1
|
Jaramillo-Lambert A, Krauchunas AR. Activating the C. elegans egg: Molecular players, current knowledge, and unanswered questions. Curr Top Dev Biol 2025; 162:115-141. [PMID: 40180507 DOI: 10.1016/bs.ctdb.2025.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Egg activation is a global cellular change that, in combination with fertilization, transitions the differentiated, developmentally quiescent oocyte into a totipotent, developmentally active one-cell embryo. In C. elegans, key regulators of egg activation include egg-3, egg-4, egg-5, chs-1, and spe-11. Here we will review our current understanding of how these molecules, and others, ensure the robust activation of the egg by controlling meiosis, formation of the eggshell, and the block to polyspermy.
Collapse
Affiliation(s)
| | - Amber R Krauchunas
- Department of Biological Sciences, University of Delaware, Newark, DE, United States.
| |
Collapse
|
2
|
Zhou XH, Hua MM, Tang JN, Wu BG, Wang XM, Shi CG, Yang Y, Wu J, Wu B, Zhang BL, Sun YS, Zhang TC, Shi HJ. Application of genome tagging technology in elucidating the function of sperm-specific protein 411 (Ssp411). Asian J Androl 2025; 27:120-128. [PMID: 39091129 PMCID: PMC11784959 DOI: 10.4103/aja202442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/22/2024] [Indexed: 08/04/2024] Open
Abstract
ABSTRACT The genome tagging project (GTP) plays a pivotal role in addressing a critical gap in the understanding of protein functions. Within this framework, we successfully generated a human influenza hemagglutinin-tagged sperm-specific protein 411 (HA-tagged Ssp411) mouse model. This model is instrumental in probing the expression and function of Ssp411. Our research revealed that Ssp411 is expressed in the round spermatids, elongating spermatids, elongated spermatids, and epididymal spermatozoa. The comprehensive examination of the distribution of Ssp411 in these germ cells offers new perspectives on its involvement in spermiogenesis. Nevertheless, rigorous further inquiry is imperative to elucidate the precise mechanistic underpinnings of these functions. Ssp411 is not detectable in metaphase II (MII) oocytes, zygotes, or 2-cell stage embryos, highlighting its intricate role in early embryonic development. These findings not only advance our understanding of the role of Ssp411 in reproductive physiology but also significantly contribute to the overarching goals of the GTP, fostering groundbreaking advancements in the fields of spermiogenesis and reproductive biology.
Collapse
Affiliation(s)
- Xue-Hai Zhou
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Min-Min Hua
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Jia-Nan Tang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Bang-Guo Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Xue-Mei Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Chang-Gen Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Yang Yang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Jun Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Bin Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Bao-Li Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Yi-Si Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Tian-Cheng Zhang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| | - Hui-Juan Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of Pharmacy, Fudan University, Shanghai 200237, China
| |
Collapse
|
3
|
Beath EA, Bailey C, Mahantesh Magadam M, Qiu S, McNally KL, McNally FJ. Katanin, kinesin-13, and ataxin-2 inhibit premature interaction between maternal and paternal genomes in C. elegans zygotes. eLife 2024; 13:RP97812. [PMID: 39078879 PMCID: PMC11288632 DOI: 10.7554/elife.97812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
Fertilization occurs before the completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within the zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long-range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in the capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.
Collapse
Affiliation(s)
- Elizabeth A Beath
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | | | - Shuyan Qiu
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of CaliforniaDavisUnited States
| |
Collapse
|
4
|
Beath EA, Bailey C, Magadum MM, Qiu S, McNally KL, McNally FJ. Katanin, kinesin-13 and ataxin-2 inhibit premature interaction between maternal and paternal genomes in C. elegans zygotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584242. [PMID: 38559153 PMCID: PMC10979973 DOI: 10.1101/2024.03.12.584242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fertilization occurs before completion of oocyte meiosis in the majority of animal species and sperm contents move long distances within zygotes of mouse and C. elegans. If incorporated into the meiotic spindle, paternal chromosomes could be expelled into a polar body resulting in lethal monosomy. Through live imaging of fertilization in C. elegans, we found that the microtubule disassembling enzymes, katanin and kinesin-13 limit long range movement of sperm contents and that maternal ataxin-2 maintains paternal DNA and paternal mitochondria as a cohesive unit that moves together. Depletion of katanin or double depletion of kinesin-13 and ataxin-2 resulted in capture of the sperm contents by the meiotic spindle. Thus limiting movement of sperm contents and maintaining cohesion of sperm contents within the zygote both contribute to preventing premature interaction between maternal and paternal genomes.
Collapse
Affiliation(s)
- Elizabeth A Beath
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Cynthia Bailey
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | | | - Shuyan Qiu
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Karen L McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| | - Francis J McNally
- Department of Molecular and Cellular Biology, University of California, Davis, Davis, CA 95618, USA
| |
Collapse
|
5
|
Li D, Huang S, Chai Y, Zhao R, Gong J, Zhang QC, Ou G, Wen W. A paternal protein facilitates sperm RNA delivery to regulate zygotic development. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2342-2353. [PMID: 37160652 DOI: 10.1007/s11427-022-2332-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 03/19/2023] [Indexed: 05/11/2023]
Abstract
Sperm contributes essential paternal factors, including the paternal genome, centrosome, and oocyte-activation signals, to sexual reproduction. However, it remains unresolved how sperm contributes its RNA molecules to regulate early embryonic development. Here, we show that the Caenorhabditis elegans paternal protein SPE-11 assembles into granules during meiotic divisions of spermatogenesis and later matures into a perinuclear structure where sperm RNAs localize. We reconstitute an SPE-11 liquid-phase scaffold in vitro and find that SPE-11 condensates incorporate the nematode RNA, which, in turn, promotes SPE-11 phase separation. Loss of SPE-11 does not affect sperm motility or fertilization but causes pleiotropic development defects in early embryos, and spe-11 mutant males reduce mRNA levels of genes crucial for an oocyte-to-embryo transition or embryonic development. These results reveal that SPE-11 undergoes phase separation and associates with sperm RNAs that are delivered to oocytes during fertilization, providing insights into how a paternal protein regulates early embryonic development.
Collapse
Affiliation(s)
- Dongdong Li
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China
| | - Shijing Huang
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Yongping Chai
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China
| | - Ruiqian Zhao
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Gong
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China
| | - Qiangfeng Cliff Zhang
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China
| | - Guangshuo Ou
- Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, McGovern Institute for Brain Research, School of Life Sciences and MOE Key Laboratory for Protein Science, Tsinghua University, Beijing, 100084, China.
| | - Wenyu Wen
- Department of Neurosurgery, Huashan Hospital, the Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, National Center for Neurological Disorders, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
6
|
Banerjee RP, Srayko M. Sperm-specific glycogen synthase kinase 3 is required for sperm motility and the post-fertilization signal for female meiosis II in Caenorhabditis elegans. Development 2022; 149:275553. [DOI: 10.1242/dev.200229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 04/12/2022] [Indexed: 11/20/2022]
Abstract
ABSTRACT
In most sexually reproducing animals, sperm entry provides the signal to initiate the final stages of female meiosis. In Caenorhabditis elegans, this signal is required for completion of female anaphase I and entry into meiosis II (MII). memi-1/2/3 (meiosis-to-mitosis) encode maternal components that facilitate this process; memi-1/2/3(RNAi) results in a skipped-MII phenotype. Previously, we used a gain-of-function mutation, memi-1(sb41), to identify genetic suppressors that represent candidates for the sperm-delivered signal. Herein, we characterize two suppressors of memi-1(sb41): gskl-1 and gskl-2. Both genes encode functionally redundant sperm glycogen synthase kinase, type 3 (GSK3) protein kinases. Loss of both genes causes defects in male spermatogenesis, sperm pseudopod treadmilling and paternal-effect embryonic lethality. The two kinases locate within the pseudopod of activated sperm, suggesting that they directly or indirectly regulate the sperm cytoskeletal polymer major sperm protein (MSP). The GSK3 genes genetically interact with another memi-1(sb41) suppressor, gsp-4, which encodes a sperm-specific PP1 phosphatase, previously proposed to regulate MSP dynamics. Moreover, gskl-2 gsp-4; gskl-1 triple mutants often skip female MII, similar to memi-1/2/3(RNAi). The GSK3 kinases and PP1 phosphatases perform similar sperm-related functions and work together for post-fertilization functions in the oocyte that involve MEMI.
