1
|
Sun B, Ni M, Li Y, Song Z, Wang H, Zhu HL, Wei J, Belke D, Cai S, Guo W, Yao J, Tian S, Estillore JP, Wang R, Søndergaard MT, Brohus M, Rohde PD, Mu Y, Vallmitjana A, Benitez R, Hove-Madsen L, Overgaard MT, Fishman GI, Chen J, Sanatani S, Wilde AA, Fill M, Ramos-Franco J, Nyegaard M, Chen SW. Inositol 1,4,5-Trisphosphate Receptor 1 Gain-of-Function Increases the Risk for Cardiac Arrhythmias in Mice and Humans. Circulation 2025; 151:847-862. [PMID: 39655431 PMCID: PMC11932448 DOI: 10.1161/circulationaha.124.070563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/30/2024] [Indexed: 03/26/2025]
Abstract
BACKGROUND Ca2+ mishandling in cardiac Purkinje cells is a well-known cause of cardiac arrhythmias. The Purkinje cell resident inositol 1,4,5-trisphosphate receptor 1 (ITPR1) is believed to play an important role in Ca2+ handling, and ITPR1 gain-of-function (GOF) has been implicated in cardiac arrhythmias. However, nearly all known disease-associated ITPR1 variants are loss-of-function and are primarily linked to neurological disorders. Whether ITPR1 GOF has pathological consequences, such as cardiac arrhythmias, is unclear. This study aimed to identify human ITPR1 GOF variants and determine the impact of ITPR1 GOF on Ca2+ handling and arrhythmia susceptibility. METHODS There are a large number of rare ITPR1 missense variants reported in open data repositories. Based on their locations in the ITPR1 channel structure, we selected and characterized 33 human ITPR1 missense variants from open databases and identified 21 human ITPR1 GOF variants. We generated a mouse model carrying a human ITPR1 GOF variant, ITPR1-W1457G (W1447G in mice). RESULTS We showed that the ITPR1-W1447G+/- and recently reported ITPR1-D2594K+/- GOF mutant mice were susceptible to stress-induced ventricular arrhythmias. Confocal Ca2+ and voltage imaging in situ in heart slices and Ca2+ imaging and patch-clamp recordings of isolated Purkinje cells showed that ITPR1-W1447G+/- and ITPR1-D2594K+/- variants increased the occurrence of stress-induced spontaneous Ca2+ release, delayed afterdepolarization, and triggered activity in Purkinje cells. To assess the potential role of ITPR1 variants in arrhythmia susceptibility in humans, we looked up a gene-based association study in the UK Biobank data set and identified 7 rare ITPR1 missense variants showing potential association with cardiac arrhythmias. Remarkably, in vitro functional characterization revealed that all these 7 ITPR1 variants resulted in GOF. CONCLUSIONS Our studies in mice and humans reveal that enhanced function of ITPR1, a well-known movement disorder gene, increases the risk for cardiac arrhythmias.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
- Medical School, Kunming University of Science and Technology, China (B.S.)
| | - Mingke Ni
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Yanhui Li
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L.)
| | - Zhenpeng Song
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Hui Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Hai-Lei Zhu
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Jinhong Wei
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Darrell Belke
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Shitian Cai
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Jinjing Yao
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Shanshan Tian
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - John Paul Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
| | - Mads Toft Søndergaard
- Department of Chemistry and Bioscience (M.T.S., M.B., P.D.R.), Aalborg University, Denmark
| | - Malene Brohus
- Department of Chemistry and Bioscience (M.T.S., M.B., P.D.R.), Aalborg University, Denmark
| | - Palle Duun Rohde
- Department of Chemistry and Bioscience (M.T.S., M.B., P.D.R.), Aalborg University, Denmark
| | - Yongxin Mu
- Department of Medicine, University of California at San Diego, La Jolla (Y.M., J.C.)
| | - Alexander Vallmitjana
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
| | - Raul Benitez
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
| | - Leif Hove-Madsen
- Biomedical Research Institute Barcelona (IIBB)-Spanish National Research Council (CSIC) and Sant Pau Biomedical Research Institute (IIB Sant Pau), Hospital de Sant Pau, Barcelona, Spain (L.H.-M.)
| | - Michael Toft Overgaard
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
- Medical School, Kunming University of Science and Technology, China (B.S.)
- Department of Internal Medicine, Institute of Hypertension, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China (Y.L.)
- Department of Chemistry and Bioscience (M.T.S., M.B., P.D.R.), Aalborg University, Denmark
- Department of Health Science and Technology (M. Nyegaard), Aalborg University, Denmark
- Department of Medicine, University of California at San Diego, La Jolla (Y.M., J.C.)
- Department of Automatic Control, Universitat Politècnica de Catalunya, Barcelona, Spain (A.V., R.B.)
- Biomedical Research Institute Barcelona (IIBB)-Spanish National Research Council (CSIC) and Sant Pau Biomedical Research Institute (IIB Sant Pau), Hospital de Sant Pau, Barcelona, Spain (L.H.-M.)
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY (G.I.F.)
- Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, Canada (S.S.)
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centre, Academic Medical Center Location, The Netherlands (A.A.M.W.)
- European Reference Network “ERN GUARD-heart”, Amsterdam, The Netherlands (A.A.M.W.)
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL (M.F., J.R.-F., S.R.W.C.)
- Department of Biomedicine, Aarhus University, Denmark (M. Nyegaard)
| | - Glenn I. Fishman
- Leon H. Charney Division of Cardiology, New York University Langone Health, New York, NY (G.I.F.)
| | - Ju Chen
- Department of Medicine, University of California at San Diego, La Jolla (Y.M., J.C.)
| | - Shubhayan Sanatani
- Division of Cardiology, Department of Pediatrics, University of British Columbia, Vancouver, Canada (S.S.)
| | - Arthur A.M. Wilde
- Department of Clinical and Experimental Cardiology, Heart Center, Amsterdam University Medical Centre, Academic Medical Center Location, The Netherlands (A.A.M.W.)
- European Reference Network “ERN GUARD-heart”, Amsterdam, The Netherlands (A.A.M.W.)
| | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL (M.F., J.R.-F., S.R.W.C.)
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL (M.F., J.R.-F., S.R.W.C.)
| | - Mette Nyegaard
- Department of Health Science and Technology (M. Nyegaard), Aalborg University, Denmark
- Department of Biomedicine, Aarhus University, Denmark (M. Nyegaard)
| | - S.R. Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Canada (B.S., M. Ni, Y.L., Z.S., H.W., H.-L.Z., J.W., D.B., S.C., W.G., J.Y., S.T., J.P.E., R.W., S.R.W.C.)
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, IL (M.F., J.R.-F., S.R.W.C.)
| |
Collapse
|
2
|
Hudasch D, Klietz M, Skripuletz T, Gingele S, Jendretzky KF, Konen FF, Möhn N, Sühs KW. Chronic vertigo and central oculomotor dysfunction with evidence of anti-ITPR1 antibodies. J Neurol 2025; 272:172. [PMID: 39891750 PMCID: PMC11787166 DOI: 10.1007/s00415-025-12903-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 02/03/2025]
Affiliation(s)
- Dominica Hudasch
- Department of Neurology, Hannover Medical School, Hanover, Germany.
| | - Martin Klietz
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | | | - Stefan Gingele
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | | | | | - Nora Möhn
- Department of Neurology, Hannover Medical School, Hanover, Germany
| | | |
Collapse
|
3
|
Yao J, Ni M, Tian S, Sun B, Wang R, Paul Estillore J, Back TG, Wayne Chen SR. A Gain-of-function Mutation in the Gating Domain of ITPR1 Impairs Motor Movement and Increases Thermal and Mechanical Sensitivity. Neuroscience 2023; 522:11-22. [PMID: 37164302 DOI: 10.1016/j.neuroscience.2023.04.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/14/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
Inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) is an intracellular Ca2+ release channel important for a number of fundamental cellular functions. Consistent with its critical physiological significance, mutations in ITPR1 are associated with disease. Surprisingly, nearly all the disease-associated ITPR1 mutations characterized to date are loss of function. Despite the paucity of ITPR1 gain-of-function (GOF) mutations, enhanced ITPR1 function as a result of dysregulation by ITPR1 interacting proteins is thought to be associated with ataxia, learning and memory impairments, Alzheimer's disease (AD) progression, and chronic pain. However, direct evidence for the role of ITPR1 GOF in disease is lacking. To determine whether GOF in ITPR1 itself has pathological ramifications, we employed a newly developed mouse model expressing an ITPR1 mutation in the gating domain of the channel, D2594K, that markedly increased the channel's sensitivity to activation by IP3. Behavioral studies showed that the ITPR1-D2594K+/- mutant mice displayed motor deficits and reduced muscle strength. However, the ITPR1-D2594K+/- mutation did not significantly alter hippocampal learning and memory and did not change learning and memory impairments when crossed with the 5xFAD AD model mice. On the other hand, ITPR1-D2594K+/- mice exhibited increased sensitivity to thermal and mechanical stimulation compared to WT. Interestingly, R-carvedilol treatment attenuated the enhanced thermal and mechanical nociception in ITPR1-D2594K+/- mice. Thus, the ITPR1-D2594K+/- mutation in the channel's gating domain has a marked impact on motor movements and pain perception, but little effect on hippocampal learning and memory.
