how the germ layers are formed and how they generate overall body plan, scientists have made fundamental contributions to the fields of evolution, cell signaling, morphogenesis, and stem cell biology. At each step, this work was advanced by the development of innovative methods of observing cell behavior in vivo and in culture. Here, we take an historical approach to describe our current understanding of vertebrate germ layer formation as it relates to the long-standing questions of developmental biology. By comparing how germ layers form in distantly related vertebrate species, we find that highly conserved molecular pathways can be adapted to perform the same function in dramatically different embryonic environments.
Collapse
Affiliation(s)
- Wei-Chia Tseng
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Mumingjiang Munisha
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA
| | - Juan B Gutierrez
- Department of Mathematics, University of Georgia, Athens, GA, 30602, USA.,Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA
| | - Scott T Dougan
- Department of Cellular Biology, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
11
|
Zhang M, Skirkanich J, Lampson MA, Klein PS. Cell Cycle Remodeling and Zygotic Gene Activation at the Midblastula Transition. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:441-487. [DOI: 10.1007/978-3-319-46095-6_9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
12
|
Hasley A, Chavez S, Danilchik M, Wühr M, Pelegri F. Vertebrate Embryonic Cleavage Pattern Determination. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:117-171. [PMID: 27975272 PMCID: PMC6500441 DOI: 10.1007/978-3-319-46095-6_4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pattern of the earliest cell divisions in a vertebrate embryo lays the groundwork for later developmental events such as gastrulation, organogenesis, and overall body plan establishment. Understanding these early cleavage patterns and the mechanisms that create them is thus crucial for the study of vertebrate development. This chapter describes the early cleavage stages for species representing ray-finned fish, amphibians, birds, reptiles, mammals, and proto-vertebrate ascidians and summarizes current understanding of the mechanisms that govern these patterns. The nearly universal influence of cell shape on orientation and positioning of spindles and cleavage furrows and the mechanisms that mediate this influence are discussed. We discuss in particular models of aster and spindle centering and orientation in large embryonic blastomeres that rely on asymmetric internal pulling forces generated by the cleavage furrow for the previous cell cycle. Also explored are mechanisms that integrate cell division given the limited supply of cellular building blocks in the egg and several-fold changes of cell size during early development, as well as cytoskeletal specializations specific to early blastomeres including processes leading to blastomere cohesion. Finally, we discuss evolutionary conclusions beginning to emerge from the contemporary analysis of the phylogenetic distributions of cleavage patterns. In sum, this chapter seeks to summarize our current understanding of vertebrate early embryonic cleavage patterns and their control and evolution.
Collapse
Affiliation(s)
- Andrew Hasley
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA
| | - Shawn Chavez
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Physiology & Pharmacology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Department of Obstetrics & Gynecology, Oregon Heath & Science University, 505 NW 185th Avenue, Beaverton, OR, 97006, USA
| | - Michael Danilchik
- Department of Integrative Biosciences, L499, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR, 97239, USA
| | - Martin Wühr
- Department of Molecular Biology & The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Icahn Laboratory, Washington Road, Princeton, NJ, 08544, USA
| | - Francisco Pelegri
- Laboratory of Genetics, University of Wisconsin-Madison, Genetics/Biotech Addition, Room 2424, 425-G Henry Mall, Madison, WI, 53706, USA.
| |
Collapse
|
13
|
Houston DW. Vertebrate Axial Patterning: From Egg to Asymmetry. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 953:209-306. [PMID: 27975274 PMCID: PMC6550305 DOI: 10.1007/978-3-319-46095-6_6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The emergence of the bilateral embryonic body axis from a symmetrical egg has been a long-standing question in developmental biology. Historical and modern experiments point to an initial symmetry-breaking event leading to localized Wnt and Nodal growth factor signaling and subsequent induction and formation of a self-regulating dorsal "organizer." This organizer forms at the site of notochord cell internalization and expresses primarily Bone Morphogenetic Protein (BMP) growth factor antagonists that establish a spatiotemporal gradient of BMP signaling across the embryo, directing initial cell differentiation and morphogenesis. Although the basics of this model have been known for some time, many of the molecular and cellular details have only recently been elucidated and the extent that these events remain conserved throughout vertebrate evolution remains unclear. This chapter summarizes historical perspectives as well as recent molecular and genetic advances regarding: (1) the mechanisms that regulate symmetry-breaking in the vertebrate egg and early embryo, (2) the pathways that are activated by these events, in particular the Wnt pathway, and the role of these pathways in the formation and function of the organizer, and (3) how these pathways also mediate anteroposterior patterning and axial morphogenesis. Emphasis is placed on comparative aspects of the egg-to-embryo transition across vertebrates and their evolution. The future prospects for work regarding self-organization and gene regulatory networks in the context of early axis formation are also discussed.