Collapse
Affiliation(s)
| | - Martin Srayko
- University of Alberta Department of Biological Sciences , , Edmonton, AB T6G 2E9 , Canada
| |
Collapse
|
7
|
Peterson JJ, Tocheny CE, Prajapati G, LaMunyon CW, Shakes DC. Subcellular patterns of SPE-6 localization reveal unexpected complexities in Caenorhabditis elegans sperm activation and sperm function. G3 (BETHESDA, MD.) 2021; 11:jkab288. [PMID: 34849789 PMCID: PMC8527485 DOI: 10.1093/g3journal/jkab288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/06/2021] [Indexed: 11/12/2022]
Abstract
To acquire and maintain directed cell motility, Caenorhabditis elegans sperm must undergo extensive, regulated cellular remodeling, in the absence of new transcription or translation. To regulate sperm function, nematode sperm employ large numbers of protein kinases and phosphatases, including SPE-6, a member of C. elegans' highly expanded casein kinase 1 superfamily. SPE-6 functions during multiple steps of spermatogenesis, including functioning as a "brake" to prevent premature sperm activation in the absence of normal extracellular signals. Here, we describe the subcellular localization patterns of SPE-6 during wild-type C. elegans sperm development and in various sperm activation mutants. While other members of the sperm activation pathway associate with the plasma membrane or localize to the sperm's membranous organelles, SPE-6 surrounds the chromatin mass of unactivated sperm. During sperm activation by either of two semiautonomous signaling pathways, SPE-6 redistributes to the front, central region of the sperm's pseudopod. When disrupted by reduction-of-function alleles, SPE-6 protein is either diminished in a temperature-sensitive manner (hc187) or is mislocalized in a stage-specific manner (hc163). During the multistep process of sperm activation, SPE-6 is released from its perinuclear location after the spike stage in a process that does not require the fusion of membranous organelles with the plasma membrane. After activation, spermatozoa exhibit variable proportions of perinuclear and pseudopod-localized SPE-6, depending on their location within the female reproductive tract. These findings provide new insights regarding SPE-6's role in sperm activation and suggest that extracellular signals during sperm migration may further modulate SPE-6 localization and function.
Collapse
Affiliation(s)
| | - Claire E Tocheny
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| | - Gaurav Prajapati
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Craig W LaMunyon
- Department of Biological Science, California State Polytechnic University, Pomona, CA 91768, USA
| | - Diane C Shakes
- Department of Biology, William & Mary, Williamsburg, VA 23187, USA
| |
Collapse
|
8
|
Van Goor J, Shakes DC, Haag ES. Fisher vs. the Worms: Extraordinary Sex Ratios in Nematodes and the Mechanisms that Produce Them. Cells 2021; 10:1793. [PMID: 34359962 PMCID: PMC8303164 DOI: 10.3390/cells10071793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/08/2021] [Accepted: 07/13/2021] [Indexed: 01/20/2023] Open
Abstract
Parker, Baker, and Smith provided the first robust theory explaining why anisogamy evolves in parallel in multicellular organisms. Anisogamy sets the stage for the emergence of separate sexes, and for another phenomenon with which Parker is associated: sperm competition. In outcrossing taxa with separate sexes, Fisher proposed that the sex ratio will tend towards unity in large, randomly mating populations due to a fitness advantage that accrues in individuals of the rarer sex. This creates a vast excess of sperm over that required to fertilize all available eggs, and intense competition as a result. However, small, inbred populations can experience selection for skewed sex ratios. This is widely appreciated in haplodiploid organisms, in which females can control the sex ratio behaviorally. In this review, we discuss recent research in nematodes that has characterized the mechanisms underlying highly skewed sex ratios in fully diploid systems. These include self-fertile hermaphroditism and the adaptive elimination of sperm competition factors, facultative parthenogenesis, non-Mendelian meiotic oddities involving the sex chromosomes, and environmental sex determination. By connecting sex ratio evolution and sperm biology in surprising ways, these phenomena link two "seminal" contributions of G. A. Parker.
Collapse
Affiliation(s)
- Justin Van Goor
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| | - Diane C. Shakes
- Department of Biology, William and Mary, Williamsburg, VA 23187, USA;
| | - Eric S. Haag
- Department of Biology, University of Maryland, College Park, MD 20742, USA;
| |
Collapse
|
9
|
Hoang HD, Miller MA. Chemosensory and hyperoxia circuits in C. elegans males influence sperm navigational capacity. PLoS Biol 2017; 15:e2002047. [PMID: 28662030 PMCID: PMC5490939 DOI: 10.1371/journal.pbio.2002047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/25/2017] [Indexed: 11/23/2022] Open
Abstract
The sperm’s crucial function is to locate and fuse with a mature oocyte. Under laboratory conditions, Caenorhabditis elegans sperm are very efficient at navigating the hermaphrodite reproductive tract and locating oocytes. Here, we identify chemosensory and oxygen-sensing circuits that affect the sperm’s navigational capacity. Multiple Serpentine Receptor B (SRB) chemosensory receptors regulate Gα pathways in gustatory sensory neurons that extend cilia through the male nose. SRB signaling is necessary and sufficient in these sensory neurons to influence sperm motility parameters. The neuropeptide Y pathway acts together with SRB-13 to antagonize negative effects of the GCY-35 hyperoxia sensor on spermatogenesis. SRB chemoreceptors are not essential for sperm navigation under low oxygen conditions that C. elegans prefers. In ambient oxygen environments, SRB-13 signaling impacts gene expression during spermatogenesis and the sperm’s mitochondria, thereby increasing migration velocity and inhibiting reversals within the hermaphrodite uterus. The SRB-13 transcriptome is highly enriched in genes implicated in pathogen defense, many of which are expressed in diverse tissues. We show that the critical time period for SRB-13 signaling is prior to spermatocyte differentiation. Our results support the model that young C. elegans males sense external environment and oxygen tension, triggering long-lasting downstream signaling events with effects on the sperm’s mitochondria and navigational capacity. Environmental exposures early in male life may alter sperm function and fertility. Habitat loss, disease, climate change, and pollution are thought to negatively affect animal fertility. Sperm are a potential target, but the molecular mechanisms are not understood. The nematode C. elegans is a powerful genetic model to investigate the relationship between environment and male fertility. The hermaphrodite’s transparent epidermis permits the direct visualization of migrating male sperm and fertilization. In this study, we identified multiple serpentine receptor B (SRB) chemosensory receptors that are expressed in amphid sensory neurons, which extend cilia through the male nose. These SRB chemoreceptors are necessary to produce sperm that are efficient at navigating the hermaphrodite reproductive tract to the fertilization site. We show that SRB-13 signaling counteracts the negative effect of GCY-35 O2 sensor activity, thereby maintaining sperm mitochondrial function and navigational capacity in hyperoxic conditions. Of particular interest, SRB-13 acts in early larval stage males prior to testis maturation. We propose that young males respond to specific stressful environments by altering SRB neural circuits, which in turn impact sperm mitochondrial function and motility. This chemosensory mechanism may be part of a systemic response in C. elegans males to external environment and oxygen levels.
Collapse
Affiliation(s)
- Hieu D. Hoang
- Department of Cell, Developmental and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
| | - Michael A. Miller
- Department of Cell, Developmental and Integrative Biology, University of Alabama School of Medicine, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
10
|
Parental Control Begins at the Beginning. Genetics 2016; 204:1377-1378. [PMID: 27927904 DOI: 10.1534/genetics.116.196501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
11
|
Maternal MEMI Promotes Female Meiosis II in Response to Fertilization in Caenorhabditis elegans. Genetics 2016; 204:1461-1477. [PMID: 27729423 DOI: 10.1534/genetics.116.192997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/30/2016] [Indexed: 12/18/2022] Open
Abstract
In most animals, female meiosis completes only after fertilization. Sperm entry has been implicated in providing a signal for the initiation of the final meiotic processes; however, a maternal component required for this process has not been previously identified. We report the characterization of a novel family of three highly similar paralogs (memi-1, memi-2, memi-3) that encode oocyte-specific proteins. A hyper-morphic mutation memi-1(sb41) results in failure to exit female meiosis II properly; however, loss of all three paralogs results in a "skipped meiosis II" phenotype. Mutations that prevent fertilization, such as fer-1(hc1), also cause a skipped meiosis II phenotype, suggesting that the MEMI proteins represent a maternal component of a postfertilization signal that specifies the meiosis II program. MEMI proteins are degraded before mitosis and sensitive to ZYG-11, a substrate-specific adapter for cullin-based ubiquitin ligase activity, and the memi-1(sb41) mutation results in inappropriate persistence of the MEMI-1 protein into mitosis. Using an RNAi screen for suppressors of memi-1(sb41), we identified a sperm-specific PP1 phosphatase, GSP-3/4, as a putative sperm component of the MEMI pathway. We also found that MEMI and GSP-3/4 proteins can physically interact via co-immunoprecipitation. These results suggest that sperm-specific PP1 and maternal MEMI proteins act in the same pathway after fertilization to facilitate proper meiosis II and the transition into embryonic mitosis.