Collapse
Affiliation(s)
- Jinjing Yao
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mingke Ni
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Shanshan Tian
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Bo Sun
- Medical School, Kunming University of Science and Technology, Kunming, China
| | - Ruiwu Wang
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - John Paul Estillore
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Thomas G Back
- Department of Chemistry, University of Calgary, Calgary, AB, Canada, T2N 1N4
| | - S R Wayne Chen
- Libin Cardiovascular Institute, Department of Physiology and Pharmacology, University of Calgary, Calgary, Alberta T2N 4N1, Canada; Hotchkiss Brain Institute, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada.
| |
Collapse
|
4
|
Sun B, Ni M, Tian S, Guo W, Cai S, Sondergaard MT, Chen Y, Mu Y, Estillore JP, Wang R, Chen J, Overgaard MT, Fill M, Ramos-Franco J, Nyegaard M, Wayne Chen SR. A gain-of-function mutation in the ITPR1 gating domain causes male infertility in mice. J Cell Physiol 2022; 237:3305-3316. [PMID: 35621185 DOI: 10.1002/jcp.30783] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 04/16/2022] [Accepted: 05/06/2022] [Indexed: 11/10/2022]
Abstract
Inositol 1,4,5-trisphosphate receptor 1 (ITPR1) is an intracellular Ca2+ release channel critical for numerous cellular processes. Despite its ubiquitous physiological significance, ITPR1 mutations have thus far been linked to primarily movement disorders. Surprisingly, most disease-associated ITPR1 mutations generate a loss of function. This leaves our understanding of ITPR1-associated pathology oddly one-sided, as little is known about the pathological consequences of ITPR1 gain of function (GOF). To this end, we generated an ITPR1 gating domain mutation (D2594K) that substantially enhanced the inositol trisphosphate (IP3 )-sensitivity of ITPR1, and a mouse model expressing this ITPR1-D2594K+/- GOF mutation. We found that heterozygous ITPR1-D2594K+/- mutant mice exhibited male infertility, azoospermia, and acrosome loss. Furthermore, we functionally characterized a human ITPR1 variant V494I identified in the UK Biobank database as potentially associated with disorders of the testis. We found that the ITPR1-V494I variant significantly enhanced IP3 -induced Ca2+ release in HEK293 cells. Thus, ITPR1 hyperactivity may increase the risk of testicular dysfunction.
Collapse
Affiliation(s)
- Bo Sun
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Laboratory of Molecular Pharmacology, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Mingke Ni
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shanshan Tian
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Wenting Guo
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Shitian Cai
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Mads T Sondergaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Yongxiang Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yongxin Mu
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - John P Estillore
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ruiwu Wang
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada
| | - Ju Chen
- Department of Medicine, University of California at San Diego, La Jolla, California, USA
| | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | - Michael Fill
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Josefina Ramos-Franco
- Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| | - Mette Nyegaard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Sui Rong Wayne Chen
- Department of Physiology and Pharmacology, Libin Cardiovascular Institute, University of Calgary, Calgary, Alberta, Canada.,Department of Physiology and Biophysics, Rush University Medical Center, Chicago, Illinois, USA
| |
Collapse
|
5
|
Cirkel A, Wandinger KP, Ditz C, Leppert J, Hanker L, Cirkel C, Neumann A, Brocke J, Höftberger R, Komorowski L, Perner S, Leypoldt F, Wagner-Altendorf T, Münte TF, Royl G. Paraneoplastic encephalomyeloradiculits with multiple autoantibodies against ITPR-1, GFAP and MOG: case report and literature review. Neurol Res Pract 2021; 3:48. [PMID: 34635185 PMCID: PMC8504129 DOI: 10.1186/s42466-021-00145-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/23/2021] [Indexed: 11/12/2022] Open
Abstract
Background Recently, antibodies against the alpha isoform of the glial-fibrillary-acidic-protein (GFAPα) were identified in a small series of patients with encephalomyelitis. Coexisting autoantibodies (NMDA receptor, GAD65 antibodies) have been described in a few of these patients. We describe a patient with rapidly progressive encephalomyeloradiculitis and a combination of anti-ITPR1, anti-GFAP and anti-MOG antibodies. Case presentation and literature review A 44-year old caucasian woman with a flu-like prodrome presented with meningism, progressive cerebellar signs and autonomic symptoms, areflexia, quadriplegia and respiratory insufficiency. MRI showed diffuse bilateral T2w-hyperintense brain lesions in the cortex, white matter, the corpus callosum as well as a longitudinal lesion of the medulla oblongata and the entire spinal cord. Anti-ITPR1, anti-GFAP and anti-MOG antibodies were detected in cerebrospinal fluid along with lymphocytic pleocytosis. Borderline tumor of the ovary was diagnosed. Thus, the disease of the patient was deemed to be paraneoplastic. The patient was treated by surgical removal of tumor, steroids, immunoglobulins, plasma exchange and rituximab. Four months after presentation, the patient was still tetraplegic, reacted with mimic expressions to pain or touch and could phonate solitary vowels. An extensive literature research was performed. Conclusion Our case and the literature review illustrate that multiple glial and neuronal autoantibodies can co-occur, that points to a paraneoplastic etiology, above all ovarian teratoma or thymoma. Clinical manifestation can be a mixture of typically associated syndromes, e.g. ataxia associated with anti-ITPR1 antibodies, encephalomyelitis with anti-GFAPα antibodies and longitudinal extensive myelitis with anti-MOG antibodies. Supplementary Information The online version contains supplementary material available at 10.1186/s42466-021-00145-w.
Collapse
Affiliation(s)
- Anna Cirkel
- Department of Neurology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.
| | - Klaus-Peter Wandinger
- Department of Neurology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.,Institute of Clinical Chemistry, University Hospital of Schleswig-Holstein, Kiel, Germany
| | - Claudia Ditz
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Jan Leppert
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Lars Hanker
- Department of Gynecology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Christoph Cirkel
- Department of Gynecology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Alexander Neumann
- Department of Neuroradiology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| | - Jan Brocke
- Neurological Rehabilitation Center, Segeberger Kliniken, Bad Segeberg, Germany
| | | | - Lars Komorowski
- Institute of Experimental Immunology, Euroimmun AG, Lübeck, Germany
| | - Sven Perner
- Department of Pathology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.,Research Center Borstel, Leibniz Lung Center, 23538 Lübeck and, 23845, Borstel, Germany
| | - Frank Leypoldt
- Department of Neurosurgery, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.,Department of Neurology, University Hospital of Schleswig-Holstein Kiel, Kiel, Germany
| | | | - Thomas F Münte
- Department of Neurology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany.,Institute of Psychology II, University Hospital of Schleswig-Holstein, Lübeck, Germany
| | - Georg Royl
- Department of Neurology, University Hospital of Schleswig-Holstein Lübeck, Lübeck, Germany
| |
Collapse
|
6
|
Sherwood MW, Arizono M, Panatier A, Mikoshiba K, Oliet SHR. Astrocytic IP 3Rs: Beyond IP 3R2. Front Cell Neurosci 2021; 15:695817. [PMID: 34393726 PMCID: PMC8363081 DOI: 10.3389/fncel.2021.695817] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022] Open
Abstract
Astrocytes are sensitive to ongoing neuronal/network activities and, accordingly, regulate neuronal functions (synaptic transmission, synaptic plasticity, behavior, etc.) by the context-dependent release of several gliotransmitters (e.g., glutamate, glycine, D-serine, ATP). To sense diverse input, astrocytes express a plethora of G-protein coupled receptors, which couple, via Gi/o and Gq, to the intracellular Ca2+ release channel IP3-receptor (IP3R). Indeed, manipulating astrocytic IP3R-Ca2+ signaling is highly consequential at the network and behavioral level: Depleting IP3R subtype 2 (IP3R2) results in reduced GPCR-Ca2+ signaling and impaired synaptic plasticity; enhancing IP3R-Ca2+ signaling affects cognitive functions such as learning and memory, sleep, and mood. However, as a result of discrepancies in the literature, the role of GPCR-IP3R-Ca2+ signaling, especially under physiological conditions, remains inconclusive. One primary reason for this could be that IP3R2 has been used to represent all astrocytic IP3Rs, including IP3R1 and IP3R3. Indeed, IP3R1 and IP3R3 are unique Ca2+ channels in their own right; they have unique biophysical properties, often display distinct distribution, and are differentially regulated. As a result, they mediate different physiological roles to IP3R2. Thus, these additional channels promise to enrich the diversity of spatiotemporal Ca2+ dynamics and provide unique opportunities for integrating neuronal input and modulating astrocyte–neuron communication. The current review weighs evidence supporting the existence of multiple astrocytic-IP3R isoforms, summarizes distinct sub-type specific properties that shape spatiotemporal Ca2+ dynamics. We also discuss existing experimental tools and future refinements to better recapitulate the endogenous activities of each IP3R isoform.
Collapse
Affiliation(s)
- Mark W Sherwood
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Misa Arizono
- University of Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Aude Panatier
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Katsuhiko Mikoshiba
- ShanghaiTech University, Shanghai, China.,Faculty of Science, Toho University, Funabashi, Japan.,RIKEN CLST, Kobe, Japan
| | - Stéphane H R Oliet
- University of Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| |
Collapse
|
7
|
Influence of spatially segregated IP 3-producing pathways on spike generation and transmitter release in Purkinje cell axons. Proc Natl Acad Sci U S A 2020; 117:11097-11108. [PMID: 32358199 DOI: 10.1073/pnas.2000148117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
It has been known for a long time that inositol-trisphosphate (IP3) receptors are present in the axon of certain types of mammalian neurons, but their functional role has remained unexplored. Here we show that localized photolysis of IP3 induces spatially constrained calcium rises in Purkinje cell axons. Confocal immunohistology reveals that the axon initial segment (AIS), as well as terminals onto deep cerebellar cells, express specific subtypes of Gα/q and phospholipase C (PLC) molecules, together with the upstream purinergic receptor P2Y1. By contrast, intermediate parts of the axon express another set of Gα/q and PLC molecules, indicating two spatially segregated signaling cascades linked to IP3 generation. This prompted a search for distinct actions of IP3 in different parts of Purkinje cell axons. In the AIS, we found that local applications of the specific P2Y1R agonist MRS2365 led to calcium elevation, and that IP3 photolysis led to inhibition of action potential firing. In synaptic terminals on deep cerebellar nuclei neurons, we found that photolysis of both IP3 and ATP led to GABA release. We propose that axonal IP3 receptors can inhibit action potential firing and increase neurotransmitter release, and that these effects are likely controlled by purinergic receptors. Altogether our results suggest a rich and diverse functional role of IP3 receptors in axons of mammalian neurons.