Collapse
Affiliation(s)
- Douglas W Houston
- Department of Biology, The University of Iowa, 257 BB, Iowa City, IA, 52242, USA.
| |
Collapse
|
14
|
Hwang YS, Ko MH, Kim YM, Park YH, Ono T, Han JY. The avian-specific small heat shock protein HSP25 is a constitutive protector against environmental stresses during blastoderm dormancy. Sci Rep 2016; 6:36704. [PMID: 27827412 PMCID: PMC5101479 DOI: 10.1038/srep36704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022] Open
Abstract
Small heat shock proteins (sHSPs) range in size from 12 to 42 kDa and contain an α-crystalline domain. They have been proposed to play roles in the first line of defence against various stresses in an ATP-independent manner. In birds, a newly oviposited blastoderm can survive several weeks in a dormant state in low-temperature storage suggesting that blastoderm cells are basically tolerant of environmental stress. However, sHSPs in the stress-tolerant blastoderm have yet to be investigated. Thus, we characterised the expression and function of sHSPs in the chicken blastoderm. We found that chicken HSP25 was expressed especially in the blastoderm and was highly upregulated during low-temperature storage. Multiple alignments, phylogenetic trees, and expression in the blastoderms of Japanese quail and zebra finch showed homologues of HSP25 were conserved in other avian species. After knockdown of chicken HSP25, the expression of pluripotency marker genes decreased significantly. Furthermore, loss of function studies demonstrated that chicken HSP25 is associated with anti-apoptotic, anti-oxidant, and pro-autophagic effects in chicken blastoderm cells. Collectively, these results suggest avian HSP25 could play an important role in association with the first line of cellular defences against environmental stress and the protection of future embryonic cells in the avian blastoderm.
Collapse
Affiliation(s)
- Young Sun Hwang
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Mee Hyun Ko
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Min Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Hyun Park
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Tamao Ono
- Division of Animal Science, Faculty of Agriculture, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| | - Jae Yong Han
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea.,Institute for Biomedical Sciences, Shinshu University, Minamiminowa, Nagano 399-4598, Japan
| |
Collapse
|
15
|
Bertocchini F, Chuva de Sousa Lopes SM. Germline development in amniotes: A paradigm shift in primordial germ cell specification. Bioessays 2016; 38:791-800. [PMID: 27273724 PMCID: PMC5089639 DOI: 10.1002/bies.201600025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In the field of germline development in amniote vertebrates, primordial germ cell (PGC) specification in birds and reptiles remains controversial. Avians are believed to adopt a predetermination or maternal specification mode of PGC formation, contrary to an inductive mode employed by mammals and, supposedly, reptiles. Here, we revisit and review some key aspects of PGC development that channelled the current subdivision, and challenge the position of birds and reptiles as well as the 'binary' evolutionary model of PGC development in vertebrates. We propose an alternative view on PGC specification where germ plasm plays a role in laying the foundation for the formation of PGC precursors (pPGC), but not necessarily of PGCs. Moreover, inductive mechanisms may be necessary for the transition from pPGCs to PGCs. Within this framework, the implementation of data from birds and reptiles could provide new insights on the evolution of PGC specification in amniotes.