Collapse
|
12
|
Abstract
DNA does not make phenotypes on its own. In this volume entitled "Genes and Phenotypic Evolution," the present review draws the attention on the process of phenotype construction-including development of multicellular organisms-and the multiple interactions and feedbacks between DNA, organism, and environment at various levels and timescales in the evolutionary process. First, during the construction of an individual's phenotype, DNA is recruited as a template for building blocks within the cellular context and may in addition be involved in dynamical feedback loops that depend on the environmental and organismal context. Second, in the production of phenotypic variation among individuals, stochastic, environmental, genetic, and parental sources of variation act jointly. While in controlled laboratory settings, various genetic and environmental factors can be tested one at a time or in various combinations, they cannot be separated in natural populations because the environment is not controlled and the genotype can rarely be replicated. Third, along generations, genotype and environment each have specific properties concerning the origin of their variation, the hereditary transmission of this variation, and the evolutionary feedbacks. Natural selection acts as a feedback from phenotype and environment to genotype. This review integrates recent results and concrete examples that illustrate these three points. Although some themes are shared with recent calls and claims to a new conceptual framework in evolutionary biology, the viewpoint presented here only means to add flesh to the standard evolutionary synthesis.
Collapse
Affiliation(s)
- M-A Félix
- Institut de Biologie Ecole Normale Supérieure, CNRS, Paris, France.
| |
Collapse
|
13
|
Takayama J, Onami S. The Sperm TRP-3 Channel Mediates the Onset of a Ca 2+ Wave in the Fertilized C. elegans Oocyte. Cell Rep 2016; 15:625-637. [DOI: 10.1016/j.celrep.2016.03.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 11/17/2022] Open
|
14
|
Roelens B, Schvarzstein M, Villeneuve AM. Manipulation of Karyotype in Caenorhabditis elegans Reveals Multiple Inputs Driving Pairwise Chromosome Synapsis During Meiosis. Genetics 2015; 201:1363-79. [PMID: 26500263 PMCID: PMC4676528 DOI: 10.1534/genetics.115.182279] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 10/21/2015] [Indexed: 01/12/2023] Open
Abstract
Meiotic chromosome segregation requires pairwise association between homologs, stabilized by the synaptonemal complex (SC). Here, we investigate factors contributing to pairwise synapsis by investigating meiosis in polyploid worms. We devised a strategy, based on transient inhibition of cohesin function, to generate polyploid derivatives of virtually any Caenorhabditis elegans strain. We exploited this strategy to investigate the contribution of recombination to pairwise synapsis in tetraploid and triploid worms. In otherwise wild-type polyploids, chromosomes first sort into homolog groups, then multipartner interactions mature into exclusive pairwise associations. Pairwise synapsis associations still form in recombination-deficient tetraploids, confirming a propensity for synapsis to occur in a strictly pairwise manner. However, the transition from multipartner to pairwise association was perturbed in recombination-deficient triploids, implying a role for recombination in promoting this transition when three partners compete for synapsis. To evaluate the basis of synapsis partner preference, we generated polyploid worms heterozygous for normal sequence and rearranged chromosomes sharing the same pairing center (PC). Tetraploid worms had no detectable preference for identical partners, indicating that PC-adjacent homology drives partner choice in this context. In contrast, triploid worms exhibited a clear preference for identical partners, indicating that homology outside the PC region can influence partner choice. Together, our findings, suggest a two-phase model for C. elegans synapsis: an early phase, in which initial synapsis interactions are driven primarily by recombination-independent assessment of homology near PCs and by a propensity for pairwise SC assembly, and a later phase in which mature synaptic interactions are promoted by recombination.
Collapse
Affiliation(s)
- Baptiste Roelens
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California 94305
| | - Mara Schvarzstein
- Department of Biology, Brooklyn College, City University of New York (CUNY), Brooklyn, New York 11210 Molecular, Cellular, and Developmental Biology Program, The Graduate Center, CUNY, New York, New York 10016
| | - Anne M Villeneuve
- Departments of Developmental Biology and Genetics, Stanford University School of Medicine, Stanford, California 94305
| |
Collapse
|
15
|
Levine MT, Vander Wende HM, Malik HS. Mitotic fidelity requires transgenerational action of a testis-restricted HP1. eLife 2015; 4:e07378. [PMID: 26151671 PMCID: PMC4491702 DOI: 10.7554/elife.07378] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2015] [Accepted: 06/08/2015] [Indexed: 01/02/2023] Open
Abstract
Sperm-packaged DNA must undergo extensive reorganization to ensure its timely participation in embryonic mitosis. Whereas maternal control over this remodeling is well described, paternal contributions are virtually unknown. In this study, we show that Drosophila melanogaster males lacking Heterochromatin Protein 1E (HP1E) sire inviable embryos that undergo catastrophic mitosis. In these embryos, the paternal genome fails to condense and resolve into sister chromatids in synchrony with the maternal genome. This delay leads to a failure of paternal chromosomes, particularly the heterochromatin-rich sex chromosomes, to separate on the first mitotic spindle. Remarkably, HP1E is not inherited on mature sperm chromatin. Instead, HP1E primes paternal chromosomes during spermatogenesis to ensure faithful segregation post-fertilization. This transgenerational effect suggests that maternal control is necessary but not sufficient for transforming sperm DNA into a mitotically competent pronucleus. Instead, paternal action during spermiogenesis exerts post-fertilization control to ensure faithful chromosome segregation in the embryo. DOI:http://dx.doi.org/10.7554/eLife.07378.001 The genetic information of cells is packaged into structures called chromosomes, which are made up of long strands of DNA that are wrapped around proteins to form a structure called chromatin. The cells of most animals contain two copies of every chromosome, but the egg and sperm cells contain only one copy. This means that when an egg fuses with a sperm cell during fertilization, the resulting ‘zygote’ will contain two copies of each chromosome—one inherited from the mother, and one from the father. These chromosomes duplicate and divide many times within the developing embryo in a process known as mitosis. The first division of the zygote is particularly complicated, as the egg and sperm chromosomes must go through extensive—and yet different—chromatin reorganization processes. For instance, paternal DNA is inherited via sperm, where specialized sperm proteins package the DNA more tightly than in the maternal DNA, which is packaged by histone proteins used throughout development. For paternal DNA to participate in mitosis in the embryo, it must first undergo a transition to a histone-packaged state. Despite these differences, both maternal and paternal chromosomes must undergo mitosis at the same time if the zygote is to successfully divide. Although it is known that the egg cell contributes essential proteins that are incorporated into the sperm chromatin to help it reorganize, the importance of paternal proteins in coordinating this process remains poorly understood. Many members of a family of proteins called Heterochromatin Protein 1 (or HP1 for short) have previously been shown to control chromatin organization in plants and animals. In 2012, researchers found that several HP1 proteins are found only in the testes of the fruit fly species Drosophila melanogaster. They predicted that these proteins might help control the reorganization of the paternal chromosomes following fertilization. Levine et al.—including researchers involved in the 2012 study—have now used genetic and cell-based techniques to show that one member of the HP1 family (called HP1E) ensures that the paternal chromosomes are ready for cell division at the same time as the maternal chromosomes. Male flies that are unable to produce this protein do not have any offspring because, while these flies' sperm can fertilize eggs, the resulting zygotes cannot divide as normal. Further experiments revealed that HP1E is not inherited through the chromatin of mature sperm, but instead influences the structure of the chromosomes during the final stages of the development of the sperm cells in the fly testes. This study shows that both maternal and paternal proteins are needed to control how the paternal chromosomes reorganize in fruit fly embryos. Although difficult to discover and decipher, this work re-emphasizes the importance of paternal epigenetic contributions—changes that alter how DNA is read, without changing the DNA sequence itself—for ensuring the viability of resulting offspring. Future work will reveal both the molecular mechanism of this epigenetic transfer of information, as well as why certain Drosophila species are able to naturally overcome the loss of the essential HP1E protein. DOI:http://dx.doi.org/10.7554/eLife.07378.002
Collapse
Affiliation(s)
- Mia T Levine
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Helen M Vander Wende
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | - Harmit S Malik
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| |
Collapse
|
16
|
Stoeckius M, Grün D, Rajewsky N. Paternal RNA contributions in the Caenorhabditis elegans zygote. EMBO J 2014; 33:1740-50. [PMID: 24894551 DOI: 10.15252/embj.201488117] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Development of the early embryo is thought to be mainly driven by maternal gene products and post-transcriptional gene regulation. Here, we used metabolic labeling to show that RNA can be transferred by sperm into the oocyte upon fertilization. To identify genes with paternal expression in the embryo, we performed crosses of males and females from divergent Caenorhabditis elegans strains. RNA sequencing of mRNAs and small RNAs in the 1-cell hybrid embryo revealed that about one hundred sixty paternal mRNAs are reproducibly expressed in the embryo and that about half of all assayed endogenous siRNAs and piRNAs are also of paternal origin. Together, our results suggest an unexplored paternal contribution to early development.