Collapse
|
8
|
Ashhad S, Narayanan R. Stores, Channels, Glue, and Trees: Active Glial and Active Dendritic Physiology. Mol Neurobiol 2019; 56:2278-2299. [PMID: 30014322 PMCID: PMC6394607 DOI: 10.1007/s12035-018-1223-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
Abstract
Glial cells and neuronal dendrites were historically assumed to be passive structures that play only supportive physiological roles, with no active contribution to information processing in the central nervous system. Research spanning the past few decades has clearly established this assumption to be far from physiological realities. Whereas the discovery of active channel conductances and their localized plasticity was the turning point for dendritic structures, the demonstration that glial cells release transmitter molecules and communicate across the neuroglia syncytium through calcium wave propagation constituted path-breaking discoveries for glial cell physiology. An additional commonality between these two structures is the ability of calcium stores within their endoplasmic reticulum (ER) to support active propagation of calcium waves, which play crucial roles in the spatiotemporal integration of information within and across cells. Although there have been several demonstrations of regulatory roles of glial cells and dendritic structures in achieving common physiological goals such as information propagation and adaptability through plasticity, studies assessing physiological interactions between these two active structures have been few and far. This lacuna is especially striking given the strong connectivity that is known to exist between these two structures through several complex and tightly intercoupled mechanisms that also recruit their respective ER structures. In this review, we present brief overviews of the parallel literatures on active dendrites and active glial physiology and make a strong case for future studies to directly assess the strong interactions between these two structures in regulating physiology and pathophysiology of the brain.
Collapse
Affiliation(s)
- Sufyan Ashhad
- Department of Neurobiology, University of California at Los Angeles, Los Angeles, CA, 90095, USA
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
9
|
Chandran R, Kumar M, Kesavan L, Jacob RS, Gunasekaran S, Lakshmi S, Sadasivan C, Omkumar R. Cellular calcium signaling in the aging brain. J Chem Neuroanat 2019; 95:95-114. [DOI: 10.1016/j.jchemneu.2017.11.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 09/03/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
|
10
|
Carvalho DR, Medeiros JEG, Ribeiro DSM, Martins BJ, Sobreira NL. Additional features of Gillespie syndrome in two Brazilian siblings with a novel ITPR1 homozygous pathogenic variant. Eur J Med Genet 2018; 61:134-138. [DOI: 10.1016/j.ejmg.2017.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 11/15/2017] [Accepted: 11/19/2017] [Indexed: 12/21/2022]
|
11
|
Alfugham N, Gadoth A, Lennon VA, Komorowski L, Scharf M, Hinson S, McKeon A, Pittock SJ. ITPR1 autoimmunity: Frequency, neurologic phenotype, and cancer association. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e418. [PMID: 29379822 PMCID: PMC5778826 DOI: 10.1212/nxi.0000000000000418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 09/29/2017] [Indexed: 12/02/2022]
Affiliation(s)
- Nora Alfugham
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Avi Gadoth
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Vanda A Lennon
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Lars Komorowski
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Madeleine Scharf
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Shannon Hinson
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Andrew McKeon
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| | - Sean J Pittock
- Department of Laboratory Medicine and Pathology (N.A., A.G., V.A.L., S.H., A.M., S.J.P.), Department of Neurology (V.A.L., A.M., S.J.P.), and Department of Immunology (V.A.L.), Mayo Clinic, Rochester, MN; and Institute for Experimental Immunology (L.K., M.S.), Affiliated to Euroimmun AG, Luebeck, Germany
| |
Collapse
|
12
|
Ikebara JM, Takada SH, Cardoso DS, Dias NMM, de Campos BCV, Bretherick TAS, Higa GSV, Ferraz MSA, Kihara AH. Functional Role of Intracellular Calcium Receptor Inositol 1,4,5-Trisphosphate Type 1 in Rat Hippocampus after Neonatal Anoxia. PLoS One 2017; 12:e0169861. [PMID: 28072885 PMCID: PMC5225024 DOI: 10.1371/journal.pone.0169861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 12/22/2016] [Indexed: 01/13/2023] Open
Abstract
Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of neurodegenerative mechanisms triggered by oxygen deprivation.
Collapse
Affiliation(s)
- Juliane Midori Ikebara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Silvia Honda Takada
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | - Débora Sterzeck Cardoso
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
| | | | | | | | - Guilherme Shigueto Vilar Higa
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | - Alexandre Hiroaki Kihara
- Laboratório de Neurogenética, Universidade Federal do ABC, São Bernardo do Campo, São Paulo, Brazil
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
13
|
van Dijk T, Barth P, Reneman L, Appelhof B, Baas F, Poll-The BT. A de novo missense mutation in the inositol 1,4,5-triphosphate receptor type 1 gene causing severe pontine and cerebellar hypoplasia: Expanding the phenotype of ITPR1-related spinocerebellar ataxia's. Am J Med Genet A 2016; 173:207-212. [PMID: 27862915 DOI: 10.1002/ajmg.a.37962] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/22/2016] [Indexed: 12/30/2022]
Abstract
We report a de novo missense mutation (c.7649T>A) in the inositol, 1,4,5 triphosphate receptor type 1 (ITPR1) gene in a patient with severe pontocerebellar hypoplasia. The mutation results in an amino acid substitution of a highly conserved isoleucine by asparagine (p. I2550N) in the transmembrane domain. Mutations and deletions of the ITPR1 gene are associated with several types of autosomal dominant spinocerebellar ataxia, varying in age of onset and severity. Patients have signs of cerebellar ataxia and at most, a mild cerebellar atrophy on MRI. In contrast, the patient we report here has profound cerebellar and pontine hypoplasia. Our finding therefore further expands the spectrum of ITPR1-related ataxias. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tessa van Dijk
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Barth
- Department of Pediatric Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Liesbeth Reneman
- Department of Radiology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Bart Appelhof
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Clinical Genetics, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | - Bwee Tien Poll-The
- Department of Pediatric Neurology, Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Jarius S, Ringelstein M, Haas J, Serysheva II, Komorowski L, Fechner K, Wandinger KP, Albrecht P, Hefter H, Moser A, Neuen-Jacob E, Hartung HP, Wildemann B, Aktas O. Inositol 1,4,5-trisphosphate receptor type 1 autoantibodies in paraneoplastic and non-paraneoplastic peripheral neuropathy. J Neuroinflammation 2016; 13:278. [PMID: 27776522 PMCID: PMC5078930 DOI: 10.1186/s12974-016-0737-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 09/28/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recently, we described a novel autoantibody, anti-Sj/ITPR1-IgG, that targets the inositol 1,4,5-trisphosphate receptor type 1 (ITPR1) in patients with cerebellar ataxia. However, ITPR1 is expressed not only by Purkinje cells but also in the anterior horn of the spinal cord, in the substantia gelatinosa and in the motor, sensory (including the dorsal root ganglia) and autonomic peripheral nervous system, suggesting that the clinical spectrum associated with autoimmunity to ITPR1 may be broader than initially thought. Here we report on serum autoantibodies to ITPR1 (up to 1:15,000) in three patients with (radiculo)polyneuropathy, which in two cases was associated with cancer (ITPR1-expressing adenocarcinoma of the lung, multiple myeloma), suggesting a paraneoplastic aetiology. METHODS Serological and other immunological studies, and retrospective analysis of patient records. RESULTS The clinical findings comprised motor, sensory (including severe pain) and autonomic symptoms. While one patient presented with subacute symptoms mimicking Guillain-Barré syndrome (GBS), the symptoms progressed slowly in two other patients. Electrophysiology revealed delayed F waves; a decrease in motor and sensory action potentials and conduction velocities; delayed motor latencies; signs of denervation, indicating sensorimotor radiculopolyneuropathy of the mixed type; and no conduction blocks. ITPR1-IgG belonged to the complement-activating IgG1 subclass in the severely affected patient but exclusively to the IgG2 subclass in the two more mildly affected patients. Cerebrospinal fluid ITPR1-IgG was found to be of predominantly extrathecal origin. A 3H-thymidine-based proliferation assay confirmed the presence of ITPR1-reactive lymphocytes among peripheral blood mononuclear cells (PBMCs). Immunophenotypic profiling of PBMCs protein demonstrated predominant proliferation of B cells, CD4 T cells and CD8 memory T cells following stimulation with purified ITPR1 protein. Patient ITPR1-IgG bound both to peripheral nervous tissue and to lung tumour tissue. A nerve biopsy showed lymphocyte infiltration (including cytotoxic CD8 cells), oedema, marked axonal loss and myelin-positive macrophages, indicating florid inflammation. ITPR1-IgG serum titres declined following tumour removal, paralleled by clinical stabilization. CONCLUSIONS Our findings expand the spectrum of clinical syndromes associated with ITPR1-IgG and suggest that autoimmunity to ITPR1 may underlie peripheral nervous system diseases (including GBS) in some patients and may be of paraneoplastic origin in a subset of cases.
Collapse
Affiliation(s)
- Sven Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany.
| | - Marius Ringelstein
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Jürgen Haas
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Irina I Serysheva
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, 6431 Fannin Street, Houston, TX, 77030, USA
| | - Lars Komorowski
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany
| | - Kai Fechner
- Institute of Experimental Immunology, affiliated to Euroimmun AG, Seekamp 31, 23560, Lübeck, Germany
| | - Klaus-Peter Wandinger
- Department of Neurology, University of Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Philipp Albrecht
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Harald Hefter
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Andreas Moser
- Department of Neurology, University of Schleswig Holstein, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Eva Neuen-Jacob
- Department of Neuropathology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Hans-Peter Hartung
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Brigitte Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University Hospital Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, 69120, Heidelberg, Germany
| | - Orhan Aktas
- Department of Neurology, Medical Faculty, Heinrich Heine University, Moorenstraße 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
15
|
Slow sulfide donor GYY4137 differentiates NG108-15 neuronal cells through different intracellular transporters than dbcAMP. Neuroscience 2016; 325:100-10. [PMID: 27038748 DOI: 10.1016/j.neuroscience.2016.03.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 03/07/2016] [Accepted: 03/24/2016] [Indexed: 11/20/2022]
Abstract
Cellular differentiation is the process, by which a cell changes from one cell type to another, preferentially to the more specialized one. Calcium fluxes play an important role in this action. Differentiated NG108-15 or PC12 cells serve as models for studying neuronal pathways. NG108-15 cell line is a reliable model of cholinergic neuronal cells. These cells differentiate to a neuronal phenotype due to the dibutyryl cAMP (dbcAMP) treatment. We have shown that a slow sulfide donor - GYY4137 - can also act as a differentiating factor in NG108-15 cell line. Calcium is an unavoidable ion required in NG108-15 cell differentiation by both, dbcAMP and GYY4137, since cultivation in EGTA completely prevented differentiation of these cells. In this work we focused primarily on the role of reticular calcium in the process of NG108-15 cell differentiation. We have found that dbcAMP and also GYY4137 decreased reticular calcium concentration by different mechanisms. GYY4137 caused a rapid decrease in type 2 sarco/endoplasmic calcium ATPase (SERCA2) mRNA and protein, which results in lower calcium levels in the endoplasmic reticulum compared to the control, untreated group. The dbcAMP revealed rapid increase in expression of the type 3 IP3 receptor, which participates in a calcium clearance from the endoplasmic reticulum. These results point to the important role of reticular calcium in a NG108-15 cell differentiation.