Collapse
Affiliation(s)
- Federica Bertocchini
- Institute of Biomedicine and Biotechnology of Cantabria (IBBTEC)‐CSIC‐University of CantabriaSantanderSpain
| | - Susana M. Chuva de Sousa Lopes
- Department of Anatomy and EmbryologyLeiden University Medical CenterLeidenThe Netherlands
- Department of Reproductive MedicineGhent University HospitalGhentBelgium
| |
Collapse
|
16
|
Bruce AE. Zebrafish epiboly: Spreading thin over the yolk. Dev Dyn 2015; 245:244-58. [DOI: 10.1002/dvdy.24353] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 01/07/2023] Open
Affiliation(s)
- Ashley E.E. Bruce
- Department of Cell and Systems Biology; University of Toronto; Toronto ON Canada
| |
Collapse
|
17
|
Lee HC, Choi HJ, Lee HG, Lim JM, Ono T, Han JY. DAZL Expression Explains Origin and Central Formation of Primordial Germ Cells in Chickens. Stem Cells Dev 2015; 25:68-79. [PMID: 26414995 DOI: 10.1089/scd.2015.0208] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The timing and biological events associated with germ cell specification in chickens have not been determined yet. In this study, we report the origin of primordial germ cells (PGCs) and germ plasm dynamics through investigation of the expression of the chicken homolog of deleted in azoospermia-like (cDAZL) gene during germ cell specification. Asymmetric localization of germ plasm in the center of oocytes from preovulatory follicle stages leads to PGCs being formed in the center. During cleavage stages, DAZL expression pattern changes from a subcellular localization to a diffuse form before and after zygotic genome activation. Meanwhile, PGCs exhibit transcriptional active status during their specification. In addition, knockdown studies of cDAZL, which result in reduced proliferation, aberrant gene expression profiles, and PGC apoptosis in vitro, suggest its possible roles for PGC formation in chicken. In conclusion, DAZL expression reveals formation and initial positioning of PGCs in chickens.
Collapse
Affiliation(s)
- Hyung Chul Lee
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea.,2 Department of Cell and Developmental Biology, University College London , London, United Kingdom
| | - Hee Jung Choi
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Hyo Gun Lee
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Jeong Mook Lim
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea
| | - Tamao Ono
- 3 Division of Animal Science, Faculty of Agriculture, Shinshu University , Nagano, Japan
| | - Jae Yong Han
- 1 Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University , Seoul, Korea.,4 Institute for Biomedical Sciences, Shinshu University , Nagano, Japan
| |
Collapse
|
18
|
Mak SS, Alev C, Nagai H, Wrabel A, Matsuoka Y, Honda A, Sheng G, Ladher RK. Characterization of the finch embryo supports evolutionary conservation of the naive stage of development in amniotes. eLife 2015; 4:e07178. [PMID: 26359635 PMCID: PMC4608004 DOI: 10.7554/elife.07178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/10/2015] [Indexed: 02/06/2023] Open
Abstract
Innate pluripotency of mouse embryos transits from naive to primed state as the inner cell mass differentiates into epiblast. In vitro, their counterparts are embryonic (ESCs) and epiblast stem cells (EpiSCs), respectively. Activation of the FGF signaling cascade results in mouse ESCs differentiating into mEpiSCs, indicative of its requirement in the shift between these states. However, only mouse ESCs correspond to the naive state; ESCs from other mammals and from chick show primed state characteristics. Thus, the significance of the naive state is unclear. In this study, we use zebra finch as a model for comparative ESC studies. The finch blastoderm has mESC-like properties, while chick blastoderm exhibits EpiSC features. In the absence of FGF signaling, finch cells retained expression of pluripotent markers, which were lost in cells from chick or aged finch epiblasts. Our data suggest that the naive state of pluripotency is evolutionarily conserved among amniotes.
Collapse
Affiliation(s)
- Siu-Shan Mak
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Cantas Alev
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Hiroki Nagai
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Anna Wrabel
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Yoko Matsuoka
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Akira Honda
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Guojun Sheng
- Laboratory for Early Embryogenesis, RIKEN Center for Developmental Biology, Kobe, Japan
| | - Raj K Ladher
- Laboratory for Sensory Development, RIKEN Center for Developmental Biology, Kobe, Japan
- National Center for Biological Sciences, Bengaluru, India
| |
Collapse
|