Collapse
Affiliation(s)
- Marlon Stoeckius
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Dominic Grün
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center Berlin, Berlin, Germany
| |
Collapse
|
17
|
Ellis RE, Stanfield GM. The regulation of spermatogenesis and sperm function in nematodes. Semin Cell Dev Biol 2014; 29:17-30. [PMID: 24718317 PMCID: PMC4082717 DOI: 10.1016/j.semcdb.2014.04.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 04/01/2014] [Indexed: 12/12/2022]
Abstract
In the nematode C. elegans, both males and self-fertile hermaphrodites produce sperm. As a result, researchers have been able to use a broad range of genetic and genomic techniques to dissect all aspects of sperm development and function. Their results show that the early stages of spermatogenesis are controlled by transcriptional and translational processes, but later stages are dominated by protein kinases and phosphatases. Once spermatids are produced, they participate in many interactions with other cells - signals from the somatic gonad determine when sperm activate and begin to crawl, signals from the female reproductive tissues guide the sperm, and signals from sperm stimulate oocytes to mature and be ovulated. The sperm also show strong competitive interactions with other sperm and oocytes. Some of the molecules that mediate these processes have conserved functions in animal sperm, others are conserved proteins that have been adapted for new roles in nematode sperm, and some are novel proteins that provide insights into evolutionary change. The advent of new techniques should keep this system on the cutting edge of research in cellular and reproductive biology.
Collapse
Affiliation(s)
- Ronald E Ellis
- Department of Molecular Biology, Rowan University SOM, B303 Science Center, 2 Medical Center Drive, Stratford, NJ 08084, United States.
| | - Gillian M Stanfield
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, United States
| |
Collapse
|
18
|
Combosch DJ, Vollmer SV. Mixed asexual and sexual reproduction in the Indo-Pacific reef coral Pocillopora damicornis. Ecol Evol 2013; 3:3379-87. [PMID: 24223276 PMCID: PMC3797485 DOI: 10.1002/ece3.721] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 07/11/2013] [Accepted: 07/12/2013] [Indexed: 11/21/2022] Open
Abstract
Pocillopora damicornis is one of the best studied reef-building corals, yet it's somewhat unique reproductive strategy remains poorly understood. Genetic studies indicate that P. damicornis larvae are produced almost exclusively parthenogenetically, and yet population genetic surveys suggest frequent sexual reproduction. Using microsatellite data from over 580 larvae from 13 colonies, we demonstrate that P. damicornis displays a mixed reproductive strategy where sexual and asexual larvae are produced simultaneously within the same colony. The majority of larvae were parthenogenetic (94%), but most colonies (10 of the 13) produced a subset of their larvae sexually. Logistic regression indicates that the proportion of sexual larvae varied significantly with colony size, cycle day, and calendar day. In particular, the decrease in sexual larvae with colony size suggests that the mixed reproductive strategy changes across the life of the coral. This unique shift in reproductive strategy leads to increasingly asexual replications of successful genotypes, which (in contrast to exclusive parthenogens) have already contributed to the recombinant gene pool.
Collapse
Affiliation(s)
- David J Combosch
- Marine and Environmental Sciences, Northeastern University Nahant, Massachusetts, 01908
| | | |
Collapse
|
19
|
|
20
|
Control of oocyte growth and meiotic maturation in Caenorhabditis elegans. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 757:277-320. [PMID: 22872481 DOI: 10.1007/978-1-4614-4015-4_10] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
In sexually reproducing animals, oocytes arrest at diplotene or diakinesis and resume meiosis (meiotic maturation) in response to hormones. Chromosome segregation errors in female meiosis I are the leading cause of human birth defects, and age-related changes in the hormonal environment of the ovary are a suggested cause. Caenorhabditis elegans is emerging as a genetic paradigm for studying hormonal control of meiotic maturation. The meiotic maturation processes in C. elegans and mammals share a number of biological and molecular similarities. Major sperm protein (MSP) and luteinizing hormone (LH), though unrelated in sequence, both trigger meiotic resumption using somatic Gα(s)-adenylate cyclase pathways and soma-germline gap-junctional communication. At a molecular level, the oocyte responses apparently involve the control of conserved protein kinase pathways and post-transcriptional gene regulation in the oocyte. At a cellular level, the responses include cortical cytoskeletal rearrangement, nuclear envelope breakdown, assembly of the acentriolar meiotic spindle, chromosome segregation, and likely changes important for fertilization and the oocyte-to-embryo transition. This chapter focuses on signaling mechanisms required for oocyte growth and meiotic maturation in C. elegans and discusses how these mechanisms coordinate the completion of meiosis and the oocyte-to-embryo transition.
Collapse
|
21
|
|
22
|
Gaydos LJ, Rechtsteiner A, Egelhofer TA, Carroll CR, Strome S. Antagonism between MES-4 and Polycomb repressive complex 2 promotes appropriate gene expression in C. elegans germ cells. Cell Rep 2012; 2:1169-77. [PMID: 23103171 DOI: 10.1016/j.celrep.2012.09.019] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/12/2012] [Accepted: 09/14/2012] [Indexed: 12/12/2022] Open
Abstract
The Caenorhabditis elegans MES proteins are key chromatin regulators of the germline. MES-2, MES-3, and MES-6 form the C. elegans Polycomb repressive complex 2 and generate repressive H3K27me3. MES-4 generates H3K36me3 on germline-expressed genes. Transcript profiling of dissected mutant germlines revealed that MES-2/3/6 and MES-4 cooperate to promote the expression of germline genes and repress the X chromosomes and somatic genes. Results from genome-wide chromatin immunoprecipitation showed that H3K27me3 and H3K36me3 occupy mutually exclusive domains on the autosomes and that H3K27me3 is enriched on the X. Loss of MES-4 from germline genes causes H3K27me3 to spread to germline genes, resulting in reduced H3K27me3 elsewhere on the autosomes and especially on the X. Our findings support a model in which H3K36me3 repels H3K27me3 from germline genes and concentrates it on other regions of the genome. This antagonism ensures proper patterns of gene expression for germ cells, which includes repression of somatic genes and the X chromosomes.
Collapse
Affiliation(s)
- Laura J Gaydos
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
23
|
Johnston WL, Dennis JW. The eggshell in the C. elegans oocyte-to-embryo transition. Genesis 2011; 50:333-49. [PMID: 22083685 DOI: 10.1002/dvg.20823] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 12/13/2022]
Abstract
In egg-laying animals, embryonic development takes place within the highly specialized environment provided by the eggshell and its underlying extracellular matrix. Far from being simply a passive physical support, the eggshell is a key player in many early developmental events. Herein, we review current understanding of eggshell structure, biosynthesis, and function in zygotic development of the nematode, C. elegans. Beginning at sperm contact or entry, eggshell layers are produced sequentially. The earlier outer layers are required for secretion or organization of inner layers, and layers differ in composition and function. Developmental events that depend on the eggshell include polyspermy barrier generation, high fidelity meiotic chromosome segregation, osmotic barrier synthesis, polar body extrusion, anterior-posterior polarization, and organization of membrane and cortical proteins. The C. elegans eggshell is proving to be an excellent, tractable system to study the molecular cues of the extracellular matrix that instruct cell polarity and early development.
Collapse
Affiliation(s)
- Wendy L Johnston
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada, M5G 1X5.
| | | |
Collapse
|
24
|
Kozlowska JL, Ahmad AR, Jahesh E, Cutter AD. Genetic variation for postzygotic reproductive isolation between Caenorhabditis briggsae and Caenorhabditis sp. 9. Evolution 2011; 66:1180-95. [PMID: 22486697 DOI: 10.1111/j.1558-5646.2011.01514.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The process of speciation is key to the origins of biodiversity, and yet the Caenorhabditis nematode model system has contributed little to this topic. Genetic studies of speciation in the genus are now feasible, owing to crosses between the recently discovered Caenorhabditis sp. 9 and the well-known C. briggsae producing fertile F(1) hybrid females. We dissected patterns of postzygotic reproductive isolation between these species by crossing eight isogenic strains of C. briggsae reciprocally with six strains of C. sp. 9. We determined that overall patterns of reproductive isolation are robust across these genetic backgrounds. However, we also quantified significant heritable variation within each species for interspecific hybrid incompatibilities for total adult progeny, egg-to-adult viability, and the percentage of male progeny. This demonstrates that intraspecific variation for interspecific hybrid incompatibility occurs despite extensive, albeit incomplete, reproductive isolation. Therefore, this emerging general phenomenon of variable reproductive isolation is not restricted to highly interfertile, early-stage incipient species, but also applies to species in the latest stages of the speciation process. Furthermore, we confirm Haldane's rule and demonstrate strongly asymmetric parent-of-origin effects (Darwin's corollary) that consistently manifest more extremely when hermaphroditic C. briggsae serves as maternal parent. These findings highlight Caenorhabditis as an emerging system for understanding the genetics of general patterns of reproductive isolation.