Collapse
|
16
|
Kozaki Y, Umetsu R, Mizukami Y, Yamamura A, Kitamori K, Tsuchikura S, Ikeda K, Yamori Y. Peripheral gene expression profile of mechanical hyperalgesia induced by repeated cold stress in SHRSP5/Dmcr rats. J Physiol Sci 2015; 65:417-25. [PMID: 25972297 PMCID: PMC10717666 DOI: 10.1007/s12576-015-0380-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 04/26/2015] [Indexed: 01/14/2023]
Abstract
Repeated cold stress (RCS) is known to transiently induce functional disorders associated with hypotension and hyperalgesia. In this study, we investigated the effects of RCS (24 and 4 °C alternately at 30-min intervals during the day and 4 °C at night for 2 days, followed by 4 °C on the next 2 consecutive nights) on the thresholds for cutaneous mechanical pain responses and on peripheral expression of "pain-related genes" in SHRSP5/Dmcr rats, which are derived from stroke-prone spontaneously hypertensive rats. To define genes peripherally regulated by RCS, we detected changes in the expression of pain-related genes in dorsal root ganglion cells by PCR-based cDNA subtraction analysis or DNA microarray analysis, and confirmed the changes by RT-PCR. We found significantly changed expression in eight pain-related genes (upregulated: Fyn, St8sia1, and Tac 1; downregulated: Ctsb, Fstl1, Itpr1, Npy, S100a10). At least some of these genes may play key roles in hyperalgesia induced by RCS.
Collapse
Affiliation(s)
- Yasuko Kozaki
- College of Pharmacy, Kinjo Gakuin University, 2-1723 Ohmori, Moriyama-ku, Nagoya, 463-8521, Japan,
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Tyul’kova EI, Vataeva LA, Vetrovoi OV, Romanovskii DY. Prenatal hypoxia modifies working memory and the activity of hippocampal polyphosphoinositide system in rats. J EVOL BIOCHEM PHYS+ 2015. [DOI: 10.1134/s0022093015020064] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Yue X, Nie Q, Xiao G, Liu B. Transcriptome analysis of shell color-related genes in the clam Meretrix meretrix. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2015; 17:364-74. [PMID: 25680512 DOI: 10.1007/s10126-015-9625-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 01/19/2015] [Indexed: 05/27/2023]
Abstract
Color polymorphism has received much attention due to its strong implications for speciation and adaptation. In contrast to body color, little is currently known about the molecular mechanism of shell color formation. This study represents the first analysis of the relationship between whole-scale gene expression and shell color variations in the marine bivalve mollusks via comparative transcriptome analyses. Three clam Meretrix meretrix strains with different and monotonous shell color patterns, which were developed by our 10-year artificial selection, combined with clams with nearly white shell color were used in the analyses. The results supported the idea that there was a relationship between gene expression and shell pigmentation in the clam M. meretrix, and complex signal transduction were involved. It was proposed that Notch signaling pathway played a crucial role in shell pigmentation in a gene-dosage dependent pattern and also potentially involved in the shell color patterning. Calcium signaling process may equally be implicated in shell color formation via activation of Notch pathway. Other differentially expressed genes (e.g., Myl, Mitf) potentially implicated in shell color pigmentation were also noticed. This study provides information on the expression profiles of clams with different shell color morphs and sheds light on color formation mechanism of shell.
Collapse
Affiliation(s)
- Xin Yue
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao, 266071, China
| | | | | | | |
Collapse
|
19
|
Gymnopoulos M, Cingolani LA, Pedarzani P, Stocker M. Developmental mapping of small-conductance calcium-activated potassium channel expression in the rat nervous system. J Comp Neurol 2014; 522:1072-101. [PMID: 24096910 PMCID: PMC4016743 DOI: 10.1002/cne.23466] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/06/2013] [Accepted: 09/17/2013] [Indexed: 12/22/2022]
Abstract
Early electrical activity and calcium influx regulate crucial aspects of neuronal development. Small-conductance calcium-activated potassium (SK) channels regulate action potential firing and shape calcium influx through feedback regulation in mature neurons. These functions, observed in the adult nervous system, make them ideal candidates to regulate activity-and calcium-dependent processes in neurodevelopment. However, to date little is known about the onset of expression and regions expressing SK channel subunits in the embryonic and postnatal development of the central nervous system (CNS). To allow studies on the contribution of SK channels to different phases of development of single neurons and networks, we have performed a detailed in situ hybridization mapping study, providing comprehensive distribution profiles of all three SK subunits (SK1, SK2, and SK3) in the rat CNS during embryonic and postnatal development. SK channel transcripts are expressed at early stages of prenatal CNS development. The three SK channel subunits display different developmental expression gradients in distinct CNS regions, with time points of expression and up-or downregulation that can be associated with a range of diverse developmental events. Their early expression in embryonic development suggests an involvement of SK channels in the regulation of developmental processes. Additionally, this study shows how the postnatal ontogenetic patterns lead to the adult expression map for each SK channel subunit and how their coexpression in the same regions or neurons varies throughout development. J. Comp. Neurol. 522:1072–1101, 2014. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Marco Gymnopoulos
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute for Experimental Medicine, 37075, Göttingen, Germany
| | | | | | | |
Collapse
|
20
|
Clark KB. Basis for a neuronal version of Grover's quantum algorithm. Front Mol Neurosci 2014; 7:29. [PMID: 24860419 PMCID: PMC4029008 DOI: 10.3389/fnmol.2014.00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022] Open
Abstract
Grover's quantum (search) algorithm exploits principles of quantum information theory and computation to surpass the strong Church–Turing limit governing classical computers. The algorithm initializes a search field into superposed N (eigen)states to later execute nonclassical “subroutines” involving unitary phase shifts of measured states and to produce root-rate or quadratic gain in the algorithmic time (O(N1/2)) needed to find some “target” solution m. Akin to this fast technological search algorithm, single eukaryotic cells, such as differentiated neurons, perform natural quadratic speed-up in the search for appropriate store-operated Ca2+ response regulation of, among other processes, protein and lipid biosynthesis, cell energetics, stress responses, cell fate and death, synaptic plasticity, and immunoprotection. Such speed-up in cellular decision making results from spatiotemporal dynamics of networked intracellular Ca2+-induced Ca2+ release and the search (or signaling) velocity of Ca2+ wave propagation. As chemical processes, such as the duration of Ca2+ mobilization, become rate-limiting over interstore distances, Ca2+ waves quadratically decrease interstore-travel time from slow saltatory to fast continuous gradients proportional to the square-root of the classical Ca2+ diffusion coefficient, D1/2, matching the computing efficiency of Grover's quantum algorithm. In this Hypothesis and Theory article, I elaborate on these traits using a fire-diffuse-fire model of store-operated cytosolic Ca2+ signaling valid for glutamatergic neurons. Salient model features corresponding to Grover's quantum algorithm are parameterized to meet requirements for the Oracle Hadamard transform and Grover's iteration. A neuronal version of Grover's quantum algorithm figures to benefit signal coincidence detection and integration, bidirectional synaptic plasticity, and other vital cell functions by rapidly selecting, ordering, and/or counting optional response regulation choices.
Collapse
Affiliation(s)
- Kevin B Clark
- Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles, CA, USA ; Complex Biological Systems Alliance North Andover, MA, USA
| |
Collapse
|
21
|
Jin X, Shah S, Liu Y, Zhang H, Lees M, Fu Z, Lippiat JD, Beech DJ, Sivaprasadarao A, Baldwin SA, Zhang H, Gamper N. Activation of the Cl- channel ANO1 by localized calcium signals in nociceptive sensory neurons requires coupling with the IP3 receptor. Sci Signal 2013; 6:ra73. [PMID: 23982204 DOI: 10.1126/scisignal.2004184] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
We report that anoctamin 1 (ANO1; also known as TMEM16A) Ca(2+)-activated Cl(-) channels in small neurons from dorsal root ganglia are preferentially activated by particular pools of intracellular Ca(2+). These ANO1 channels can be selectively activated by the G protein-coupled receptor (GPCR)-induced release of Ca(2+) from intracellular stores but not by Ca(2+) influx through voltage-gated Ca(2+) channels. This ability to discriminate between Ca(2+) pools was achieved by the tethering of ANO1-containing plasma membrane domains, which also contained GPCRs such as bradykinin receptor 2 and protease-activated receptor 2, to juxtamembrane regions of the endoplasmic reticulum. Interaction of the carboxyl terminus and the first intracellular loop of ANO1 with IP3R1 (inositol 1,4,5-trisphosphate receptor 1) contributed to the tethering. Disruption of membrane microdomains blocked the ANO1 and IP3R1 interaction and resulted in the loss of coupling between GPCR signaling and ANO1. The junctional signaling complex enabled ANO1-mediated excitation in response to specific Ca(2+)signals rather than to global changes in intracellular Ca(2+).