Collapse
Affiliation(s)
- Joanna L Kozlowska
- Department of Ecology & Evolutionary Biology, University of Toronto,Toronto, ON, Canada
| | | | | | | |
Collapse
|
25
|
Mapping mutations in C. elegans. Methods Cell Biol 2011. [PMID: 22118272 DOI: 10.1016/b978-0-12-544172-8.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
At present, the principal goal of mapping is to establish correspondence between a mutation identified via a change in phenotype and an alteration in the DNA sequence of the genome. Recent advances in molecular biology and bioinformatics have greatly facilitated this procedure, but certain standard methods, such as the three-factor cross, continue to be extremely useful for high-resolution mapping and separation of tightly linked mutations. This chapter provides both general guidelines and specific procedures for the characterization and mapping of newly isolated mutations in C. elegans. Procedures are included for dealing with mutations that cannot be propagated as homozygotes, as well as mutations that can only be scored in specialized genetic backgrounds, for example, suppressor, enhancer, and modifier mutations.
Collapse
|
26
|
Seidel HS, Ailion M, Li J, van Oudenaarden A, Rockman MV, Kruglyak L. A novel sperm-delivered toxin causes late-stage embryo lethality and transmission ratio distortion in C. elegans. PLoS Biol 2011; 9:e1001115. [PMID: 21814493 PMCID: PMC3144186 DOI: 10.1371/journal.pbio.1001115] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 06/16/2011] [Indexed: 12/25/2022] Open
Abstract
The evolutionary fate of an allele ordinarily depends on its contribution to host fitness. Occasionally, however, genetic elements arise that are able to gain a transmission advantage while simultaneously imposing a fitness cost on their hosts. We previously discovered one such element in C. elegans that gains a transmission advantage through a combination of paternal-effect killing and zygotic self-rescue. Here we demonstrate that this element is composed of a sperm-delivered toxin, peel-1, and an embryo-expressed antidote, zeel-1. peel-1 and zeel-1 are located adjacent to one another in the genome and co-occur in an insertion/deletion polymorphism. peel-1 encodes a novel four-pass transmembrane protein that is expressed in sperm and delivered to the embryo via specialized, sperm-specific vesicles. In the absence of zeel-1, sperm-delivered PEEL-1 causes lethal defects in muscle and epidermal tissue at the 2-fold stage of embryogenesis. zeel-1 is expressed transiently in the embryo and encodes a novel six-pass transmembrane domain fused to a domain with sequence similarity to zyg-11, a substrate-recognition subunit of an E3 ubiquitin ligase. zeel-1 appears to have arisen recently, during an expansion of the zyg-11 family, and the transmembrane domain of zeel-1 is required and partially sufficient for antidote activity. Although PEEL-1 and ZEEL-1 normally function in embryos, these proteins can act at other stages as well. When expressed ectopically in adults, PEEL-1 kills a variety of cell types, and ectopic expression of ZEEL-1 rescues these effects. Our results demonstrate that the tight physical linkage between two novel transmembrane proteins has facilitated their co-evolution into an element capable of promoting its own transmission to the detriment of organisms carrying it.
Collapse
Affiliation(s)
- Hannah S. Seidel
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
| | - Michael Ailion
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Jialing Li
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alexander van Oudenaarden
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Matthew V. Rockman
- Department of Biology, New York University, New York, New York, United States of America
- Center for Genomics and Systems Biology, New York University, New York, New York, United States of America
| | - Leonid Kruglyak
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| |
Collapse
|
27
|
Patterson JR, Wood MP, Schisa J. Assembly of RNP granules in stressed and aging oocytes requires nucleoporins and is coordinated with nuclear membrane blebbing. Dev Biol 2011; 353:173-85. [PMID: 21382369 PMCID: PMC3096477 DOI: 10.1016/j.ydbio.2011.02.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 02/02/2011] [Accepted: 02/02/2011] [Indexed: 01/19/2023]
Abstract
Protective cellular responses to stress and aging in the germline are essential for perpetuation of a species; however, relatively few studies have focused on how germ cells respond to stress and aging. We have previously shown that large ribonucleoprotein (RNP) complexes assemble in oocytes of Caenorhabditis during extended meiotic arrest or after environmental stress. Here we explore the regulation of these dynamic RNPs and demonstrate their assembly is coordinated with dramatic, nuclear membrane blebbing in oocytes. Our ultrastructural analyses reveal distinct changes in the endoplasmic reticulum, and the first evidence for the assembly of stacked annulate lamellae in Caenorhabditis. We further show several nucleoporins are required for the complete assembly of RNP granules, and a disruption in RNP granule assembly coupled with a low frequency of nuclear blebbing in arrested oocytes negatively impacts embryonic viability. Our observations support a model where nuclear membrane blebbing is required to increase the trafficking of nucleoporins to the cell cortex in stressed or meiotically arrested cells and to facilitate the recruitment of RNA and protein components of RNPs into large complexes. These new insights may have general implications for better understanding how germ cells preserve their integrity when fertilization is delayed and how cells respond to stress.
Collapse
Affiliation(s)
- Joseph R. Patterson
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Megan P. Wood
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| | - Jennifer Schisa
- Central Michigan University, Department of Biology, Mount Pleasant, MI 48859
| |
Collapse
|
28
|
Singaravelu G, Singson A. New insights into the mechanism of fertilization in nematodes. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2011; 289:211-38. [PMID: 21749902 PMCID: PMC3273857 DOI: 10.1016/b978-0-12-386039-2.00006-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fertilization results from the fusion of male and female gametes in all sexually reproducing organisms. Much of nematode fertility work was focused on Caenorhabditis elegans and Ascaris suum. The C. elegans hermaphrodite produces a limited number of sperm initially and then commits to the exclusive production of oocytes. The postmeiotic differentiation called spermiogenesis converts sessile spermatids into motile spermatozoa. The motility of spermatozoa depends on dynamic assembly and disassembly of a major sperm protein-based cytoskeleton uniquely found in nematodes. Both self-derived and male-derived spermatozoa are stored in spermatheca, the site of fertilization in hermaphrodites. The oocyte is arrested in meiotic prophase I until a sperm-derived signal relieves the inhibition allowing the meiotic maturation to occur. Oocyte undergoes meiotic maturation, enters into spermatheca, gets fertilized, completes meiosis, and exits into uterus as a zygote. This review focuses on our current understanding of the events around fertilization in nematodes.
Collapse
|
29
|
Abstract
Although the general events surrounding fertilization in many species are well described, the molecular underpinnings of fertilization are still poorly understood. Caenorhabditis elegans has emerged as a powerful model system for addressing the molecular and cell biological mechanism of fertilization. A primary advantage is the ability to isolate and propagate mutants that effect gametes and no other cells. This chapter provides conceptual guidelines for the identification, maintenance, and experimental approaches for the study fertility mutants.
Collapse
Affiliation(s)
- Brian D. Geldziler
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| | - Matthew R. Marcello
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| | | | - Andrew Singson
- Waksman Institute, Rutgers University, Dept. of Microbiology and Molecular Genetics
| |
Collapse
|
30
|
Eggshell chitin and chitin-interacting proteins prevent polyspermy in C. elegans. Curr Biol 2010; 20:1932-7. [PMID: 20971008 DOI: 10.1016/j.cub.2010.09.059] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2009] [Revised: 07/23/2010] [Accepted: 09/23/2010] [Indexed: 11/21/2022]
Abstract
Development requires fertilization by a single sperm. In Caenorhabditis elegans, fertilization occurs in a sperm-filled spermatheca, implying the barrier to polyspermy is generated in this compartment. Eggshell chitin synthesis is initiated at fertilization, and chitin is deposited before the zygote exits the spermatheca. Whereas polyspermy is very rare in wild-type, here we report an incidence of 14%-51% in zygotes made chitin deficient by loss of chitin synthase-1 (CHS-1), the CHS-1 substrate UDP-N-acetylglucosamine, the CHS-1-interacting protein EGG-3, or the sperm-provided protein SPE-11. The spe-11(hc90) mutant deposits chitin at the male end but fails to complete a continuous layer. The polyspermy barrier is also compromised by loss of the chitin-binding protein CBD-1 or the GLD-1-regulated LDL receptor-like EGG-1, together with its homolog, EGG-2. Loss of CBD-1 or EGG-1/2 disrupts oocyte cortical distribution of CHS-1, as well as MBK-2 and EGG-3. In CBD-1 or EGG-1/2 deficiency, chitin is synthesized but the eggshell is fractured, suggesting aberrantly clustered CHS-1/MBK-2/EGG-3 may fail to support construction of a continuous eggshell. Together, our results show that eggshell chitin is required to prevent polyspermy in C. elegans, in addition to its previously reported requirement in polar body extrusion and polarization of the zygote.
Collapse
|
31
|
Nishimura H, L'Hernault SW. Spermatogenesis-defective (spe) mutants of the nematode Caenorhabditis elegans provide clues to solve the puzzle of male germline functions during reproduction. Dev Dyn 2010; 239:1502-14. [PMID: 20419782 DOI: 10.1002/dvdy.22271] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
In most species, each sex produces gametes, usually either sperm or oocytes, from its germline during gametogenesis. The sperm and oocyte subsequently fuse together during fertilization to create the next generation. This review focuses on spermatogenesis and the roles of sperm during fertilization in the nematode Caenorhabditis elegans, where suitable mutants are readily obtained. So far, 186 mutants defective in the C. elegans male germline functions have been isolated, and many of these mutations are alleles for one of the approximately 60 spermatogenesis-defective (spe) genes. Many cloned spe genes are expressed specifically in the male germline, where they play roles during spermatogenesis (spermatid production), spermiogenesis (spermatid activation into spermatozoa), and/or fertilization. Moreover, several spe genes are orthologs of mammalian genes, suggesting that the reproductive processes of the C. elegans and the mammalian male germlines might share common pathways at the molecular level.
Collapse
Affiliation(s)
- Hitoshi Nishimura
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
32
|
Meyerzon M, Gao Z, Liu J, Wu JC, Malone CJ, Starr DA. Centrosome attachment to the C. elegans male pronucleus is dependent on the surface area of the nuclear envelope. Dev Biol 2009; 327:433-46. [PMID: 19162001 PMCID: PMC2668512 DOI: 10.1016/j.ydbio.2008.12.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Revised: 12/13/2008] [Accepted: 12/19/2008] [Indexed: 01/11/2023]
Abstract
A close association must be maintained between the male pronucleus and the centrosomes during pronuclear migration. In C. elegans, simultaneous depletion of inner nuclear membrane LEM proteins EMR-1 and LEM-2, depletion of the nuclear lamina proteins LMN-1 or BAF-1, or the depletion of nuclear import components leads to embryonic lethality with small pronuclei. Here, a novel centrosome detachment phenotype in C. elegans zygotes is described. Zygotes with defects in the nuclear envelope had small pronuclei with a single centrosome detached from the male pronucleus. ZYG-12, SUN-1, and LIS-1, which function at the nuclear envelope with dynein to attach centrosomes, were observed at normal concentrations on the nuclear envelope of pronuclei with detached centrosomes. Analysis of time-lapse images showed that as mutant pronuclei grew in surface area, they captured detached centrosomes. Larger tetraploid or smaller histone::mCherry pronuclei suppressed or enhanced the centrosome detachment phenotype respectively. In embryos fertilized with anucleated sperm, only one centrosome was captured by small female pronuclei, suggesting the mechanism of capture is dependent on the surface area of the outer nuclear membrane available to interact with aster microtubules. We propose that the limiting factor for centrosome attachment to the surface of abnormally small pronuclei is dynein.
Collapse
Affiliation(s)
- Marina Meyerzon
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Zhizhen Gao
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Jin Liu
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Jui-Ching Wu
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Christian J. Malone
- Department of Biochemistry and Molecular Biology, Penn State University, University Park, PA 16802
| | - Daniel A. Starr
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| |
Collapse
|
33
|
|
34
|
Kastelic JP, Thundathil JC. Breeding Soundness Evaluation and Semen Analysis for Predicting Bull Fertility. Reprod Domest Anim 2008; 43 Suppl 2:368-73. [DOI: 10.1111/j.1439-0531.2008.01186.x] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
FitzGerald J, Luo M, Chaudhury A, Berger F. DNA methylation causes predominant maternal controls of plant embryo growth. PLoS One 2008; 3:e2298. [PMID: 18509545 PMCID: PMC2390113 DOI: 10.1371/journal.pone.0002298] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 04/16/2008] [Indexed: 11/22/2022] Open
Abstract
The parental conflict hypothesis predicts that the mother inhibits embryo growth counteracting growth enhancement by the father. In plants the DNA methyltransferase MET1 is a central regulator of parentally imprinted genes that affect seed growth. However the relation between the role of MET1 in imprinting and its control of seed size has remained unclear. Here we combine cytological, genetic and statistical analyses to study the effect of MET1 on seed growth. We show that the loss of MET1 during male gametogenesis causes a reduction of seed size, presumably linked to silencing of the paternal allele of growth enhancers in the endosperm, which nurtures the embryo. However, we find no evidence for a similar role of MET1 during female gametogenesis. Rather, the reduction of MET1 dosage in the maternal somatic tissues causes seed size increase. MET1 inhibits seed growth by restricting cell division and elongation in the maternal integuments that surround the seed. Our data demonstrate new controls of seed growth linked to the mode of reproduction typical of flowering plants. We conclude that the regulation of embryo growth by MET1 results from a combination of predominant maternal controls, and that DNA methylation maintained by MET1 does not orchestrate a parental conflict.
Collapse
Affiliation(s)
- Jonathan FitzGerald
- Chromatin and reproduction Group, Temasek Life Sciences Laboratory, National University of Singapore, Department of Biological Sciences, Singapore, Singapore
| | | | | | | |
Collapse
|
36
|
Seidel HS, Rockman MV, Kruglyak L. Widespread genetic incompatibility in C. elegans maintained by balancing selection. Science 2008; 319:589-94. [PMID: 18187622 PMCID: PMC2421010 DOI: 10.1126/science.1151107] [Citation(s) in RCA: 212] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural selection is expected to eliminate genetic incompatibilities from interbreeding populations. We have discovered a globally distributed incompatibility in the primarily selfing species Caenorhabditis elegans that has been maintained despite its negative consequences for fitness. Embryos homozygous for a naturally occurring deletion of the zygotically acting gene zeel-1 arrest if their sperm parent carries an incompatible allele of a second, paternal-effect locus, peel-1. The two interacting loci are tightly linked, with incompatible alleles occurring in linkage disequilibrium in two common haplotypes. These haplotypes exhibit elevated sequence divergence, and population genetic analyses of this region indicate that natural selection is preserving both haplotypes in the population. Our data suggest that long-term maintenance of a balanced polymorphism has permitted the incompatibility to persist despite gene flow across the rest of the genome.
Collapse
Affiliation(s)
- Hannah S Seidel
- Lewis-Sigler Institute for Integrative Genomics and Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
37
|
Epigenetic processes implemented during spermatogenesis distinguish the paternal pronucleus in the embryo. Reprod Biomed Online 2008; 16:13-22. [DOI: 10.1016/s1472-6483(10)60552-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
38
|
Koide Y, Onishi K, Kanazawa A, Sano Y. Genetics of Speciation in Rice. RICE BIOLOGY IN THE GENOMICS ERA 2008. [DOI: 10.1007/978-3-540-74250-0_19] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
39
|
Maruyama R, Velarde NV, Klancer R, Gordon S, Kadandale P, Parry JM, Hang JS, Rubin J, Stewart-Michaelis A, Schweinsberg P, Grant BD, Piano F, Sugimoto A, Singson A. EGG-3 regulates cell-surface and cortex rearrangements during egg activation in Caenorhabditis elegans. Curr Biol 2007; 17:1555-60. [PMID: 17869112 DOI: 10.1016/j.cub.2007.08.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 08/02/2007] [Accepted: 08/03/2007] [Indexed: 01/20/2023]
Abstract
Fertilization triggers egg activation and converts the egg into a developing embryo. The events of this egg-to-embryo transition typically include the resumption of meiosis, the reorganization of the cortical actin cytoskeleton, and the remodeling of the oocyte surface. The factors that regulate sperm-dependent egg-activation events are not well understood. Caenorhabditis elegans EGG-3, a member of the protein tyrosine phosphatase-like (PTPL) family, is essential for regulating cell-surface and cortex rearrangements during egg activation in response to sperm entry. Although fertilization occurred normally in egg-3 mutants, the polarized dispersal of F-actin is altered, a chitin eggshell is not formed, and no polar bodies are produced. EGG-3 is associated with the oocyte plasma membrane in a pattern that is similar to CHS-1 and MBK-2. CHS-1 is required for eggshell deposition, whereas MBK-2 is required for the degradation of maternal proteins during the egg-to-embryo transition. The localization of CHS-1 and EGG-3 are interdependent and both genes were required for the proper localization of MBK-2 in oocytes. Therefore, EGG-3 plays a central role in egg activation by influencing polarized F-actin dynamics and the localization or activity of molecules that are directly involved in executing the egg-to-embryo transition.