Collapse
Affiliation(s)
- Xin Jin
- Faculty of Biological Sciences, School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Direct association of the reticulon protein RTN1A with the ryanodine receptor 2 in neurons. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1421-33. [PMID: 23454728 PMCID: PMC3636420 DOI: 10.1016/j.bbamcr.2013.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 02/11/2013] [Accepted: 02/14/2013] [Indexed: 11/21/2022]
Abstract
RTN1A is a reticulon protein with predominant localization in the endoplasmic reticulum (ER). It was previously shown that RTN1A is expressed in neurons of the mammalian central nervous system but functional information remains sparse. To elucidate the neuronal function of RTN1A, we chose to focus our investigation on identifying possible novel binding partners specifically interacting with the unique N-terminus of RTN1A. Using a nonbiased approach involving GST pull-downs and MS analysis, we identified the intracellular calcium release channel ryanodine receptor 2 (RyR2) as a direct binding partner of RTN1A. The RyR2 binding site was localized to a highly conserved 150-amino acid residue region. RTN1A displays high preference for RyR2 binding in vitro and in vivo and both proteins colocalize in hippocampal neurons and Purkinje cells. Moreover, we demonstrate the precise subcellular localization of RTN1A in Purkinje cells and show that RTN1A inhibits RyR channels in [(3)H]ryanodine binding studies on brain synaptosomes. In a functional assay, RTN1A significantly reduced RyR2-mediated Ca(2+) oscillations. Thus, RTN1A and RyR2 might act as functional partners in the regulation of cytosolic Ca(2+) dynamics the in neurons.
Collapse
|
23
|
Kesherwani V, Agrawal SK. Regulation of inositol 1,4,5-triphosphate receptor, type 1 (IP3R1) in hypoxic/reperfusion injury of white matter. Neurol Res 2012; 34:504-11. [PMID: 22643045 DOI: 10.1179/1743132812y.0000000038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE Calcium overloading is responsible for initiating the cell death in neuronal tissue after hypoxic injury. Inositol 1,4,5-triphosphate receptors (IP3Rs) is an important calcium channel which regulates cellular calcium homeostasis. IP3R1 is widely expressed in brain and spinal tissue. In the present study, we have studied the regulation of IP3R1 in hypoxic/reperfusion injury of spinal cord dorsal column in vitro. METHODS Dorsal columns were isolated from the spinal cord of adult rats and injury was induced by exposing to hypoxic condition for 1 hour. After injury, reperfusion was carried out for 0, 2, 4, and 8 hours. Tissues were collected and processed for western blotting, immunohistochemistry and real-time PCR. RESULTS In the present study, we have found increased expression of IP3R1 after hypoxic/reperfusion injury of spinal cord dorsal column in vitro. Maximum expression of IP3R1 has been seen at 4 hours after hypoxia. Double immunofluorescence studies show the localization of IP3R1 in axons and astrocytes. Further identifying the signaling pathway involved in the regulation, we found Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN-62 and c-Jun N-terminal kinase (JNK) inhibitor SP600125 reduced the expression of IP3R1 suggesting the role of CaMKII and JNK in the regulation of IP3R1 expression. We did not find role of ERK and p38 in the regulation IP3R1 expression in hypoxic/reperfusion injury of dorsal column in vitro. DISCUSSION The result presented in this study showed that IP3R1 expression is increased in hypoxic/reperfusion injury of spinal cord white matter and it is regulated by the CaMKII-JNK pathway.
Collapse
Affiliation(s)
- Varun Kesherwani
- Division of Neurosurgery, Department of Surgery, University of Nebraska Medical Center, Omaha, NE 68198-6250, USA
| | | |
Collapse
|
24
|
Ladeira MS, Andrade VA, Gomes ERM, Aguiar CJ, Moraes ER, Soares JS, Silva EE, Lacerda RG, Ladeira LO, Jorio A, Lima P, Leite MF, Resende RR, Guatimosim S. Highly efficient siRNA delivery system into human and murine cells using single-wall carbon nanotubes. NANOTECHNOLOGY 2010; 21:385101. [PMID: 20798464 DOI: 10.1088/0957-4484/21/38/385101] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Development of RNA interference (RNAi) technology utilizing short interfering RNA sequences (siRNA) has focused on creating methods for delivering siRNAs to cells and for enhancing siRNA stability in vitro and in vivo. Here, we describe a novel approach for siRNA cellular delivery using siRNA coiling into carboxyl-functionalized single-wall carbon nanotubes (SWCNTs). The CNT-siRNA delivery system successfully demonstrates nonspecific toxicity and transfection efficiency greater than 95%. This approach offers the potential for siRNA delivery into different types of cells, including hard-to-transfect cells, such as neuronal cells and cardiomyocytes. We also tested the CNT-siRNA system in a non-metastatic human hepatocellular carcinoma cell line (SKHep1). In all types of cells used in this work the CNT-siRNA delivery system showed high efficiency and apparent no side effects for various in vitro applications.
Collapse
Affiliation(s)
- M S Ladeira
- Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Resende RR, da Costa JL, Kihara AH, Adhikari A, Lorençon E. Intracellular Ca2+ Regulation During Neuronal Differentiation of Murine Embryonal Carcinoma and Mesenchymal Stem Cells. Stem Cells Dev 2010; 19:379-94. [DOI: 10.1089/scd.2008.0289] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Rodrigo R. Resende
- Department of Physics, Institute of Exacts Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
- Instituto de Ensino e Pesquisa Santa Casa de BH (ISCM-BH), Belo Horizante, Brazil
| | - José L. da Costa
- Instrumental Analysis Laboratory, Criminalistic Institute of São Paulo, São Paulo, Brazil; Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Alexandre H. Kihara
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Santo André, Brasil
| | - Avishek Adhikari
- Department of Biological Sciences, Columbia University, New York
| | - Eudes Lorençon
- Department of Physics, Institute of Exacts Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
26
|
Bonnici B, Kapfhammer JP. Modulators of signal transduction pathways can promote axonal regeneration in entorhino-hippocampal slice cultures. Eur J Pharmacol 2009; 612:35-40. [PMID: 19375417 DOI: 10.1016/j.ejphar.2009.04.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2008] [Revised: 03/24/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
Abstract
Axonal regeneration after lesions is usually not possible in the adult central nervous system but can occur in the embryonic and young postnatal nervous system. In this study we used the model system of mouse entorhino-hippocampal slice cultures to assess the potential of pharmacological treatments with compounds targeting signal transduction pathways to promote growth of entorhinal fibers after mechanical lesions across the lesion site to their target region in the dentate gyrus. Compounds acting on the cyclic AMP-system, protein kinase C and G-proteins have been shown before to be able to promote regeneration. In this study we have confirmed the potential of drugs affecting these systems to promote axonal regeneration in the central nervous system. In addition we have found that inhibition of the phosphoinositide 3-kinase pathway and of the inositol triphosphate receptor also promoted axonal growth across the lesion site and are thus potential novel drug targets for promoting axonal regeneration after central nervous system lesions. Our findings demonstrate that slice culture models can be used to evaluate compounds for their potential to promote axonal regeneration and that the pharmacological modulation of signal transduction pathways is a promising approach for promoting axonal repair.
Collapse
Affiliation(s)
- Brenda Bonnici
- Anatomical Institute, Department of Biomedicine Basel, University of Basel, 4056 Basel, Switzerland
| | | |
Collapse
|
27
|
Abstract
The fundamental role of calcium ions (Ca(2+)) in an excitable tissue, the frog heart, was first demonstrated in a series of classical reports by Sydney Ringer in the latter part of the nineteenth century (1882a, b; 1893a, b). Even so, nearly a century elapsed before it was proven that Ca(2+) regulated the excitability of primary sensory neurons. In this chapter we review the sites and mechanisms whereby internal and external Ca(2+) can directly or indirectly alter the excitability of primary sensory neurons: excitability changes being manifested typically by variations in shape of the action potential or the pattern of its discharge.
Collapse
|
28
|
Hertle DN, Yeckel MF. Distribution of inositol-1,4,5-trisphosphate receptor isotypes and ryanodine receptor isotypes during maturation of the rat hippocampus. Neuroscience 2007; 150:625-38. [PMID: 17981403 PMCID: PMC2238340 DOI: 10.1016/j.neuroscience.2007.09.058] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Revised: 09/22/2007] [Accepted: 09/28/2007] [Indexed: 11/23/2022]
Abstract
Activation of inositol-1,4,5-trisphosphate receptors (InsP(3)Rs) and ryanodine receptors (RyRs) can lead to the release of Ca(2+) from intracellular stores and propagating Ca(2+) waves. Previous studies of these proteins in neurons have focused on their distribution in adult tissue, whereas, recent functional studies have examined neural tissue extracted from prenatal and young postnatal animals. In this study we examined the distribution of InsP(3)R isotypes 1-3 and RyR isotypes 1-3 in rat hippocampus during postnatal maturation, with a focus on InsP(3)R1 because it is most prominent in the hippocampus. InsP(3)R1 was observed in pyramidal cells and granule cells, InsP(3)R2 immunoreactivity was observed in perivascular astrocytes and endothelial cells, and InsP(3)R3 immunoreactivity was detected in axon terminals located in stratum pyramidale of CA1 and microvessels in stratum radiatum. RyR1 immunolabeling was enriched in CA1, RyR2 was most intense in CA3 and the dentate gyrus, and RyR3 immunolabeling was detected in all subfields of the hippocampus, but was most intense in stratum lacunosum-moleculare. During maturation from 2 to 10 weeks of age there was a shift in InsP(3)R1 immunoreactivity from a high density in the proximal apical dendrites to a uniform distribution along the dendrites. Independent of age, InsP(3)R1 immunoreactivity was observed to form clusters within the primary apical dendrite and at dendritic bifurcations of pyramidal neurons. As CA1 pyramidal neurons matured, InsP(3)R1 was often co-localized with the Ca(2+) binding protein calbindin D-28k. In contrast, InsP(3)R1 immunolabel was never co-localized with calbindin D-28k immunopositive interneurons located outside of stratum pyramidale or with parvalbumin, typically found in hippocampal basket cells, suggesting that InsP(3)R1s do not play a role in internal Ca(2+) release in these interneurons. These findings should help to interpret past functional studies and inform future studies examining the characteristics and consequences of InsP(3)R-mediated internal Ca(2+) release and Ca(2+) waves in hippocampal neurons.
Collapse
Affiliation(s)
- D N Hertle
- Department of Neurobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | |
Collapse
|
29
|
Martínez-Gómez A, Dent MAR. Expression of IP3 receptor isoforms at the nodes of Ranvier in rat sciatic nerve. Neuroreport 2007; 18:447-50. [PMID: 17496801 DOI: 10.1097/wnr.0b013e32805868a6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3R) are modulated by the second messenger IP3, which induces intracellular calcium release. Using immunohistochemical techniques, we show that the three isoforms are expressed in sciatic nerve. IP3R1 and IP3R2 are mainly present in the nucleus of Schwann cells. IP3R1 is also expressed in Schmidt-Lanterman incisures. IP3R3 is primarily localized at very high levels in nonmyelinating Schwann cells. Interestingly, the three isoforms are expressed at the nodes of Ranvier. IP3R1 is clustered at the node of Ranvier, in a distribution that is similar to the Nav1.6 sodium channels in the sciatic nerve. IP3R3 is present in the paranodal regions of the nodes. IP3R2 is concentrated in the vicinity of the node, and the outer Schwann cell cytoplasm similar to the Kv1.5 potassium channel.
Collapse
Affiliation(s)
- Alejandro Martínez-Gómez
- Laboratory of Neuroscience, School of Medicine, Autonomous University of the State of Mexico (UAEMex), Toluca Edo. de Mexico, Mexico
| | | |
Collapse
|
30
|
Regan MR, Lin DDM, Emerick MC, Agnew WS. The effect of higher order RNA processes on changing patterns of protein domain selection: A developmentally regulated transcriptome of type 1 inositol 1,4,5-trisphosphate receptors. Proteins 2005; 59:312-31. [PMID: 15739177 DOI: 10.1002/prot.20225] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The domain structure of proteins synthesized from a single gene can be remodeled during tissue development by activities at the RNA level of gene expression. The impact of higher order RNA processing on changing patterns of protein domain selection may be explored by systematically profiling single-gene transcriptomes. itpr1 is one of three mammalian genes encoding receptors for the second messenger inositol 1,4,5-trisphosphate (InsP3). Some phenotypic variations of InsP3 receptors have been attributed to hetero-oligomers of subunit isoforms from itpr1, itpr2, and itpr3. However, itpr1 itself is subject to alternative RNA splicing, with 7 sites of transcript variation, 6 within the ORF. We have identified 17 itpr1 subunit species expressed in mammalian brain in ensembles that change with tissue differentiation. Statistical analyses of populations comprising >1,300 full-length clones suggest that subunit variation arises from a variably biased stochastic splicing mechanism. Surprisingly, the protein domains of this highly allosteric receptor appear to be assembled in a partially randomized way, yielding stochastic arrays of subunit species that form tetrameric complexes in single cells. Nevertheless, functional expression studies of selected subunits confirm that splicing regulation is connected to phenotypic variation. The potential for itpr1 subunits to form hetero-tetramers in single cells suggests the expression of a developmentally regulated continuum of molecular forms that could display diverse properties, including incremental sensitivities to agonist activation and varying patterns of Ca2+ mobilization. These studies illuminate the extent to which itpr1 molecular phenotype is induced by higher order RNA processing.
Collapse
Affiliation(s)
- Melissa R Regan
- Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
31
|
Abstract
The modulation of inositol-1,4,5-trisphosphate (IP3), a product of phospholipase C (PLC) activity, is one of a common signaling mechanism used in many biological systems. B lymphocytes also rely on IP3 and subsequent calcium signaling to ensure appropriate developmental outcomes, as well as antigen-specific responses. In establishing the optimal intensity and duration of the PLC-gamma activity, an important role has emerged for adaptor molecules, which direct the appropriate subcellular localization of PLC-gamma and induce its conformational changes. Generated IP3 binds to IP3 receptors located on the endoplasmic reticulum (ER), which in turn is essential for triggering calcium release from the ER and subsequent entry of extracellular calcium by so-called Ca2+ entry channels. Recent data has begun to shed new light on the connection between the calcium release and the influx of extracellular calcium, and the molecular identity of the Ca2+ entry channels.
Collapse
MESH Headings
- Allosteric Regulation
- Animals
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Calcium/immunology
- Calcium/metabolism
- Calcium Channels/immunology
- Calcium Channels/metabolism
- Endoplasmic Reticulum/immunology
- Endoplasmic Reticulum/metabolism
- Humans
- Inositol 1,4,5-Trisphosphate/immunology
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors/genetics
- Inositol 1,4,5-Trisphosphate Receptors/immunology
- Inositol 1,4,5-Trisphosphate Receptors/metabolism
- NFATC Transcription Factors/genetics
- NFATC Transcription Factors/immunology
- NFATC Transcription Factors/metabolism
- Phospholipase C gamma/genetics
- Phospholipase C gamma/immunology
- Phospholipase C gamma/metabolism
- Protein Transport/immunology
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Signal Transduction/immunology
- Transcriptional Activation/immunology
Collapse
Affiliation(s)
- Masaki Hikida
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | | |
Collapse
|
32
|
Banerjee S, Hasan G. The InsP3 receptor: its role in neuronal physiology and neurodegeneration. Bioessays 2005; 27:1035-47. [PMID: 16163728 DOI: 10.1002/bies.20298] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The InsP3 receptor is a ligand-gated channel that releases Ca2+ from intracellular stores in a variety of cell types, including neurons. Genetic studies from vertebrate and invertebrate model systems suggest that coordinated rhythmic motor functions are most susceptible to changes in Ca2+ release from the InsP3 receptor. In many cases, the InsP3 receptor interacts with other signaling mechanisms that control levels of cytosolic Ca2+, suggesting that the maintenance of Ca2+ homeostasis in normal cells could be controlled by the activity of the InsP3R. In support of this idea, recent studies show that altered InsP3 receptor activity can be partially responsible for Ca2+ dyshomeostasis seen in many neurodegenerative conditions. These observations open new avenues for carrying out genetic and drug screens that target InsP3R function in neurodegenerative conditions.
Collapse
Affiliation(s)
- Santanu Banerjee
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India.
| | | |
Collapse
|
33
|
Verkhratsky A. Physiology and Pathophysiology of the Calcium Store in the Endoplasmic Reticulum of Neurons. Physiol Rev 2005; 85:201-79. [PMID: 15618481 DOI: 10.1152/physrev.00004.2004] [Citation(s) in RCA: 570] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The endoplasmic reticulum (ER) is the largest single intracellular organelle, which is present in all types of nerve cells. The ER is an interconnected, internally continuous system of tubules and cisterns, which extends from the nuclear envelope to axons and presynaptic terminals, as well as to dendrites and dendritic spines. Ca2+release channels and Ca2+pumps residing in the ER membrane provide for its excitability. Regulated ER Ca2+release controls many neuronal functions, from plasmalemmal excitability to synaptic plasticity. Enzymatic cascades dependent on the Ca2+concentration in the ER lumen integrate rapid Ca2+signaling with long-lasting adaptive responses through modifications in protein synthesis and processing. Disruptions of ER Ca2+homeostasis are critically involved in various forms of neuropathology.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- The University of Manchester, Faculty of Biological Sciences, United Kingdom.
| |
Collapse
|
34
|
Choi JY, Beaman-Hall CM, Vallano ML. Granule neurons in cerebellum express distinct splice variants of the inositol trisphosphate receptor that are modulated by calcium. Am J Physiol Cell Physiol 2004; 287:C971-80. [PMID: 15189817 DOI: 10.1152/ajpcell.00571.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Primary cultures of granule cells (GC) from rat cerebellar cortex were used to determine whether bioelectric activity, via a Ca(2+)/calmodulin-dependent kinase (CaMK) signaling cascade, modulates expression and exon selection in the inositol trisphosphate receptor type 1 (IP(3)R1). IP(3)R1 contains or lacks three exons (S1, S2, and S3) that are regulated in a regionally and temporally specific manner. The neuronal, or long, form of IP(3)R1 is distinguished from peripheral tissues by inclusion of the S2 exon. Although previous studies indicated that IP(3)R1 are undetectable in the cerebellar granular layer in vivo, receptor protein and mRNA are induced in cultured GC grown in medium supplemented with 25 mM KCl or NMDA, two trophic agents that promote long-term survival, compared with GC grown in 5 mM KCl. IP(3)R1 induction in response to 25 mM KCl or NMDA is attenuated by coaddition of voltage-sensitive calcium channel or NMDA receptor antagonists, respectively. Actinomycin D, CaMK, and calcineurin antagonists likewise suppress induction. Unlike the major variants of IP(3)R1 in Purkinje neurons, which lack S1 and S3, GC grown with trophic agents express mRNA containing these exons. Both neuronal types contain S2. Evidence obtained using mutant mice with Purkinje cell lesions, laser-microdissected GC neurons from slices, and explant cultures indicates that GC predominantly express the S1-containing variant of IP(3)R1 in vivo.
Collapse
Affiliation(s)
- Joseph Y Choi
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | | | | |
Collapse
|
35
|
Inoue T, Kikuchi K, Hirose K, Iino M, Nagano T. Spatiotemporal laser inactivation of inositol 1,4,5-trisphosphate receptors using synthetic small-molecule probes. CHEMISTRY & BIOLOGY 2003; 10:503-9. [PMID: 12837383 DOI: 10.1016/s1074-5521(03)00122-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A malachite green-conjugated inositol 1,4,5-trisphosphate (MGIP(3)) induces specific inactivation of IP(3) receptor (IP(3)R) in tissue samples upon laser irradiation. To verify potential usefulness of the method for studies of cellular Ca(2+) signaling, we conducted laser inactivation at the single-cell level and show that IP(3)R was inactivated with extremely high spatiotemporal resolution. In the presence of MGIP(3), the Ca(2+) release function of IP(3)R in single B lymphoma cells decayed exponentially with increasing duration of laser irradiation with a time constant of 3.4 s. Moreover, by confining laser irradiation to a spatially distinct region of differentiated PC12 cells, subcellular inactivation of IP(3)R was attained, as revealed by a loss of local Ca(2+) signal. Such real-time inactivation of IP(3)R only within a subcellular region may provide a powerful method for investigating spatiotemporal dynamics of Ca(2+) signaling.