Collapse
Affiliation(s)
- Rika Maruyama
- Waksman Institute, Department of Genetics, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
|
41
|
Darby C, Chakraborti A, Politz SM, Daniels CC, Tan L, Drace K. Caenorhabditis elegans mutants resistant to attachment of Yersinia biofilms. Genetics 2007; 176:221-30. [PMID: 17339204 PMCID: PMC1893055 DOI: 10.1534/genetics.106.067496] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The detailed composition and structure of the Caenorhabditis elegans surface are unknown. Previous genetic studies used antibody or lectin binding to identify srf genes that play roles in surface determination. Infection by Microbacterium nematophilum identified bus (bacterially unswollen) genes that also affect surface characteristics. We report that biofilms produced by Yersinia pestis and Y. pseudotuberculosis, which bind the C. elegans surface predominantly on the head, can be used to identify additional surface-determining genes. A screen for C. elegans mutants with a biofilm absent on the head (Bah) phenotype identified three novel genes: bah-1, bah-2, and bah-3. The bah-1 and bah-2 mutants have slightly fragile cuticles but are neither Srf nor Bus, suggesting that they are specific for surface components involved in biofilm attachment. A bah-3 mutant has normal cuticle integrity, but shows a stage-specific Srf phenotype. The screen produced alleles of five known surface genes: srf-2, srf-3, bus-4, bus-12, and bus-17. For the X-linked bus-17, a paternal effect was observed in biofilm assays.
Collapse
Affiliation(s)
- Creg Darby
- Department of Cell and Tissue Biology, University of California, San Francisco, CA 94143-0640, USA.
| | | | | | | | | | | |
Collapse
|
42
|
Jud M, Razelun J, Bickel J, Czerwinski M, Schisa JA. Conservation of large foci formation in arrested oocytes of Caenorhabditis nematodes. Dev Genes Evol 2007; 217:221-6. [PMID: 17216268 DOI: 10.1007/s00427-006-0130-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Accepted: 12/12/2006] [Indexed: 10/23/2022]
Abstract
Within the rhabditid phylogeny of nematodes, the great majority of species are gonochoristic, having evolved as obligate male/female species. In contrast, the well-studied nematode model system, Caenorhabditis elegans, is androdioecious, utilizing a hermaphroditic/male reproductive system. We have previously determined that in the arrested oocytes of old-aged C. elegans hermaphrodites with depleted sperm, large cytoplasmic ribonucleoprotein foci form. The formation of these foci is reversible, as they dissociate within 3 h after a male mates with the hermaphrodite, resupplying it with sperm. The functional significance of these oocyte foci is not known and previously has not been clear for a hermaphroditic species in which oocytes of young adults wait only approximately 23 min to be fertilized. One hypothesis is that the foci function to maintain maternal mRNAs in oocytes while fertilization is delayed. In this paper, we examine four gonochoristic rhabditid species: Caenorhabditis remanei, Caenorhabditis sp. CB5161, Caenorhabditis sp. PS1010, and Rhabditella axei DF5006. We demonstrate that in three of these four species, ovulation arrests in unmated females until mating occurs and large cytoplasmic foci develop in arrested oocytes. The oocyte foci contain nuclear pore proteins and, in C. remanei at least, the RNA-binding protein MEX-3 as well as RNA. We speculate that these foci maintain the integrity of ooctyes, possibly maintaining the stability or translational repression of maternal mRNAs in unmated females. We further speculate that their presence in oocytes of old-aged C. elegans hermaphrodites is due to conservation from an ancestral gonochoristic state.
Collapse
Affiliation(s)
- Molly Jud
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859, USA
| | | | | | | | | |
Collapse
|
43
|
Chu DS, Liu H, Nix P, Wu TF, Ralston EJ, Yates JR, Meyer BJ. Sperm chromatin proteomics identifies evolutionarily conserved fertility factors. Nature 2006; 443:101-5. [PMID: 16943775 PMCID: PMC2731558 DOI: 10.1038/nature05050] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2006] [Accepted: 07/06/2006] [Indexed: 11/09/2022]
Abstract
Male infertility is a long-standing enigma of significant medical concern. The integrity of sperm chromatin is a clinical indicator of male fertility and in vitro fertilization potential: chromosome aneuploidy and DNA decondensation or damage are correlated with reproductive failure. Identifying conserved proteins important for sperm chromatin structure and packaging can reveal universal causes of infertility. Here we combine proteomics, cytology and functional analysis in Caenorhabditis elegans to identify spermatogenic chromatin-associated proteins that are important for fertility. Our strategy employed multiple steps: purification of chromatin from comparable meiotic cell types, namely those undergoing spermatogenesis or oogenesis; proteomic analysis by multidimensional protein identification technology (MudPIT) of factors that co-purify with chromatin; prioritization of sperm proteins based on abundance; and subtraction of common proteins to eliminate general chromatin and meiotic factors. Our approach reduced 1,099 proteins co-purified with spermatogenic chromatin, currently the most extensive catalogue, to 132 proteins for functional analysis. Reduction of gene function through RNA interference coupled with protein localization studies revealed conserved spermatogenesis-specific proteins vital for DNA compaction, chromosome segregation, and fertility. Unexpected roles in spermatogenesis were also detected for factors involved in other processes. Our strategy to find fertility factors conserved from C. elegans to mammals achieved its goal: of mouse gene knockouts corresponding to nematode proteins, 37% (7/19) cause male sterility. Our list therefore provides significant opportunity to identify causes of male infertility and targets for male contraceptives.
Collapse
Affiliation(s)
- Diana S Chu
- Department of Biology, 1600 Holloway Avenue, San Francisco State University, San Francisco, California 94132, USA.
| | | | | | | | | | | | | |
Collapse
|
44
|
Yamamoto I, Kosinski ME, Greenstein D. Start me up: Cell signaling and the journey from oocyte to embryo inC. elegans. Dev Dyn 2006; 235:571-85. [PMID: 16372336 DOI: 10.1002/dvdy.20662] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Intercellular communication plays a pivotal role in regulating and coordinating oocyte meiosis and fertilization, key triggers for embryonic development. The nematode Caenorhabaditis elegans has emerged as an important experimental paradigm for exploring these fundamental reproductive processes and their regulation. The oocytes of most animal species arrest during meiotic prophase and complete meiosis in response to intercellular signaling in the process of meiotic maturation. Oocyte meiotic maturation is defined by the transition between diakinesis and metaphase of meiosis I and is accompanied by nuclear envelope breakdown and meiotic spindle assembly. As such, the meiotic maturation process is essential for completing meiosis and a prerequisite for successful fertilization. In C. elegans, the processes of meiotic maturation, ovulation, and fertilization are temporally coupled: sperm utilize the major sperm protein as a hormone to trigger oocyte meiotic maturation, and, in turn, the maturing oocyte signals its own ovulation, leading to fertilization. The powerful genetic screens possible in C. elegans have led to the identification of several sperm cell surface proteins that are required for the interaction and fusion of gametes at fertilization. The study of these proteins provides fundamental insights into fertilization mechanisms, their role in speciation, and their potential conservation across phyla. Signaling processes sparked by fertilization are required for meiotic chromosome segregation and initiating the embryonic program. Here we review recent advances in understanding how signaling mechanisms contribute to the oocyte-to-embryo transition in C. elegans.
Collapse
Affiliation(s)
- Ikuko Yamamoto
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-8240, USA
| | | | | |
Collapse
|
45
|
Gleason EJ, Lindsey WC, Kroft TL, Singson AW, L'hernault SW. spe-10 encodes a DHHC-CRD zinc-finger membrane protein required for endoplasmic reticulum/Golgi membrane morphogenesis during Caenorhabditis elegans spermatogenesis. Genetics 2006; 172:145-58. [PMID: 16143610 PMCID: PMC1456142 DOI: 10.1534/genetics.105.047340] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Accepted: 08/17/2005] [Indexed: 11/18/2022] Open
Abstract
C. elegans spermatogenesis employs lysosome-related fibrous body-membranous organelles (FB-MOs) for transport of many cellular components. Previous work showed that spe-10 mutants contain FB-MOs that prematurely disassemble, resulting in defective transport of FB components into developing spermatids. Consequently, spe-10 spermatids are smaller than wild type and contain defective FB-MO derivatives. In this article, we show that spe-10 encodes a four-pass integral membrane protein that has a DHHC-CRD zinc-finger motif. The DHHC-CRD motif is found in a large, diverse family of proteins that have been implicated in palmitoyl transfer during protein lipidation. Seven spe-10 mutants were analyzed, including missense, nonsense, and deletion mutants. An antiserum to SPE-10 showed significant colocalization with a known marker for the FB-MOs during wild-type spermatogenesis. In contrast, the spe-10(ok1149) deletion mutant lacked detectable SPE-10 staining; this mutant lacks a spe-10 promoter and most coding sequence. The spe-10(eb64) missense mutation, which changes a conserved residue within the DHHC-CRD domain in all homologues, behaves as a null mutant. These results suggest that wild-type SPE-10 is required for the MO to properly deliver the FB to the C. elegans spermatid and the DHHC-CRD domain is essential for this function.