Collapse
MESH Headings
- Animals
- Calcium Channels/drug effects
- Calcium Channels/metabolism
- Calcium Channels/radiation effects
- Calcium Signaling/drug effects
- Calcium Signaling/radiation effects
- Chickens
- Inositol 1,4,5-Trisphosphate/chemistry
- Inositol 1,4,5-Trisphosphate/pharmacology
- Inositol 1,4,5-Trisphosphate Receptors
- Ion Channel Gating
- Lasers
- Lymphoma, B-Cell
- Methods
- Molecular Probes
- PC12 Cells
- Rats
- Receptors, Cytoplasmic and Nuclear/drug effects
- Receptors, Cytoplasmic and Nuclear/metabolism
- Receptors, Cytoplasmic and Nuclear/radiation effects
- Rosaniline Dyes/chemistry
- Time Factors
Collapse
Affiliation(s)
- Takanari Inoue
- Graduate School of Pharmaceutical Sciences, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, 113-0033, Tokyo, Japan
| | | | | | | | | |
Collapse
|
36
|
Modulation of Calcium Homeostasis by the Endoplasmic Reticulum in Health and Disease. CALRETICULIN 2003. [DOI: 10.1007/978-1-4419-9258-1_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
37
|
Haberichter T, Roux E, Marhl M, Mazat JP. The influence of different InsP(3) receptor isoforms on Ca(2+) signaling in tracheal smooth muscle cells. Bioelectrochemistry 2002; 57:129-38. [PMID: 12160609 DOI: 10.1016/s1567-5394(02)00063-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In airway myocytes, like in many cells, Ca(2+) signaling is controlled by inositol 1,4,5-trisphosphate (InsP(3)) via InsP(3) receptors (InsP(3)R) located in the sarco-endoplasmic reticulum. Three types of InsP(3)R exist, labeled Types 1, 2, and 3, which differ in their gating kinetics. We analyze a possible impact of the different gating kinetics of Type 1 and Type 3 InsP(3)R on the time course of cytosolic Ca(2+) concentration in tracheal smooth muscle cells upon agonist stimulation. Previous experimental data in rat tracheal myocytes showed that upon gradually increased stimulation with acetylcholine (ACh), a contractile agonist that acts via InsP(3) production, signal spikes, several spikes with declining maxima, and sustained oscillations appear. Our model reproduces the time courses of cytosolic Ca(2+) measured in tracheal myocytes. Moreover, by postulating slight variations in the model parameters which determine the total number of receptors expressed and the ratio between Type 1 and Type 3 InsP(3)R, it offers an explanation to the experimental observation of qualitatively different responses of cells within a presumably homogeneous tissue.
Collapse
Affiliation(s)
- Thomas Haberichter
- Theoretical Biophysics, Institute of Biology, Humboldt University Berlin, Invalidenstr. 43, 10115 Berlin, Germany.
| | | | | | | |
Collapse
|
38
|
Kocan J, Lencesova L, Kiss A, Ondrias K, Kvetnansky R, Krizanova O. Distribution of neuronal and non-neuronal spliced variants of type 1 IP(3)-receptor in rat hypothalamus and brain stem. Neurochem Int 2002; 41:65-70. [PMID: 11918973 DOI: 10.1016/s0197-0186(01)00135-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the nervous system, inositol 1,4,5-trisphosphate (IP(3)) is one of the second messengers produced by PI hydrolysis and triggers IP(3)-receptor (IP(3)R) mediated calcium release from intracellular pools. Throughout the brain, the type 1 IP(3)R is predominantly expressed and its mRNA is widely distributed. Alternative splicing of IP(3)R1 (SI and SII) occurs in two distinct regions. SI splicing in the middle of the ligand binding domain may alter the IP(3) binding activity, while SII splicing probably affects the protein kinase A phosphorylation sites and kinetics. Selective use of IP(3)-receptor subtypes may permit a tissue specific and developmentally specific expression of functionally distinct channels. The present work was focused on detection of the alternatively spliced mRNA of type 1 IP(3)-receptor in individual brain structures and nuclei. Using RT-PCR we detected neuronal (535bp) and non-neuronal (410bp) forms. We identified both spliced variants in the majority of brain structures, except in the cerebellum and medulla. In the cerebellum, the neuronal form of type 1 IP(3)R was found exclusively, while in the medulla, the non-neuronal form was much more abundant. Nevertheless, Western blot analysis and hybridization with specific antibody against IP(3)R revealed no qualitative, but only quantitative differences. Similarly, IP(3) dependent calcium release did not show any differences between the cerebellum and pons. These results demonstrate the distribution of alternatively spliced S2 variants of type 1 IP(3)R in selected brain structures and nuclei. The physiological relevance of these two forms remains to be elucidated by further studies.
Collapse
Affiliation(s)
- J Kocan
- Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Vlarska 5, 833 34 Bratislava, Slovak Republic
| | | | | | | | | | | |
Collapse
|
39
|
Yamamoto K, Nakano M, Hashimoto K, Shimohama S, Kato N. Emergence of a functional coupling between inositol-1,4,5-trisphosphate receptors and calcium channels in developing neocortical neurons. Neuroscience 2002; 109:677-85. [PMID: 11927150 DOI: 10.1016/s0306-4522(01)00449-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Cortical pyramidal neurons are considered to be less excitable in the immature cortex than in adults. Our previous report revealed that a negative feedback regulation of membrane excitability is highly correlated with a novel form of calcium release from inositol-1,4,5-trisphosphate (IP(3))-sensitive calcium stores (IP(3)-assisted calcium-induced calcium release) in neocortical pyramidal neurons under muscarinic cholinergic activation. As a step to understand the ground for the low membrane excitability in immature tissue, we examined development of IP(3)-assisted calcium-induced calcium release. In visual cortex neurons from 'juvenile' rats (2-3 weeks of age), an enhancement of spike-frequency adaptation occurred at high spike-frequencies (16-22 Hz), whereas the reduction was observed at low frequencies (6-10 Hz). IP(3)-assisted calcium-induced calcium release occurred at the higher frequencies only. In 'early' postnatal tissue (1 week of age), by contrast, at neither high nor low frequencies did this form of calcium release occur, and muscarinic cholinergic activation always induced a reduction of spike-frequency adaptation at any spike-frequencies. The mechanism for the failure of induction of IP(3)-assisted calcium-induced calcium release in 'early' postnatal tissue was investigated. Both an ample supply of calcium influx, elicited by higher frequency spike trains, and a supplementary injection of IP(3) through whole-cell pipets, combined together or applied alone, failed to enable IP(3)-assisted calcium-induced calcium release in 'early' postnatal tissue. Muscarinic cholinergic activation alone induced a conventional IP(3)-induced calcium release similar to that observed in neurons from 'juvenile' tissue. Together, it is most likely that functional IP(3)Rs and calcium channels are already present and functional, but are not yet adequately assembled to allow IP(3)-assisted calcium-induced calcium release in cortical pyramidal neurons from rats of 1 week old.
Collapse
Affiliation(s)
- K Yamamoto
- Department of Integrative Brain Science, Kyoto University Graduate School of Medicine, Japan
| | | | | | | | | |
Collapse
|
40
|
Faure AV, Grunwald D, Moutin MJ, Hilly M, Mauger JP, Marty I, De Waard M, Villaz M, Albrieux M. Developmental expression of the calcium release channels during early neurogenesis of the mouse cerebral cortex. Eur J Neurosci 2001; 14:1613-22. [PMID: 11860456 DOI: 10.1046/j.0953-816x.2001.01786.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The developmental changes of intracellular calcium release channels of mouse neocortex were studied at the onset of neurogenesis, which occurs between embryonic days E11 and E17. The three main isoforms of the two families of intracellular calcium release channels, namely the inositol trisphosphate receptors (IP3R) and the ryanodine receptors (RyR), were detected by their transcripts in the cerebral hemispheres, as early as stage E11. The major isoforms of each family, IP3R-1 and RyR-2, were found at the protein level by Western blot analysis. Expression of these proteins increases progressively throughout brain development. Their localization in coronal sections of cortex has been observed by immunodetection from E12, and compared to the TuJ1 (anti-class III beta-tubulin antibody) neuronal specific labelling. The expression of both channels is greatly enhanced after E12, and both were seen to be present in most of the proliferative and neuronal cells of the slice. Between E12 and E13, there is a striking transition in the pattern of calcium release elicited by specific agonists of these channels, thimerosal for IP3R and caffeine for RyR. The signals induced by thimerosal were not zone-specific, while the observed calcium release signals induced by caffeine were predominantly restricted out of the ventricular zone. This zone-specific caffeine sensitivity is consistent with the main RyR localization immunodetected at E13. Our results indicate that there is a time lag of several days between the molecular detection of calcium release channels and their functional expression, around the time of neuronal differentiation. Altogether, they provide a molecular basis for analyzing the developmental modulation of calcium signals useful for neurogenesis progression.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Caffeine/pharmacology
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Calcium Signaling/drug effects
- Calcium Signaling/physiology
- Calcium-Binding Proteins/metabolism
- Calreticulin
- Cell Differentiation/physiology
- Cell Division/physiology
- Central Nervous System Stimulants/pharmacology
- Cerebral Cortex/cytology
- Cerebral Cortex/embryology
- Cerebral Cortex/metabolism
- Chelating Agents/pharmacology
- Egtazic Acid/analogs & derivatives
- Egtazic Acid/pharmacology
- Female
- Fetus
- Fluorescent Antibody Technique
- Gene Expression Regulation, Developmental/physiology
- Inositol 1,4,5-Trisphosphate Receptors
- Male
- Mice
- Mice, Inbred C57BL
- Neurons/cytology
- Neurons/metabolism
- Preservatives, Pharmaceutical/pharmacology
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Ribonucleoproteins/metabolism
- Ryanodine Receptor Calcium Release Channel/genetics
- Ryanodine Receptor Calcium Release Channel/metabolism
- Stem Cells/cytology
- Stem Cells/metabolism
- Thimerosal/pharmacology
- Transcription, Genetic/physiology
- Tubulin/metabolism
Collapse
Affiliation(s)
- A V Faure
- Laboratoire Canaux Ioniques et Signalisation, INSERM E 9931, Département de Biologie Moléculaire et Structurale, 17 rue des Martyrs, F-38054 Grenoble, France
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
NFATc proteins transduce Ca(2+) signals to the nucleus and then pair with other proteins on DNA to generate NFAT complexes that activate transcription in response to both electrical and tyrosine kinase signaling. The four NFATc genes arose at the origin of vertebrates, implying that they have evolved for the development of vertebrate-specific functions, such as a complex nervous system, a recombinational immune system, and a vascular system with a complex heart. These speculations are borne out by studies of mice with null mutations in the different family members.