Collapse
|
46
|
Schetter A, Askjaer P, Piano F, Mattaj I, Kemphues K. Nucleoporins NPP-1, NPP-3, NPP-4, NPP-11 and NPP-13 are required for proper spindle orientation in C. elegans. Dev Biol 2005; 289:360-71. [PMID: 16325795 PMCID: PMC1405919 DOI: 10.1016/j.ydbio.2005.10.038] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2005] [Revised: 09/27/2005] [Accepted: 10/18/2005] [Indexed: 11/28/2022]
Abstract
Nucleoporins are components of the nuclear pore, which is required for nucleo-cytoplasmic transport. We report a role for a subclass of nucleoporins in orienting the mitotic spindle in C. elegans embryos. RNAi-mediated depletion of any of five putative nucleoporins npp-1, npp-3, npp-4, npp-11, and npp-13 leads to indistinguishable spindle orientation defects. Transgenic worms expressing NPP-1::GFP or NPP-11::GFP show GFP localization at the nuclear envelope, consistent with their predicted function. NPP-1 interacts with the other nucleoporins in yeast two-hybrid assays, suggesting that the proteins affect spindle orientation by a common process. The failed orientation phenotype of npp-1(RNAi) is at least partially epistatic to the ectopic spindle rotation in the AB blastomere of par-3 mutant embryos. This suggests that NPP-1 contributes to the mechanics of spindle orientation. However, NPP-1 is also required for PAR-6 asymmetry at the two-cell stage, indicating that nucleoporins may be required to define cortical domains in the germ line blastomere P1. Nuclear envelope structure is abnormal in npp-1(RNAi) embryos, but the envelope maintains its integrity, and most nuclear proteins we assayed accumulate normally. These findings raise the possibility that these nucleoporins may have direct roles in orienting the mitotic spindle and the maintenance of cell polarity.
Collapse
Affiliation(s)
- Aaron Schetter
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
- Cancer Prevention Fellowship Program, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD 20852
| | - Peter Askjaer
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
- Institute of Biomedical Research, Barcelona Science Park IRB-PCB, Josep Samitier 1-5, 08028 Barcelona, Spain
| | - Fabio Piano
- Department of Biology, New York University, New York, New York 10003, USA
| | - Iain Mattaj
- European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | - Kenneth Kemphues
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
47
|
Shi HJ, Wu AZ, Santos M, Feng ZM, Huang L, Chen YM, Zhu K, Chen CLC. Cloning and characterization of rat spermatid protein SSP411: a thioredoxin-like protein. ACTA ACUST UNITED AC 2005; 25:479-93. [PMID: 15223837 DOI: 10.1002/j.1939-4640.2004.tb02819.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In an attempt to identify new sperm-specific genes that are involved in sperm maturation, fertilization, and embryo development, such as the mammalian ortholog of the sperm-supplied protein gene, spe-11, in Caenorhabditis elegans, we cloned and characterized a new spermatid-specific protein gene, ssp411, from adult rat testes. The ssp411 cDNA shared >85% sequence identity with an unnamed human protein, FLJ21347, and an uncharacterized mouse testicular protein called transcript increased in spermiogenesis 78 (TISP78). A 2.8-kb ssp411 mRNA was expressed in a testis-specific and age-dependent manner; the mRNA was evident at 28 days and remained at high levels throughout adulthood. An SSP411 protein of molecular weight 88 000 was detected in testicular extracts by Western blot analysis. Ssp411 mRNA and SSP411 protein, as analyzed by in situ hybridization and immunohistochemistry, were both expressed in a stage-dependent fashion during the cycle of the seminiferous epithelium. The ssp411 mRNA was predominantly localized to round and elongated spermatids, with maximal expression at stages VII-XII. The SSP411 protein was mainly observed in elongated spermatids and reached its highest levels during stages V-VI. A conserved thioredoxin-like domain was detected in the N-terminal region of SSP411 and its orthologs. An analysis of the predicted 3-dimensional structural modeling and folding pattern further suggested that SSP411 is identifiable as a member of thioredoxin family. In summary, we have identified a new rat spermatid protein gene, ssp411, and its orthologs in human and mouse and demonstrated that SSP411 might belong to a testis-specific thioredoxin family. This suggests that SSP411 may play a role in sperm maturation, fertilization, and/or embryo development, as has been shown in thioredoxin family.
Collapse
Affiliation(s)
- Hui-Juan Shi
- Center for Biomedical Research, Population Council, Beijing, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
McNally KL, McNally FJ. Fertilization initiates the transition from anaphase I to metaphase II during female meiosis in C. elegans. Dev Biol 2005; 282:218-30. [PMID: 15936342 DOI: 10.1016/j.ydbio.2005.03.009] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2004] [Revised: 03/02/2005] [Accepted: 03/15/2005] [Indexed: 11/15/2022]
Abstract
Oocytes from most animals arrest twice during the meiotic cell cycle. The universally conserved prophase I arrest is released by a maturation hormone that allows progression to a second arrest point, typically metaphase I or II. This second arrest allows for short-term storage of fertilization-competent eggs and is released by signaling that occurs during fertilization. Nematodes are unique in that the maturation hormone is secreted by sperm rather than by the mother's somatic tissues. We have investigated the nature of the second arrest in matured but unfertilized Caenorhabditis elegans embryos using time-lapse imaging of GFP-tubulin or GFP-histone. Unfertilized embryos completed anaphase I but did not form polar bodies or assemble meiosis II spindles. Nevertheless, unfertilized embryos assembled female pronuclei at the same time as fertilized embryos. Analysis of embryos fertilized by sperm lacking the SPE-11 protein indicated that fertilization promotes meiotic cytokinesis through the SPE-11 protein but assembly of the meiosis II spindle is initiated through an SPE-11-independent pathway.
Collapse
Affiliation(s)
- Karen L McNally
- Section of Molecular and Cellular Biology, 149 Briggs Hall, University of California, Davis, CA 95616, USA
| | | |
Collapse
|
49
|
Han Z, Chung YG, Gao S, Latham KE. Maternal Factors Controlling Blastomere Fragmentation in Early Mouse Embryos1. Biol Reprod 2005; 72:612-8. [PMID: 15537860 DOI: 10.1095/biolreprod.104.035444] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Interactions between sperm and egg are required to maintain embryo viability and cellular integrity. Differential transcriptional activities and epigenetic differences that include genomic imprinting provide mechanisms by which complementary parental genome functions support early embryogenesis. We previously showed that cytofragmentation can be influenced by the specific combination of maternal and paternal genotypes. Using maternal pronuclear transfer in mouse embryos, we examined the cellular basis for the maternal genotype effect. We found that the maternal genotype effect is predominantly controlled by the maternal pronucleus, with a lesser role played by the ooplasm. This effect of the maternal pronucleus is sensitive to alpha-amanitin treatment. The effect of the maternal component of the embryonic genome on cytofragmentation constitutes the earliest known effect of the embryonic genome on mammalian embryo phenotype. The results also indicate that clinical procedures seeking to define or manipulate oocyte quality in humans should take into account early effects of the embryonic genome, particularly the maternal genome.
Collapse
Affiliation(s)
- Zhiming Han
- The Fels Institute for Cancer Research and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | | | | | |
Collapse
|
50
|
Sasao T, Itoh N, Takano H, Watanabe S, Wei G, Tsukamoto T, Kuzumaki N, Takimoto M. The protein encoded by cancer/testis gene D40/AF15q14 is localized in spermatocytes, acrosomes of spermatids and ejaculated spermatozoa. Reproduction 2004; 128:709-16. [PMID: 15579588 DOI: 10.1530/rep.1.00312] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously identified and cloned a human gene, D40, that is preferentially expressed in testis among normal organs, while it is widely expressed in various human tumor cell lines and primary tumors derived from different organs. In this report, we have examined the expression and localization of this protein in human testis with an antibody specific to D40 protein. In Western analyses, the anti-D40 antibody recognized a major band with a molecular mass of 300 kDa and a minor band of 250 kDa. These bands were not observed in the testis lysates from patients with Sertoli-cell-only syndrome and with Kleinfelter syndrome, who lack germ cells of the testis, indicating that D40 protein is expressed in the germ cells of normal testis. Immunohistochemical studies have revealed that D40 protein is highly expressed in spermatocytes and in the pre-acrosome of round spermatids. In the acrosome, D40 protein expression is observed not inside but outside the acrosome membrane. This is consistent with the finding that the amino-acid sequence at the amino terminal of the D40 protein lacks a hydrophobic signal peptide that is required for proteins to translocate to the membrane. Expression of D40 protein is observed in the acrosome of ejaculated spermatozoa as well, although the level is low compared with that in the pre-acrosome of spermatids. These results suggest that D40 protein plays important roles in spermatogenesis, especially in the formation and maintenance of the acrosome.
Collapse
Affiliation(s)
- Takumi Sasao
- Division of Cancer Gene Regulation, Research Section of Disease Control, Institute for Genetic Medicine, Hokkaido University, Kita 15, Nishi 7, Kita-ku, Sapporo, Hokkiaido 060-0815, Japan
| | | | | | | | | | | | | | | |
Collapse
|