Collapse
Affiliation(s)
- I A Graef
- Department of Developmental Biology, Stanford University Medical School, Stanford, CA 94305, USA
| | | | | |
Collapse
|
42
|
Mattson MP, LaFerla FM, Chan SL, Leissring MA, Shepel PN, Geiger JD. Calcium signaling in the ER: its role in neuronal plasticity and neurodegenerative disorders. Trends Neurosci 2000; 23:222-9. [PMID: 10782128 DOI: 10.1016/s0166-2236(00)01548-4] [Citation(s) in RCA: 372] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endoplasmic reticulum (ER) is a multifaceted organelle that regulates protein synthesis and trafficking, cellular responses to stress, and intracellular Ca2+ levels. In neurons, it is distributed between the cellular compartments that regulate plasticity and survival, which include axons, dendrites, growth cones and synaptic terminals. Intriguing communication networks between ER, mitochondria and plasma membrane are being revealed that provide mechanisms for the precise regulation of temporal and spatial aspects of Ca2+ signaling. Alterations in Ca2+ homeostasis in ER contribute to neuronal apoptosis and excitotoxicity, and are being linked to the pathogenesis of several different neurodegenerative disorders, including Alzheimer's disease and stroke.
Collapse
Affiliation(s)
- M P Mattson
- Laboratory of Neurosciences, National Institute on Aging, Baltimore, MD 21224, USA
| | | | | | | | | | | |
Collapse
|
43
|
Iino M. Molecular basis of spatio-temporal dynamics in inositol 1,4,5-trisphosphate-mediated Ca2+ signalling. JAPANESE JOURNAL OF PHARMACOLOGY 2000; 82:15-20. [PMID: 10874583 DOI: 10.1254/jjp.82.15] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ signalling regulates many important cell functions, and the spatio-temporal dynamics of the Ca2+ signalling is a crucial factor for its versatility. The molecular mechanisms that control Ca2+ signalling are now being investigated, and I here describe the subtypes of IP3 receptors that have distinct functional properties and contribute to the diversity of Ca2+ signalling patterns. I also discuss the spatio-temporal dynamics of intracellular IP3 concentration, describing recent methodological advances in monitoring intracellular IP3 concentration. These findings highlight the potential importance of the spatio-temporal information of any signalling molecule.
Collapse
Affiliation(s)
- M Iino
- Department of Pharmacology, Graduate School of Medicine, University of Tokyo, Japan
| |
Collapse
|
44
|
Sharp AH, Nucifora FC, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugoand DK, Ross CA. Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990405)406:2<207::aid-cne6>3.0.co;2-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
45
|
Abstract
A fundamental question in brain development is how neurons make the precise topographic connections necessary for function. The hypothesis that transient expression of calcium (Ca2+) signaling molecules may have a role in this process was tested by studying human cerebella at midgestation. In addition, four adult brains, two controls and two from patients with ataxia, were studied as well. The temporal and spatial distribution of intracellular Ca2+ channel/receptors, inositol trisphosphate receptor type 1 (IP3R1) and ryanodine receptor (RyR) and three Ca2+ binding proteins were examined with immunocytochemical methods. A positive immune reaction with all markers of Ca2+ signaling was found in the Purkinje cell layer starting from 17 g.w. (gestational weeks), the youngest age studied. The immune reactions were not homogeneous throughout the extent of the Purkinje cell layer, but instead displayed a 'patchy' appearance in all intrauterine stages. In the adult cerebellum the expression of Ca2+ signaling molecules was homogenous. In the two cerebella obtained from patients suffering from ataxia, a several-fold reduction of immunostaining with IP3R1 was found. Our findings suggest that transient and differential mobilization of intracellular Ca2+ in seemingly homogenous neuronal types may play a role in development of highly organized projection maps of the cerebellar cortex. Moreover, lack of IP3R1 in the diseased brains suggests that internal stores of Ca2+ play an important role in normal function of the cerebellum.
Collapse
Affiliation(s)
- N Zecevic
- Department of Neurology, University of Connecticut Health Center, Farmington 06030-1840, USA.
| | | | | |
Collapse
|
46
|
Díaz-Muñoz M, Dent MA, Granados-Fuentes D, Hall AC, Hernández-Cruz A, Harrington ME, Aguilar-Roblero R. Circadian modulation of the ryanodine receptor type 2 in the SCN of rodents. Neuroreport 1999; 10:481-6. [PMID: 10208575 DOI: 10.1097/00001756-199902250-00007] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We examined the temporal modulation of intracellular calcium release channels in the suprachiasmatic nucleus (SCN). We found a circadian rhythm in [3H]ryanodine binding that was specific to the SCN. The peak in the rhythm occurred at CT 7 and was due to an increase in Bmax, which correlated well with immunoblots showing an increase in RyR-2 expression in the SCN. Double immunohistochemical studies showed that RyR-2 was expressed exclusively in neurons. Ryanodine and caffeine applied around CT 7-9 advanced the clock phase in a hamster brain slice preparation. No rhythm of IP3R was seen in any of the brain areas studied. Our results indicate that RyR-2 exhibits an endogenous rhythm, which influences the intracellular calcium dynamics and thus modulates SCN activity.
Collapse
Affiliation(s)
- M Díaz-Muñoz
- Departamentos de Biofisica, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, México, DF
| | | | | | | | | | | | | |
Collapse
|
47
|
Milosevic A, Zecevic N. Developmental changes in human cerebellum: Expression of intracellular calcium receptors, calcium-binding proteins, and phosphorylated and nonphosphorylated neurofilament protein. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980713)396:4<442::aid-cne3>3.0.co;2-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
48
|
Abstract
Glial cells respond to various electrical, mechanical, and chemical stimuli, including neurotransmitters, neuromodulators, and hormones, with an increase in intracellular Ca2+ concentration ([Ca2+]i). The increases exhibit a variety of temporal and spatial patterns. These [Ca2+]i responses result from the coordinated activity of a number of molecular cascades responsible for Ca2+ movement into or out of the cytoplasm either by way of the extracellular space or intracellular stores. Transplasmalemmal Ca2+ movements may be controlled by several types of voltage- and ligand-gated Ca(2+)-permeable channels as well as Ca2+ pumps and a Na+/Ca2+ exchanger. In addition, glial cells express various metabotropic receptors coupled to intracellular Ca2+ stores through the intracellular messenger inositol 1,4,5-triphosphate. The interplay of different molecular cascades enables the development of agonist-specific patterns of Ca2+ responses. Such agonist specificity may provide a means for intracellular and intercellular information coding. Calcium signals can traverse gap junctions between glial cells without decrement. These waves can serve as a substrate for integration of glial activity. By controlling gap junction conductance, Ca2+ waves may define the limits of functional glial networks. Neuronal activity can trigger [Ca2+]i signals in apposed glial cells, and moreover, there is some evidence that glial [Ca2+]i waves can affect neurons. Glial Ca2+ signaling can be regarded as a form of glial excitability.
Collapse
Affiliation(s)
- A Verkhratsky
- Department of Cellular Neurosciences, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | | | | |
Collapse
|
49
|
Slawecki ML, Carlson GC, Keller A. Differential distribution of inositol 1,4,5-triphosphate receptors in the rat olfactory bulb. J Comp Neurol 1997. [DOI: 10.1002/(sici)1096-9861(19971215)389:2<224::aid-cne3>3.0.co;2-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
50
|
Smutzer G, Zimmerman JE, Han LY, Ruscheinsky DD, Arnold SE, Yu X, Kratskin I. Inositol 1,4,5-trisphosphate receptor expression in odontoblast cells. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1358:221-8. [PMID: 9366253 DOI: 10.1016/s0167-4889(97)00075-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The cellular distribution of inositol 1,4,5-trisphosphate receptors was examined in rodent maxillary incisor teeth. In situ hybridization studies with a transmembrane probe of type I inositol 1,4,5-trisphosphate receptor indicated that this receptor/channel was highly expressed in odontoblast cells of incisor teeth. In contrast, very low labeling was observed in dental pulp. Northern analysis showed a message size of approximately 9.5 kilobases for this receptor, and demonstrated that type III inositol 1,4,5-trisphosphate receptor was expressed in incisor teeth. Immunocytochemical studies confirmed that types I and III inositol 1,4,5-trisphosphate receptors were both highly expressed in odontoblasts while very low expression was detected in dental pulp. Finally, antibodies that recognized alpha subunits of the Gq class of GTP binding proteins also stained odontoblasts. These results indicate that receptor-mediated regulation of calcium release through inositol 1,4,5-trisphosphate receptors may occur in odontoblasts of rat incisor teeth. These findings also suggest that inositol 1,4,5-trisphosphate receptor/channels regulate calcium flux in odontoblasts during mineralization of dentin, or in growth and differentiation of incisor tissue.
Collapse
Affiliation(s)
- G Smutzer
- Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia 19104, USA.
| | | | | | | | | | | | | |
Collapse
|